Use WARN() in fs/
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory.c
blob262e3eb6601a7ca1601c16a69d82814e7a9ea52b
1 /*
2 * linux/mm/memory.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
7 /*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
42 #include <linux/mm.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/rmap.h>
49 #include <linux/module.h>
50 #include <linux/delayacct.h>
51 #include <linux/init.h>
52 #include <linux/writeback.h>
53 #include <linux/memcontrol.h>
55 #include <asm/pgalloc.h>
56 #include <asm/uaccess.h>
57 #include <asm/tlb.h>
58 #include <asm/tlbflush.h>
59 #include <asm/pgtable.h>
61 #include <linux/swapops.h>
62 #include <linux/elf.h>
64 #include "internal.h"
66 #ifndef CONFIG_NEED_MULTIPLE_NODES
67 /* use the per-pgdat data instead for discontigmem - mbligh */
68 unsigned long max_mapnr;
69 struct page *mem_map;
71 EXPORT_SYMBOL(max_mapnr);
72 EXPORT_SYMBOL(mem_map);
73 #endif
75 unsigned long num_physpages;
77 * A number of key systems in x86 including ioremap() rely on the assumption
78 * that high_memory defines the upper bound on direct map memory, then end
79 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
80 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
81 * and ZONE_HIGHMEM.
83 void * high_memory;
85 EXPORT_SYMBOL(num_physpages);
86 EXPORT_SYMBOL(high_memory);
89 * Randomize the address space (stacks, mmaps, brk, etc.).
91 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
92 * as ancient (libc5 based) binaries can segfault. )
94 int randomize_va_space __read_mostly =
95 #ifdef CONFIG_COMPAT_BRK
97 #else
99 #endif
101 static int __init disable_randmaps(char *s)
103 randomize_va_space = 0;
104 return 1;
106 __setup("norandmaps", disable_randmaps);
110 * If a p?d_bad entry is found while walking page tables, report
111 * the error, before resetting entry to p?d_none. Usually (but
112 * very seldom) called out from the p?d_none_or_clear_bad macros.
115 void pgd_clear_bad(pgd_t *pgd)
117 pgd_ERROR(*pgd);
118 pgd_clear(pgd);
121 void pud_clear_bad(pud_t *pud)
123 pud_ERROR(*pud);
124 pud_clear(pud);
127 void pmd_clear_bad(pmd_t *pmd)
129 pmd_ERROR(*pmd);
130 pmd_clear(pmd);
134 * Note: this doesn't free the actual pages themselves. That
135 * has been handled earlier when unmapping all the memory regions.
137 static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
139 pgtable_t token = pmd_pgtable(*pmd);
140 pmd_clear(pmd);
141 pte_free_tlb(tlb, token);
142 tlb->mm->nr_ptes--;
145 static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
146 unsigned long addr, unsigned long end,
147 unsigned long floor, unsigned long ceiling)
149 pmd_t *pmd;
150 unsigned long next;
151 unsigned long start;
153 start = addr;
154 pmd = pmd_offset(pud, addr);
155 do {
156 next = pmd_addr_end(addr, end);
157 if (pmd_none_or_clear_bad(pmd))
158 continue;
159 free_pte_range(tlb, pmd);
160 } while (pmd++, addr = next, addr != end);
162 start &= PUD_MASK;
163 if (start < floor)
164 return;
165 if (ceiling) {
166 ceiling &= PUD_MASK;
167 if (!ceiling)
168 return;
170 if (end - 1 > ceiling - 1)
171 return;
173 pmd = pmd_offset(pud, start);
174 pud_clear(pud);
175 pmd_free_tlb(tlb, pmd);
178 static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
179 unsigned long addr, unsigned long end,
180 unsigned long floor, unsigned long ceiling)
182 pud_t *pud;
183 unsigned long next;
184 unsigned long start;
186 start = addr;
187 pud = pud_offset(pgd, addr);
188 do {
189 next = pud_addr_end(addr, end);
190 if (pud_none_or_clear_bad(pud))
191 continue;
192 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
193 } while (pud++, addr = next, addr != end);
195 start &= PGDIR_MASK;
196 if (start < floor)
197 return;
198 if (ceiling) {
199 ceiling &= PGDIR_MASK;
200 if (!ceiling)
201 return;
203 if (end - 1 > ceiling - 1)
204 return;
206 pud = pud_offset(pgd, start);
207 pgd_clear(pgd);
208 pud_free_tlb(tlb, pud);
212 * This function frees user-level page tables of a process.
214 * Must be called with pagetable lock held.
216 void free_pgd_range(struct mmu_gather *tlb,
217 unsigned long addr, unsigned long end,
218 unsigned long floor, unsigned long ceiling)
220 pgd_t *pgd;
221 unsigned long next;
222 unsigned long start;
225 * The next few lines have given us lots of grief...
227 * Why are we testing PMD* at this top level? Because often
228 * there will be no work to do at all, and we'd prefer not to
229 * go all the way down to the bottom just to discover that.
231 * Why all these "- 1"s? Because 0 represents both the bottom
232 * of the address space and the top of it (using -1 for the
233 * top wouldn't help much: the masks would do the wrong thing).
234 * The rule is that addr 0 and floor 0 refer to the bottom of
235 * the address space, but end 0 and ceiling 0 refer to the top
236 * Comparisons need to use "end - 1" and "ceiling - 1" (though
237 * that end 0 case should be mythical).
239 * Wherever addr is brought up or ceiling brought down, we must
240 * be careful to reject "the opposite 0" before it confuses the
241 * subsequent tests. But what about where end is brought down
242 * by PMD_SIZE below? no, end can't go down to 0 there.
244 * Whereas we round start (addr) and ceiling down, by different
245 * masks at different levels, in order to test whether a table
246 * now has no other vmas using it, so can be freed, we don't
247 * bother to round floor or end up - the tests don't need that.
250 addr &= PMD_MASK;
251 if (addr < floor) {
252 addr += PMD_SIZE;
253 if (!addr)
254 return;
256 if (ceiling) {
257 ceiling &= PMD_MASK;
258 if (!ceiling)
259 return;
261 if (end - 1 > ceiling - 1)
262 end -= PMD_SIZE;
263 if (addr > end - 1)
264 return;
266 start = addr;
267 pgd = pgd_offset(tlb->mm, addr);
268 do {
269 next = pgd_addr_end(addr, end);
270 if (pgd_none_or_clear_bad(pgd))
271 continue;
272 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
273 } while (pgd++, addr = next, addr != end);
276 void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
277 unsigned long floor, unsigned long ceiling)
279 while (vma) {
280 struct vm_area_struct *next = vma->vm_next;
281 unsigned long addr = vma->vm_start;
284 * Hide vma from rmap and vmtruncate before freeing pgtables
286 anon_vma_unlink(vma);
287 unlink_file_vma(vma);
289 if (is_vm_hugetlb_page(vma)) {
290 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
291 floor, next? next->vm_start: ceiling);
292 } else {
294 * Optimization: gather nearby vmas into one call down
296 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
297 && !is_vm_hugetlb_page(next)) {
298 vma = next;
299 next = vma->vm_next;
300 anon_vma_unlink(vma);
301 unlink_file_vma(vma);
303 free_pgd_range(tlb, addr, vma->vm_end,
304 floor, next? next->vm_start: ceiling);
306 vma = next;
310 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
312 pgtable_t new = pte_alloc_one(mm, address);
313 if (!new)
314 return -ENOMEM;
317 * Ensure all pte setup (eg. pte page lock and page clearing) are
318 * visible before the pte is made visible to other CPUs by being
319 * put into page tables.
321 * The other side of the story is the pointer chasing in the page
322 * table walking code (when walking the page table without locking;
323 * ie. most of the time). Fortunately, these data accesses consist
324 * of a chain of data-dependent loads, meaning most CPUs (alpha
325 * being the notable exception) will already guarantee loads are
326 * seen in-order. See the alpha page table accessors for the
327 * smp_read_barrier_depends() barriers in page table walking code.
329 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331 spin_lock(&mm->page_table_lock);
332 if (!pmd_present(*pmd)) { /* Has another populated it ? */
333 mm->nr_ptes++;
334 pmd_populate(mm, pmd, new);
335 new = NULL;
337 spin_unlock(&mm->page_table_lock);
338 if (new)
339 pte_free(mm, new);
340 return 0;
343 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
345 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
346 if (!new)
347 return -ENOMEM;
349 smp_wmb(); /* See comment in __pte_alloc */
351 spin_lock(&init_mm.page_table_lock);
352 if (!pmd_present(*pmd)) { /* Has another populated it ? */
353 pmd_populate_kernel(&init_mm, pmd, new);
354 new = NULL;
356 spin_unlock(&init_mm.page_table_lock);
357 if (new)
358 pte_free_kernel(&init_mm, new);
359 return 0;
362 static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364 if (file_rss)
365 add_mm_counter(mm, file_rss, file_rss);
366 if (anon_rss)
367 add_mm_counter(mm, anon_rss, anon_rss);
371 * This function is called to print an error when a bad pte
372 * is found. For example, we might have a PFN-mapped pte in
373 * a region that doesn't allow it.
375 * The calling function must still handle the error.
377 void print_bad_pte(struct vm_area_struct *vma, pte_t pte, unsigned long vaddr)
379 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
380 "vm_flags = %lx, vaddr = %lx\n",
381 (long long)pte_val(pte),
382 (vma->vm_mm == current->mm ? current->comm : "???"),
383 vma->vm_flags, vaddr);
384 dump_stack();
387 static inline int is_cow_mapping(unsigned int flags)
389 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
393 * vm_normal_page -- This function gets the "struct page" associated with a pte.
395 * "Special" mappings do not wish to be associated with a "struct page" (either
396 * it doesn't exist, or it exists but they don't want to touch it). In this
397 * case, NULL is returned here. "Normal" mappings do have a struct page.
399 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
400 * pte bit, in which case this function is trivial. Secondly, an architecture
401 * may not have a spare pte bit, which requires a more complicated scheme,
402 * described below.
404 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
405 * special mapping (even if there are underlying and valid "struct pages").
406 * COWed pages of a VM_PFNMAP are always normal.
408 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
409 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
410 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
411 * mapping will always honor the rule
413 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
415 * And for normal mappings this is false.
417 * This restricts such mappings to be a linear translation from virtual address
418 * to pfn. To get around this restriction, we allow arbitrary mappings so long
419 * as the vma is not a COW mapping; in that case, we know that all ptes are
420 * special (because none can have been COWed).
