drm/radeon/kms: Add quirk for HIS X1300 board
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / workqueue.c
blob67e526b6ae815bbc846fd0424d43399f9fb5a0ba
1 /*
2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
12 * Andrew Morton
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/workqueue.h>
40 * The per-CPU workqueue (if single thread, we always use the first
41 * possible cpu).
43 struct cpu_workqueue_struct {
45 spinlock_t lock;
47 struct list_head worklist;
48 wait_queue_head_t more_work;
49 struct work_struct *current_work;
51 struct workqueue_struct *wq;
52 struct task_struct *thread;
53 } ____cacheline_aligned;
56 * The externally visible workqueue abstraction is an array of
57 * per-CPU workqueues:
59 struct workqueue_struct {
60 struct cpu_workqueue_struct *cpu_wq;
61 struct list_head list;
62 const char *name;
63 int singlethread;
64 int freezeable; /* Freeze threads during suspend */
65 int rt;
66 #ifdef CONFIG_LOCKDEP
67 struct lockdep_map lockdep_map;
68 #endif
71 /* Serializes the accesses to the list of workqueues. */
72 static DEFINE_SPINLOCK(workqueue_lock);
73 static LIST_HEAD(workqueues);
75 static int singlethread_cpu __read_mostly;
76 static const struct cpumask *cpu_singlethread_map __read_mostly;
78 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
79 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
80 * which comes in between can't use for_each_online_cpu(). We could
81 * use cpu_possible_map, the cpumask below is more a documentation
82 * than optimization.
84 static cpumask_var_t cpu_populated_map __read_mostly;
86 /* If it's single threaded, it isn't in the list of workqueues. */
87 static inline int is_wq_single_threaded(struct workqueue_struct *wq)
89 return wq->singlethread;
92 static const struct cpumask *wq_cpu_map(struct workqueue_struct *wq)
94 return is_wq_single_threaded(wq)
95 ? cpu_singlethread_map : cpu_populated_map;
98 static
99 struct cpu_workqueue_struct *wq_per_cpu(struct workqueue_struct *wq, int cpu)
101 if (unlikely(is_wq_single_threaded(wq)))
102 cpu = singlethread_cpu;
103 return per_cpu_ptr(wq->cpu_wq, cpu);
107 * Set the workqueue on which a work item is to be run
108 * - Must *only* be called if the pending flag is set
110 static inline void set_wq_data(struct work_struct *work,
111 struct cpu_workqueue_struct *cwq)
113 unsigned long new;
115 BUG_ON(!work_pending(work));
117 new = (unsigned long) cwq | (1UL << WORK_STRUCT_PENDING);
118 new |= WORK_STRUCT_FLAG_MASK & *work_data_bits(work);
119 atomic_long_set(&work->data, new);
122 static inline
123 struct cpu_workqueue_struct *get_wq_data(struct work_struct *work)
125 return (void *) (atomic_long_read(&work->data) & WORK_STRUCT_WQ_DATA_MASK);
128 static void insert_work(struct cpu_workqueue_struct *cwq,
129 struct work_struct *work, struct list_head *head)
131 trace_workqueue_insertion(cwq->thread, work);
133 set_wq_data(work, cwq);
135 * Ensure that we get the right work->data if we see the
136 * result of list_add() below, see try_to_grab_pending().
138 smp_wmb();
139 list_add_tail(&work->entry, head);
140 wake_up(&cwq->more_work);
143 static void __queue_work(struct cpu_workqueue_struct *cwq,
144 struct work_struct *work)
146 unsigned long flags;
148 spin_lock_irqsave(&cwq->lock, flags);
149 insert_work(cwq, work, &cwq->worklist);
150 spin_unlock_irqrestore(&cwq->lock, flags);
154 * queue_work - queue work on a workqueue
155 * @wq: workqueue to use
156 * @work: work to queue
158 * Returns 0 if @work was already on a queue, non-zero otherwise.
