4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
26 * The ring buffer header is special. We must manually up keep it.
28 int ring_buffer_print_entry_header(struct trace_seq
*s
)
32 ret
= trace_seq_printf(s
, "# compressed entry header\n");
33 ret
= trace_seq_printf(s
, "\ttype_len : 5 bits\n");
34 ret
= trace_seq_printf(s
, "\ttime_delta : 27 bits\n");
35 ret
= trace_seq_printf(s
, "\tarray : 32 bits\n");
36 ret
= trace_seq_printf(s
, "\n");
37 ret
= trace_seq_printf(s
, "\tpadding : type == %d\n",
38 RINGBUF_TYPE_PADDING
);
39 ret
= trace_seq_printf(s
, "\ttime_extend : type == %d\n",
40 RINGBUF_TYPE_TIME_EXTEND
);
41 ret
= trace_seq_printf(s
, "\tdata max type_len == %d\n",
42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
48 * The ring buffer is made up of a list of pages. A separate list of pages is
49 * allocated for each CPU. A writer may only write to a buffer that is
50 * associated with the CPU it is currently executing on. A reader may read
51 * from any per cpu buffer.
53 * The reader is special. For each per cpu buffer, the reader has its own
54 * reader page. When a reader has read the entire reader page, this reader
55 * page is swapped with another page in the ring buffer.
57 * Now, as long as the writer is off the reader page, the reader can do what
58 * ever it wants with that page. The writer will never write to that page
59 * again (as long as it is out of the ring buffer).
61 * Here's some silly ASCII art.
64 * |reader| RING BUFFER
66 * +------+ +---+ +---+ +---+
75 * |reader| RING BUFFER
76 * |page |------------------v
77 * +------+ +---+ +---+ +---+
86 * |reader| RING BUFFER
87 * |page |------------------v
88 * +------+ +---+ +---+ +---+
93 * +------------------------------+
97 * |buffer| RING BUFFER
98 * |page |------------------v
99 * +------+ +---+ +---+ +---+
101 * | New +---+ +---+ +---+
104 * +------------------------------+
107 * After we make this swap, the reader can hand this page off to the splice
108 * code and be done with it. It can even allocate a new page if it needs to
109 * and swap that into the ring buffer.
111 * We will be using cmpxchg soon to make all this lockless.
116 * A fast way to enable or disable all ring buffers is to
117 * call tracing_on or tracing_off. Turning off the ring buffers
118 * prevents all ring buffers from being recorded to.
119 * Turning this switch on, makes it OK to write to the
120 * ring buffer, if the ring buffer is enabled itself.
122 * There's three layers that must be on in order to write
123 * to the ring buffer.
125 * 1) This global flag must be set.
126 * 2) The ring buffer must be enabled for recording.
127 * 3) The per cpu buffer must be enabled for recording.
129 * In case of an anomaly, this global flag has a bit set that
130 * will permantly disable all ring buffers.
134 * Global flag to disable all recording to ring buffers
135 * This has two bits: ON, DISABLED
139 * 0 0 : ring buffers are off
140 * 1 0 : ring buffers are on
141 * X 1 : ring buffers are permanently disabled
145 RB_BUFFERS_ON_BIT
= 0,
146 RB_BUFFERS_DISABLED_BIT
= 1,
150 RB_BUFFERS_ON
= 1 << RB_BUFFERS_ON_BIT
,
151 RB_BUFFERS_DISABLED
= 1 << RB_BUFFERS_DISABLED_BIT
,
154 static unsigned long ring_buffer_flags __read_mostly
= RB_BUFFERS_ON
;
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
159 * tracing_on - enable all tracing buffers
161 * This function enables all tracing buffers that may have been
162 * disabled with tracing_off.
164 void tracing_on(void)
166 set_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
168 EXPORT_SYMBOL_GPL(tracing_on
);
171 * tracing_off - turn off all tracing buffers
173 * This function stops all tracing buffers from recording data.
174 * It does not disable any overhead the tracers themselves may
175 * be causing. This function simply causes all recording to
176 * the ring buffers to fail.
178 void tracing_off(void)
180 clear_bit(RB_BUFFERS_ON_BIT
, &ring_buffer_flags
);
182 EXPORT_SYMBOL_GPL(tracing_off
);
185 * tracing_off_permanent - permanently disable ring buffers
187 * This function, once called, will disable all ring buffers
190 void tracing_off_permanent(void)
192 set_bit(RB_BUFFERS_DISABLED_BIT
, &ring_buffer_flags
);
196 * tracing_is_on - show state of ring buffers enabled
198 int tracing_is_on(void)
200 return ring_buffer_flags
== RB_BUFFERS_ON
;
202 EXPORT_SYMBOL_GPL(tracing_is_on
);
206 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
207 #define RB_ALIGNMENT 4U
208 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
209 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
211 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
212 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
215 RB_LEN_TIME_EXTEND
= 8,
216 RB_LEN_TIME_STAMP
= 16,
219 static inline int rb_null_event(struct ring_buffer_event
*event
)
221 return event
->type_len
== RINGBUF_TYPE_PADDING
222 && event
->time_delta
== 0;
225 static inline int rb_discarded_event(struct ring_buffer_event
*event
)
227 return event
->type_len
== RINGBUF_TYPE_PADDING
&& event
->time_delta
;
230 static void rb_event_set_padding(struct ring_buffer_event
*event
)
232 event
->type_len
= RINGBUF_TYPE_PADDING
;
233 event
->time_delta
= 0;
237 rb_event_data_length(struct ring_buffer_event
*event
)
242 length
= event
->type_len
* RB_ALIGNMENT
;
244 length
= event
->array
[0];
245 return length
+ RB_EVNT_HDR_SIZE
;
248 /* inline for ring buffer fast paths */
250 rb_event_length(struct ring_buffer_event
*event
)
252 switch (event
->type_len
) {
253 case RINGBUF_TYPE_PADDING
:
254 if (rb_null_event(event
))
257 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
259 case RINGBUF_TYPE_TIME_EXTEND
:
260 return RB_LEN_TIME_EXTEND
;
262 case RINGBUF_TYPE_TIME_STAMP
:
263 return RB_LEN_TIME_STAMP
;
265 case RINGBUF_TYPE_DATA
:
266 return rb_event_data_length(event
);
275 * ring_buffer_event_length - return the length of the event
276 * @event: the event to get the length of
278 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
280 unsigned length
= rb_event_length(event
);
281 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
283 length
-= RB_EVNT_HDR_SIZE
;
284 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
285 length
-= sizeof(event
->array
[0]);
288 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
290 /* inline for ring buffer fast paths */
292 rb_event_data(struct ring_buffer_event
*event
)
294 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
295 /* If length is in len field, then array[0] has the data */
297 return (void *)&event
->array
[0];
298 /* Otherwise length is in array[0] and array[1] has the data */
299 return (void *)&event
->array
[1];
303 * ring_buffer_event_data - return the data of the event
304 * @event: the event to get the data from
306 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
308 return rb_event_data(event
);
310 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
312 #define for_each_buffer_cpu(buffer, cpu) \
313 for_each_cpu(cpu, buffer->cpumask)
316 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
317 #define TS_DELTA_TEST (~TS_MASK)
319 struct buffer_data_page
{
320 u64 time_stamp
; /* page time stamp */
321 local_t commit
; /* write committed index */
322 unsigned char data
[]; /* data of buffer page */
326 struct list_head list
; /* list of buffer pages */
327 local_t write
; /* index for next write */
328 unsigned read
; /* index for next read */
329 local_t entries
; /* entries on this page */
330 struct buffer_data_page
*page
; /* Actual data page */
333 static void rb_init_page(struct buffer_data_page
*bpage
)
335 local_set(&bpage
->commit
, 0);
339 * ring_buffer_page_len - the size of data on the page.
340 * @page: The page to read
342 * Returns the amount of data on the page, including buffer page header.
344 size_t ring_buffer_page_len(void *page
)
346 return local_read(&((struct buffer_data_page
*)page
)->commit
)
351 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
354 static void free_buffer_page(struct buffer_page
*bpage
)
356 free_page((unsigned long)bpage
->page
);
361 * We need to fit the time_stamp delta into 27 bits.
363 static inline int test_time_stamp(u64 delta
)
365 if (delta
& TS_DELTA_TEST
)
370 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
372 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
373 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
375 /* Max number of timestamps that can fit on a page */
376 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
378 int ring_buffer_print_page_header(struct trace_seq
*s
)
380 struct buffer_data_page field
;
383 ret
= trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
384 "offset:0;\tsize:%u;\n",
385 (unsigned int)sizeof(field
.time_stamp
));
387 ret
= trace_seq_printf(s
, "\tfield: local_t commit;\t"
388 "offset:%u;\tsize:%u;\n",
389 (unsigned int)offsetof(typeof(field
), commit
),
390 (unsigned int)sizeof(field
.commit
));
392 ret
= trace_seq_printf(s
, "\tfield: char data;\t"
393 "offset:%u;\tsize:%u;\n",
394 (unsigned int)offsetof(typeof(field
), data
),
395 (unsigned int)BUF_PAGE_SIZE
);
401 * head_page == tail_page && head == tail then buffer is empty.
