2 * "splice": joining two ropes together by interweaving their strands.
4 * This is the "extended pipe" functionality, where a pipe is used as
5 * an arbitrary in-memory buffer. Think of a pipe as a small kernel
6 * buffer that you can use to transfer data from one end to the other.
8 * The traditional unix read/write is extended with a "splice()" operation
9 * that transfers data buffers to or from a pipe buffer.
11 * Named by Larry McVoy, original implementation from Linus, extended by
12 * Jens to support splicing to files, network, direct splicing, etc and
13 * fixing lots of bugs.
15 * Copyright (C) 2005-2006 Jens Axboe <axboe@suse.de>
16 * Copyright (C) 2005-2006 Linus Torvalds <torvalds@osdl.org>
17 * Copyright (C) 2006 Ingo Molnar <mingo@elte.hu>
21 #include <linux/file.h>
22 #include <linux/pagemap.h>
23 #include <linux/pipe_fs_i.h>
24 #include <linux/mm_inline.h>
25 #include <linux/swap.h>
26 #include <linux/writeback.h>
27 #include <linux/buffer_head.h>
28 #include <linux/module.h>
29 #include <linux/syscalls.h>
30 #include <linux/uio.h>
38 * Passed to splice_to_pipe
40 struct splice_pipe_desc
{
41 struct page
**pages
; /* page map */
42 struct partial_page
*partial
; /* pages[] may not be contig */
43 int nr_pages
; /* number of pages in map */
44 unsigned int flags
; /* splice flags */
45 struct pipe_buf_operations
*ops
;/* ops associated with output pipe */
49 * Attempt to steal a page from a pipe buffer. This should perhaps go into
50 * a vm helper function, it's already simplified quite a bit by the
51 * addition of remove_mapping(). If success is returned, the caller may
52 * attempt to reuse this page for another destination.
54 static int page_cache_pipe_buf_steal(struct pipe_inode_info
*pipe
,
55 struct pipe_buffer
*buf
)
57 struct page
*page
= buf
->page
;
58 struct address_space
*mapping
= page_mapping(page
);
62 WARN_ON(!PageUptodate(page
));
65 * At least for ext2 with nobh option, we need to wait on writeback
66 * completing on this page, since we'll remove it from the pagecache.
67 * Otherwise truncate wont wait on the page, allowing the disk
68 * blocks to be reused by someone else before we actually wrote our
69 * data to them. fs corruption ensues.
71 wait_on_page_writeback(page
);
73 if (PagePrivate(page
))
74 try_to_release_page(page
, mapping_gfp_mask(mapping
));
76 if (!remove_mapping(mapping
, page
)) {
81 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
85 static void page_cache_pipe_buf_release(struct pipe_inode_info
*pipe
,
86 struct pipe_buffer
*buf
)
88 page_cache_release(buf
->page
);
89 buf
->flags
&= ~PIPE_BUF_FLAG_LRU
;
92 static int page_cache_pipe_buf_pin(struct pipe_inode_info
*pipe
,
93 struct pipe_buffer
*buf
)
95 struct page
*page
= buf
->page
;
98 if (!PageUptodate(page
)) {
102 * Page got truncated/unhashed. This will cause a 0-byte
103 * splice, if this is the first page.
105 if (!page
->mapping
) {
111 * Uh oh, read-error from disk.
113 if (!PageUptodate(page
)) {
119 * Page is ok afterall, we are done.
130 static struct pipe_buf_operations page_cache_pipe_buf_ops
= {
132 .map
= generic_pipe_buf_map
,
133 .unmap
= generic_pipe_buf_unmap
,
134 .pin
= page_cache_pipe_buf_pin
,
135 .release
= page_cache_pipe_buf_release
,
136 .steal
= page_cache_pipe_buf_steal
,
137 .get
= generic_pipe_buf_get
,
140 static int user_page_pipe_buf_steal(struct pipe_inode_info
*pipe
,
141 struct pipe_buffer
*buf
)
143 if (!(buf
->flags
& PIPE_BUF_FLAG_GIFT
))
146 buf
->flags
|= PIPE_BUF_FLAG_LRU
;
147 return generic_pipe_buf_steal(pipe
, buf
);
150 static struct pipe_buf_operations user_page_pipe_buf_ops
= {
152 .map
= generic_pipe_buf_map
,
153 .unmap
= generic_pipe_buf_unmap
,
154 .pin
= generic_pipe_buf_pin
,
155 .release
= page_cache_pipe_buf_release
,
156 .steal
= user_page_pipe_buf_steal
,
157 .get
= generic_pipe_buf_get
,
161 * Pipe output worker. This sets up our pipe format with the page cache
162 * pipe buffer operations. Otherwise very similar to the regular pipe_writev().