423 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
425 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
426 * page" backing, however the difference is that _all_ pages with a struct
427 * page (that is, those where pfn_valid is true) are refcounted and considered
428 * normal pages by the VM. The disadvantage is that pages are refcounted
429 * (which can be slower and simply not an option for some PFNMAP users). The
430 * advantage is that we don't have to follow the strict linearity rule of
431 * PFNMAP mappings in order to support COWable mappings.
434 #ifdef __HAVE_ARCH_PTE_SPECIAL
435 # define HAVE_PTE_SPECIAL 1
436 #else
437 # define HAVE_PTE_SPECIAL 0
438 #endif
439 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
440 pte_t pte)
442 unsigned long pfn;
444 if (HAVE_PTE_SPECIAL) {
445 if (likely(!pte_special(pte))) {
446 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
447 return pte_page(pte);
449 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
450 return NULL;
453 /* !HAVE_PTE_SPECIAL case follows: */
455 pfn = pte_pfn(pte);
457 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
458 if (vma->vm_flags & VM_MIXEDMAP) {
459 if (!pfn_valid(pfn))
460 return NULL;
461 goto out;
462 } else {
463 unsigned long off;
464 off = (addr - vma->vm_start) >> PAGE_SHIFT;
465 if (pfn == vma->vm_pgoff + off)
466 return NULL;
467 if (!is_cow_mapping(vma->vm_flags))
468 return NULL;
472 VM_BUG_ON(!pfn_valid(pfn));
475 * NOTE! We still have PageReserved() pages in the page tables.
477 * eg. VDSO mappings can cause them to exist.
479 out:
480 return pfn_to_page(pfn);
484 * copy one vm_area from one task to the other. Assumes the page tables
485 * already present in the new task to be cleared in the whole range
486 * covered by this vma.
489 static inline void
490 copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
491 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
492 unsigned long addr, int *rss)
494 unsigned long vm_flags = vma->vm_flags;
495 pte_t pte = *src_pte;
496 struct page *page;
498 /* pte contains position in swap or file, so copy. */
499 if (unlikely(!pte_present(pte))) {
500 if (!pte_file(pte)) {
501 swp_entry_t entry = pte_to_swp_entry(pte);
503 swap_duplicate(entry);
504 /* make sure dst_mm is on swapoff's mmlist. */
505 if (unlikely(list_empty(&dst_mm->mmlist))) {
506 spin_lock(&mmlist_lock);
507 if (list_empty(&dst_mm->mmlist))
508 list_add(&dst_mm->mmlist,
509 &src_mm->mmlist);
510 spin_unlock(&mmlist_lock);
512 if (is_write_migration_entry(entry) &&
513 is_cow_mapping(vm_flags)) {
515 * COW mappings require pages in both parent
516 * and child to be set to read.
518 make_migration_entry_read(&entry);
519 pte = swp_entry_to_pte(entry);
520 set_pte_at(src_mm, addr, src_pte, pte);
523 goto out_set_pte;
527 * If it's a COW mapping, write protect it both
528 * in the parent and the child
530 if (is_cow_mapping(vm_flags)) {
531 ptep_set_wrprotect(src_mm, addr, src_pte);
532 pte = pte_wrprotect(pte);
536 * If it's a shared mapping, mark it clean in
537 * the child
539 if (vm_flags & VM_SHARED)
540 pte = pte_mkclean(pte);
541 pte = pte_mkold(pte);
543 page = vm_normal_page(vma, addr, pte);
544 if (page) {
545 get_page(page);
546 page_dup_rmap(page, vma, addr);
547 rss[!!PageAnon(page)]++;
550 out_set_pte:
551 set_pte_at(dst_mm, addr, dst_pte, pte);
554 static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
555 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
556 unsigned long addr, unsigned long end)
558 pte_t *src_pte, *dst_pte;
559 spinlock_t *src_ptl, *dst_ptl;
560 int progress = 0;
561 int rss[2];
563 again:
564 rss[1] = rss[0] = 0;
565 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
566 if (!dst_pte)
567 return -ENOMEM;
568 src_pte = pte_offset_map_nested(src_pmd, addr);
569 src_ptl = pte_lockptr(src_mm, src_pmd);
570 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
571 arch_enter_lazy_mmu_mode();
573 do {
575 * We are holding two locks at this point - either of them
576 * could generate latencies in another task on another CPU.
578 if (progress >= 32) {
579 progress = 0;
580 if (need_resched() ||
581 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
582 break;
584 if (pte_none(*src_pte)) {
585 progress++;
586 continue;
588 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
589 progress += 8;
590 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
592 arch_leave_lazy_mmu_mode();
593 spin_unlock(src_ptl);
594 pte_unmap_nested(src_pte - 1);
595 add_mm_rss(dst_mm, rss[0], rss[1]);
596 pte_unmap_unlock(dst_pte - 1, dst_ptl);
597 cond_resched();
598 if (addr != end)
599 goto again;
600 return 0;
603 static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
604 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
605 unsigned long addr, unsigned long end)
607 pmd_t *src_pmd, *dst_pmd;
608 unsigned long next;
610 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
611 if (!dst_pmd)
612 return -ENOMEM;
613 src_pmd = pmd_offset(src_pud, addr);
614 do {
615 next = pmd_addr_end(addr, end);
616 if (pmd_none_or_clear_bad(src_pmd))
617 continue;
618 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
619 vma, addr, next))
620 return -ENOMEM;
621 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
622 return 0;
625 static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
626 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
627 unsigned long addr, unsigned long end)
629 pud_t *src_pud, *dst_pud;
630 unsigned long next;
632 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
633 if (!dst_pud)
634 return -ENOMEM;
635 src_pud = pud_offset(src_pgd, addr);
636 do {
637 next = pud_addr_end(addr, end);
638 if (pud_none_or_clear_bad(src_pud))
639 continue;
640 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
641 vma, addr, next))
642 return -ENOMEM;
643 } while (dst_pud++, src_pud++, addr = next, addr != end);
644 return 0;
647 int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
648 struct vm_area_struct *vma)
650 pgd_t *src_pgd, *dst_pgd;
651 unsigned long next;
652 unsigned long addr = vma->vm_start;
653 unsigned long end = vma->vm_end;
656 * Don't copy ptes where a page fault will fill them correctly.
657 * Fork becomes much lighter when there are big shared or private
658 * readonly mappings. The tradeoff is that copy_page_range is more
659 * efficient than faulting.
661 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
662 if (!vma->anon_vma)
663 return 0;
666 if (is_vm_hugetlb_page(vma))
667 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
669 dst_pgd = pgd_offset(dst_mm, addr);
670 src_pgd = pgd_offset(src_mm, addr);
671 do {
672 next = pgd_addr_end(addr, end);
673 if (pgd_none_or_clear_bad(src_pgd))
674 continue;
675 if (copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
676 vma, addr, next))
677 return -ENOMEM;
678 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
679 return 0;
682 static unsigned long zap_pte_range(struct mmu_gather *tlb,
683 struct vm_area_struct *vma, pmd_t *pmd,
684 unsigned long addr, unsigned long end,
685 long *zap_work, struct zap_details *details)
687 struct mm_struct *mm = tlb->mm;
688 pte_t *pte;
689 spinlock_t *ptl;
690 int file_rss = 0;
691 int anon_rss = 0;
693 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
694 arch_enter_lazy_mmu_mode();
695 do {
696 pte_t ptent = *pte;
697 if (pte_none(ptent)) {
698 (*zap_work)--;
699 continue;
702 (*zap_work) -= PAGE_SIZE;
704 if (pte_present(ptent)) {
705 struct page *page;
707 page = vm_normal_page(vma, addr, ptent);
708 if (unlikely(details) && page) {
710 * unmap_shared_mapping_pages() wants to
711 * invalidate cache without truncating:
712 * unmap shared but keep private pages.
714 if (details->check_mapping &&
715 details->check_mapping != page->mapping)
716 continue;
718 * Each page->index must be checked when
719 * invalidating or truncating nonlinear.
721 if (details->nonlinear_vma &&
722 (page->index < details->first_index ||
723 page->index > details->last_index))
724 continue;
726 ptent = ptep_get_and_clear_full(mm, addr, pte,
727 tlb->fullmm);
728 tlb_remove_tlb_entry(tlb, pte, addr);
729 if (unlikely(!page))
730 continue;
731 if (unlikely(details) && details->nonlinear_vma
732 && linear_page_index(details->nonlinear_vma,
733 addr) != page->index)
734 set_pte_at(mm, addr, pte,
735 pgoff_to_pte(page->index));
736 if (PageAnon(page))
737 anon_rss--;
738 else {
739 if (pte_dirty(ptent))
740 set_page_dirty(page);
741 if (pte_young(ptent))
742 SetPageReferenced(page);
743 file_rss--;
745 page_remove_rmap(page, vma);
746 tlb_remove_page(tlb, page);
747 continue;
750 * If details->check_mapping, we leave swap entries;
751 * if details->nonlinear_vma, we leave file entries.
753 if (unlikely(details))
754 continue;
755 if (!pte_file(ptent))
756 free_swap_and_cache(pte_to_swp_entry(ptent));
757 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
758 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
760 add_mm_rss(mm, file_rss, anon_rss);
761 arch_leave_lazy_mmu_mode();
762 pte_unmap_unlock(pte - 1, ptl);
764 return addr;
767 static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
768 struct vm_area_struct *vma, pud_t *pud,
769 unsigned long addr, unsigned long end,
770 long *zap_work, struct zap_details *details)
772 pmd_t *pmd;
773 unsigned long next;
775 pmd = pmd_offset(pud, addr);
776 do {
777 next = pmd_addr_end(addr, end);
778 if (pmd_none_or_clear_bad(pmd)) {
779 (*zap_work)--;
780 continue;
782 next = zap_pte_range(tlb, vma, pmd, addr, next,
783 zap_work, details);
784 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
786 return addr;
789 static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
790 struct vm_area_struct *vma, pgd_t *pgd,
791 unsigned long addr, unsigned long end,
792 long *zap_work, struct zap_details *details)
794 pud_t *pud;
795 unsigned long next;
797 pud = pud_offset(pgd, addr);
798 do {
799 next = pud_addr_end(addr, end);
800 if (pud_none_or_clear_bad(pud)) {
801 (*zap_work)--;
802 continue;
804 next = zap_pmd_range(tlb, vma, pud, addr, next,
805 zap_work, details);
806 } while (pud++, addr = next, (addr != end && *zap_work > 0));
808 return addr;
811 static unsigned long unmap_page_range(struct mmu_gather *tlb,
812 struct vm_area_struct *vma,
813 unsigned long addr, unsigned long end,
814 long *zap_work, struct zap_details *details)
816 pgd_t *pgd;
817 unsigned long next;
819 if (details && !details->check_mapping && !details->nonlinear_vma)
820 details = NULL;
822 BUG_ON(addr >= end);
823 tlb_start_vma(tlb, vma);
824 pgd = pgd_offset(vma->vm_mm, addr);
825 do {
826 next = pgd_addr_end(addr, end);
827 if (pgd_none_or_clear_bad(pgd)) {
828 (*zap_work)--;
829 continue;
831 next = zap_pud_range(tlb, vma, pgd, addr, next,
832 zap_work, details);
833 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
834 tlb_end_vma(tlb, vma);
836 return addr;
839 #ifdef CONFIG_PREEMPT
840 # define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
841 #else
842 /* No preempt: go for improved straight-line efficiency */
843 # define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
844 #endif
847 * unmap_vmas - unmap a range of memory covered by a list of vma's
848 * @tlbp: address of the caller's struct mmu_gather
849 * @vma: the starting vma
850 * @start_addr: virtual address at which to start unmapping
851 * @end_addr: virtual address at which to end unmapping
852 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
853 * @details: details of nonlinear truncation or shared cache invalidation
855 * Returns the end address of the unmapping (restart addr if interrupted).