403 struct ring_buffer_per_cpu
{
405 struct ring_buffer
*buffer
;
406 spinlock_t reader_lock
; /* serialize readers */
408 struct lock_class_key lock_key
;
409 struct list_head pages
;
410 struct buffer_page
*head_page
; /* read from head */
411 struct buffer_page
*tail_page
; /* write to tail */
412 struct buffer_page
*commit_page
; /* committed pages */
413 struct buffer_page
*reader_page
;
414 unsigned long nmi_dropped
;
415 unsigned long commit_overrun
;
416 unsigned long overrun
;
423 atomic_t record_disabled
;
430 atomic_t record_disabled
;
431 cpumask_var_t cpumask
;
433 struct lock_class_key
*reader_lock_key
;
437 struct ring_buffer_per_cpu
**buffers
;
439 #ifdef CONFIG_HOTPLUG_CPU
440 struct notifier_block cpu_notify
;
445 struct ring_buffer_iter
{
446 struct ring_buffer_per_cpu
*cpu_buffer
;
448 struct buffer_page
*head_page
;
452 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
453 #define RB_WARN_ON(buffer, cond) \
455 int _____ret = unlikely(cond); \
457 atomic_inc(&buffer->record_disabled); \
463 /* Up this if you want to test the TIME_EXTENTS and normalization */
464 #define DEBUG_SHIFT 0
466 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
, int cpu
)
468 /* shift to debug/test normalization and TIME_EXTENTS */
469 return buffer
->clock() << DEBUG_SHIFT
;
472 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
476 preempt_disable_notrace();
477 time
= rb_time_stamp(buffer
, cpu
);
478 preempt_enable_no_resched_notrace();
482 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
484 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
487 /* Just stupid testing the normalize function and deltas */
490 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
493 * check_pages - integrity check of buffer pages
494 * @cpu_buffer: CPU buffer with pages to test
496 * As a safety measure we check to make sure the data pages have not
499 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
501 struct list_head
*head
= &cpu_buffer
->pages
;
502 struct buffer_page
*bpage
, *tmp
;
504 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
506 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
509 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
510 if (RB_WARN_ON(cpu_buffer
,
511 bpage
->list
.next
->prev
!= &bpage
->list
))
513 if (RB_WARN_ON(cpu_buffer
,
514 bpage
->list
.prev
->next
!= &bpage
->list
))
521 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
524 struct list_head
*head
= &cpu_buffer
->pages
;
525 struct buffer_page
*bpage
, *tmp
;
530 for (i
= 0; i
< nr_pages
; i
++) {
531 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
532 GFP_KERNEL
, cpu_to_node(cpu_buffer
->cpu
));
535 list_add(&bpage
->list
, &pages
);
537 addr
= __get_free_page(GFP_KERNEL
);
540 bpage
->page
= (void *)addr
;
541 rb_init_page(bpage
->page
);
544 list_splice(&pages
, head
);
546 rb_check_pages(cpu_buffer
);
551 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
552 list_del_init(&bpage
->list
);
553 free_buffer_page(bpage
);
558 static struct ring_buffer_per_cpu
*
559 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int cpu
)
561 struct ring_buffer_per_cpu
*cpu_buffer
;
562 struct buffer_page
*bpage
;
566 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
567 GFP_KERNEL
, cpu_to_node(cpu
));
571 cpu_buffer
->cpu
= cpu
;
572 cpu_buffer
->buffer
= buffer
;
573 spin_lock_init(&cpu_buffer
->reader_lock
);
574 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
575 cpu_buffer
->lock
= (raw_spinlock_t
)__RAW_SPIN_LOCK_UNLOCKED
;
576 INIT_LIST_HEAD(&cpu_buffer
->pages
);
578 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
579 GFP_KERNEL
, cpu_to_node(cpu
));
581 goto fail_free_buffer
;
583 cpu_buffer
->reader_page
= bpage
;
584 addr
= __get_free_page(GFP_KERNEL
);
586 goto fail_free_reader
;
587 bpage
->page
= (void *)addr
;
588 rb_init_page(bpage
->page
);
590 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
592 ret
= rb_allocate_pages(cpu_buffer
, buffer
->pages
);
594 goto fail_free_reader
;
596 cpu_buffer
->head_page
597 = list_entry(cpu_buffer
->pages
.next
, struct buffer_page
, list
);
598 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
603 free_buffer_page(cpu_buffer
->reader_page
);
610 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
612 struct list_head
*head
= &cpu_buffer
->pages
;
613 struct buffer_page
*bpage
, *tmp
;
615 free_buffer_page(cpu_buffer
->reader_page
);
617 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
618 list_del_init(&bpage
->list
);
619 free_buffer_page(bpage
);
624 #ifdef CONFIG_HOTPLUG_CPU
625 static int rb_cpu_notify(struct notifier_block
*self
,
626 unsigned long action
, void *hcpu
);
630 * ring_buffer_alloc - allocate a new ring_buffer
631 * @size: the size in bytes per cpu that is needed.
632 * @flags: attributes to set for the ring buffer.
634 * Currently the only flag that is available is the RB_FL_OVERWRITE
635 * flag. This flag means that the buffer will overwrite old data
636 * when the buffer wraps. If this flag is not set, the buffer will
637 * drop data when the tail hits the head.
639 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
640 struct lock_class_key
*key
)
642 struct ring_buffer
*buffer
;
646 /* keep it in its own cache line */
647 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
652 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
653 goto fail_free_buffer
;
655 buffer
->pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
656 buffer
->flags
= flags
;
657 buffer
->clock
= trace_clock_local
;
658 buffer
->reader_lock_key
= key
;
660 /* need at least two pages */
661 if (buffer
->pages
< 2)
665 * In case of non-hotplug cpu, if the ring-buffer is allocated
666 * in early initcall, it will not be notified of secondary cpus.
667 * In that off case, we need to allocate for all possible cpus.
669 #ifdef CONFIG_HOTPLUG_CPU
671 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
673 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
675 buffer
->cpus
= nr_cpu_ids
;
677 bsize
= sizeof(void *) * nr_cpu_ids
;
678 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
680 if (!buffer
->buffers
)
681 goto fail_free_cpumask
;
683 for_each_buffer_cpu(buffer
, cpu
) {
684 buffer
->buffers
[cpu
] =
685 rb_allocate_cpu_buffer(buffer
, cpu
);
686 if (!buffer
->buffers
[cpu
])
687 goto fail_free_buffers
;
690 #ifdef CONFIG_HOTPLUG_CPU
691 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
692 buffer
->cpu_notify
.priority
= 0;
693 register_cpu_notifier(&buffer
->cpu_notify
);
697 mutex_init(&buffer
->mutex
);
702 for_each_buffer_cpu(buffer
, cpu
) {
703 if (buffer
->buffers
[cpu
])
704 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
706 kfree(buffer
->buffers
);
709 free_cpumask_var(buffer
->cpumask
);
716 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
719 * ring_buffer_free - free a ring buffer.
720 * @buffer: the buffer to free.
723 ring_buffer_free(struct ring_buffer
*buffer
)
729 #ifdef CONFIG_HOTPLUG_CPU
730 unregister_cpu_notifier(&buffer
->cpu_notify
);
733 for_each_buffer_cpu(buffer
, cpu
)
734 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
738 kfree(buffer
->buffers
);
739 free_cpumask_var(buffer
->cpumask
);
743 EXPORT_SYMBOL_GPL(ring_buffer_free
);
745 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
748 buffer
->clock
= clock
;
751 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
754 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned nr_pages
)
756 struct buffer_page
*bpage
;
760 atomic_inc(&cpu_buffer
->record_disabled
);
763 for (i
= 0; i
< nr_pages
; i
++) {
764 if (RB_WARN_ON(cpu_buffer
, list_empty(&cpu_buffer
->pages
)))
766 p
= cpu_buffer
->pages
.next
;
767 bpage
= list_entry(p
, struct buffer_page
, list
);
768 list_del_init(&bpage
->list
);
769 free_buffer_page(bpage
);
771 if (RB_WARN_ON(cpu_buffer
, list_empty(&cpu_buffer
->pages
)))
774 rb_reset_cpu(cpu_buffer
);
776 rb_check_pages(cpu_buffer
);
778 atomic_dec(&cpu_buffer
->record_disabled
);
783 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
784 struct list_head
*pages
, unsigned nr_pages
)
786 struct buffer_page
*bpage
;
790 atomic_inc(&cpu_buffer
->record_disabled
);
793 for (i
= 0; i
< nr_pages
; i
++) {
794 if (RB_WARN_ON(cpu_buffer
, list_empty(pages
)))
797 bpage
= list_entry(p
, struct buffer_page
, list
);
798 list_del_init(&bpage
->list
);
799 list_add_tail(&bpage
->list
, &cpu_buffer
->pages
);
801 rb_reset_cpu(cpu_buffer
);
803 rb_check_pages(cpu_buffer
);
805 atomic_dec(&cpu_buffer
->record_disabled
);
809 * ring_buffer_resize - resize the ring buffer
810 * @buffer: the buffer to resize.
811 * @size: the new size.
813 * The tracer is responsible for making sure that the buffer is
814 * not being used while changing the size.
815 * Note: We may be able to change the above requirement by using
816 * RCU synchronizations.
818 * Minimum size is 2 * BUF_PAGE_SIZE.
820 * Returns -1 on failure.