164 static ssize_t
splice_to_pipe(struct pipe_inode_info
*pipe
,
165 struct splice_pipe_desc
*spd
)
167 int ret
, do_wakeup
, page_nr
;
174 mutex_lock(&pipe
->inode
->i_mutex
);
177 if (!pipe
->readers
) {
178 send_sig(SIGPIPE
, current
, 0);
184 if (pipe
->nrbufs
< PIPE_BUFFERS
) {
185 int newbuf
= (pipe
->curbuf
+ pipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
186 struct pipe_buffer
*buf
= pipe
->bufs
+ newbuf
;
188 buf
->page
= spd
->pages
[page_nr
];
189 buf
->offset
= spd
->partial
[page_nr
].offset
;
190 buf
->len
= spd
->partial
[page_nr
].len
;
192 if (spd
->flags
& SPLICE_F_GIFT
)
193 buf
->flags
|= PIPE_BUF_FLAG_GIFT
;
202 if (!--spd
->nr_pages
)
204 if (pipe
->nrbufs
< PIPE_BUFFERS
)
210 if (spd
->flags
& SPLICE_F_NONBLOCK
) {
216 if (signal_pending(current
)) {
224 if (waitqueue_active(&pipe
->wait
))
225 wake_up_interruptible_sync(&pipe
->wait
);
226 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
230 pipe
->waiting_writers
++;
232 pipe
->waiting_writers
--;
236 mutex_unlock(&pipe
->inode
->i_mutex
);
240 if (waitqueue_active(&pipe
->wait
))
241 wake_up_interruptible(&pipe
->wait
);
242 kill_fasync(&pipe
->fasync_readers
, SIGIO
, POLL_IN
);
245 while (page_nr
< spd
->nr_pages
)
246 page_cache_release(spd
->pages
[page_nr
++]);
252 __generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
253 struct pipe_inode_info
*pipe
, size_t len
,
256 struct address_space
*mapping
= in
->f_mapping
;
257 unsigned int loff
, nr_pages
;
258 struct page
*pages
[PIPE_BUFFERS
];
259 struct partial_page partial
[PIPE_BUFFERS
];
261 pgoff_t index
, end_index
;
265 struct splice_pipe_desc spd
= {
269 .ops
= &page_cache_pipe_buf_ops
,
272 index
= *ppos
>> PAGE_CACHE_SHIFT
;
273 loff
= *ppos
& ~PAGE_CACHE_MASK
;
274 nr_pages
= (len
+ loff
+ PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
276 if (nr_pages
> PIPE_BUFFERS
)
277 nr_pages
= PIPE_BUFFERS
;
280 * Initiate read-ahead on this page range. however, don't call into
281 * read-ahead if this is a non-zero offset (we are likely doing small
282 * chunk splice and the page is already there) for a single page.
284 if (!loff
|| nr_pages
> 1)
285 page_cache_readahead(mapping
, &in
->f_ra
, in
, index
, nr_pages
);
288 * Now fill in the holes:
294 * Lookup the (hopefully) full range of pages we need.
296 spd
.nr_pages
= find_get_pages_contig(mapping
, index
, nr_pages
, pages
);
299 * If find_get_pages_contig() returned fewer pages than we needed,
302 index
+= spd
.nr_pages
;
303 while (spd
.nr_pages
< nr_pages
) {
305 * Page could be there, find_get_pages_contig() breaks on
308 page
= find_get_page(mapping
, index
);
311 * Make sure the read-ahead engine is notified
312 * about this failure.
314 handle_ra_miss(mapping
, &in
->f_ra
, index
);
317 * page didn't exist, allocate one.