857 * Unmap all pages in the vma list.
859 * We aim to not hold locks for too long (for scheduling latency reasons).
860 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
861 * return the ending mmu_gather to the caller.
863 * Only addresses between `start' and `end' will be unmapped.
865 * The VMA list must be sorted in ascending virtual address order.
867 * unmap_vmas() assumes that the caller will flush the whole unmapped address
868 * range after unmap_vmas() returns. So the only responsibility here is to
869 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
870 * drops the lock and schedules.
872 unsigned long unmap_vmas(struct mmu_gather **tlbp,
873 struct vm_area_struct *vma, unsigned long start_addr,
874 unsigned long end_addr, unsigned long *nr_accounted,
875 struct zap_details *details)
877 long zap_work = ZAP_BLOCK_SIZE;
878 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
879 int tlb_start_valid = 0;
880 unsigned long start = start_addr;
881 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
882 int fullmm = (*tlbp)->fullmm;
884 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
885 unsigned long end;
887 start = max(vma->vm_start, start_addr);
888 if (start >= vma->vm_end)
889 continue;
890 end = min(vma->vm_end, end_addr);
891 if (end <= vma->vm_start)
892 continue;
894 if (vma->vm_flags & VM_ACCOUNT)
895 *nr_accounted += (end - start) >> PAGE_SHIFT;
897 while (start != end) {
898 if (!tlb_start_valid) {
899 tlb_start = start;
900 tlb_start_valid = 1;
903 if (unlikely(is_vm_hugetlb_page(vma))) {
905 * It is undesirable to test vma->vm_file as it
906 * should be non-null for valid hugetlb area.
907 * However, vm_file will be NULL in the error
908 * cleanup path of do_mmap_pgoff. When
909 * hugetlbfs ->mmap method fails,
910 * do_mmap_pgoff() nullifies vma->vm_file
911 * before calling this function to clean up.
912 * Since no pte has actually been setup, it is
913 * safe to do nothing in this case.
915 if (vma->vm_file) {
916 unmap_hugepage_range(vma, start, end, NULL);
917 zap_work -= (end - start) /
918 pages_per_huge_page(hstate_vma(vma));
921 start = end;
922 } else
923 start = unmap_page_range(*tlbp, vma,
924 start, end, &zap_work, details);
926 if (zap_work > 0) {
927 BUG_ON(start != end);
928 break;
931 tlb_finish_mmu(*tlbp, tlb_start, start);
933 if (need_resched() ||
934 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
935 if (i_mmap_lock) {
936 *tlbp = NULL;
937 goto out;
939 cond_resched();
942 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
943 tlb_start_valid = 0;
944 zap_work = ZAP_BLOCK_SIZE;
947 out:
948 return start; /* which is now the end (or restart) address */
952 * zap_page_range - remove user pages in a given range
953 * @vma: vm_area_struct holding the applicable pages
954 * @address: starting address of pages to zap
955 * @size: number of bytes to zap
956 * @details: details of nonlinear truncation or shared cache invalidation
958 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
959 unsigned long size, struct zap_details *details)
961 struct mm_struct *mm = vma->vm_mm;
962 struct mmu_gather *tlb;
963 unsigned long end = address + size;
964 unsigned long nr_accounted = 0;
966 lru_add_drain();
967 tlb = tlb_gather_mmu(mm, 0);
968 update_hiwater_rss(mm);
969 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
970 if (tlb)
971 tlb_finish_mmu(tlb, address, end);
972 return end;
976 * Do a quick page-table lookup for a single page.
978 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
979 unsigned int flags)
981 pgd_t *pgd;
982 pud_t *pud;
983 pmd_t *pmd;
984 pte_t *ptep, pte;
985 spinlock_t *ptl;
986 struct page *page;
987 struct mm_struct *mm = vma->vm_mm;
989 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
990 if (!IS_ERR(page)) {
991 BUG_ON(flags & FOLL_GET);
992 goto out;
995 page = NULL;
996 pgd = pgd_offset(mm, address);
997 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
998 goto no_page_table;
1000 pud = pud_offset(pgd, address);
1001 if (pud_none(*pud))
1002 goto no_page_table;
1003 if (pud_huge(*pud)) {
1004 BUG_ON(flags & FOLL_GET);
1005 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1006 goto out;
1008 if (unlikely(pud_bad(*pud)))
1009 goto no_page_table;
1011 pmd = pmd_offset(pud, address);
1012 if (pmd_none(*pmd))
1013 goto no_page_table;
1014 if (pmd_huge(*pmd)) {
1015 BUG_ON(flags & FOLL_GET);
1016 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1017 goto out;
1019 if (unlikely(pmd_bad(*pmd)))
1020 goto no_page_table;
1022 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1024 pte = *ptep;
1025 if (!pte_present(pte))
1026 goto no_page;
1027 if ((flags & FOLL_WRITE) && !pte_write(pte))
1028 goto unlock;
1029 page = vm_normal_page(vma, address, pte);
1030 if (unlikely(!page))
1031 goto bad_page;
1033 if (flags & FOLL_GET)
1034 get_page(page);
1035 if (flags & FOLL_TOUCH) {
1036 if ((flags & FOLL_WRITE) &&
1037 !pte_dirty(pte) && !PageDirty(page))
1038 set_page_dirty(page);
1039 mark_page_accessed(page);
1041 unlock:
1042 pte_unmap_unlock(ptep, ptl);
1043 out:
1044 return page;
1046 bad_page:
1047 pte_unmap_unlock(ptep, ptl);
1048 return ERR_PTR(-EFAULT);
1050 no_page:
1051 pte_unmap_unlock(ptep, ptl);
1052 if (!pte_none(pte))
1053 return page;
1054 /* Fall through to ZERO_PAGE handling */
1055 no_page_table:
1057 * When core dumping an enormous anonymous area that nobody
1058 * has touched so far, we don't want to allocate page tables.
1060 if (flags & FOLL_ANON) {
1061 page = ZERO_PAGE(0);
1062 if (flags & FOLL_GET)
1063 get_page(page);
1064 BUG_ON(flags & FOLL_WRITE);
1066 return page;
1069 /* Can we do the FOLL_ANON optimization? */
1070 static inline int use_zero_page(struct vm_area_struct *vma)
1073 * We don't want to optimize FOLL_ANON for make_pages_present()
1074 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1075 * we want to get the page from the page tables to make sure
1076 * that we serialize and update with any other user of that
1077 * mapping.
1079 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1080 return 0;
1082 * And if we have a fault routine, it's not an anonymous region.
1084 return !vma->vm_ops || !vma->vm_ops->fault;
1087 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1088 unsigned long start, int len, int write, int force,
1089 struct page **pages, struct vm_area_struct **vmas)
1091 int i;
1092 unsigned int vm_flags;
1094 if (len <= 0)
1095 return 0;
1097 * Require read or write permissions.
1098 * If 'force' is set, we only require the "MAY" flags.
1100 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1101 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1102 i = 0;
1104 do {
1105 struct vm_area_struct *vma;
1106 unsigned int foll_flags;
1108 vma = find_extend_vma(mm, start);
1109 if (!vma && in_gate_area(tsk, start)) {
1110 unsigned long pg = start & PAGE_MASK;
1111 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1112 pgd_t *pgd;
1113 pud_t *pud;
1114 pmd_t *pmd;
1115 pte_t *pte;
1116 if (write) /* user gate pages are read-only */
1117 return i ? : -EFAULT;
1118 if (pg > TASK_SIZE)
1119 pgd = pgd_offset_k(pg);
1120 else
1121 pgd = pgd_offset_gate(mm, pg);
1122 BUG_ON(pgd_none(*pgd));
1123 pud = pud_offset(pgd, pg);
1124 BUG_ON(pud_none(*pud));
1125 pmd = pmd_offset(pud, pg);
1126 if (pmd_none(*pmd))
1127 return i ? : -EFAULT;
1128 pte = pte_offset_map(pmd, pg);
1129 if (pte_none(*pte)) {
1130 pte_unmap(pte);
1131 return i ? : -EFAULT;
1133 if (pages) {
1134 struct page *page = vm_normal_page(gate_vma, start, *pte);
1135 pages[i] = page;
1136 if (page)
1137 get_page(page);
1139 pte_unmap(pte);
1140 if (vmas)
1141 vmas[i] = gate_vma;
1142 i++;
1143 start += PAGE_SIZE;
1144 len--;
1145 continue;
1148 if (!vma || (vma->vm_flags & (VM_IO | VM_PFNMAP))
1149 || !(vm_flags & vma->vm_flags))
1150 return i ? : -EFAULT;
1152 if (is_vm_hugetlb_page(vma)) {
1153 i = follow_hugetlb_page(mm, vma, pages, vmas,
1154 &start, &len, i, write);
1155 continue;
1158 foll_flags = FOLL_TOUCH;
1159 if (pages)
1160 foll_flags |= FOLL_GET;
1161 if (!write && use_zero_page(vma))
1162 foll_flags |= FOLL_ANON;
1164 do {
1165 struct page *page;
1168 * If tsk is ooming, cut off its access to large memory
1169 * allocations. It has a pending SIGKILL, but it can't
1170 * be processed until returning to user space.