822 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
)
824 struct ring_buffer_per_cpu
*cpu_buffer
;
825 unsigned nr_pages
, rm_pages
, new_pages
;
826 struct buffer_page
*bpage
, *tmp
;
827 unsigned long buffer_size
;
833 * Always succeed at resizing a non-existent buffer:
838 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
839 size
*= BUF_PAGE_SIZE
;
840 buffer_size
= buffer
->pages
* BUF_PAGE_SIZE
;
842 /* we need a minimum of two pages */
843 if (size
< BUF_PAGE_SIZE
* 2)
844 size
= BUF_PAGE_SIZE
* 2;
846 if (size
== buffer_size
)
849 mutex_lock(&buffer
->mutex
);
852 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
854 if (size
< buffer_size
) {
856 /* easy case, just free pages */
857 if (RB_WARN_ON(buffer
, nr_pages
>= buffer
->pages
))
860 rm_pages
= buffer
->pages
- nr_pages
;
862 for_each_buffer_cpu(buffer
, cpu
) {
863 cpu_buffer
= buffer
->buffers
[cpu
];
864 rb_remove_pages(cpu_buffer
, rm_pages
);
870 * This is a bit more difficult. We only want to add pages
871 * when we can allocate enough for all CPUs. We do this
872 * by allocating all the pages and storing them on a local
873 * link list. If we succeed in our allocation, then we
874 * add these pages to the cpu_buffers. Otherwise we just free
875 * them all and return -ENOMEM;
877 if (RB_WARN_ON(buffer
, nr_pages
<= buffer
->pages
))
880 new_pages
= nr_pages
- buffer
->pages
;
882 for_each_buffer_cpu(buffer
, cpu
) {
883 for (i
= 0; i
< new_pages
; i
++) {
884 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
),
886 GFP_KERNEL
, cpu_to_node(cpu
));
889 list_add(&bpage
->list
, &pages
);
890 addr
= __get_free_page(GFP_KERNEL
);
893 bpage
->page
= (void *)addr
;
894 rb_init_page(bpage
->page
);
898 for_each_buffer_cpu(buffer
, cpu
) {
899 cpu_buffer
= buffer
->buffers
[cpu
];
900 rb_insert_pages(cpu_buffer
, &pages
, new_pages
);
903 if (RB_WARN_ON(buffer
, !list_empty(&pages
)))
907 buffer
->pages
= nr_pages
;
909 mutex_unlock(&buffer
->mutex
);
914 list_for_each_entry_safe(bpage
, tmp
, &pages
, list
) {
915 list_del_init(&bpage
->list
);
916 free_buffer_page(bpage
);
919 mutex_unlock(&buffer
->mutex
);
923 * Something went totally wrong, and we are too paranoid
924 * to even clean up the mess.
928 mutex_unlock(&buffer
->mutex
);
931 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
934 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
936 return bpage
->data
+ index
;
939 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
941 return bpage
->page
->data
+ index
;
944 static inline struct ring_buffer_event
*
945 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
947 return __rb_page_index(cpu_buffer
->reader_page
,
948 cpu_buffer
->reader_page
->read
);
951 static inline struct ring_buffer_event
*
952 rb_head_event(struct ring_buffer_per_cpu
*cpu_buffer
)
954 return __rb_page_index(cpu_buffer
->head_page
,
955 cpu_buffer
->head_page
->read
);
958 static inline struct ring_buffer_event
*
959 rb_iter_head_event(struct ring_buffer_iter
*iter
)
961 return __rb_page_index(iter
->head_page
, iter
->head
);
964 static inline unsigned rb_page_write(struct buffer_page
*bpage
)
966 return local_read(&bpage
->write
);
969 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
971 return local_read(&bpage
->page
->commit
);
974 /* Size is determined by what has been commited */
975 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
977 return rb_page_commit(bpage
);
980 static inline unsigned
981 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
983 return rb_page_commit(cpu_buffer
->commit_page
);
986 static inline unsigned rb_head_size(struct ring_buffer_per_cpu
*cpu_buffer
)
988 return rb_page_commit(cpu_buffer
->head_page
);
991 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
992 struct buffer_page
**bpage
)
994 struct list_head
*p
= (*bpage
)->list
.next
;
996 if (p
== &cpu_buffer
->pages
)
999 *bpage
= list_entry(p
, struct buffer_page
, list
);
1002 static inline unsigned
1003 rb_event_index(struct ring_buffer_event
*event
)
1005 unsigned long addr
= (unsigned long)event
;
1007 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1011 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1012 struct ring_buffer_event
*event
)
1014 unsigned long addr
= (unsigned long)event
;
1015 unsigned long index
;
1017 index
= rb_event_index(event
);
1020 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1021 rb_commit_index(cpu_buffer
) == index
;
1025 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1028 * We only race with interrupts and NMIs on this CPU.
1029 * If we own the commit event, then we can commit
1030 * all others that interrupted us, since the interruptions
1031 * are in stack format (they finish before they come
1032 * back to us). This allows us to do a simple loop to
1033 * assign the commit to the tail.
1036 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1037 cpu_buffer
->commit_page
->page
->commit
=
1038 cpu_buffer
->commit_page
->write
;
1039 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1040 cpu_buffer
->write_stamp
=
1041 cpu_buffer
->commit_page
->page
->time_stamp
;
1042 /* add barrier to keep gcc from optimizing too much */
1045 while (rb_commit_index(cpu_buffer
) !=
1046 rb_page_write(cpu_buffer
->commit_page
)) {
1047 cpu_buffer
->commit_page
->page
->commit
=
1048 cpu_buffer
->commit_page
->write
;
1052 /* again, keep gcc from optimizing */
1056 * If an interrupt came in just after the first while loop
1057 * and pushed the tail page forward, we will be left with
1058 * a dangling commit that will never go forward.
1060 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1064 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1066 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1067 cpu_buffer
->reader_page
->read
= 0;
1070 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1072 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1075 * The iterator could be on the reader page (it starts there).
1076 * But the head could have moved, since the reader was
1077 * found. Check for this case and assign the iterator
1078 * to the head page instead of next.
1080 if (iter
->head_page
== cpu_buffer
->reader_page
)
1081 iter
->head_page
= cpu_buffer
->head_page
;
1083 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1085 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1090 * ring_buffer_update_event - update event type and data
1091 * @event: the even to update
1092 * @type: the type of event
1093 * @length: the size of the event field in the ring buffer
1095 * Update the type and data fields of the event. The length
1096 * is the actual size that is written to the ring buffer,
1097 * and with this, we can determine what to place into the
1101 rb_update_event(struct ring_buffer_event
*event
,
1102 unsigned type
, unsigned length
)
1104 event
->type_len
= type
;
1108 case RINGBUF_TYPE_PADDING
:
1109 case RINGBUF_TYPE_TIME_EXTEND
:
1110 case RINGBUF_TYPE_TIME_STAMP
:
1114 length
-= RB_EVNT_HDR_SIZE
;
1115 if (length
> RB_MAX_SMALL_DATA
)
1116 event
->array
[0] = length
;
1118 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
1125 static unsigned rb_calculate_event_length(unsigned length
)
1127 struct ring_buffer_event event
; /* Used only for sizeof array */
1129 /* zero length can cause confusions */
1133 if (length
> RB_MAX_SMALL_DATA
)
1134 length
+= sizeof(event
.array
[0]);
1136 length
+= RB_EVNT_HDR_SIZE
;
1137 length
= ALIGN(length
, RB_ALIGNMENT
);
1143 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1144 struct buffer_page
*tail_page
,
1145 unsigned long tail
, unsigned long length
)
1147 struct ring_buffer_event
*event
;
1150 * Only the event that crossed the page boundary
1151 * must fill the old tail_page with padding.
1153 if (tail
>= BUF_PAGE_SIZE
) {
1154 local_sub(length
, &tail_page
->write
);
1158 event
= __rb_page_index(tail_page
, tail
);
1159 kmemcheck_annotate_bitfield(event
, bitfield
);
1162 * If this event is bigger than the minimum size, then
1163 * we need to be careful that we don't subtract the
1164 * write counter enough to allow another writer to slip
1166 * We put in a discarded commit instead, to make sure
1167 * that this space is not used again.
1169 * If we are less than the minimum size, we don't need to
1172 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
1173 /* No room for any events */
1175 /* Mark the rest of the page with padding */
1176 rb_event_set_padding(event
);
1178 /* Set the write back to the previous setting */
1179 local_sub(length
, &tail_page
->write
);
1183 /* Put in a discarded event */
1184 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
1185 event
->type_len
= RINGBUF_TYPE_PADDING
;
1186 /* time delta must be non zero */
1187 event
->time_delta
= 1;
1188 /* Account for this as an entry */
1189 local_inc(&tail_page
->entries
);
1190 local_inc(&cpu_buffer
->entries
);
1192 /* Set write to end of buffer */
1193 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
1194 local_sub(length
, &tail_page
->write
);
1197 static struct ring_buffer_event
*
1198 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
1199 unsigned long length
, unsigned long tail
,
1200 struct buffer_page
*commit_page
,
1201 struct buffer_page
*tail_page
, u64
*ts
)
1203 struct buffer_page
*next_page
, *head_page
, *reader_page
;
1204 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
1205 bool lock_taken
= false;
1206 unsigned long flags
;
1208 next_page
= tail_page
;
1210 local_irq_save(flags
);
1212 * Since the write to the buffer is still not
1213 * fully lockless, we must be careful with NMIs.
1214 * The locks in the writers are taken when a write
1215 * crosses to a new page. The locks protect against
1216 * races with the readers (this will soon be fixed
1217 * with a lockless solution).
1219 * Because we can not protect against NMIs, and we
1220 * want to keep traces reentrant, we need to manage
1221 * what happens when we are in an NMI.
1223 * NMIs can happen after we take the lock.