160 * We queue the work to the CPU on which it was submitted, but if the CPU dies
161 * it can be processed by another CPU.
163 int queue_work(struct workqueue_struct *wq, struct work_struct *work)
165 int ret;
167 ret = queue_work_on(get_cpu(), wq, work);
168 put_cpu();
170 return ret;
172 EXPORT_SYMBOL_GPL(queue_work);
175 * queue_work_on - queue work on specific cpu
176 * @cpu: CPU number to execute work on
177 * @wq: workqueue to use
178 * @work: work to queue
180 * Returns 0 if @work was already on a queue, non-zero otherwise.
182 * We queue the work to a specific CPU, the caller must ensure it
183 * can't go away.
186 queue_work_on(int cpu, struct workqueue_struct *wq, struct work_struct *work)
188 int ret = 0;
190 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
191 BUG_ON(!list_empty(&work->entry));
192 __queue_work(wq_per_cpu(wq, cpu), work);
193 ret = 1;
195 return ret;
197 EXPORT_SYMBOL_GPL(queue_work_on);
199 static void delayed_work_timer_fn(unsigned long __data)
201 struct delayed_work *dwork = (struct delayed_work *)__data;
202 struct cpu_workqueue_struct *cwq = get_wq_data(&dwork->work);
203 struct workqueue_struct *wq = cwq->wq;
205 __queue_work(wq_per_cpu(wq, smp_processor_id()), &dwork->work);
209 * queue_delayed_work - queue work on a workqueue after delay
210 * @wq: workqueue to use
211 * @dwork: delayable work to queue
212 * @delay: number of jiffies to wait before queueing
214 * Returns 0 if @work was already on a queue, non-zero otherwise.
216 int queue_delayed_work(struct workqueue_struct *wq,
217 struct delayed_work *dwork, unsigned long delay)
219 if (delay == 0)
220 return queue_work(wq, &dwork->work);
222 return queue_delayed_work_on(-1, wq, dwork, delay);
224 EXPORT_SYMBOL_GPL(queue_delayed_work);
227 * queue_delayed_work_on - queue work on specific CPU after delay
228 * @cpu: CPU number to execute work on
229 * @wq: workqueue to use
230 * @dwork: work to queue
231 * @delay: number of jiffies to wait before queueing
233 * Returns 0 if @work was already on a queue, non-zero otherwise.
235 int queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
236 struct delayed_work *dwork, unsigned long delay)
238 int ret = 0;
239 struct timer_list *timer = &dwork->timer;
240 struct work_struct *work = &dwork->work;
242 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work))) {
243 BUG_ON(timer_pending(timer));
244 BUG_ON(!list_empty(&work->entry));
246 timer_stats_timer_set_start_info(&dwork->timer);
248 /* This stores cwq for the moment, for the timer_fn */
249 set_wq_data(work, wq_per_cpu(wq, raw_smp_processor_id()));
250 timer->expires = jiffies + delay;
251 timer->data = (unsigned long)dwork;
252 timer->function = delayed_work_timer_fn;
254 if (unlikely(cpu >= 0))
255 add_timer_on(timer, cpu);
256 else
257 add_timer(timer);
258 ret = 1;
260 return ret;
262 EXPORT_SYMBOL_GPL(queue_delayed_work_on);
264 static void run_workqueue(struct cpu_workqueue_struct *cwq)
266 spin_lock_irq(&cwq->lock);
267 while (!list_empty(&cwq->worklist)) {
268 struct work_struct *work = list_entry(cwq->worklist.next,
269 struct work_struct, entry);
270 work_func_t f = work->func;
271 #ifdef CONFIG_LOCKDEP
273 * It is permissible to free the struct work_struct
274 * from inside the function that is called from it,
275 * this we need to take into account for lockdep too.
276 * To avoid bogus "held lock freed" warnings as well
277 * as problems when looking into work->lockdep_map,
278 * make a copy and use that here.