319 page
= page_cache_alloc_cold(mapping
);
323 error
= add_to_page_cache_lru(page
, mapping
, index
,
324 mapping_gfp_mask(mapping
));
325 if (unlikely(error
)) {
326 page_cache_release(page
);
327 if (error
== -EEXIST
)
332 * add_to_page_cache() locks the page, unlock it
333 * to avoid convoluting the logic below even more.
338 pages
[spd
.nr_pages
++] = page
;
343 * Now loop over the map and see if we need to start IO on any
344 * pages, fill in the partial map, etc.
346 index
= *ppos
>> PAGE_CACHE_SHIFT
;
347 nr_pages
= spd
.nr_pages
;
349 for (page_nr
= 0; page_nr
< nr_pages
; page_nr
++) {
350 unsigned int this_len
;
356 * this_len is the max we'll use from this page
358 this_len
= min_t(unsigned long, len
, PAGE_CACHE_SIZE
- loff
);
359 page
= pages
[page_nr
];
362 * If the page isn't uptodate, we may need to start io on it
364 if (!PageUptodate(page
)) {
366 * If in nonblock mode then dont block on waiting
367 * for an in-flight io page
369 if (flags
& SPLICE_F_NONBLOCK
)
375 * page was truncated, stop here. if this isn't the
376 * first page, we'll just complete what we already
379 if (!page
->mapping
) {
384 * page was already under io and is now done, great
386 if (PageUptodate(page
)) {
392 * need to read in the page
394 error
= mapping
->a_ops
->readpage(in
, page
);
395 if (unlikely(error
)) {
397 * We really should re-lookup the page here,
398 * but it complicates things a lot. Instead
399 * lets just do what we already stored, and
400 * we'll get it the next time we are called.
402 if (error
== AOP_TRUNCATED_PAGE
)
409 * i_size must be checked after ->readpage().
411 isize
= i_size_read(mapping
->host
);
412 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
413 if (unlikely(!isize
|| index
> end_index
))
417 * if this is the last page, see if we need to shrink
418 * the length and stop
420 if (end_index
== index
) {
421 loff
= PAGE_CACHE_SIZE
- (isize
& ~PAGE_CACHE_MASK
);
422 if (total_len
+ loff
> isize
)
425 * force quit after adding this page
428 this_len
= min(this_len
, loff
);
433 partial
[page_nr
].offset
= loff
;
434 partial
[page_nr
].len
= this_len
;
436 total_len
+= this_len
;
443 * Release any pages at the end, if we quit early. 'i' is how far
444 * we got, 'nr_pages' is how many pages are in the map.
446 while (page_nr
< nr_pages
)
447 page_cache_release(pages
[page_nr
++]);
450 return splice_to_pipe(pipe
, &spd
);
456 * generic_file_splice_read - splice data from file to a pipe
457 * @in: file to splice from
458 * @pipe: pipe to splice to
459 * @len: number of bytes to splice
460 * @flags: splice modifier flags
462 * Will read pages from given file and fill them into a pipe.
464 ssize_t
generic_file_splice_read(struct file
*in
, loff_t
*ppos
,
465 struct pipe_inode_info
*pipe
, size_t len
,
475 ret
= __generic_file_splice_read(in
, ppos
, pipe
, len
, flags
);
482 if (flags
& SPLICE_F_NONBLOCK
) {
499 EXPORT_SYMBOL(generic_file_splice_read
);
502 * Send 'sd->len' bytes to socket from 'sd->file' at position 'sd->pos'
503 * using sendpage(). Return the number of bytes sent.
505 static int pipe_to_sendpage(struct pipe_inode_info
*pipe
,
506 struct pipe_buffer
*buf
, struct splice_desc
*sd
)
508 struct file
*file
= sd
->file
;
509 loff_t pos
= sd
->pos
;
512 ret
= buf
->ops
->pin(pipe
, buf
);
514 more
= (sd
->flags
& SPLICE_F_MORE
) || sd
->len
< sd
->total_len
;
516 ret
= file
->f_op
->sendpage(file
, buf
->page
, buf
->offset
,
517 sd
->len
, &pos
, more
);
524 * This is a little more tricky than the file -> pipe splicing. There are
525 * basically three cases:
527 * - Destination page already exists in the address space and there
528 * are users of it. For that case we have no other option that
529 * copying the data. Tough luck.