1224 * If we are in an NMI, only take the lock
1225 * if it is not already taken. Otherwise
1228 if (unlikely(in_nmi())) {
1229 if (!__raw_spin_trylock(&cpu_buffer
->lock
)) {
1230 cpu_buffer
->nmi_dropped
++;
1234 __raw_spin_lock(&cpu_buffer
->lock
);
1238 rb_inc_page(cpu_buffer
, &next_page
);
1240 head_page
= cpu_buffer
->head_page
;
1241 reader_page
= cpu_buffer
->reader_page
;
1243 /* we grabbed the lock before incrementing */
1244 if (RB_WARN_ON(cpu_buffer
, next_page
== reader_page
))
1248 * If for some reason, we had an interrupt storm that made
1249 * it all the way around the buffer, bail, and warn
1252 if (unlikely(next_page
== commit_page
)) {
1253 cpu_buffer
->commit_overrun
++;
1257 if (next_page
== head_page
) {
1258 if (!(buffer
->flags
& RB_FL_OVERWRITE
))
1261 /* tail_page has not moved yet? */
1262 if (tail_page
== cpu_buffer
->tail_page
) {
1263 /* count overflows */
1264 cpu_buffer
->overrun
+=
1265 local_read(&head_page
->entries
);
1267 rb_inc_page(cpu_buffer
, &head_page
);
1268 cpu_buffer
->head_page
= head_page
;
1269 cpu_buffer
->head_page
->read
= 0;
1274 * If the tail page is still the same as what we think
1275 * it is, then it is up to us to update the tail
1278 if (tail_page
== cpu_buffer
->tail_page
) {
1279 local_set(&next_page
->write
, 0);
1280 local_set(&next_page
->entries
, 0);
1281 local_set(&next_page
->page
->commit
, 0);
1282 cpu_buffer
->tail_page
= next_page
;
1284 /* reread the time stamp */
1285 *ts
= rb_time_stamp(buffer
, cpu_buffer
->cpu
);
1286 cpu_buffer
->tail_page
->page
->time_stamp
= *ts
;
1289 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1291 __raw_spin_unlock(&cpu_buffer
->lock
);
1292 local_irq_restore(flags
);
1294 /* fail and let the caller try again */
1295 return ERR_PTR(-EAGAIN
);
1299 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
1301 if (likely(lock_taken
))
1302 __raw_spin_unlock(&cpu_buffer
->lock
);
1303 local_irq_restore(flags
);
1307 static struct ring_buffer_event
*
1308 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
1309 unsigned type
, unsigned long length
, u64
*ts
)
1311 struct buffer_page
*tail_page
, *commit_page
;
1312 struct ring_buffer_event
*event
;
1313 unsigned long tail
, write
;
1315 commit_page
= cpu_buffer
->commit_page
;
1316 /* we just need to protect against interrupts */
1318 tail_page
= cpu_buffer
->tail_page
;
1319 write
= local_add_return(length
, &tail_page
->write
);
1320 tail
= write
- length
;
1322 /* See if we shot pass the end of this buffer page */
1323 if (write
> BUF_PAGE_SIZE
)
1324 return rb_move_tail(cpu_buffer
, length
, tail
,
1325 commit_page
, tail_page
, ts
);
1327 /* We reserved something on the buffer */
1329 event
= __rb_page_index(tail_page
, tail
);
1330 kmemcheck_annotate_bitfield(event
, bitfield
);
1331 rb_update_event(event
, type
, length
);
1333 /* The passed in type is zero for DATA */
1335 local_inc(&tail_page
->entries
);
1338 * If this is the first commit on the page, then update
1342 tail_page
->page
->time_stamp
= *ts
;
1348 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
1349 struct ring_buffer_event
*event
)
1351 unsigned long new_index
, old_index
;
1352 struct buffer_page
*bpage
;
1353 unsigned long index
;
1356 new_index
= rb_event_index(event
);
1357 old_index
= new_index
+ rb_event_length(event
);
1358 addr
= (unsigned long)event
;
1361 bpage
= cpu_buffer
->tail_page
;
1363 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
1365 * This is on the tail page. It is possible that
1366 * a write could come in and move the tail page
1367 * and write to the next page. That is fine
1368 * because we just shorten what is on this page.
1370 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
1371 if (index
== old_index
)
1375 /* could not discard */
1380 rb_add_time_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
1381 u64
*ts
, u64
*delta
)
1383 struct ring_buffer_event
*event
;
1387 if (unlikely(*delta
> (1ULL << 59) && !once
++)) {
1388 printk(KERN_WARNING
"Delta way too big! %llu"
1389 " ts=%llu write stamp = %llu\n",
1390 (unsigned long long)*delta
,
1391 (unsigned long long)*ts
,
1392 (unsigned long long)cpu_buffer
->write_stamp
);
1397 * The delta is too big, we to add a
1400 event
= __rb_reserve_next(cpu_buffer
,
1401 RINGBUF_TYPE_TIME_EXTEND
,
1407 if (PTR_ERR(event
) == -EAGAIN
)
1410 /* Only a commited time event can update the write stamp */
1411 if (rb_event_is_commit(cpu_buffer
, event
)) {
1413 * If this is the first on the page, then it was
1414 * updated with the page itself. Try to discard it
1415 * and if we can't just make it zero.
1417 if (rb_event_index(event
)) {
1418 event
->time_delta
= *delta
& TS_MASK
;
1419 event
->array
[0] = *delta
>> TS_SHIFT
;
1421 /* try to discard, since we do not need this */
1422 if (!rb_try_to_discard(cpu_buffer
, event
)) {
1423 /* nope, just zero it */
1424 event
->time_delta
= 0;
1425 event
->array
[0] = 0;
1428 cpu_buffer
->write_stamp
= *ts
;
1429 /* let the caller know this was the commit */
1432 /* Try to discard the event */
1433 if (!rb_try_to_discard(cpu_buffer
, event
)) {
1434 /* Darn, this is just wasted space */
1435 event
->time_delta
= 0;
1436 event
->array
[0] = 0;
1446 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
1448 local_inc(&cpu_buffer
->committing
);
1449 local_inc(&cpu_buffer
->commits
);
1452 static void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
1454 unsigned long commits
;
1456 if (RB_WARN_ON(cpu_buffer
,
1457 !local_read(&cpu_buffer
->committing
)))
1461 commits
= local_read(&cpu_buffer
->commits
);
1462 /* synchronize with interrupts */
1464 if (local_read(&cpu_buffer
->committing
) == 1)
1465 rb_set_commit_to_write(cpu_buffer
);
1467 local_dec(&cpu_buffer
->committing
);
1469 /* synchronize with interrupts */
1473 * Need to account for interrupts coming in between the
1474 * updating of the commit page and the clearing of the
1475 * committing counter.
1477 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
1478 !local_read(&cpu_buffer
->committing
)) {
1479 local_inc(&cpu_buffer
->committing
);
1484 static struct ring_buffer_event
*
1485 rb_reserve_next_event(struct ring_buffer_per_cpu
*cpu_buffer
,
1486 unsigned long length
)
1488 struct ring_buffer_event
*event
;
1493 rb_start_commit(cpu_buffer
);
1495 length
= rb_calculate_event_length(length
);
1498 * We allow for interrupts to reenter here and do a trace.
1499 * If one does, it will cause this original code to loop
1500 * back here. Even with heavy interrupts happening, this
1501 * should only happen a few times in a row. If this happens
1502 * 1000 times in a row, there must be either an interrupt
1503 * storm or we have something buggy.
1506 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
1509 ts
= rb_time_stamp(cpu_buffer
->buffer
, cpu_buffer
->cpu
);
1512 * Only the first commit can update the timestamp.
1513 * Yes there is a race here. If an interrupt comes in
1514 * just after the conditional and it traces too, then it
1515 * will also check the deltas. More than one timestamp may
1516 * also be made. But only the entry that did the actual
1517 * commit will be something other than zero.
1519 if (likely(cpu_buffer
->tail_page
== cpu_buffer
->commit_page
&&
1520 rb_page_write(cpu_buffer
->tail_page
) ==
1521 rb_commit_index(cpu_buffer
))) {
1524 diff
= ts
- cpu_buffer
->write_stamp
;
1526 /* make sure this diff is calculated here */
1529 /* Did the write stamp get updated already? */
1530 if (unlikely(ts
< cpu_buffer
->write_stamp
))
1534 if (unlikely(test_time_stamp(delta
))) {
1536 commit
= rb_add_time_stamp(cpu_buffer
, &ts
, &delta
);
1537 if (commit
== -EBUSY
)
1540 if (commit
== -EAGAIN
)
1543 RB_WARN_ON(cpu_buffer
, commit
< 0);
1548 event
= __rb_reserve_next(cpu_buffer
, 0, length
, &ts
);
1549 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
1555 if (!rb_event_is_commit(cpu_buffer
, event
))
1558 event
->time_delta
= delta
;
1563 rb_end_commit(cpu_buffer
);
1567 #ifdef CONFIG_TRACING
1569 #define TRACE_RECURSIVE_DEPTH 16
1571 static int trace_recursive_lock(void)
1573 current
->trace_recursion
++;
1575 if (likely(current
->trace_recursion
< TRACE_RECURSIVE_DEPTH
))
1578 /* Disable all tracing before we do anything else */
1579 tracing_off_permanent();
1581 printk_once(KERN_WARNING
"Tracing recursion: depth[%ld]:"
1582 "HC[%lu]:SC[%lu]:NMI[%lu]\n",
1583 current
->trace_recursion
,
1584 hardirq_count() >> HARDIRQ_SHIFT
,
1585 softirq_count() >> SOFTIRQ_SHIFT
,
1592 static void trace_recursive_unlock(void)
1594 WARN_ON_ONCE(!current
->trace_recursion
);
1596 current
->trace_recursion
--;
1601 #define trace_recursive_lock() (0)
1602 #define trace_recursive_unlock() do { } while (0)
1606 static DEFINE_PER_CPU(int, rb_need_resched
);
1609 * ring_buffer_lock_reserve - reserve a part of the buffer
1610 * @buffer: the ring buffer to reserve from
1611 * @length: the length of the data to reserve (excluding event header)
1613 * Returns a reseverd event on the ring buffer to copy directly to.