280 struct lockdep_map lockdep_map = work->lockdep_map;
281 #endif
282 trace_workqueue_execution(cwq->thread, work);
283 cwq->current_work = work;
284 list_del_init(cwq->worklist.next);
285 spin_unlock_irq(&cwq->lock);
287 BUG_ON(get_wq_data(work) != cwq);
288 work_clear_pending(work);
289 lock_map_acquire(&cwq->wq->lockdep_map);
290 lock_map_acquire(&lockdep_map);
291 f(work);
292 lock_map_release(&lockdep_map);
293 lock_map_release(&cwq->wq->lockdep_map);
295 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
296 printk(KERN_ERR "BUG: workqueue leaked lock or atomic: "
297 "%s/0x%08x/%d\n",
298 current->comm, preempt_count(),
299 task_pid_nr(current));
300 printk(KERN_ERR " last function: ");
301 print_symbol("%s\n", (unsigned long)f);
302 debug_show_held_locks(current);
303 dump_stack();
306 spin_lock_irq(&cwq->lock);
307 cwq->current_work = NULL;
309 spin_unlock_irq(&cwq->lock);
312 static int worker_thread(void *__cwq)
314 struct cpu_workqueue_struct *cwq = __cwq;
315 DEFINE_WAIT(wait);
317 if (cwq->wq->freezeable)
318 set_freezable();
320 for (;;) {
321 prepare_to_wait(&cwq->more_work, &wait, TASK_INTERRUPTIBLE);
322 if (!freezing(current) &&
323 !kthread_should_stop() &&
324 list_empty(&cwq->worklist))
325 schedule();
326 finish_wait(&cwq->more_work, &wait);
328 try_to_freeze();
330 if (kthread_should_stop())
331 break;
333 run_workqueue(cwq);
336 return 0;
339 struct wq_barrier {
340 struct work_struct work;
341 struct completion done;
344 static void wq_barrier_func(struct work_struct *work)
346 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
347 complete(&barr->done);
350 static void insert_wq_barrier(struct cpu_workqueue_struct *cwq,
351 struct wq_barrier *barr, struct list_head *head)
353 INIT_WORK(&barr->work, wq_barrier_func);
354 __set_bit(WORK_STRUCT_PENDING, work_data_bits(&barr->work));
356 init_completion(&barr->done);
358 insert_work(cwq, &barr->work, head);
361 static int flush_cpu_workqueue(struct cpu_workqueue_struct *cwq)
363 int active = 0;
364 struct wq_barrier barr;
366 WARN_ON(cwq->thread == current);
368 spin_lock_irq(&cwq->lock);
369 if (!list_empty(&cwq->worklist) || cwq->current_work != NULL) {
370 insert_wq_barrier(cwq, &barr, &cwq->worklist);
371 active = 1;
373 spin_unlock_irq(&cwq->lock);
375 if (active)
376 wait_for_completion(&barr.done);
378 return active;
382 * flush_workqueue - ensure that any scheduled work has run to completion.
383 * @wq: workqueue to flush
385 * Forces execution of the workqueue and blocks until its completion.
386 * This is typically used in driver shutdown handlers.
388 * We sleep until all works which were queued on entry have been handled,
389 * but we are not livelocked by new incoming ones.
391 * This function used to run the workqueues itself. Now we just wait for the
392 * helper threads to do it.
394 void flush_workqueue(struct workqueue_struct *wq)
396 const struct cpumask *cpu_map = wq_cpu_map(wq);
397 int cpu;
399 might_sleep();
400 lock_map_acquire(&wq->lockdep_map);
401 lock_map_release(&wq->lockdep_map);
402 for_each_cpu(cpu, cpu_map)
403 flush_cpu_workqueue(per_cpu_ptr(wq->cpu_wq, cpu));
405 EXPORT_SYMBOL_GPL(flush_workqueue);
408 * flush_work - block until a work_struct's callback has terminated
409 * @work: the work which is to be flushed
411 * Returns false if @work has already terminated.