530 * - Destination page already exists in the address space, but there
531 * are no users of it. Make sure it's uptodate, then drop it. Fall
532 * through to last case.
533 * - Destination page does not exist, we can add the pipe page to
534 * the page cache and avoid the copy.
536 * If asked to move pages to the output file (SPLICE_F_MOVE is set in
537 * sd->flags), we attempt to migrate pages from the pipe to the output
538 * file address space page cache. This is possible if no one else has
539 * the pipe page referenced outside of the pipe and page cache. If
540 * SPLICE_F_MOVE isn't set, or we cannot move the page, we simply create
541 * a new page in the output file page cache and fill/dirty that.
543 static int pipe_to_file(struct pipe_inode_info
*pipe
, struct pipe_buffer
*buf
,
544 struct splice_desc
*sd
)
546 struct file
*file
= sd
->file
;
547 struct address_space
*mapping
= file
->f_mapping
;
548 gfp_t gfp_mask
= mapping_gfp_mask(mapping
);
549 unsigned int offset
, this_len
;
555 * make sure the data in this buffer is uptodate
557 ret
= buf
->ops
->pin(pipe
, buf
);
561 index
= sd
->pos
>> PAGE_CACHE_SHIFT
;
562 offset
= sd
->pos
& ~PAGE_CACHE_MASK
;
565 if (this_len
+ offset
> PAGE_CACHE_SIZE
)
566 this_len
= PAGE_CACHE_SIZE
- offset
;
569 * Reuse buf page, if SPLICE_F_MOVE is set and we are doing a full
572 if ((sd
->flags
& SPLICE_F_MOVE
) && this_len
== PAGE_CACHE_SIZE
) {
574 * If steal succeeds, buf->page is now pruned from the
575 * pagecache and we can reuse it. The page will also be
576 * locked on successful return.
578 if (buf
->ops
->steal(pipe
, buf
))
582 if (add_to_page_cache(page
, mapping
, index
, gfp_mask
)) {
587 page_cache_get(page
);
589 if (!(buf
->flags
& PIPE_BUF_FLAG_LRU
))
593 page
= find_lock_page(mapping
, index
);
596 page
= page_cache_alloc_cold(mapping
);
601 * This will also lock the page
603 ret
= add_to_page_cache_lru(page
, mapping
, index
,
610 * We get here with the page locked. If the page is also
611 * uptodate, we don't need to do more. If it isn't, we
612 * may need to bring it in if we are not going to overwrite
615 if (!PageUptodate(page
)) {
616 if (this_len
< PAGE_CACHE_SIZE
) {
617 ret
= mapping
->a_ops
->readpage(file
, page
);
623 if (!PageUptodate(page
)) {
625 * Page got invalidated, repeat.
627 if (!page
->mapping
) {
629 page_cache_release(page
);
636 SetPageUptodate(page
);
640 ret
= mapping
->a_ops
->prepare_write(file
, page
, offset
, offset
+this_len
);
642 loff_t isize
= i_size_read(mapping
->host
);
644 if (ret
!= AOP_TRUNCATED_PAGE
)
646 page_cache_release(page
);
647 if (ret
== AOP_TRUNCATED_PAGE
)
651 * prepare_write() may have instantiated a few blocks
652 * outside i_size. Trim these off again.
654 if (sd
->pos
+ this_len
> isize
)
655 vmtruncate(mapping
->host
, isize
);
660 if (buf
->page
!= page
) {
662 * Careful, ->map() uses KM_USER0!
664 char *src
= buf
->ops
->map(pipe
, buf
, 1);
665 char *dst
= kmap_atomic(page
, KM_USER1
);
667 memcpy(dst
+ offset
, src
+ buf
->offset
, this_len
);
668 flush_dcache_page(page
);
669 kunmap_atomic(dst
, KM_USER1
);
670 buf
->ops
->unmap(pipe
, buf
, src
);
673 ret
= mapping
->a_ops
->commit_write(file
, page
, offset
, offset
+this_len
);
676 * Return the number of bytes written and mark page as
677 * accessed, we are now done!