1614 * The user of this interface will need to get the body to write into
1615 * and can use the ring_buffer_event_data() interface.
1617 * The length is the length of the data needed, not the event length
1618 * which also includes the event header.
1620 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
1621 * If NULL is returned, then nothing has been allocated or locked.
1623 struct ring_buffer_event
*
1624 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
1626 struct ring_buffer_per_cpu
*cpu_buffer
;
1627 struct ring_buffer_event
*event
;
1630 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
1633 if (atomic_read(&buffer
->record_disabled
))
1636 /* If we are tracing schedule, we don't want to recurse */
1637 resched
= ftrace_preempt_disable();
1639 if (trace_recursive_lock())
1642 cpu
= raw_smp_processor_id();
1644 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1647 cpu_buffer
= buffer
->buffers
[cpu
];
1649 if (atomic_read(&cpu_buffer
->record_disabled
))
1652 if (length
> BUF_MAX_DATA_SIZE
)
1655 event
= rb_reserve_next_event(cpu_buffer
, length
);
1660 * Need to store resched state on this cpu.
1661 * Only the first needs to.
1664 if (preempt_count() == 1)
1665 per_cpu(rb_need_resched
, cpu
) = resched
;
1670 trace_recursive_unlock();
1673 ftrace_preempt_enable(resched
);
1676 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
1678 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1679 struct ring_buffer_event
*event
)
1681 local_inc(&cpu_buffer
->entries
);
1684 * The event first in the commit queue updates the
1687 if (rb_event_is_commit(cpu_buffer
, event
))
1688 cpu_buffer
->write_stamp
+= event
->time_delta
;
1690 rb_end_commit(cpu_buffer
);
1694 * ring_buffer_unlock_commit - commit a reserved
1695 * @buffer: The buffer to commit to
1696 * @event: The event pointer to commit.
1698 * This commits the data to the ring buffer, and releases any locks held.
1700 * Must be paired with ring_buffer_lock_reserve.
1702 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
1703 struct ring_buffer_event
*event
)
1705 struct ring_buffer_per_cpu
*cpu_buffer
;
1706 int cpu
= raw_smp_processor_id();
1708 cpu_buffer
= buffer
->buffers
[cpu
];
1710 rb_commit(cpu_buffer
, event
);
1712 trace_recursive_unlock();
1715 * Only the last preempt count needs to restore preemption.
1717 if (preempt_count() == 1)
1718 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
1720 preempt_enable_no_resched_notrace();
1724 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
1726 static inline void rb_event_discard(struct ring_buffer_event
*event
)
1728 /* array[0] holds the actual length for the discarded event */
1729 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
1730 event
->type_len
= RINGBUF_TYPE_PADDING
;
1731 /* time delta must be non zero */
1732 if (!event
->time_delta
)
1733 event
->time_delta
= 1;
1737 * ring_buffer_event_discard - discard any event in the ring buffer
1738 * @event: the event to discard
1740 * Sometimes a event that is in the ring buffer needs to be ignored.
1741 * This function lets the user discard an event in the ring buffer
1742 * and then that event will not be read later.
1744 * Note, it is up to the user to be careful with this, and protect
1745 * against races. If the user discards an event that has been consumed
1746 * it is possible that it could corrupt the ring buffer.
1748 void ring_buffer_event_discard(struct ring_buffer_event
*event
)
1750 rb_event_discard(event
);
1752 EXPORT_SYMBOL_GPL(ring_buffer_event_discard
);
1755 * ring_buffer_commit_discard - discard an event that has not been committed
1756 * @buffer: the ring buffer
1757 * @event: non committed event to discard
1759 * This is similar to ring_buffer_event_discard but must only be
1760 * performed on an event that has not been committed yet. The difference
1761 * is that this will also try to free the event from the ring buffer
1762 * if another event has not been added behind it.
1764 * If another event has been added behind it, it will set the event
1765 * up as discarded, and perform the commit.
1767 * If this function is called, do not call ring_buffer_unlock_commit on
1770 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
1771 struct ring_buffer_event
*event
)
1773 struct ring_buffer_per_cpu
*cpu_buffer
;
1776 /* The event is discarded regardless */
1777 rb_event_discard(event
);
1779 cpu
= smp_processor_id();
1780 cpu_buffer
= buffer
->buffers
[cpu
];
1783 * This must only be called if the event has not been
1784 * committed yet. Thus we can assume that preemption
1785 * is still disabled.
1787 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
1789 if (rb_try_to_discard(cpu_buffer
, event
))
1793 * The commit is still visible by the reader, so we
1794 * must increment entries.
1796 local_inc(&cpu_buffer
->entries
);
1798 rb_end_commit(cpu_buffer
);
1800 trace_recursive_unlock();
1803 * Only the last preempt count needs to restore preemption.
1805 if (preempt_count() == 1)
1806 ftrace_preempt_enable(per_cpu(rb_need_resched
, cpu
));
1808 preempt_enable_no_resched_notrace();
1811 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
1814 * ring_buffer_write - write data to the buffer without reserving
1815 * @buffer: The ring buffer to write to.
1816 * @length: The length of the data being written (excluding the event header)
1817 * @data: The data to write to the buffer.
1819 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
1820 * one function. If you already have the data to write to the buffer, it
1821 * may be easier to simply call this function.
1823 * Note, like ring_buffer_lock_reserve, the length is the length of the data
1824 * and not the length of the event which would hold the header.
1826 int ring_buffer_write(struct ring_buffer
*buffer
,
1827 unsigned long length
,
1830 struct ring_buffer_per_cpu
*cpu_buffer
;
1831 struct ring_buffer_event
*event
;
1836 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
1839 if (atomic_read(&buffer
->record_disabled
))
1842 resched
= ftrace_preempt_disable();
1844 cpu
= raw_smp_processor_id();
1846 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1849 cpu_buffer
= buffer
->buffers
[cpu
];
1851 if (atomic_read(&cpu_buffer
->record_disabled
))
1854 if (length
> BUF_MAX_DATA_SIZE
)
1857 event
= rb_reserve_next_event(cpu_buffer
, length
);
1861 body
= rb_event_data(event
);
1863 memcpy(body
, data
, length
);
1865 rb_commit(cpu_buffer
, event
);
1869 ftrace_preempt_enable(resched
);
1873 EXPORT_SYMBOL_GPL(ring_buffer_write
);
1875 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
1877 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
1878 struct buffer_page
*head
= cpu_buffer
->head_page
;
1879 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
1881 return reader
->read
== rb_page_commit(reader
) &&
1882 (commit
== reader
||
1884 head
->read
== rb_page_commit(commit
)));
1888 * ring_buffer_record_disable - stop all writes into the buffer
1889 * @buffer: The ring buffer to stop writes to.
1891 * This prevents all writes to the buffer. Any attempt to write
1892 * to the buffer after this will fail and return NULL.
1894 * The caller should call synchronize_sched() after this.
1896 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
1898 atomic_inc(&buffer
->record_disabled
);
1900 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
1903 * ring_buffer_record_enable - enable writes to the buffer
1904 * @buffer: The ring buffer to enable writes
1906 * Note, multiple disables will need the same number of enables
1907 * to truely enable the writing (much like preempt_disable).
1909 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
1911 atomic_dec(&buffer
->record_disabled
);
1913 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
1916 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
1917 * @buffer: The ring buffer to stop writes to.
1918 * @cpu: The CPU buffer to stop
1920 * This prevents all writes to the buffer. Any attempt to write
1921 * to the buffer after this will fail and return NULL.
1923 * The caller should call synchronize_sched() after this.
1925 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
1927 struct ring_buffer_per_cpu
*cpu_buffer
;
1929 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1932 cpu_buffer
= buffer
->buffers
[cpu
];
1933 atomic_inc(&cpu_buffer
->record_disabled
);
1935 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
1938 * ring_buffer_record_enable_cpu - enable writes to the buffer
1939 * @buffer: The ring buffer to enable writes
1940 * @cpu: The CPU to enable.
1942 * Note, multiple disables will need the same number of enables
1943 * to truely enable the writing (much like preempt_disable).
1945 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
1947 struct ring_buffer_per_cpu
*cpu_buffer
;
1949 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1952 cpu_buffer
= buffer
->buffers
[cpu
];
1953 atomic_dec(&cpu_buffer
->record_disabled
);
1955 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
1958 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
1959 * @buffer: The ring buffer
1960 * @cpu: The per CPU buffer to get the entries from.