1172 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
1173 return i ? i : -ENOMEM;
1175 if (write)
1176 foll_flags |= FOLL_WRITE;
1178 cond_resched();
1179 while (!(page = follow_page(vma, start, foll_flags))) {
1180 int ret;
1181 ret = handle_mm_fault(mm, vma, start,
1182 foll_flags & FOLL_WRITE);
1183 if (ret & VM_FAULT_ERROR) {
1184 if (ret & VM_FAULT_OOM)
1185 return i ? i : -ENOMEM;
1186 else if (ret & VM_FAULT_SIGBUS)
1187 return i ? i : -EFAULT;
1188 BUG();
1190 if (ret & VM_FAULT_MAJOR)
1191 tsk->maj_flt++;
1192 else
1193 tsk->min_flt++;
1196 * The VM_FAULT_WRITE bit tells us that
1197 * do_wp_page has broken COW when necessary,
1198 * even if maybe_mkwrite decided not to set
1199 * pte_write. We can thus safely do subsequent
1200 * page lookups as if they were reads.
1202 if (ret & VM_FAULT_WRITE)
1203 foll_flags &= ~FOLL_WRITE;
1205 cond_resched();
1207 if (IS_ERR(page))
1208 return i ? i : PTR_ERR(page);
1209 if (pages) {
1210 pages[i] = page;
1212 flush_anon_page(vma, page, start);
1213 flush_dcache_page(page);
1215 if (vmas)
1216 vmas[i] = vma;
1217 i++;
1218 start += PAGE_SIZE;
1219 len--;
1220 } while (len && start < vma->vm_end);
1221 } while (len);
1222 return i;
1224 EXPORT_SYMBOL(get_user_pages);
1226 pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1227 spinlock_t **ptl)
1229 pgd_t * pgd = pgd_offset(mm, addr);
1230 pud_t * pud = pud_alloc(mm, pgd, addr);
1231 if (pud) {
1232 pmd_t * pmd = pmd_alloc(mm, pud, addr);
1233 if (pmd)
1234 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1236 return NULL;
1240 * This is the old fallback for page remapping.
1242 * For historical reasons, it only allows reserved pages. Only
1243 * old drivers should use this, and they needed to mark their
1244 * pages reserved for the old functions anyway.
1246 static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1247 struct page *page, pgprot_t prot)
1249 struct mm_struct *mm = vma->vm_mm;
1250 int retval;
1251 pte_t *pte;
1252 spinlock_t *ptl;
1254 retval = mem_cgroup_charge(page, mm, GFP_KERNEL);
1255 if (retval)
1256 goto out;
1258 retval = -EINVAL;
1259 if (PageAnon(page))
1260 goto out_uncharge;
1261 retval = -ENOMEM;
1262 flush_dcache_page(page);
1263 pte = get_locked_pte(mm, addr, &ptl);
1264 if (!pte)
1265 goto out_uncharge;
1266 retval = -EBUSY;
1267 if (!pte_none(*pte))
1268 goto out_unlock;
1270 /* Ok, finally just insert the thing.. */
1271 get_page(page);
1272 inc_mm_counter(mm, file_rss);
1273 page_add_file_rmap(page);
1274 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1276 retval = 0;
1277 pte_unmap_unlock(pte, ptl);
1278 return retval;
1279 out_unlock:
1280 pte_unmap_unlock(pte, ptl);
1281 out_uncharge:
1282 mem_cgroup_uncharge_page(page);
1283 out:
1284 return retval;
1288 * vm_insert_page - insert single page into user vma
1289 * @vma: user vma to map to
1290 * @addr: target user address of this page
1291 * @page: source kernel page
1293 * This allows drivers to insert individual pages they've allocated
1294 * into a user vma.
1296 * The page has to be a nice clean _individual_ kernel allocation.
1297 * If you allocate a compound page, you need to have marked it as
1298 * such (__GFP_COMP), or manually just split the page up yourself
1299 * (see split_page()).
1301 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1302 * took an arbitrary page protection parameter. This doesn't allow
1303 * that. Your vma protection will have to be set up correctly, which
1304 * means that if you want a shared writable mapping, you'd better
1305 * ask for a shared writable mapping!
1307 * The page does not need to be reserved.
1309 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1310 struct page *page)
1312 if (addr < vma->vm_start || addr >= vma->vm_end)
1313 return -EFAULT;
1314 if (!page_count(page))
1315 return -EINVAL;
1316 vma->vm_flags |= VM_INSERTPAGE;
1317 return insert_page(vma, addr, page, vma->vm_page_prot);
1319 EXPORT_SYMBOL(vm_insert_page);
1321 static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1322 unsigned long pfn, pgprot_t prot)
1324 struct mm_struct *mm = vma->vm_mm;
1325 int retval;
1326 pte_t *pte, entry;
1327 spinlock_t *ptl;
1329 retval = -ENOMEM;
1330 pte = get_locked_pte(mm, addr, &ptl);
1331 if (!pte)
1332 goto out;
1333 retval = -EBUSY;
1334 if (!pte_none(*pte))
1335 goto out_unlock;
1337 /* Ok, finally just insert the thing.. */
1338 entry = pte_mkspecial(pfn_pte(pfn, prot));
1339 set_pte_at(mm, addr, pte, entry);
1340 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1342 retval = 0;
1343 out_unlock:
1344 pte_unmap_unlock(pte, ptl);
1345 out:
1346 return retval;
1350 * vm_insert_pfn - insert single pfn into user vma
1351 * @vma: user vma to map to
1352 * @addr: target user address of this page
1353 * @pfn: source kernel pfn
1355 * Similar to vm_inert_page, this allows drivers to insert individual pages
1356 * they've allocated into a user vma. Same comments apply.
1358 * This function should only be called from a vm_ops->fault handler, and
1359 * in that case the handler should return NULL.
1361 * vma cannot be a COW mapping.
1363 * As this is called only for pages that do not currently exist, we
1364 * do not need to flush old virtual caches or the TLB.
1366 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1367 unsigned long pfn)
1370 * Technically, architectures with pte_special can avoid all these
1371 * restrictions (same for remap_pfn_range). However we would like
1372 * consistency in testing and feature parity among all, so we should
1373 * try to keep these invariants in place for everybody.
1375 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1376 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1377 (VM_PFNMAP|VM_MIXEDMAP));
1378 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1379 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
1381 if (addr < vma->vm_start || addr >= vma->vm_end)
1382 return -EFAULT;
1383 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1385 EXPORT_SYMBOL(vm_insert_pfn);
1387 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1388 unsigned long pfn)
1390 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
1392 if (addr < vma->vm_start || addr >= vma->vm_end)
1393 return -EFAULT;
1396 * If we don't have pte special, then we have to use the pfn_valid()
1397 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1398 * refcount the page if pfn_valid is true (hence insert_page rather
1399 * than insert_pfn).
1401 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1402 struct page *page;
1404 page = pfn_to_page(pfn);
1405 return insert_page(vma, addr, page, vma->vm_page_prot);
1407 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1409 EXPORT_SYMBOL(vm_insert_mixed);
1412 * maps a range of physical memory into the requested pages. the old
1413 * mappings are removed. any references to nonexistent pages results
1414 * in null mappings (currently treated as "copy-on-access")
1416 static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1417 unsigned long addr, unsigned long end,
1418 unsigned long pfn, pgprot_t prot)
1420 pte_t *pte;
1421 spinlock_t *ptl;
1423 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1424 if (!pte)
1425 return -ENOMEM;
1426 arch_enter_lazy_mmu_mode();
1427 do {
1428 BUG_ON(!pte_none(*pte));
1429 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1430 pfn++;
1431 } while (pte++, addr += PAGE_SIZE, addr != end);
1432 arch_leave_lazy_mmu_mode();
1433 pte_unmap_unlock(pte - 1, ptl);
1434 return 0;
1437 static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1438 unsigned long addr, unsigned long end,
1439 unsigned long pfn, pgprot_t prot)
1441 pmd_t *pmd;
1442 unsigned long next;
1444 pfn -= addr >> PAGE_SHIFT;
1445 pmd = pmd_alloc(mm, pud, addr);
1446 if (!pmd)
1447 return -ENOMEM;
1448 do {
1449 next = pmd_addr_end(addr, end);
1450 if (remap_pte_range(mm, pmd, addr, next,
1451 pfn + (addr >> PAGE_SHIFT), prot))
1452 return -ENOMEM;
1453 } while (pmd++, addr = next, addr != end);
1454 return 0;
1457 static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1458 unsigned long addr, unsigned long end,
1459 unsigned long pfn, pgprot_t prot)
1461 pud_t *pud;
1462 unsigned long next;
1464 pfn -= addr >> PAGE_SHIFT;
1465 pud = pud_alloc(mm, pgd, addr);
1466 if (!pud)
1467 return -ENOMEM;
1468 do {
1469 next = pud_addr_end(addr, end);
1470 if (remap_pmd_range(mm, pud, addr, next,
1471 pfn + (addr >> PAGE_SHIFT), prot))
1472 return -ENOMEM;
1473 } while (pud++, addr = next, addr != end);
1474 return 0;
1478 * remap_pfn_range - remap kernel memory to userspace
1479 * @vma: user vma to map to
1480 * @addr: target user address to start at
1481 * @pfn: physical address of kernel memory
1482 * @size: size of map area
1483 * @prot: page protection flags for this mapping
1485 * Note: this is only safe if the mm semaphore is held when called.
1487 int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1488 unsigned long pfn, unsigned long size, pgprot_t prot)
1490 pgd_t *pgd;
1491 unsigned long next;
1492 unsigned long end = addr + PAGE_ALIGN(size);
1493 struct mm_struct *mm = vma->vm_mm;
1494 int err;
1497 * Physically remapped pages are special. Tell the
1498 * rest of the world about it:
1499 * VM_IO tells people not to look at these pages
1500 * (accesses can have side effects).
1501 * VM_RESERVED is specified all over the place, because
1502 * in 2.4 it kept swapout's vma scan off this vma; but
1503 * in 2.6 the LRU scan won't even find its pages, so this
1504 * flag means no more than count its pages in reserved_vm,
1505 * and omit it from core dump, even when VM_IO turned off.
1506 * VM_PFNMAP tells the core MM that the base pages are just
1507 * raw PFN mappings, and do not have a "struct page" associated
1508 * with them.
1510 * There's a horrible special case to handle copy-on-write
1511 * behaviour that some programs depend on. We mark the "original"
1512 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1514 if (is_cow_mapping(vma->vm_flags)) {
1515 if (addr != vma->vm_start || end != vma->vm_end)
1516 return -EINVAL;
1517 vma->vm_pgoff = pfn;
1520 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1522 BUG_ON(addr >= end);
1523 pfn -= addr >> PAGE_SHIFT;
1524 pgd = pgd_offset(mm, addr);
1525 flush_cache_range(vma, addr, end);
1526 do {
1527 next = pgd_addr_end(addr, end);
1528 err = remap_pud_range(mm, pgd, addr, next,
1529 pfn + (addr >> PAGE_SHIFT), prot);
1530 if (err)
1531 break;
1532 } while (pgd++, addr = next, addr != end);
1533 return err;
1535 EXPORT_SYMBOL(remap_pfn_range);
1537 static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1538 unsigned long addr, unsigned long end,
1539 pte_fn_t fn, void *data)
1541 pte_t *pte;
1542 int err;
1543 pgtable_t token;
1544 spinlock_t *uninitialized_var(ptl);
1546 pte = (mm == &init_mm) ?