680 mark_page_accessed(page
);
681 balance_dirty_pages_ratelimited(mapping
);
682 } else if (ret
== AOP_TRUNCATED_PAGE
) {
683 page_cache_release(page
);
687 page_cache_release(page
);
694 * Pipe input worker. Most of this logic works like a regular pipe, the
695 * key here is the 'actor' worker passed in that actually moves the data
696 * to the wanted destination. See pipe_to_file/pipe_to_sendpage above.
698 ssize_t
splice_from_pipe(struct pipe_inode_info
*pipe
, struct file
*out
,
699 loff_t
*ppos
, size_t len
, unsigned int flags
,
702 int ret
, do_wakeup
, err
;
703 struct splice_desc sd
;
714 mutex_lock(&pipe
->inode
->i_mutex
);
718 struct pipe_buffer
*buf
= pipe
->bufs
+ pipe
->curbuf
;
719 struct pipe_buf_operations
*ops
= buf
->ops
;
722 if (sd
.len
> sd
.total_len
)
723 sd
.len
= sd
.total_len
;
725 err
= actor(pipe
, buf
, &sd
);
727 if (!ret
&& err
!= -ENODATA
)
745 ops
->release(pipe
, buf
);
746 pipe
->curbuf
= (pipe
->curbuf
+ 1) & (PIPE_BUFFERS
- 1);
760 if (!pipe
->waiting_writers
) {
765 if (flags
& SPLICE_F_NONBLOCK
) {
771 if (signal_pending(current
)) {
779 if (waitqueue_active(&pipe
->wait
))
780 wake_up_interruptible_sync(&pipe
->wait
);
781 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
789 mutex_unlock(&pipe
->inode
->i_mutex
);
793 if (waitqueue_active(&pipe
->wait
))
794 wake_up_interruptible(&pipe
->wait
);
795 kill_fasync(&pipe
->fasync_writers
, SIGIO
, POLL_OUT
);
802 * generic_file_splice_write - splice data from a pipe to a file
804 * @out: file to write to
805 * @len: number of bytes to splice
806 * @flags: splice modifier flags
808 * Will either move or copy pages (determined by @flags options) from
809 * the given pipe inode to the given file.
813 generic_file_splice_write(struct pipe_inode_info
*pipe
, struct file
*out
,
814 loff_t
*ppos
, size_t len
, unsigned int flags
)
816 struct address_space
*mapping
= out
->f_mapping
;
819 ret
= splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_file
);
821 struct inode
*inode
= mapping
->host
;
826 * If file or inode is SYNC and we actually wrote some data,
829 if (unlikely((out
->f_flags
& O_SYNC
) || IS_SYNC(inode
))) {
832 mutex_lock(&inode
->i_mutex
);
833 err
= generic_osync_inode(inode
, mapping
,
834 OSYNC_METADATA
|OSYNC_DATA
);
835 mutex_unlock(&inode
->i_mutex
);
845 EXPORT_SYMBOL(generic_file_splice_write
);
848 * generic_splice_sendpage - splice data from a pipe to a socket
850 * @out: socket to write to
851 * @len: number of bytes to splice
852 * @flags: splice modifier flags
854 * Will send @len bytes from the pipe to a network socket. No data copying
858 ssize_t
generic_splice_sendpage(struct pipe_inode_info
*pipe
, struct file
*out
,
859 loff_t
*ppos
, size_t len
, unsigned int flags
)
861 return splice_from_pipe(pipe
, out
, ppos
, len
, flags
, pipe_to_sendpage
);
864 EXPORT_SYMBOL(generic_splice_sendpage
);
867 * Attempt to initiate a splice from pipe to file.
869 static long do_splice_from(struct pipe_inode_info
*pipe
, struct file
*out
,
870 loff_t
*ppos
, size_t len
, unsigned int flags
)
874 if (unlikely(!out
->f_op
|| !out
->f_op
->splice_write
))
877 if (unlikely(!(out
->f_mode
& FMODE_WRITE
)))
880 ret
= rw_verify_area(WRITE
, out
, ppos
, len
);
881 if (unlikely(ret
< 0))
884 return out
->f_op
->splice_write(pipe
, out
, ppos
, len
, flags
);
888 * Attempt to initiate a splice from a file to a pipe.