1962 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
1964 struct ring_buffer_per_cpu
*cpu_buffer
;
1967 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1970 cpu_buffer
= buffer
->buffers
[cpu
];
1971 ret
= (local_read(&cpu_buffer
->entries
) - cpu_buffer
->overrun
)
1976 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
1979 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
1980 * @buffer: The ring buffer
1981 * @cpu: The per CPU buffer to get the number of overruns from
1983 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
1985 struct ring_buffer_per_cpu
*cpu_buffer
;
1988 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
1991 cpu_buffer
= buffer
->buffers
[cpu
];
1992 ret
= cpu_buffer
->overrun
;
1996 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
1999 * ring_buffer_nmi_dropped_cpu - get the number of nmis that were dropped
2000 * @buffer: The ring buffer
2001 * @cpu: The per CPU buffer to get the number of overruns from
2003 unsigned long ring_buffer_nmi_dropped_cpu(struct ring_buffer
*buffer
, int cpu
)
2005 struct ring_buffer_per_cpu
*cpu_buffer
;
2008 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2011 cpu_buffer
= buffer
->buffers
[cpu
];
2012 ret
= cpu_buffer
->nmi_dropped
;
2016 EXPORT_SYMBOL_GPL(ring_buffer_nmi_dropped_cpu
);
2019 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2020 * @buffer: The ring buffer
2021 * @cpu: The per CPU buffer to get the number of overruns from
2024 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
2026 struct ring_buffer_per_cpu
*cpu_buffer
;
2029 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2032 cpu_buffer
= buffer
->buffers
[cpu
];
2033 ret
= cpu_buffer
->commit_overrun
;
2037 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
2040 * ring_buffer_entries - get the number of entries in a buffer
2041 * @buffer: The ring buffer
2043 * Returns the total number of entries in the ring buffer
2046 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
2048 struct ring_buffer_per_cpu
*cpu_buffer
;
2049 unsigned long entries
= 0;
2052 /* if you care about this being correct, lock the buffer */
2053 for_each_buffer_cpu(buffer
, cpu
) {
2054 cpu_buffer
= buffer
->buffers
[cpu
];
2055 entries
+= (local_read(&cpu_buffer
->entries
) -
2056 cpu_buffer
->overrun
) - cpu_buffer
->read
;
2061 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
2064 * ring_buffer_overrun_cpu - get the number of overruns in buffer
2065 * @buffer: The ring buffer
2067 * Returns the total number of overruns in the ring buffer
2070 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
2072 struct ring_buffer_per_cpu
*cpu_buffer
;
2073 unsigned long overruns
= 0;
2076 /* if you care about this being correct, lock the buffer */
2077 for_each_buffer_cpu(buffer
, cpu
) {
2078 cpu_buffer
= buffer
->buffers
[cpu
];
2079 overruns
+= cpu_buffer
->overrun
;
2084 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
2086 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
2088 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2090 /* Iterator usage is expected to have record disabled */
2091 if (list_empty(&cpu_buffer
->reader_page
->list
)) {
2092 iter
->head_page
= cpu_buffer
->head_page
;
2093 iter
->head
= cpu_buffer
->head_page
->read
;
2095 iter
->head_page
= cpu_buffer
->reader_page
;
2096 iter
->head
= cpu_buffer
->reader_page
->read
;
2099 iter
->read_stamp
= cpu_buffer
->read_stamp
;
2101 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
2105 * ring_buffer_iter_reset - reset an iterator
2106 * @iter: The iterator to reset
2108 * Resets the iterator, so that it will start from the beginning
2111 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
2113 struct ring_buffer_per_cpu
*cpu_buffer
;
2114 unsigned long flags
;
2119 cpu_buffer
= iter
->cpu_buffer
;
2121 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2122 rb_iter_reset(iter
);
2123 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2125 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
2128 * ring_buffer_iter_empty - check if an iterator has no more to read
2129 * @iter: The iterator to check
2131 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
2133 struct ring_buffer_per_cpu
*cpu_buffer
;
2135 cpu_buffer
= iter
->cpu_buffer
;
2137 return iter
->head_page
== cpu_buffer
->commit_page
&&
2138 iter
->head
== rb_commit_index(cpu_buffer
);
2140 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
2143 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2144 struct ring_buffer_event
*event
)
2148 switch (event
->type_len
) {
2149 case RINGBUF_TYPE_PADDING
:
2152 case RINGBUF_TYPE_TIME_EXTEND
:
2153 delta
= event
->array
[0];
2155 delta
+= event
->time_delta
;
2156 cpu_buffer
->read_stamp
+= delta
;
2159 case RINGBUF_TYPE_TIME_STAMP
:
2160 /* FIXME: not implemented */
2163 case RINGBUF_TYPE_DATA
:
2164 cpu_buffer
->read_stamp
+= event
->time_delta
;
2174 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
2175 struct ring_buffer_event
*event
)
2179 switch (event
->type_len
) {
2180 case RINGBUF_TYPE_PADDING
:
2183 case RINGBUF_TYPE_TIME_EXTEND
:
2184 delta
= event
->array
[0];
2186 delta
+= event
->time_delta
;
2187 iter
->read_stamp
+= delta
;
2190 case RINGBUF_TYPE_TIME_STAMP
:
2191 /* FIXME: not implemented */
2194 case RINGBUF_TYPE_DATA
:
2195 iter
->read_stamp
+= event
->time_delta
;
2204 static struct buffer_page
*
2205 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
2207 struct buffer_page
*reader
= NULL
;
2208 unsigned long flags
;
2211 local_irq_save(flags
);
2212 __raw_spin_lock(&cpu_buffer
->lock
);
2216 * This should normally only loop twice. But because the
2217 * start of the reader inserts an empty page, it causes
2218 * a case where we will loop three times. There should be no
2219 * reason to loop four times (that I know of).
2221 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
2226 reader
= cpu_buffer
->reader_page
;
2228 /* If there's more to read, return this page */
2229 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
2232 /* Never should we have an index greater than the size */
2233 if (RB_WARN_ON(cpu_buffer
,
2234 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
2237 /* check if we caught up to the tail */
2239 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
2243 * Splice the empty reader page into the list around the head.
2244 * Reset the reader page to size zero.
2247 reader
= cpu_buffer
->head_page
;
2248 cpu_buffer
->reader_page
->list
.next
= reader
->list
.next
;
2249 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
2251 local_set(&cpu_buffer
->reader_page
->write
, 0);
2252 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2253 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2255 /* Make the reader page now replace the head */
2256 reader
->list
.prev
->next
= &cpu_buffer
->reader_page
->list
;
2257 reader
->list
.next
->prev
= &cpu_buffer
->reader_page
->list
;
2260 * If the tail is on the reader, then we must set the head
2261 * to the inserted page, otherwise we set it one before.
2263 cpu_buffer
->head_page
= cpu_buffer
->reader_page
;
2265 if (cpu_buffer
->commit_page
!= reader
)
2266 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
2268 /* Finally update the reader page to the new head */
2269 cpu_buffer
->reader_page
= reader
;
2270 rb_reset_reader_page(cpu_buffer
);
2275 __raw_spin_unlock(&cpu_buffer
->lock
);
2276 local_irq_restore(flags
);
2281 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
2283 struct ring_buffer_event
*event
;
2284 struct buffer_page
*reader
;
2287 reader
= rb_get_reader_page(cpu_buffer
);
2289 /* This function should not be called when buffer is empty */
2290 if (RB_WARN_ON(cpu_buffer
, !reader
))
2293 event
= rb_reader_event(cpu_buffer
);
2295 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
2296 || rb_discarded_event(event
))
2299 rb_update_read_stamp(cpu_buffer
, event
);
2301 length
= rb_event_length(event
);
2302 cpu_buffer
->reader_page
->read
+= length
;
2305 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
2307 struct ring_buffer
*buffer
;
2308 struct ring_buffer_per_cpu
*cpu_buffer
;
2309 struct ring_buffer_event
*event
;
2312 cpu_buffer
= iter
->cpu_buffer
;
2313 buffer
= cpu_buffer
->buffer
;
2316 * Check if we are at the end of the buffer.
2318 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
2319 /* discarded commits can make the page empty */
2320 if (iter
->head_page
== cpu_buffer
->commit_page
)
2326 event
= rb_iter_head_event(iter
);
2328 length
= rb_event_length(event
);
2331 * This should not be called to advance the header if we are
2332 * at the tail of the buffer.
2334 if (RB_WARN_ON(cpu_buffer
,
2335 (iter
->head_page
== cpu_buffer
->commit_page
) &&
2336 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
2339 rb_update_iter_read_stamp(iter
, event
);
2341 iter
->head
+= length
;
2343 /* check for end of page padding */
2344 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
2345 (iter
->head_page
!= cpu_buffer
->commit_page
))
2346 rb_advance_iter(iter
);
2349 static struct ring_buffer_event
*
2350 rb_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
2352 struct ring_buffer_per_cpu
*cpu_buffer
;
2353 struct ring_buffer_event
*event
;
2354 struct buffer_page
*reader
;
2357 cpu_buffer
= buffer
->buffers
[cpu
];
2361 * We repeat when a timestamp is encountered. It is possible
2362 * to get multiple timestamps from an interrupt entering just
2363 * as one timestamp is about to be written, or from discarded
2364 * commits. The most that we can have is the number on a single page.
2366 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
2369 reader
= rb_get_reader_page(cpu_buffer
);
2373 event
= rb_reader_event(cpu_buffer
);
2375 switch (event
->type_len
) {
2376 case RINGBUF_TYPE_PADDING
:
2377 if (rb_null_event(event
))
2378 RB_WARN_ON(cpu_buffer
, 1);
2380 * Because the writer could be discarding every
2381 * event it creates (which would probably be bad)
2382 * if we were to go back to "again" then we may never
2383 * catch up, and will trigger the warn on, or lock
2384 * the box. Return the padding, and we will release
2385 * the current locks, and try again.