1547 pte_alloc_kernel(pmd, addr) :
1548 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1549 if (!pte)
1550 return -ENOMEM;
1552 BUG_ON(pmd_huge(*pmd));
1554 token = pmd_pgtable(*pmd);
1556 do {
1557 err = fn(pte, token, addr, data);
1558 if (err)
1559 break;
1560 } while (pte++, addr += PAGE_SIZE, addr != end);
1562 if (mm != &init_mm)
1563 pte_unmap_unlock(pte-1, ptl);
1564 return err;
1567 static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1568 unsigned long addr, unsigned long end,
1569 pte_fn_t fn, void *data)
1571 pmd_t *pmd;
1572 unsigned long next;
1573 int err;
1575 BUG_ON(pud_huge(*pud));
1577 pmd = pmd_alloc(mm, pud, addr);
1578 if (!pmd)
1579 return -ENOMEM;
1580 do {
1581 next = pmd_addr_end(addr, end);
1582 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1583 if (err)
1584 break;
1585 } while (pmd++, addr = next, addr != end);
1586 return err;
1589 static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1590 unsigned long addr, unsigned long end,
1591 pte_fn_t fn, void *data)
1593 pud_t *pud;
1594 unsigned long next;
1595 int err;
1597 pud = pud_alloc(mm, pgd, addr);
1598 if (!pud)
1599 return -ENOMEM;
1600 do {
1601 next = pud_addr_end(addr, end);
1602 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1603 if (err)
1604 break;
1605 } while (pud++, addr = next, addr != end);
1606 return err;
1610 * Scan a region of virtual memory, filling in page tables as necessary
1611 * and calling a provided function on each leaf page table.
1613 int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1614 unsigned long size, pte_fn_t fn, void *data)
1616 pgd_t *pgd;
1617 unsigned long next;
1618 unsigned long end = addr + size;
1619 int err;
1621 BUG_ON(addr >= end);
1622 pgd = pgd_offset(mm, addr);
1623 do {
1624 next = pgd_addr_end(addr, end);
1625 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1626 if (err)
1627 break;
1628 } while (pgd++, addr = next, addr != end);
1629 return err;
1631 EXPORT_SYMBOL_GPL(apply_to_page_range);
1634 * handle_pte_fault chooses page fault handler according to an entry
1635 * which was read non-atomically. Before making any commitment, on
1636 * those architectures or configurations (e.g. i386 with PAE) which
1637 * might give a mix of unmatched parts, do_swap_page and do_file_page
1638 * must check under lock before unmapping the pte and proceeding
1639 * (but do_wp_page is only called after already making such a check;
1640 * and do_anonymous_page and do_no_page can safely check later on).
1642 static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
1643 pte_t *page_table, pte_t orig_pte)
1645 int same = 1;
1646 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1647 if (sizeof(pte_t) > sizeof(unsigned long)) {
1648 spinlock_t *ptl = pte_lockptr(mm, pmd);
1649 spin_lock(ptl);
1650 same = pte_same(*page_table, orig_pte);
1651 spin_unlock(ptl);
1653 #endif
1654 pte_unmap(page_table);
1655 return same;
1659 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1660 * servicing faults for write access. In the normal case, do always want
1661 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1662 * that do not have writing enabled, when used by access_process_vm.
1664 static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1666 if (likely(vma->vm_flags & VM_WRITE))
1667 pte = pte_mkwrite(pte);
1668 return pte;
1671 static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
1674 * If the source page was a PFN mapping, we don't have
1675 * a "struct page" for it. We do a best-effort copy by
1676 * just copying from the original user address. If that
1677 * fails, we just zero-fill it. Live with it.
1679 if (unlikely(!src)) {
1680 void *kaddr = kmap_atomic(dst, KM_USER0);
1681 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1684 * This really shouldn't fail, because the page is there
1685 * in the page tables. But it might just be unreadable,
1686 * in which case we just give up and fill the result with
1687 * zeroes.
1689 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
1690 memset(kaddr, 0, PAGE_SIZE);
1691 kunmap_atomic(kaddr, KM_USER0);
1692 flush_dcache_page(dst);
1693 } else
1694 copy_user_highpage(dst, src, va, vma);
1698 * This routine handles present pages, when users try to write
1699 * to a shared page. It is done by copying the page to a new address
1700 * and decrementing the shared-page counter for the old page.
1702 * Note that this routine assumes that the protection checks have been
1703 * done by the caller (the low-level page fault routine in most cases).
1704 * Thus we can safely just mark it writable once we've done any necessary
1705 * COW.
1707 * We also mark the page dirty at this point even though the page will
1708 * change only once the write actually happens. This avoids a few races,
1709 * and potentially makes it more efficient.
1711 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1712 * but allow concurrent faults), with pte both mapped and locked.
1713 * We return with mmap_sem still held, but pte unmapped and unlocked.
1715 static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1716 unsigned long address, pte_t *page_table, pmd_t *pmd,
1717 spinlock_t *ptl, pte_t orig_pte)
1719 struct page *old_page, *new_page;
1720 pte_t entry;
1721 int reuse = 0, ret = 0;
1722 int page_mkwrite = 0;
1723 struct page *dirty_page = NULL;
1725 old_page = vm_normal_page(vma, address, orig_pte);
1726 if (!old_page) {
1728 * VM_MIXEDMAP !pfn_valid() case
1730 * We should not cow pages in a shared writeable mapping.
1731 * Just mark the pages writable as we can't do any dirty
1732 * accounting on raw pfn maps.
1734 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1735 (VM_WRITE|VM_SHARED))
1736 goto reuse;
1737 goto gotten;
1741 * Take out anonymous pages first, anonymous shared vmas are
1742 * not dirty accountable.
1744 if (PageAnon(old_page)) {
1745 if (!TestSetPageLocked(old_page)) {
1746 reuse = can_share_swap_page(old_page);
1747 unlock_page(old_page);
1749 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1750 (VM_WRITE|VM_SHARED))) {
1752 * Only catch write-faults on shared writable pages,
1753 * read-only shared pages can get COWed by
1754 * get_user_pages(.write=1, .force=1).
1756 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1758 * Notify the address space that the page is about to
1759 * become writable so that it can prohibit this or wait
1760 * for the page to get into an appropriate state.
1762 * We do this without the lock held, so that it can
1763 * sleep if it needs to.
1765 page_cache_get(old_page);
1766 pte_unmap_unlock(page_table, ptl);
1768 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1769 goto unwritable_page;
1772 * Since we dropped the lock we need to revalidate
1773 * the PTE as someone else may have changed it. If
1774 * they did, we just return, as we can count on the
1775 * MMU to tell us if they didn't also make it writable.
1777 page_table = pte_offset_map_lock(mm, pmd, address,
1778 &ptl);
1779 page_cache_release(old_page);
1780 if (!pte_same(*page_table, orig_pte))
1781 goto unlock;
1783 page_mkwrite = 1;
1785 dirty_page = old_page;
1786 get_page(dirty_page);
1787 reuse = 1;
1790 if (reuse) {
1791 reuse:
1792 flush_cache_page(vma, address, pte_pfn(orig_pte));
1793 entry = pte_mkyoung(orig_pte);
1794 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1795 if (ptep_set_access_flags(vma, address, page_table, entry,1))
1796 update_mmu_cache(vma, address, entry);
1797 ret |= VM_FAULT_WRITE;
1798 goto unlock;
1802 * Ok, we need to copy. Oh, well..
1804 page_cache_get(old_page);
1805 gotten:
1806 pte_unmap_unlock(page_table, ptl);
1808 if (unlikely(anon_vma_prepare(vma)))
1809 goto oom;
1810 VM_BUG_ON(old_page == ZERO_PAGE(0));
1811 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1812 if (!new_page)
1813 goto oom;
1814 cow_user_page(new_page, old_page, address, vma);
1815 __SetPageUptodate(new_page);
1817 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
1818 goto oom_free_new;
1821 * Re-check the pte - we dropped the lock
1823 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1824 if (likely(pte_same(*page_table, orig_pte))) {
1825 if (old_page) {
1826 if (!PageAnon(old_page)) {
1827 dec_mm_counter(mm, file_rss);
1828 inc_mm_counter(mm, anon_rss);
1830 } else
1831 inc_mm_counter(mm, anon_rss);
1832 flush_cache_page(vma, address, pte_pfn(orig_pte));
1833 entry = mk_pte(new_page, vma->vm_page_prot);
1834 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1836 * Clear the pte entry and flush it first, before updating the
1837 * pte with the new entry. This will avoid a race condition
1838 * seen in the presence of one thread doing SMC and another
1839 * thread doing COW.
1841 ptep_clear_flush(vma, address, page_table);
1842 set_pte_at(mm, address, page_table, entry);
1843 update_mmu_cache(vma, address, entry);
1844 lru_cache_add_active(new_page);
1845 page_add_new_anon_rmap(new_page, vma, address);
1847 if (old_page) {
1849 * Only after switching the pte to the new page may
1850 * we remove the mapcount here. Otherwise another
1851 * process may come and find the rmap count decremented
1852 * before the pte is switched to the new page, and
1853 * "reuse" the old page writing into it while our pte
1854 * here still points into it and can be read by other
1855 * threads.
1857 * The critical issue is to order this
1858 * page_remove_rmap with the ptp_clear_flush above.
1859 * Those stores are ordered by (if nothing else,)
1860 * the barrier present in the atomic_add_negative
1861 * in page_remove_rmap.
1863 * Then the TLB flush in ptep_clear_flush ensures that
1864 * no process can access the old page before the
1865 * decremented mapcount is visible. And the old page
1866 * cannot be reused until after the decremented
1867 * mapcount is visible. So transitively, TLBs to
1868 * old page will be flushed before it can be reused.
1870 page_remove_rmap(old_page, vma);
1873 /* Free the old page.. */
1874 new_page = old_page;
1875 ret |= VM_FAULT_WRITE;
1876 } else
1877 mem_cgroup_uncharge_page(new_page);
1879 if (new_page)
1880 page_cache_release(new_page);
1881 if (old_page)
1882 page_cache_release(old_page);
1883 unlock:
1884 pte_unmap_unlock(page_table, ptl);
1885 if (dirty_page) {
1886 if (vma->vm_file)
1887 file_update_time(vma->vm_file);
1890 * Yes, Virginia, this is actually required to prevent a race
1891 * with clear_page_dirty_for_io() from clearing the page dirty
1892 * bit after it clear all dirty ptes, but before a racing
1893 * do_wp_page installs a dirty pte.