890 static long do_splice_to(struct file
*in
, loff_t
*ppos
,
891 struct pipe_inode_info
*pipe
, size_t len
,
897 if (unlikely(!in
->f_op
|| !in
->f_op
->splice_read
))
900 if (unlikely(!(in
->f_mode
& FMODE_READ
)))
903 ret
= rw_verify_area(READ
, in
, ppos
, len
);
904 if (unlikely(ret
< 0))
907 isize
= i_size_read(in
->f_mapping
->host
);
908 if (unlikely(*ppos
>= isize
))
911 left
= isize
- *ppos
;
912 if (unlikely(left
< len
))
915 return in
->f_op
->splice_read(in
, ppos
, pipe
, len
, flags
);
918 long do_splice_direct(struct file
*in
, loff_t
*ppos
, struct file
*out
,
919 size_t len
, unsigned int flags
)
921 struct pipe_inode_info
*pipe
;
928 * We require the input being a regular file, as we don't want to
929 * randomly drop data for eg socket -> socket splicing. Use the
930 * piped splicing for that!
932 i_mode
= in
->f_dentry
->d_inode
->i_mode
;
933 if (unlikely(!S_ISREG(i_mode
) && !S_ISBLK(i_mode
)))
937 * neither in nor out is a pipe, setup an internal pipe attached to
938 * 'out' and transfer the wanted data from 'in' to 'out' through that
940 pipe
= current
->splice_pipe
;
941 if (unlikely(!pipe
)) {
942 pipe
= alloc_pipe_info(NULL
);
947 * We don't have an immediate reader, but we'll read the stuff
948 * out of the pipe right after the splice_to_pipe(). So set
949 * PIPE_READERS appropriately.
953 current
->splice_pipe
= pipe
;
964 size_t read_len
, max_read_len
;
967 * Do at most PIPE_BUFFERS pages worth of transfer:
969 max_read_len
= min(len
, (size_t)(PIPE_BUFFERS
*PAGE_SIZE
));
971 ret
= do_splice_to(in
, ppos
, pipe
, max_read_len
, flags
);
972 if (unlikely(ret
< 0))
978 * NOTE: nonblocking mode only applies to the input. We
979 * must not do the output in nonblocking mode as then we
980 * could get stuck data in the internal pipe:
982 ret
= do_splice_from(pipe
, out
, &out_off
, read_len
,
983 flags
& ~SPLICE_F_NONBLOCK
);
984 if (unlikely(ret
< 0))
991 * In nonblocking mode, if we got back a short read then
992 * that was due to either an IO error or due to the
993 * pagecache entry not being there. In the IO error case
994 * the _next_ splice attempt will produce a clean IO error
995 * return value (not a short read), so in both cases it's
996 * correct to break out of the loop here:
998 if ((flags
& SPLICE_F_NONBLOCK
) && (read_len
< max_read_len
))
1002 pipe
->nrbufs
= pipe
->curbuf
= 0;
1008 * If we did an incomplete transfer we must release
1009 * the pipe buffers in question:
1011 for (i
= 0; i
< PIPE_BUFFERS
; i
++) {
1012 struct pipe_buffer
*buf
= pipe
->bufs
+ i
;
1015 buf
->ops
->release(pipe
, buf
);
1019 pipe
->nrbufs
= pipe
->curbuf
= 0;
1022 * If we transferred some data, return the number of bytes:
1030 EXPORT_SYMBOL(do_splice_direct
);
1033 * Determine where to splice to/from.
1035 static long do_splice(struct file
*in
, loff_t __user
*off_in
,
1036 struct file
*out
, loff_t __user
*off_out
,
1037 size_t len
, unsigned int flags
)
1039 struct pipe_inode_info
*pipe
;
1040 loff_t offset
, *off
;
1043 pipe
= in
->f_dentry
->d_inode
->i_pipe
;
1048 if (out
->f_op
->llseek
== no_llseek
)
1050 if (copy_from_user(&offset
, off_out
, sizeof(loff_t
)))
1056 ret
= do_splice_from(pipe
, out
, off
, len
, flags
);
1058 if (off_out
&& copy_to_user(off_out
, off
, sizeof(loff_t
)))
1064 pipe
= out
->f_dentry
->d_inode
->i_pipe
;
1069 if (in
->f_op
->llseek
== no_llseek
)
1071 if (copy_from_user(&offset
, off_in
, sizeof(loff_t
)))
1077 ret
= do_splice_to(in
, off
, pipe
, len
, flags
);
1079 if (off_in
&& copy_to_user(off_in
, off
, sizeof(loff_t
)))
1089 * Map an iov into an array of pages and offset/length tupples. With the
1090 * partial_page structure, we can map several non-contiguous ranges into
1091 * our ones pages[] map instead of splitting that operation into pieces.