2389 case RINGBUF_TYPE_TIME_EXTEND
:
2390 /* Internal data, OK to advance */
2391 rb_advance_reader(cpu_buffer
);
2394 case RINGBUF_TYPE_TIME_STAMP
:
2395 /* FIXME: not implemented */
2396 rb_advance_reader(cpu_buffer
);
2399 case RINGBUF_TYPE_DATA
:
2401 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
2402 ring_buffer_normalize_time_stamp(buffer
,
2403 cpu_buffer
->cpu
, ts
);
2413 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
2415 static struct ring_buffer_event
*
2416 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
2418 struct ring_buffer
*buffer
;
2419 struct ring_buffer_per_cpu
*cpu_buffer
;
2420 struct ring_buffer_event
*event
;
2423 if (ring_buffer_iter_empty(iter
))
2426 cpu_buffer
= iter
->cpu_buffer
;
2427 buffer
= cpu_buffer
->buffer
;
2431 * We repeat when a timestamp is encountered.
2432 * We can get multiple timestamps by nested interrupts or also
2433 * if filtering is on (discarding commits). Since discarding
2434 * commits can be frequent we can get a lot of timestamps.
2435 * But we limit them by not adding timestamps if they begin
2436 * at the start of a page.
2438 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> RB_TIMESTAMPS_PER_PAGE
))
2441 if (rb_per_cpu_empty(cpu_buffer
))
2444 event
= rb_iter_head_event(iter
);
2446 switch (event
->type_len
) {
2447 case RINGBUF_TYPE_PADDING
:
2448 if (rb_null_event(event
)) {
2452 rb_advance_iter(iter
);
2455 case RINGBUF_TYPE_TIME_EXTEND
:
2456 /* Internal data, OK to advance */
2457 rb_advance_iter(iter
);
2460 case RINGBUF_TYPE_TIME_STAMP
:
2461 /* FIXME: not implemented */
2462 rb_advance_iter(iter
);
2465 case RINGBUF_TYPE_DATA
:
2467 *ts
= iter
->read_stamp
+ event
->time_delta
;
2468 ring_buffer_normalize_time_stamp(buffer
,
2469 cpu_buffer
->cpu
, ts
);
2479 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
2481 static inline int rb_ok_to_lock(void)
2484 * If an NMI die dumps out the content of the ring buffer
2485 * do not grab locks. We also permanently disable the ring
2486 * buffer too. A one time deal is all you get from reading
2487 * the ring buffer from an NMI.
2489 if (likely(!in_nmi()))
2492 tracing_off_permanent();
2497 * ring_buffer_peek - peek at the next event to be read
2498 * @buffer: The ring buffer to read
2499 * @cpu: The cpu to peak at
2500 * @ts: The timestamp counter of this event.
2502 * This will return the event that will be read next, but does
2503 * not consume the data.
2505 struct ring_buffer_event
*
2506 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
2508 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
2509 struct ring_buffer_event
*event
;
2510 unsigned long flags
;
2513 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2516 dolock
= rb_ok_to_lock();
2518 local_irq_save(flags
);
2520 spin_lock(&cpu_buffer
->reader_lock
);
2521 event
= rb_buffer_peek(buffer
, cpu
, ts
);
2522 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
2523 rb_advance_reader(cpu_buffer
);
2525 spin_unlock(&cpu_buffer
->reader_lock
);
2526 local_irq_restore(flags
);
2528 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
) {
2537 * ring_buffer_iter_peek - peek at the next event to be read
2538 * @iter: The ring buffer iterator
2539 * @ts: The timestamp counter of this event.
2541 * This will return the event that will be read next, but does
2542 * not increment the iterator.
2544 struct ring_buffer_event
*
2545 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
2547 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2548 struct ring_buffer_event
*event
;
2549 unsigned long flags
;
2552 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2553 event
= rb_iter_peek(iter
, ts
);
2554 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2556 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
) {
2565 * ring_buffer_consume - return an event and consume it
2566 * @buffer: The ring buffer to get the next event from
2568 * Returns the next event in the ring buffer, and that event is consumed.
2569 * Meaning, that sequential reads will keep returning a different event,
2570 * and eventually empty the ring buffer if the producer is slower.
2572 struct ring_buffer_event
*
2573 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
)
2575 struct ring_buffer_per_cpu
*cpu_buffer
;
2576 struct ring_buffer_event
*event
= NULL
;
2577 unsigned long flags
;
2580 dolock
= rb_ok_to_lock();
2583 /* might be called in atomic */
2586 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2589 cpu_buffer
= buffer
->buffers
[cpu
];
2590 local_irq_save(flags
);
2592 spin_lock(&cpu_buffer
->reader_lock
);
2594 event
= rb_buffer_peek(buffer
, cpu
, ts
);
2596 rb_advance_reader(cpu_buffer
);
2599 spin_unlock(&cpu_buffer
->reader_lock
);
2600 local_irq_restore(flags
);
2605 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
) {
2612 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
2615 * ring_buffer_read_start - start a non consuming read of the buffer
2616 * @buffer: The ring buffer to read from
2617 * @cpu: The cpu buffer to iterate over
2619 * This starts up an iteration through the buffer. It also disables
2620 * the recording to the buffer until the reading is finished.
2621 * This prevents the reading from being corrupted. This is not
2622 * a consuming read, so a producer is not expected.
2624 * Must be paired with ring_buffer_finish.
2626 struct ring_buffer_iter
*
2627 ring_buffer_read_start(struct ring_buffer
*buffer
, int cpu
)
2629 struct ring_buffer_per_cpu
*cpu_buffer
;
2630 struct ring_buffer_iter
*iter
;
2631 unsigned long flags
;
2633 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2636 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
2640 cpu_buffer
= buffer
->buffers
[cpu
];
2642 iter
->cpu_buffer
= cpu_buffer
;
2644 atomic_inc(&cpu_buffer
->record_disabled
);
2645 synchronize_sched();
2647 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2648 __raw_spin_lock(&cpu_buffer
->lock
);
2649 rb_iter_reset(iter
);
2650 __raw_spin_unlock(&cpu_buffer
->lock
);
2651 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2655 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
2658 * ring_buffer_finish - finish reading the iterator of the buffer
2659 * @iter: The iterator retrieved by ring_buffer_start
2661 * This re-enables the recording to the buffer, and frees the
2665 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
2667 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2669 atomic_dec(&cpu_buffer
->record_disabled
);
2672 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
2675 * ring_buffer_read - read the next item in the ring buffer by the iterator
2676 * @iter: The ring buffer iterator
2677 * @ts: The time stamp of the event read.
2679 * This reads the next event in the ring buffer and increments the iterator.
2681 struct ring_buffer_event
*
2682 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
2684 struct ring_buffer_event
*event
;
2685 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
2686 unsigned long flags
;
2689 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2690 event
= rb_iter_peek(iter
, ts
);
2694 rb_advance_iter(iter
);
2696 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2698 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
) {
2705 EXPORT_SYMBOL_GPL(ring_buffer_read
);
2708 * ring_buffer_size - return the size of the ring buffer (in bytes)
2709 * @buffer: The ring buffer.
2711 unsigned long ring_buffer_size(struct ring_buffer
*buffer
)
2713 return BUF_PAGE_SIZE
* buffer
->pages
;
2715 EXPORT_SYMBOL_GPL(ring_buffer_size
);
2718 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
2720 cpu_buffer
->head_page
2721 = list_entry(cpu_buffer
->pages
.next
, struct buffer_page
, list
);
2722 local_set(&cpu_buffer
->head_page
->write
, 0);
2723 local_set(&cpu_buffer
->head_page
->entries
, 0);
2724 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
2726 cpu_buffer
->head_page
->read
= 0;
2728 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
2729 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
2731 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
2732 local_set(&cpu_buffer
->reader_page
->write
, 0);
2733 local_set(&cpu_buffer
->reader_page
->entries
, 0);
2734 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
2735 cpu_buffer
->reader_page
->read
= 0;
2737 cpu_buffer
->nmi_dropped
= 0;
2738 cpu_buffer
->commit_overrun
= 0;
2739 cpu_buffer
->overrun
= 0;
2740 cpu_buffer
->read
= 0;
2741 local_set(&cpu_buffer
->entries
, 0);
2742 local_set(&cpu_buffer
->committing
, 0);
2743 local_set(&cpu_buffer
->commits
, 0);
2745 cpu_buffer
->write_stamp
= 0;
2746 cpu_buffer
->read_stamp
= 0;
2750 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
2751 * @buffer: The ring buffer to reset a per cpu buffer of
2752 * @cpu: The CPU buffer to be reset
2754 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
2756 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
2757 unsigned long flags
;
2759 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2762 atomic_inc(&cpu_buffer
->record_disabled
);
2764 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
2766 __raw_spin_lock(&cpu_buffer
->lock
);
2768 rb_reset_cpu(cpu_buffer
);
2770 __raw_spin_unlock(&cpu_buffer
->lock
);
2772 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
2774 atomic_dec(&cpu_buffer
->record_disabled
);
2776 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
2779 * ring_buffer_reset - reset a ring buffer
2780 * @buffer: The ring buffer to reset all cpu buffers
2782 void ring_buffer_reset(struct ring_buffer
*buffer
)
2786 for_each_buffer_cpu(buffer
, cpu
)
2787 ring_buffer_reset_cpu(buffer
, cpu
);
2789 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
2792 * rind_buffer_empty - is the ring buffer empty?