413 * It is expected that, prior to calling flush_work(), the caller has
414 * arranged for the work to not be requeued, otherwise it doesn't make
415 * sense to use this function.
417 int flush_work(struct work_struct *work)
419 struct cpu_workqueue_struct *cwq;
420 struct list_head *prev;
421 struct wq_barrier barr;
423 might_sleep();
424 cwq = get_wq_data(work);
425 if (!cwq)
426 return 0;
428 lock_map_acquire(&cwq->wq->lockdep_map);
429 lock_map_release(&cwq->wq->lockdep_map);
431 prev = NULL;
432 spin_lock_irq(&cwq->lock);
433 if (!list_empty(&work->entry)) {
435 * See the comment near try_to_grab_pending()->smp_rmb().
436 * If it was re-queued under us we are not going to wait.
438 smp_rmb();
439 if (unlikely(cwq != get_wq_data(work)))
440 goto out;
441 prev = &work->entry;
442 } else {
443 if (cwq->current_work != work)
444 goto out;
445 prev = &cwq->worklist;
447 insert_wq_barrier(cwq, &barr, prev->next);
448 out:
449 spin_unlock_irq(&cwq->lock);
450 if (!prev)
451 return 0;
453 wait_for_completion(&barr.done);
454 return 1;
456 EXPORT_SYMBOL_GPL(flush_work);
459 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
460 * so this work can't be re-armed in any way.
462 static int try_to_grab_pending(struct work_struct *work)
464 struct cpu_workqueue_struct *cwq;
465 int ret = -1;
467 if (!test_and_set_bit(WORK_STRUCT_PENDING, work_data_bits(work)))
468 return 0;
471 * The queueing is in progress, or it is already queued. Try to
472 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
475 cwq = get_wq_data(work);
476 if (!cwq)
477 return ret;
479 spin_lock_irq(&cwq->lock);
480 if (!list_empty(&work->entry)) {
482 * This work is queued, but perhaps we locked the wrong cwq.
483 * In that case we must see the new value after rmb(), see
484 * insert_work()->wmb().
486 smp_rmb();
487 if (cwq == get_wq_data(work)) {
488 list_del_init(&work->entry);
489 ret = 1;
492 spin_unlock_irq(&cwq->lock);
494 return ret;
497 static void wait_on_cpu_work(struct cpu_workqueue_struct *cwq,
498 struct work_struct *work)
500 struct wq_barrier barr;
501 int running = 0;
503 spin_lock_irq(&cwq->lock);
504 if (unlikely(cwq->current_work == work)) {
505 insert_wq_barrier(cwq, &barr, cwq->worklist.next);
506 running = 1;
508 spin_unlock_irq(&cwq->lock);
510 if (unlikely(running))
511 wait_for_completion(&barr.done);
514 static void wait_on_work(struct work_struct *work)
516 struct cpu_workqueue_struct *cwq;
517 struct workqueue_struct *wq;
518 const struct cpumask *cpu_map;
519 int cpu;
521 might_sleep();
523 lock_map_acquire(&work->lockdep_map);
524 lock_map_release(&work->lockdep_map);
526 cwq = get_wq_data(work);
527 if (!cwq)
528 return;
530 wq = cwq->wq;
531 cpu_map = wq_cpu_map(wq);
533 for_each_cpu(cpu, cpu_map)
534 wait_on_cpu_work(per_cpu_ptr(wq->cpu_wq, cpu), work);
537 static int __cancel_work_timer(struct work_struct *work,
538 struct timer_list* timer)
540 int ret;
542 do {
543 ret = (timer && likely(del_timer(timer)));
544 if (!ret)
545 ret = try_to_grab_pending(work);
546 wait_on_work(work);
547 } while (unlikely(ret < 0));
549 work_clear_pending(work);
550 return ret;
554 * cancel_work_sync - block until a work_struct's callback has terminated
555 * @work: the work which is to be flushed
557 * Returns true if @work was pending.