1895 * do_no_page is protected similarly.
1897 wait_on_page_locked(dirty_page);
1898 set_page_dirty_balance(dirty_page, page_mkwrite);
1899 put_page(dirty_page);
1901 return ret;
1902 oom_free_new:
1903 page_cache_release(new_page);
1904 oom:
1905 if (old_page)
1906 page_cache_release(old_page);
1907 return VM_FAULT_OOM;
1909 unwritable_page:
1910 page_cache_release(old_page);
1911 return VM_FAULT_SIGBUS;
1915 * Helper functions for unmap_mapping_range().
1917 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
1919 * We have to restart searching the prio_tree whenever we drop the lock,
1920 * since the iterator is only valid while the lock is held, and anyway
1921 * a later vma might be split and reinserted earlier while lock dropped.
1923 * The list of nonlinear vmas could be handled more efficiently, using
1924 * a placeholder, but handle it in the same way until a need is shown.
1925 * It is important to search the prio_tree before nonlinear list: a vma
1926 * may become nonlinear and be shifted from prio_tree to nonlinear list
1927 * while the lock is dropped; but never shifted from list to prio_tree.
1929 * In order to make forward progress despite restarting the search,
1930 * vm_truncate_count is used to mark a vma as now dealt with, so we can
1931 * quickly skip it next time around. Since the prio_tree search only
1932 * shows us those vmas affected by unmapping the range in question, we
1933 * can't efficiently keep all vmas in step with mapping->truncate_count:
1934 * so instead reset them all whenever it wraps back to 0 (then go to 1).
1935 * mapping->truncate_count and vma->vm_truncate_count are protected by
1936 * i_mmap_lock.
1938 * In order to make forward progress despite repeatedly restarting some
1939 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1940 * and restart from that address when we reach that vma again. It might
1941 * have been split or merged, shrunk or extended, but never shifted: so
1942 * restart_addr remains valid so long as it remains in the vma's range.
1943 * unmap_mapping_range forces truncate_count to leap over page-aligned
1944 * values so we can save vma's restart_addr in its truncate_count field.
1946 #define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
1948 static void reset_vma_truncate_counts(struct address_space *mapping)
1950 struct vm_area_struct *vma;
1951 struct prio_tree_iter iter;
1953 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
1954 vma->vm_truncate_count = 0;
1955 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1956 vma->vm_truncate_count = 0;
1959 static int unmap_mapping_range_vma(struct vm_area_struct *vma,
1960 unsigned long start_addr, unsigned long end_addr,
1961 struct zap_details *details)
1963 unsigned long restart_addr;
1964 int need_break;
1967 * files that support invalidating or truncating portions of the
1968 * file from under mmaped areas must have their ->fault function
1969 * return a locked page (and set VM_FAULT_LOCKED in the return).
1970 * This provides synchronisation against concurrent unmapping here.
1973 again:
1974 restart_addr = vma->vm_truncate_count;
1975 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
1976 start_addr = restart_addr;
1977 if (start_addr >= end_addr) {
1978 /* Top of vma has been split off since last time */
1979 vma->vm_truncate_count = details->truncate_count;
1980 return 0;
1984 restart_addr = zap_page_range(vma, start_addr,
1985 end_addr - start_addr, details);
1986 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1988 if (restart_addr >= end_addr) {
1989 /* We have now completed this vma: mark it so */
1990 vma->vm_truncate_count = details->truncate_count;
1991 if (!need_break)
1992 return 0;
1993 } else {
1994 /* Note restart_addr in vma's truncate_count field */
1995 vma->vm_truncate_count = restart_addr;
1996 if (!need_break)
1997 goto again;
2000 spin_unlock(details->i_mmap_lock);
2001 cond_resched();
2002 spin_lock(details->i_mmap_lock);
2003 return -EINTR;
2006 static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2007 struct zap_details *details)
2009 struct vm_area_struct *vma;
2010 struct prio_tree_iter iter;
2011 pgoff_t vba, vea, zba, zea;
2013 restart:
2014 vma_prio_tree_foreach(vma, &iter, root,
2015 details->first_index, details->last_index) {
2016 /* Skip quickly over those we have already dealt with */
2017 if (vma->vm_truncate_count == details->truncate_count)
2018 continue;
2020 vba = vma->vm_pgoff;
2021 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2022 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2023 zba = details->first_index;
2024 if (zba < vba)
2025 zba = vba;
2026 zea = details->last_index;
2027 if (zea > vea)
2028 zea = vea;
2030 if (unmap_mapping_range_vma(vma,
2031 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2032 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2033 details) < 0)
2034 goto restart;
2038 static inline void unmap_mapping_range_list(struct list_head *head,
2039 struct zap_details *details)
2041 struct vm_area_struct *vma;
2044 * In nonlinear VMAs there is no correspondence between virtual address
2045 * offset and file offset. So we must perform an exhaustive search
2046 * across *all* the pages in each nonlinear VMA, not just the pages
2047 * whose virtual address lies outside the file truncation point.
2049 restart:
2050 list_for_each_entry(vma, head, shared.vm_set.list) {
2051 /* Skip quickly over those we have already dealt with */
2052 if (vma->vm_truncate_count == details->truncate_count)
2053 continue;
2054 details->nonlinear_vma = vma;
2055 if (unmap_mapping_range_vma(vma, vma->vm_start,
2056 vma->vm_end, details) < 0)
2057 goto restart;
2062 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2063 * @mapping: the address space containing mmaps to be unmapped.
2064 * @holebegin: byte in first page to unmap, relative to the start of
2065 * the underlying file. This will be rounded down to a PAGE_SIZE
2066 * boundary. Note that this is different from vmtruncate(), which
2067 * must keep the partial page. In contrast, we must get rid of
2068 * partial pages.
2069 * @holelen: size of prospective hole in bytes. This will be rounded
2070 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2071 * end of the file.
2072 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2073 * but 0 when invalidating pagecache, don't throw away private data.
2075 void unmap_mapping_range(struct address_space *mapping,
2076 loff_t const holebegin, loff_t const holelen, int even_cows)
2078 struct zap_details details;
2079 pgoff_t hba = holebegin >> PAGE_SHIFT;
2080 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2082 /* Check for overflow. */
2083 if (sizeof(holelen) > sizeof(hlen)) {
2084 long long holeend =
2085 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2086 if (holeend & ~(long long)ULONG_MAX)
2087 hlen = ULONG_MAX - hba + 1;
2090 details.check_mapping = even_cows? NULL: mapping;
2091 details.nonlinear_vma = NULL;
2092 details.first_index = hba;
2093 details.last_index = hba + hlen - 1;
2094 if (details.last_index < details.first_index)
2095 details.last_index = ULONG_MAX;
2096 details.i_mmap_lock = &mapping->i_mmap_lock;
2098 spin_lock(&mapping->i_mmap_lock);
2100 /* Protect against endless unmapping loops */
2101 mapping->truncate_count++;
2102 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2103 if (mapping->truncate_count == 0)
2104 reset_vma_truncate_counts(mapping);
2105 mapping->truncate_count++;
2107 details.truncate_count = mapping->truncate_count;
2109 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2110 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2111 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2112 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2113 spin_unlock(&mapping->i_mmap_lock);
2115 EXPORT_SYMBOL(unmap_mapping_range);
2118 * vmtruncate - unmap mappings "freed" by truncate() syscall
2119 * @inode: inode of the file used
2120 * @offset: file offset to start truncating
2122 * NOTE! We have to be ready to update the memory sharing
2123 * between the file and the memory map for a potential last
2124 * incomplete page. Ugly, but necessary.
2126 int vmtruncate(struct inode * inode, loff_t offset)
2128 if (inode->i_size < offset) {
2129 unsigned long limit;
2131 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2132 if (limit != RLIM_INFINITY && offset > limit)
2133 goto out_sig;
2134 if (offset > inode->i_sb->s_maxbytes)
2135 goto out_big;
2136 i_size_write(inode, offset);
2137 } else {
2138 struct address_space *mapping = inode->i_mapping;
2141 * truncation of in-use swapfiles is disallowed - it would
2142 * cause subsequent swapout to scribble on the now-freed
2143 * blocks.
2145 if (IS_SWAPFILE(inode))
2146 return -ETXTBSY;
2147 i_size_write(inode, offset);
2150 * unmap_mapping_range is called twice, first simply for
2151 * efficiency so that truncate_inode_pages does fewer
2152 * single-page unmaps. However after this first call, and
2153 * before truncate_inode_pages finishes, it is possible for
2154 * private pages to be COWed, which remain after
2155 * truncate_inode_pages finishes, hence the second
2156 * unmap_mapping_range call must be made for correctness.
2158 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2159 truncate_inode_pages(mapping, offset);
2160 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2163 if (inode->i_op && inode->i_op->truncate)
2164 inode->i_op->truncate(inode);
2165 return 0;
2167 out_sig:
2168 send_sig(SIGXFSZ, current, 0);
2169 out_big:
2170 return -EFBIG;
2172 EXPORT_SYMBOL(vmtruncate);
2174 int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2176 struct address_space *mapping = inode->i_mapping;
2179 * If the underlying filesystem is not going to provide
2180 * a way to truncate a range of blocks (punch a hole) -
2181 * we should return failure right now.
2183 if (!inode->i_op || !inode->i_op->truncate_range)
2184 return -ENOSYS;
2186 mutex_lock(&inode->i_mutex);
2187 down_write(&inode->i_alloc_sem);
2188 unmap_mapping_range(mapping, offset, (end - offset), 1);
2189 truncate_inode_pages_range(mapping, offset, end);
2190 unmap_mapping_range(mapping, offset, (end - offset), 1);
2191 inode->i_op->truncate_range(inode, offset, end);
2192 up_write(&inode->i_alloc_sem);
2193 mutex_unlock(&inode->i_mutex);
2195 return 0;
2199 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2200 * but allow concurrent faults), and pte mapped but not yet locked.
2201 * We return with mmap_sem still held, but pte unmapped and unlocked.
2203 static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2204 unsigned long address, pte_t *page_table, pmd_t *pmd,
2205 int write_access, pte_t orig_pte)
2207 spinlock_t *ptl;
2208 struct page *page;
2209 swp_entry_t entry;
2210 pte_t pte;
2211 int ret = 0;
2213 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2214 goto out;
2216 entry = pte_to_swp_entry(orig_pte);
2217 if (is_migration_entry(entry)) {
2218 migration_entry_wait(mm, pmd, address);
2219 goto out;
2221 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
2222 page = lookup_swap_cache(entry);
2223 if (!page) {
2224 grab_swap_token(); /* Contend for token _before_ read-in */
2225 page = swapin_readahead(entry,
2226 GFP_HIGHUSER_MOVABLE, vma, address);
2227 if (!page) {
2229 * Back out if somebody else faulted in this pte
2230 * while we released the pte lock.