2793 * @buffer: The ring buffer to test
2795 int ring_buffer_empty(struct ring_buffer
*buffer
)
2797 struct ring_buffer_per_cpu
*cpu_buffer
;
2798 unsigned long flags
;
2803 dolock
= rb_ok_to_lock();
2805 /* yes this is racy, but if you don't like the race, lock the buffer */
2806 for_each_buffer_cpu(buffer
, cpu
) {
2807 cpu_buffer
= buffer
->buffers
[cpu
];
2808 local_irq_save(flags
);
2810 spin_lock(&cpu_buffer
->reader_lock
);
2811 ret
= rb_per_cpu_empty(cpu_buffer
);
2813 spin_unlock(&cpu_buffer
->reader_lock
);
2814 local_irq_restore(flags
);
2822 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
2825 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
2826 * @buffer: The ring buffer
2827 * @cpu: The CPU buffer to test
2829 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
2831 struct ring_buffer_per_cpu
*cpu_buffer
;
2832 unsigned long flags
;
2836 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2839 dolock
= rb_ok_to_lock();
2841 cpu_buffer
= buffer
->buffers
[cpu
];
2842 local_irq_save(flags
);
2844 spin_lock(&cpu_buffer
->reader_lock
);
2845 ret
= rb_per_cpu_empty(cpu_buffer
);
2847 spin_unlock(&cpu_buffer
->reader_lock
);
2848 local_irq_restore(flags
);
2852 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
2855 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
2856 * @buffer_a: One buffer to swap with
2857 * @buffer_b: The other buffer to swap with
2859 * This function is useful for tracers that want to take a "snapshot"
2860 * of a CPU buffer and has another back up buffer lying around.
2861 * it is expected that the tracer handles the cpu buffer not being
2862 * used at the moment.
2864 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
2865 struct ring_buffer
*buffer_b
, int cpu
)
2867 struct ring_buffer_per_cpu
*cpu_buffer_a
;
2868 struct ring_buffer_per_cpu
*cpu_buffer_b
;
2871 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
2872 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
2875 /* At least make sure the two buffers are somewhat the same */
2876 if (buffer_a
->pages
!= buffer_b
->pages
)
2881 if (ring_buffer_flags
!= RB_BUFFERS_ON
)
2884 if (atomic_read(&buffer_a
->record_disabled
))
2887 if (atomic_read(&buffer_b
->record_disabled
))
2890 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
2891 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
2893 if (atomic_read(&cpu_buffer_a
->record_disabled
))
2896 if (atomic_read(&cpu_buffer_b
->record_disabled
))
2900 * We can't do a synchronize_sched here because this
2901 * function can be called in atomic context.
2902 * Normally this will be called from the same CPU as cpu.
2903 * If not it's up to the caller to protect this.
2905 atomic_inc(&cpu_buffer_a
->record_disabled
);
2906 atomic_inc(&cpu_buffer_b
->record_disabled
);
2908 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
2909 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
2911 cpu_buffer_b
->buffer
= buffer_a
;
2912 cpu_buffer_a
->buffer
= buffer_b
;
2914 atomic_dec(&cpu_buffer_a
->record_disabled
);
2915 atomic_dec(&cpu_buffer_b
->record_disabled
);
2921 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
2924 * ring_buffer_alloc_read_page - allocate a page to read from buffer
2925 * @buffer: the buffer to allocate for.
2927 * This function is used in conjunction with ring_buffer_read_page.
2928 * When reading a full page from the ring buffer, these functions
2929 * can be used to speed up the process. The calling function should
2930 * allocate a few pages first with this function. Then when it
2931 * needs to get pages from the ring buffer, it passes the result
2932 * of this function into ring_buffer_read_page, which will swap
2933 * the page that was allocated, with the read page of the buffer.
2936 * The page allocated, or NULL on error.
2938 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
)
2940 struct buffer_data_page
*bpage
;
2943 addr
= __get_free_page(GFP_KERNEL
);
2947 bpage
= (void *)addr
;
2949 rb_init_page(bpage
);
2953 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
2956 * ring_buffer_free_read_page - free an allocated read page
2957 * @buffer: the buffer the page was allocate for
2958 * @data: the page to free
2960 * Free a page allocated from ring_buffer_alloc_read_page.
2962 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
2964 free_page((unsigned long)data
);
2966 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
2969 * ring_buffer_read_page - extract a page from the ring buffer
2970 * @buffer: buffer to extract from
2971 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
2972 * @len: amount to extract
2973 * @cpu: the cpu of the buffer to extract
2974 * @full: should the extraction only happen when the page is full.
2976 * This function will pull out a page from the ring buffer and consume it.
2977 * @data_page must be the address of the variable that was returned
2978 * from ring_buffer_alloc_read_page. This is because the page might be used
2979 * to swap with a page in the ring buffer.
2982 * rpage = ring_buffer_alloc_read_page(buffer);
2985 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
2987 * process_page(rpage, ret);
2989 * When @full is set, the function will not return true unless
2990 * the writer is off the reader page.
2992 * Note: it is up to the calling functions to handle sleeps and wakeups.
2993 * The ring buffer can be used anywhere in the kernel and can not
2994 * blindly call wake_up. The layer that uses the ring buffer must be
2995 * responsible for that.
2998 * >=0 if data has been transferred, returns the offset of consumed data.
2999 * <0 if no data has been transferred.
3001 int ring_buffer_read_page(struct ring_buffer
*buffer
,
3002 void **data_page
, size_t len
, int cpu
, int full
)
3004 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3005 struct ring_buffer_event
*event
;
3006 struct buffer_data_page
*bpage
;
3007 struct buffer_page
*reader
;
3008 unsigned long flags
;
3009 unsigned int commit
;
3014 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3018 * If len is not big enough to hold the page header, then
3019 * we can not copy anything.
3021 if (len
<= BUF_PAGE_HDR_SIZE
)
3024 len
-= BUF_PAGE_HDR_SIZE
;
3033 spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3035 reader
= rb_get_reader_page(cpu_buffer
);
3039 event
= rb_reader_event(cpu_buffer
);
3041 read
= reader
->read
;
3042 commit
= rb_page_commit(reader
);
3045 * If this page has been partially read or
3046 * if len is not big enough to read the rest of the page or
3047 * a writer is still on the page, then
3048 * we must copy the data from the page to the buffer.
3049 * Otherwise, we can simply swap the page with the one passed in.
3051 if (read
|| (len
< (commit
- read
)) ||
3052 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
3053 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
3054 unsigned int rpos
= read
;
3055 unsigned int pos
= 0;
3061 if (len
> (commit
- read
))
3062 len
= (commit
- read
);
3064 size
= rb_event_length(event
);
3069 /* save the current timestamp, since the user will need it */
3070 save_timestamp
= cpu_buffer
->read_stamp
;
3072 /* Need to copy one event at a time */
3074 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
3078 rb_advance_reader(cpu_buffer
);
3079 rpos
= reader
->read
;
3082 event
= rb_reader_event(cpu_buffer
);
3083 size
= rb_event_length(event
);
3084 } while (len
> size
);
3087 local_set(&bpage
->commit
, pos
);
3088 bpage
->time_stamp
= save_timestamp
;
3090 /* we copied everything to the beginning */
3093 /* update the entry counter */
3094 cpu_buffer
->read
+= local_read(&reader
->entries
);
3096 /* swap the pages */
3097 rb_init_page(bpage
);
3098 bpage
= reader
->page
;
3099 reader
->page
= *data_page
;
3100 local_set(&reader
->write
, 0);
3101 local_set(&reader
->entries
, 0);
3108 spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3113 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
3115 #ifdef CONFIG_TRACING
3117 rb_simple_read(struct file
*filp
, char __user
*ubuf
,
3118 size_t cnt
, loff_t
*ppos
)
3120 unsigned long *p
= filp
->private_data
;
3124 if (test_bit(RB_BUFFERS_DISABLED_BIT
, p
))
3125 r
= sprintf(buf
, "permanently disabled\n");
3127 r
= sprintf(buf
, "%d\n", test_bit(RB_BUFFERS_ON_BIT
, p
));
3129 return simple_read_from_buffer(ubuf
, cnt
, ppos
, buf
, r
);
3133 rb_simple_write(struct file
*filp
, const char __user
*ubuf
,
3134 size_t cnt
, loff_t
*ppos
)
3136 unsigned long *p
= filp
->private_data
;
3141 if (cnt
>= sizeof(buf
))
3144 if (copy_from_user(&buf
, ubuf
, cnt
))
3149 ret
= strict_strtoul(buf
, 10, &val
);
3154 set_bit(RB_BUFFERS_ON_BIT
, p
);
3156 clear_bit(RB_BUFFERS_ON_BIT
, p
);
3163 static const struct file_operations rb_simple_fops
= {
3164 .open
= tracing_open_generic
,
3165 .read
= rb_simple_read
,
3166 .write
= rb_simple_write
,
3170 static __init
int rb_init_debugfs(void)
3172 struct dentry
*d_tracer
;
3174 d_tracer
= tracing_init_dentry();
3176 trace_create_file("tracing_on", 0644, d_tracer
,
3177 &ring_buffer_flags
, &rb_simple_fops
);
3182 fs_initcall(rb_init_debugfs
);
3185 #ifdef CONFIG_HOTPLUG_CPU
3186 static int rb_cpu_notify(struct notifier_block
*self
,
3187 unsigned long action
, void *hcpu
)
3189 struct ring_buffer
*buffer
=
3190 container_of(self
, struct ring_buffer
, cpu_notify
);
3191 long cpu
= (long)hcpu
;
3194 case CPU_UP_PREPARE
:
3195 case CPU_UP_PREPARE_FROZEN
:
3196 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
3199 buffer
->buffers
[cpu
] =
3200 rb_allocate_cpu_buffer(buffer
, cpu
);
3201 if (!buffer
->buffers
[cpu
]) {
3202 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3207 cpumask_set_cpu(cpu
, buffer
->cpumask
);
3209 case CPU_DOWN_PREPARE
:
3210 case CPU_DOWN_PREPARE_FROZEN
:
3213 * If we were to free the buffer, then the user would
3214 * lose any trace that was in the buffer.