1092 * Could easily be exported as a generic helper for other users, in which
1093 * case one would probably want to add a 'max_nr_pages' parameter as well.
1095 static int get_iovec_page_array(const struct iovec __user
*iov
,
1096 unsigned int nr_vecs
, struct page
**pages
,
1097 struct partial_page
*partial
, int aligned
)
1099 int buffers
= 0, error
= 0;
1102 * It's ok to take the mmap_sem for reading, even
1103 * across a "get_user()".
1105 down_read(¤t
->mm
->mmap_sem
);
1108 unsigned long off
, npages
;
1114 * Get user address base and length for this iovec.
1116 error
= get_user(base
, &iov
->iov_base
);
1117 if (unlikely(error
))
1119 error
= get_user(len
, &iov
->iov_len
);
1120 if (unlikely(error
))
1124 * Sanity check this iovec. 0 read succeeds.
1129 if (unlikely(!base
))
1133 * Get this base offset and number of pages, then map
1134 * in the user pages.
1136 off
= (unsigned long) base
& ~PAGE_MASK
;
1139 * If asked for alignment, the offset must be zero and the
1140 * length a multiple of the PAGE_SIZE.
1143 if (aligned
&& (off
|| len
& ~PAGE_MASK
))
1146 npages
= (off
+ len
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1147 if (npages
> PIPE_BUFFERS
- buffers
)
1148 npages
= PIPE_BUFFERS
- buffers
;
1150 error
= get_user_pages(current
, current
->mm
,
1151 (unsigned long) base
, npages
, 0, 0,
1152 &pages
[buffers
], NULL
);
1154 if (unlikely(error
<= 0))
1158 * Fill this contiguous range into the partial page map.
1160 for (i
= 0; i
< error
; i
++) {
1161 const int plen
= min_t(size_t, len
, PAGE_SIZE
- off
);
1163 partial
[buffers
].offset
= off
;
1164 partial
[buffers
].len
= plen
;
1172 * We didn't complete this iov, stop here since it probably
1173 * means we have to move some of this into a pipe to
1174 * be able to continue.
1180 * Don't continue if we mapped fewer pages than we asked for,
1181 * or if we mapped the max number of pages that we have
1184 if (error
< npages
|| buffers
== PIPE_BUFFERS
)
1191 up_read(¤t
->mm
->mmap_sem
);
1200 * vmsplice splices a user address range into a pipe. It can be thought of
1201 * as splice-from-memory, where the regular splice is splice-from-file (or
1202 * to file). In both cases the output is a pipe, naturally.
1204 * Note that vmsplice only supports splicing _from_ user memory to a pipe,
1205 * not the other way around. Splicing from user memory is a simple operation
1206 * that can be supported without any funky alignment restrictions or nasty
1207 * vm tricks. We simply map in the user memory and fill them into a pipe.
1208 * The reverse isn't quite as easy, though. There are two possible solutions
1211 * - memcpy() the data internally, at which point we might as well just
1212 * do a regular read() on the buffer anyway.
1213 * - Lots of nasty vm tricks, that are neither fast nor flexible (it
1214 * has restriction limitations on both ends of the pipe).
1216 * Alas, it isn't here.