2232 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2233 if (likely(pte_same(*page_table, orig_pte)))
2234 ret = VM_FAULT_OOM;
2235 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2236 goto unlock;
2239 /* Had to read the page from swap area: Major fault */
2240 ret = VM_FAULT_MAJOR;
2241 count_vm_event(PGMAJFAULT);
2244 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2245 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2246 ret = VM_FAULT_OOM;
2247 goto out;
2250 mark_page_accessed(page);
2251 lock_page(page);
2252 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2255 * Back out if somebody else already faulted in this pte.
2257 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2258 if (unlikely(!pte_same(*page_table, orig_pte)))
2259 goto out_nomap;
2261 if (unlikely(!PageUptodate(page))) {
2262 ret = VM_FAULT_SIGBUS;
2263 goto out_nomap;
2266 /* The page isn't present yet, go ahead with the fault. */
2268 inc_mm_counter(mm, anon_rss);
2269 pte = mk_pte(page, vma->vm_page_prot);
2270 if (write_access && can_share_swap_page(page)) {
2271 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2272 write_access = 0;
2275 flush_icache_page(vma, page);
2276 set_pte_at(mm, address, page_table, pte);
2277 page_add_anon_rmap(page, vma, address);
2279 swap_free(entry);
2280 if (vm_swap_full())
2281 remove_exclusive_swap_page(page);
2282 unlock_page(page);
2284 if (write_access) {
2285 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2286 if (ret & VM_FAULT_ERROR)
2287 ret &= VM_FAULT_ERROR;
2288 goto out;
2291 /* No need to invalidate - it was non-present before */
2292 update_mmu_cache(vma, address, pte);
2293 unlock:
2294 pte_unmap_unlock(page_table, ptl);
2295 out:
2296 return ret;
2297 out_nomap:
2298 mem_cgroup_uncharge_page(page);
2299 pte_unmap_unlock(page_table, ptl);
2300 unlock_page(page);
2301 page_cache_release(page);
2302 return ret;
2306 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2307 * but allow concurrent faults), and pte mapped but not yet locked.
2308 * We return with mmap_sem still held, but pte unmapped and unlocked.
2310 static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2311 unsigned long address, pte_t *page_table, pmd_t *pmd,
2312 int write_access)
2314 struct page *page;
2315 spinlock_t *ptl;
2316 pte_t entry;
2318 /* Allocate our own private page. */
2319 pte_unmap(page_table);
2321 if (unlikely(anon_vma_prepare(vma)))
2322 goto oom;
2323 page = alloc_zeroed_user_highpage_movable(vma, address);
2324 if (!page)
2325 goto oom;
2326 __SetPageUptodate(page);
2328 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
2329 goto oom_free_page;
2331 entry = mk_pte(page, vma->vm_page_prot);
2332 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2334 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2335 if (!pte_none(*page_table))
2336 goto release;
2337 inc_mm_counter(mm, anon_rss);
2338 lru_cache_add_active(page);
2339 page_add_new_anon_rmap(page, vma, address);
2340 set_pte_at(mm, address, page_table, entry);
2342 /* No need to invalidate - it was non-present before */
2343 update_mmu_cache(vma, address, entry);
2344 unlock:
2345 pte_unmap_unlock(page_table, ptl);
2346 return 0;
2347 release:
2348 mem_cgroup_uncharge_page(page);
2349 page_cache_release(page);
2350 goto unlock;
2351 oom_free_page:
2352 page_cache_release(page);
2353 oom:
2354 return VM_FAULT_OOM;
2358 * __do_fault() tries to create a new page mapping. It aggressively
2359 * tries to share with existing pages, but makes a separate copy if
2360 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2361 * the next page fault.
2363 * As this is called only for pages that do not currently exist, we
2364 * do not need to flush old virtual caches or the TLB.
2366 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2367 * but allow concurrent faults), and pte neither mapped nor locked.
2368 * We return with mmap_sem still held, but pte unmapped and unlocked.
2370 static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2371 unsigned long address, pmd_t *pmd,
2372 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2374 pte_t *page_table;
2375 spinlock_t *ptl;
2376 struct page *page;
2377 pte_t entry;
2378 int anon = 0;
2379 struct page *dirty_page = NULL;
2380 struct vm_fault vmf;
2381 int ret;
2382 int page_mkwrite = 0;
2384 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2385 vmf.pgoff = pgoff;
2386 vmf.flags = flags;
2387 vmf.page = NULL;
2389 ret = vma->vm_ops->fault(vma, &vmf);
2390 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2391 return ret;
2394 * For consistency in subsequent calls, make the faulted page always
2395 * locked.
2397 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2398 lock_page(vmf.page);
2399 else
2400 VM_BUG_ON(!PageLocked(vmf.page));
2403 * Should we do an early C-O-W break?
2405 page = vmf.page;
2406 if (flags & FAULT_FLAG_WRITE) {
2407 if (!(vma->vm_flags & VM_SHARED)) {
2408 anon = 1;
2409 if (unlikely(anon_vma_prepare(vma))) {
2410 ret = VM_FAULT_OOM;
2411 goto out;
2413 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2414 vma, address);
2415 if (!page) {
2416 ret = VM_FAULT_OOM;
2417 goto out;
2419 copy_user_highpage(page, vmf.page, address, vma);
2420 __SetPageUptodate(page);
2421 } else {
2423 * If the page will be shareable, see if the backing
2424 * address space wants to know that the page is about
2425 * to become writable
2427 if (vma->vm_ops->page_mkwrite) {
2428 unlock_page(page);
2429 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
2430 ret = VM_FAULT_SIGBUS;
2431 anon = 1; /* no anon but release vmf.page */
2432 goto out_unlocked;
2434 lock_page(page);
2436 * XXX: this is not quite right (racy vs
2437 * invalidate) to unlock and relock the page
2438 * like this, however a better fix requires
2439 * reworking page_mkwrite locking API, which
2440 * is better done later.
2442 if (!page->mapping) {
2443 ret = 0;
2444 anon = 1; /* no anon but release vmf.page */
2445 goto out;
2447 page_mkwrite = 1;
2453 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2454 ret = VM_FAULT_OOM;
2455 goto out;
2458 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2461 * This silly early PAGE_DIRTY setting removes a race
2462 * due to the bad i386 page protection. But it's valid
2463 * for other architectures too.
2465 * Note that if write_access is true, we either now have
2466 * an exclusive copy of the page, or this is a shared mapping,
2467 * so we can make it writable and dirty to avoid having to
2468 * handle that later.
2470 /* Only go through if we didn't race with anybody else... */
2471 if (likely(pte_same(*page_table, orig_pte))) {
2472 flush_icache_page(vma, page);
2473 entry = mk_pte(page, vma->vm_page_prot);
2474 if (flags & FAULT_FLAG_WRITE)
2475 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2476 set_pte_at(mm, address, page_table, entry);
2477 if (anon) {
2478 inc_mm_counter(mm, anon_rss);
2479 lru_cache_add_active(page);
2480 page_add_new_anon_rmap(page, vma, address);
2481 } else {
2482 inc_mm_counter(mm, file_rss);
2483 page_add_file_rmap(page);
2484 if (flags & FAULT_FLAG_WRITE) {
2485 dirty_page = page;
2486 get_page(dirty_page);
2490 /* no need to invalidate: a not-present page won't be cached */
2491 update_mmu_cache(vma, address, entry);
2492 } else {
2493 mem_cgroup_uncharge_page(page);
2494 if (anon)
2495 page_cache_release(page);
2496 else
2497 anon = 1; /* no anon but release faulted_page */
2500 pte_unmap_unlock(page_table, ptl);
2502 out:
2503 unlock_page(vmf.page);
2504 out_unlocked:
2505 if (anon)
2506 page_cache_release(vmf.page);
2507 else if (dirty_page) {
2508 if (vma->vm_file)
2509 file_update_time(vma->vm_file);
2511 set_page_dirty_balance(dirty_page, page_mkwrite);
2512 put_page(dirty_page);
2515 return ret;
2518 static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2519 unsigned long address, pte_t *page_table, pmd_t *pmd,
2520 int write_access, pte_t orig_pte)
2522 pgoff_t pgoff = (((address & PAGE_MASK)
2523 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
2524 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2526 pte_unmap(page_table);
2527 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2531 * Fault of a previously existing named mapping. Repopulate the pte
2532 * from the encoded file_pte if possible. This enables swappable
2533 * nonlinear vmas.
2535 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2536 * but allow concurrent faults), and pte mapped but not yet locked.
2537 * We return with mmap_sem still held, but pte unmapped and unlocked.
2539 static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2540 unsigned long address, pte_t *page_table, pmd_t *pmd,
2541 int write_access, pte_t orig_pte)
2543 unsigned int flags = FAULT_FLAG_NONLINEAR |
2544 (write_access ? FAULT_FLAG_WRITE : 0);
2545 pgoff_t pgoff;
2547 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
2548 return 0;
2550 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2551 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
2553 * Page table corrupted: show pte and kill process.
2555 print_bad_pte(vma, orig_pte, address);
2556 return VM_FAULT_OOM;
2559 pgoff = pte_to_pgoff(orig_pte);
2560 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
2564 * These routines also need to handle stuff like marking pages dirty
2565 * and/or accessed for architectures that don't do it in hardware (most
2566 * RISC architectures). The early dirtying is also good on the i386.
2568 * There is also a hook called "update_mmu_cache()" that architectures
2569 * with external mmu caches can use to update those (ie the Sparc or
2570 * PowerPC hashed page tables that act as extended TLBs).
2572 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2573 * but allow concurrent faults), and pte mapped but not yet locked.
2574 * We return with mmap_sem still held, but pte unmapped and unlocked.