559 * cancel_work_sync() will cancel the work if it is queued. If the work's
560 * callback appears to be running, cancel_work_sync() will block until it
561 * has completed.
563 * It is possible to use this function if the work re-queues itself. It can
564 * cancel the work even if it migrates to another workqueue, however in that
565 * case it only guarantees that work->func() has completed on the last queued
566 * workqueue.
568 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
569 * pending, otherwise it goes into a busy-wait loop until the timer expires.
571 * The caller must ensure that workqueue_struct on which this work was last
572 * queued can't be destroyed before this function returns.
574 int cancel_work_sync(struct work_struct *work)
576 return __cancel_work_timer(work, NULL);
578 EXPORT_SYMBOL_GPL(cancel_work_sync);
581 * cancel_delayed_work_sync - reliably kill off a delayed work.
582 * @dwork: the delayed work struct
584 * Returns true if @dwork was pending.
586 * It is possible to use this function if @dwork rearms itself via queue_work()
587 * or queue_delayed_work(). See also the comment for cancel_work_sync().
589 int cancel_delayed_work_sync(struct delayed_work *dwork)
591 return __cancel_work_timer(&dwork->work, &dwork->timer);
593 EXPORT_SYMBOL(cancel_delayed_work_sync);
595 static struct workqueue_struct *keventd_wq __read_mostly;
598 * schedule_work - put work task in global workqueue
599 * @work: job to be done
601 * Returns zero if @work was already on the kernel-global workqueue and
602 * non-zero otherwise.
604 * This puts a job in the kernel-global workqueue if it was not already
605 * queued and leaves it in the same position on the kernel-global
606 * workqueue otherwise.
608 int schedule_work(struct work_struct *work)
610 return queue_work(keventd_wq, work);
612 EXPORT_SYMBOL(schedule_work);
615 * schedule_work_on - put work task on a specific cpu
616 * @cpu: cpu to put the work task on
617 * @work: job to be done
619 * This puts a job on a specific cpu
621 int schedule_work_on(int cpu, struct work_struct *work)
623 return queue_work_on(cpu, keventd_wq, work);
625 EXPORT_SYMBOL(schedule_work_on);
628 * schedule_delayed_work - put work task in global workqueue after delay
629 * @dwork: job to be done
630 * @delay: number of jiffies to wait or 0 for immediate execution
632 * After waiting for a given time this puts a job in the kernel-global
633 * workqueue.
635 int schedule_delayed_work(struct delayed_work *dwork,
636 unsigned long delay)
638 return queue_delayed_work(keventd_wq, dwork, delay);
640 EXPORT_SYMBOL(schedule_delayed_work);
643 * flush_delayed_work - block until a dwork_struct's callback has terminated
644 * @dwork: the delayed work which is to be flushed
646 * Any timeout is cancelled, and any pending work is run immediately.
648 void flush_delayed_work(struct delayed_work *dwork)
650 if (del_timer_sync(&dwork->timer)) {
651 struct cpu_workqueue_struct *cwq;
652 cwq = wq_per_cpu(keventd_wq, get_cpu());
653 __queue_work(cwq, &dwork->work);
654 put_cpu();
656 flush_work(&dwork->work);
658 EXPORT_SYMBOL(flush_delayed_work);
661 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
662 * @cpu: cpu to use
663 * @dwork: job to be done
664 * @delay: number of jiffies to wait
666 * After waiting for a given time this puts a job in the kernel-global
667 * workqueue on the specified CPU.
669 int schedule_delayed_work_on(int cpu,
670 struct delayed_work *dwork, unsigned long delay)
672 return queue_delayed_work_on(cpu, keventd_wq, dwork, delay);
674 EXPORT_SYMBOL(schedule_delayed_work_on);
677 * schedule_on_each_cpu - call a function on each online CPU from keventd
678 * @func: the function to call
680 * Returns zero on success.
681 * Returns -ve errno on failure.
683 * schedule_on_each_cpu() is very slow.
685 int schedule_on_each_cpu(work_func_t func)
687 int cpu;
688 int orig = -1;
689 struct work_struct *works;
691 works = alloc_percpu(struct work_struct);
692 if (!works)
693 return -ENOMEM;
695 get_online_cpus();
698 * When running in keventd don't schedule a work item on
699 * itself. Can just call directly because the work queue is
700 * already bound. This also is faster.
702 if (current_is_keventd())
703 orig = raw_smp_processor_id();
705 for_each_online_cpu(cpu) {
706 struct work_struct *work = per_cpu_ptr(works, cpu);
708 INIT_WORK(work, func);
709 if (cpu != orig)
710 schedule_work_on(cpu, work);
712 if (orig >= 0)
713 func(per_cpu_ptr(works, orig));
715 for_each_online_cpu(cpu)
716 flush_work(per_cpu_ptr(works, cpu));
718 put_online_cpus();
719 free_percpu(works);
720 return 0;
723 void flush_scheduled_work(void)
725 flush_workqueue(keventd_wq);
727 EXPORT_SYMBOL(flush_scheduled_work);
730 * execute_in_process_context - reliably execute the routine with user context
731 * @fn: the function to execute
732 * @ew: guaranteed storage for the execute work structure (must
733 * be available when the work executes)
735 * Executes the function immediately if process context is available,
736 * otherwise schedules the function for delayed execution.
738 * Returns: 0 - function was executed
739 * 1 - function was scheduled for execution
741 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
743 if (!in_interrupt()) {
744 fn(&ew->work);
745 return 0;
748 INIT_WORK(&ew->work, fn);
749 schedule_work(&ew->work);
751 return 1;
753 EXPORT_SYMBOL_GPL(execute_in_process_context);
755 int keventd_up(void)
757 return keventd_wq != NULL;
760 int current_is_keventd(void)
762 struct cpu_workqueue_struct *cwq;
763 int cpu = raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
764 int ret = 0;
766 BUG_ON(!keventd_wq);
768 cwq = per_cpu_ptr(keventd_wq->cpu_wq, cpu);
769 if (current == cwq->thread)
770 ret = 1;
772 return ret;
776 static struct cpu_workqueue_struct *
777 init_cpu_workqueue(struct workqueue_struct *wq, int cpu)
779 struct cpu_workqueue_struct *cwq = per_cpu_ptr(wq->cpu_wq, cpu);
781 cwq->wq = wq;
782 spin_lock_init(&cwq->lock);
783 INIT_LIST_HEAD(&cwq->worklist);
784 init_waitqueue_head(&cwq->more_work);
786 return cwq;
789 static int create_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
791 struct sched_param param = { .sched_priority = MAX_RT_PRIO-1 };
792 struct workqueue_struct *wq = cwq->wq;
793 const char *fmt = is_wq_single_threaded(wq) ? "%s" : "%s/%d";
794 struct task_struct *p;
796 p = kthread_create(worker_thread, cwq, fmt, wq->name, cpu);
798 * Nobody can add the work_struct to this cwq,
799 * if (caller is __create_workqueue)
800 * nobody should see this wq
801 * else // caller is CPU_UP_PREPARE
802 * cpu is not on cpu_online_map
803 * so we can abort safely.