2576 static inline int handle_pte_fault(struct mm_struct *mm,
2577 struct vm_area_struct *vma, unsigned long address,
2578 pte_t *pte, pmd_t *pmd, int write_access)
2580 pte_t entry;
2581 spinlock_t *ptl;
2583 entry = *pte;
2584 if (!pte_present(entry)) {
2585 if (pte_none(entry)) {
2586 if (vma->vm_ops) {
2587 if (likely(vma->vm_ops->fault))
2588 return do_linear_fault(mm, vma, address,
2589 pte, pmd, write_access, entry);
2591 return do_anonymous_page(mm, vma, address,
2592 pte, pmd, write_access);
2594 if (pte_file(entry))
2595 return do_nonlinear_fault(mm, vma, address,
2596 pte, pmd, write_access, entry);
2597 return do_swap_page(mm, vma, address,
2598 pte, pmd, write_access, entry);
2601 ptl = pte_lockptr(mm, pmd);
2602 spin_lock(ptl);
2603 if (unlikely(!pte_same(*pte, entry)))
2604 goto unlock;
2605 if (write_access) {
2606 if (!pte_write(entry))
2607 return do_wp_page(mm, vma, address,
2608 pte, pmd, ptl, entry);
2609 entry = pte_mkdirty(entry);
2611 entry = pte_mkyoung(entry);
2612 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
2613 update_mmu_cache(vma, address, entry);
2614 } else {
2616 * This is needed only for protection faults but the arch code
2617 * is not yet telling us if this is a protection fault or not.
2618 * This still avoids useless tlb flushes for .text page faults
2619 * with threads.
2621 if (write_access)
2622 flush_tlb_page(vma, address);
2624 unlock:
2625 pte_unmap_unlock(pte, ptl);
2626 return 0;
2630 * By the time we get here, we already hold the mm semaphore
2632 int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2633 unsigned long address, int write_access)
2635 pgd_t *pgd;
2636 pud_t *pud;
2637 pmd_t *pmd;
2638 pte_t *pte;
2640 __set_current_state(TASK_RUNNING);
2642 count_vm_event(PGFAULT);
2644 if (unlikely(is_vm_hugetlb_page(vma)))
2645 return hugetlb_fault(mm, vma, address, write_access);
2647 pgd = pgd_offset(mm, address);
2648 pud = pud_alloc(mm, pgd, address);
2649 if (!pud)
2650 return VM_FAULT_OOM;
2651 pmd = pmd_alloc(mm, pud, address);
2652 if (!pmd)
2653 return VM_FAULT_OOM;
2654 pte = pte_alloc_map(mm, pmd, address);
2655 if (!pte)
2656 return VM_FAULT_OOM;
2658 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
2661 #ifndef __PAGETABLE_PUD_FOLDED
2663 * Allocate page upper directory.
2664 * We've already handled the fast-path in-line.
2666 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
2668 pud_t *new = pud_alloc_one(mm, address);
2669 if (!new)
2670 return -ENOMEM;
2672 smp_wmb(); /* See comment in __pte_alloc */
2674 spin_lock(&mm->page_table_lock);
2675 if (pgd_present(*pgd)) /* Another has populated it */
2676 pud_free(mm, new);
2677 else
2678 pgd_populate(mm, pgd, new);
2679 spin_unlock(&mm->page_table_lock);
2680 return 0;
2682 #endif /* __PAGETABLE_PUD_FOLDED */
2684 #ifndef __PAGETABLE_PMD_FOLDED
2686 * Allocate page middle directory.
2687 * We've already handled the fast-path in-line.
2689 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
2691 pmd_t *new = pmd_alloc_one(mm, address);
2692 if (!new)
2693 return -ENOMEM;
2695 smp_wmb(); /* See comment in __pte_alloc */
2697 spin_lock(&mm->page_table_lock);
2698 #ifndef __ARCH_HAS_4LEVEL_HACK
2699 if (pud_present(*pud)) /* Another has populated it */
2700 pmd_free(mm, new);
2701 else
2702 pud_populate(mm, pud, new);
2703 #else
2704 if (pgd_present(*pud)) /* Another has populated it */
2705 pmd_free(mm, new);
2706 else
2707 pgd_populate(mm, pud, new);
2708 #endif /* __ARCH_HAS_4LEVEL_HACK */
2709 spin_unlock(&mm->page_table_lock);
2710 return 0;
2712 #endif /* __PAGETABLE_PMD_FOLDED */
2714 int make_pages_present(unsigned long addr, unsigned long end)
2716 int ret, len, write;
2717 struct vm_area_struct * vma;
2719 vma = find_vma(current->mm, addr);
2720 if (!vma)
2721 return -1;
2722 write = (vma->vm_flags & VM_WRITE) != 0;
2723 BUG_ON(addr >= end);
2724 BUG_ON(end > vma->vm_end);
2725 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
2726 ret = get_user_pages(current, current->mm, addr,
2727 len, write, 0, NULL, NULL);
2728 if (ret < 0)
2729 return ret;
2730 return ret == len ? 0 : -1;
2733 #if !defined(__HAVE_ARCH_GATE_AREA)
2735 #if defined(AT_SYSINFO_EHDR)
2736 static struct vm_area_struct gate_vma;
2738 static int __init gate_vma_init(void)
2740 gate_vma.vm_mm = NULL;
2741 gate_vma.vm_start = FIXADDR_USER_START;
2742 gate_vma.vm_end = FIXADDR_USER_END;
2743 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2744 gate_vma.vm_page_prot = __P101;
2746 * Make sure the vDSO gets into every core dump.
2747 * Dumping its contents makes post-mortem fully interpretable later
2748 * without matching up the same kernel and hardware config to see
2749 * what PC values meant.
2751 gate_vma.vm_flags |= VM_ALWAYSDUMP;
2752 return 0;
2754 __initcall(gate_vma_init);
2755 #endif
2757 struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2759 #ifdef AT_SYSINFO_EHDR
2760 return &gate_vma;
2761 #else
2762 return NULL;
2763 #endif
2766 int in_gate_area_no_task(unsigned long addr)
2768 #ifdef AT_SYSINFO_EHDR
2769 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2770 return 1;
2771 #endif
2772 return 0;
2775 #endif /* __HAVE_ARCH_GATE_AREA */
2777 #ifdef CONFIG_HAVE_IOREMAP_PROT
2778 static resource_size_t follow_phys(struct vm_area_struct *vma,
2779 unsigned long address, unsigned int flags,
2780 unsigned long *prot)
2782 pgd_t *pgd;
2783 pud_t *pud;
2784 pmd_t *pmd;
2785 pte_t *ptep, pte;
2786 spinlock_t *ptl;
2787 resource_size_t phys_addr = 0;
2788 struct mm_struct *mm = vma->vm_mm;
2790 VM_BUG_ON(!(vma->vm_flags & (VM_IO | VM_PFNMAP)));
2792 pgd = pgd_offset(mm, address);
2793 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
2794 goto no_page_table;
2796 pud = pud_offset(pgd, address);
2797 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
2798 goto no_page_table;
2800 pmd = pmd_offset(pud, address);
2801 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
2802 goto no_page_table;
2804 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2805 if (pmd_huge(*pmd))
2806 goto no_page_table;
2808 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2809 if (!ptep)
2810 goto out;
2812 pte = *ptep;
2813 if (!pte_present(pte))
2814 goto unlock;
2815 if ((flags & FOLL_WRITE) && !pte_write(pte))
2816 goto unlock;
2817 phys_addr = pte_pfn(pte);
2818 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2820 *prot = pgprot_val(pte_pgprot(pte));
2822 unlock:
2823 pte_unmap_unlock(ptep, ptl);
2824 out:
2825 return phys_addr;
2826 no_page_table:
2827 return 0;
2830 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2831 void *buf, int len, int write)
2833 resource_size_t phys_addr;
2834 unsigned long prot = 0;
2835 void *maddr;
2836 int offset = addr & (PAGE_SIZE-1);
2838 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2839 return -EINVAL;
2841 phys_addr = follow_phys(vma, addr, write, &prot);
2843 if (!phys_addr)
2844 return -EINVAL;
2846 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2847 if (write)
2848 memcpy_toio(maddr + offset, buf, len);
2849 else
2850 memcpy_fromio(buf, maddr + offset, len);
2851 iounmap(maddr);
2853 return len;
2855 #endif
2858 * Access another process' address space.
2859 * Source/target buffer must be kernel space,
2860 * Do not walk the page table directly, use get_user_pages
2862 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2864 struct mm_struct *mm;
2865 struct vm_area_struct *vma;
2866 void *old_buf = buf;
2868 mm = get_task_mm(tsk);
2869 if (!mm)
2870 return 0;
2872 down_read(&mm->mmap_sem);
2873 /* ignore errors, just check how much was successfully transferred */
2874 while (len) {
2875 int bytes, ret, offset;
2876 void *maddr;
2877 struct page *page = NULL;
2879 ret = get_user_pages(tsk, mm, addr, 1,
2880 write, 1, &page, &vma);
2881 if (ret <= 0) {
2883 * Check if this is a VM_IO | VM_PFNMAP VMA, which
2884 * we can access using slightly different code.
2886 #ifdef CONFIG_HAVE_IOREMAP_PROT
2887 vma = find_vma(mm, addr);
2888 if (!vma)
2889 break;
2890 if (vma->vm_ops && vma->vm_ops->access)
2891 ret = vma->vm_ops->access(vma, addr, buf,
2892 len, write);
2893 if (ret <= 0)
2894 #endif
2895 break;
2896 bytes = ret;
2897 } else {
2898 bytes = len;
2899 offset = addr & (PAGE_SIZE-1);
2900 if (bytes > PAGE_SIZE-offset)
2901 bytes = PAGE_SIZE-offset;
2903 maddr = kmap(page);
2904 if (write) {
2905 copy_to_user_page(vma, page, addr,
2906 maddr + offset, buf, bytes);
2907 set_page_dirty_lock(page);
2908 } else {
2909 copy_from_user_page(vma, page, addr,
2910 buf, maddr + offset, bytes);
2912 kunmap(page);
2913 page_cache_release(page);
2915 len -= bytes;
2916 buf += bytes;
2917 addr += bytes;
2919 up_read(&mm->mmap_sem);
2920 mmput(mm);
2922 return buf - old_buf;
2926 * Print the name of a VMA.
2928 void print_vma_addr(char *prefix, unsigned long ip)
2930 struct mm_struct *mm = current->mm;
2931 struct vm_area_struct *vma;
2934 * Do not print if we are in atomic
2935 * contexts (in exception stacks, etc.):
2937 if (preempt_count())
2938 return;
2940 down_read(&mm->mmap_sem);
2941 vma = find_vma(mm, ip);
2942 if (vma && vma->vm_file) {
2943 struct file *f = vma->vm_file;
2944 char *buf = (char *)__get_free_page(GFP_KERNEL);
2945 if (buf) {
2946 char *p, *s;
2948 p = d_path(&f->f_path, buf, PAGE_SIZE);
2949 if (IS_ERR(p))
2950 p = "?";
2951 s = strrchr(p, '/');
2952 if (s)
2953 p = s+1;
2954 printk("%s%s[%lx+%lx]", prefix, p,
2955 vma->vm_start,
2956 vma->vm_end - vma->vm_start);
2957 free_page((unsigned long)buf);
2960 up_read(&current->mm->mmap_sem);