805 if (IS_ERR(p))
806 return PTR_ERR(p);
807 if (cwq->wq->rt)
808 sched_setscheduler_nocheck(p, SCHED_FIFO, &param);
809 cwq->thread = p;
811 trace_workqueue_creation(cwq->thread, cpu);
813 return 0;
816 static void start_workqueue_thread(struct cpu_workqueue_struct *cwq, int cpu)
818 struct task_struct *p = cwq->thread;
820 if (p != NULL) {
821 if (cpu >= 0)
822 kthread_bind(p, cpu);
823 wake_up_process(p);
827 struct workqueue_struct *__create_workqueue_key(const char *name,
828 int singlethread,
829 int freezeable,
830 int rt,
831 struct lock_class_key *key,
832 const char *lock_name)
834 struct workqueue_struct *wq;
835 struct cpu_workqueue_struct *cwq;
836 int err = 0, cpu;
838 wq = kzalloc(sizeof(*wq), GFP_KERNEL);
839 if (!wq)
840 return NULL;
842 wq->cpu_wq = alloc_percpu(struct cpu_workqueue_struct);
843 if (!wq->cpu_wq) {
844 kfree(wq);
845 return NULL;
848 wq->name = name;
849 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
850 wq->singlethread = singlethread;
851 wq->freezeable = freezeable;
852 wq->rt = rt;
853 INIT_LIST_HEAD(&wq->list);
855 if (singlethread) {
856 cwq = init_cpu_workqueue(wq, singlethread_cpu);
857 err = create_workqueue_thread(cwq, singlethread_cpu);
858 start_workqueue_thread(cwq, -1);
859 } else {
860 cpu_maps_update_begin();
862 * We must place this wq on list even if the code below fails.
863 * cpu_down(cpu) can remove cpu from cpu_populated_map before
864 * destroy_workqueue() takes the lock, in that case we leak
865 * cwq[cpu]->thread.
867 spin_lock(&workqueue_lock);
868 list_add(&wq->list, &workqueues);
869 spin_unlock(&workqueue_lock);
871 * We must initialize cwqs for each possible cpu even if we
872 * are going to call destroy_workqueue() finally. Otherwise
873 * cpu_up() can hit the uninitialized cwq once we drop the
874 * lock.
876 for_each_possible_cpu(cpu) {
877 cwq = init_cpu_workqueue(wq, cpu);
878 if (err || !cpu_online(cpu))
879 continue;
880 err = create_workqueue_thread(cwq, cpu);
881 start_workqueue_thread(cwq, cpu);
883 cpu_maps_update_done();
886 if (err) {
887 destroy_workqueue(wq);
888 wq = NULL;
890 return wq;
892 EXPORT_SYMBOL_GPL(__create_workqueue_key);
894 static void cleanup_workqueue_thread(struct cpu_workqueue_struct *cwq)
897 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
898 * cpu_add_remove_lock protects cwq->thread.
900 if (cwq->thread == NULL)
901 return;
903 lock_map_acquire(&cwq->wq->lockdep_map);
904 lock_map_release(&cwq->wq->lockdep_map);
906 flush_cpu_workqueue(cwq);
908 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
909 * a concurrent flush_workqueue() can insert a barrier after us.
910 * However, in that case run_workqueue() won't return and check
911 * kthread_should_stop() until it flushes all work_struct's.
912 * When ->worklist becomes empty it is safe to exit because no
913 * more work_structs can be queued on this cwq: flush_workqueue
914 * checks list_empty(), and a "normal" queue_work() can't use
915 * a dead CPU.
917 trace_workqueue_destruction(cwq->thread);
918 kthread_stop(cwq->thread);
919 cwq->thread = NULL;
923 * destroy_workqueue - safely terminate a workqueue
924 * @wq: target workqueue
926 * Safely destroy a workqueue. All work currently pending will be done first.
928 void destroy_workqueue(struct workqueue_struct *wq)
930 const struct cpumask *cpu_map = wq_cpu_map(wq);
931 int cpu;
933 cpu_maps_update_begin();
934 spin_lock(&workqueue_lock);
935 list_del(&wq->list);
936 spin_unlock(&workqueue_lock);
938 for_each_cpu(cpu, cpu_map)
939 cleanup_workqueue_thread(per_cpu_ptr(wq->cpu_wq, cpu));
940 cpu_maps_update_done();
942 free_percpu(wq->cpu_wq);
943 kfree(wq);
945 EXPORT_SYMBOL_GPL(destroy_workqueue);
947 static int __devinit workqueue_cpu_callback(struct notifier_block *nfb,
948 unsigned long action,
949 void *hcpu)
951 unsigned int cpu = (unsigned long)hcpu;
952 struct cpu_workqueue_struct *cwq;
953 struct workqueue_struct *wq;
954 int ret = NOTIFY_OK;
956 action &= ~CPU_TASKS_FROZEN;
958 switch (action) {
959 case CPU_UP_PREPARE:
960 cpumask_set_cpu(cpu, cpu_populated_map);
962 undo:
963 list_for_each_entry(wq, &workqueues, list) {
964 cwq = per_cpu_ptr(wq->cpu_wq, cpu);
966 switch (action) {
967 case CPU_UP_PREPARE:
968 if (!create_workqueue_thread(cwq, cpu))
969 break;
970 printk(KERN_ERR "workqueue [%s] for %i failed\n",
971 wq->name, cpu);
972 action = CPU_UP_CANCELED;
973 ret = NOTIFY_BAD;
974 goto undo;
976 case CPU_ONLINE:
977 start_workqueue_thread(cwq, cpu);
978 break;
980 case CPU_UP_CANCELED:
981 start_workqueue_thread(cwq, -1);
982 case CPU_POST_DEAD:
983 cleanup_workqueue_thread(cwq);
984 break;
988 switch (action) {
989 case CPU_UP_CANCELED:
990 case CPU_POST_DEAD:
991 cpumask_clear_cpu(cpu, cpu_populated_map);
994 return ret;
997 #ifdef CONFIG_SMP
999 struct work_for_cpu {
1000 struct completion completion;
1001 long (*fn)(void *);
1002 void *arg;
1003 long ret;
1006 static int do_work_for_cpu(void *_wfc)
1008 struct work_for_cpu *wfc = _wfc;
1009 wfc->ret = wfc->fn(wfc->arg);
1010 complete(&wfc->completion);
1011 return 0;
1015 * work_on_cpu - run a function in user context on a particular cpu
1016 * @cpu: the cpu to run on
1017 * @fn: the function to run
1018 * @arg: the function arg
1020 * This will return the value @fn returns.
1021 * It is up to the caller to ensure that the cpu doesn't go offline.
1022 * The caller must not hold any locks which would prevent @fn from completing.
1024 long work_on_cpu(unsigned int cpu, long (*fn)(void *), void *arg)
1026 struct task_struct *sub_thread;
1027 struct work_for_cpu wfc = {
1028 .completion = COMPLETION_INITIALIZER_ONSTACK(wfc.completion),
1029 .fn = fn,
1030 .arg = arg,
1033 sub_thread = kthread_create(do_work_for_cpu, &wfc, "work_for_cpu");
1034 if (IS_ERR(sub_thread))
1035 return PTR_ERR(sub_thread);
1036 kthread_bind(sub_thread, cpu);
1037 wake_up_process(sub_thread);
1038 wait_for_completion(&wfc.completion);
1039 return wfc.ret;
1041 EXPORT_SYMBOL_GPL(work_on_cpu);
1042 #endif /* CONFIG_SMP */
1044 void __init init_workqueues(void)
1046 alloc_cpumask_var(&cpu_populated_map, GFP_KERNEL);
1048 cpumask_copy(cpu_populated_map, cpu_online_mask);
1049 singlethread_cpu = cpumask_first(cpu_possible_mask);
1050 cpu_singlethread_map = cpumask_of(singlethread_cpu);
1051 hotcpu_notifier(workqueue_cpu_callback, 0);
1052 keventd_wq = create_workqueue("events");
1053 BUG_ON(!keventd_wq);