1219 static long do_vmsplice(struct file
*file
, const struct iovec __user
*iov
,
1220 unsigned long nr_segs
, unsigned int flags
)
1222 struct pipe_inode_info
*pipe
= file
->f_dentry
->d_inode
->i_pipe
;
1223 struct page
*pages
[PIPE_BUFFERS
];
1224 struct partial_page partial
[PIPE_BUFFERS
];
1225 struct splice_pipe_desc spd
= {
1229 .ops
= &user_page_pipe_buf_ops
,
1232 if (unlikely(!pipe
))
1234 if (unlikely(nr_segs
> UIO_MAXIOV
))
1236 else if (unlikely(!nr_segs
))
1239 spd
.nr_pages
= get_iovec_page_array(iov
, nr_segs
, pages
, partial
,
1240 flags
& SPLICE_F_GIFT
);
1241 if (spd
.nr_pages
<= 0)
1242 return spd
.nr_pages
;
1244 return splice_to_pipe(pipe
, &spd
);
1247 asmlinkage
long sys_vmsplice(int fd
, const struct iovec __user
*iov
,
1248 unsigned long nr_segs
, unsigned int flags
)
1255 file
= fget_light(fd
, &fput
);
1257 if (file
->f_mode
& FMODE_WRITE
)
1258 error
= do_vmsplice(file
, iov
, nr_segs
, flags
);
1260 fput_light(file
, fput
);
1266 asmlinkage
long sys_splice(int fd_in
, loff_t __user
*off_in
,
1267 int fd_out
, loff_t __user
*off_out
,
1268 size_t len
, unsigned int flags
)
1271 struct file
*in
, *out
;
1272 int fput_in
, fput_out
;
1278 in
= fget_light(fd_in
, &fput_in
);
1280 if (in
->f_mode
& FMODE_READ
) {
1281 out
= fget_light(fd_out
, &fput_out
);
1283 if (out
->f_mode
& FMODE_WRITE
)
1284 error
= do_splice(in
, off_in
,
1287 fput_light(out
, fput_out
);
1291 fput_light(in
, fput_in
);
1298 * Link contents of ipipe to opipe.
1300 static int link_pipe(struct pipe_inode_info
*ipipe
,
1301 struct pipe_inode_info
*opipe
,
1302 size_t len
, unsigned int flags
)
1304 struct pipe_buffer
*ibuf
, *obuf
;
1305 int ret
, do_wakeup
, i
, ipipe_first
;
1307 ret
= do_wakeup
= ipipe_first
= 0;
1310 * Potential ABBA deadlock, work around it by ordering lock
1311 * grabbing by inode address. Otherwise two different processes
1312 * could deadlock (one doing tee from A -> B, the other from B -> A).
1314 if (ipipe
->inode
< opipe
->inode
) {
1316 mutex_lock(&ipipe
->inode
->i_mutex
);
1317 mutex_lock(&opipe
->inode
->i_mutex
);
1319 mutex_lock(&opipe
->inode
->i_mutex
);
1320 mutex_lock(&ipipe
->inode
->i_mutex
);
1324 if (!opipe
->readers
) {
1325 send_sig(SIGPIPE
, current
, 0);
1330 if (ipipe
->nrbufs
- i
) {
1331 ibuf
= ipipe
->bufs
+ ((ipipe
->curbuf
+ i
) & (PIPE_BUFFERS
- 1));
1334 * If we have room, fill this buffer
1336 if (opipe
->nrbufs
< PIPE_BUFFERS
) {
1337 int nbuf
= (opipe
->curbuf
+ opipe
->nrbufs
) & (PIPE_BUFFERS
- 1);
1340 * Get a reference to this pipe buffer,
1341 * so we can copy the contents over.
1343 ibuf
->ops
->get(ipipe
, ibuf
);
1345 obuf
= opipe
->bufs
+ nbuf
;
1349 * Don't inherit the gift flag, we need to
1350 * prevent multiple steals of this page.
1352 obuf
->flags
&= ~PIPE_BUF_FLAG_GIFT
;
1354 if (obuf
->len
> len
)
1364 if (opipe
->nrbufs
< PIPE_BUFFERS
)
1369 * We have input available, but no output room.
1370 * If we already copied data, return that. If we
1371 * need to drop the opipe lock, it must be ordered
1372 * last to avoid deadlocks.
1374 if ((flags
& SPLICE_F_NONBLOCK
) || !ipipe_first
) {
1379 if (signal_pending(current
)) {
1386 if (waitqueue_active(&opipe
->wait
))
1387 wake_up_interruptible(&opipe
->wait
);
1388 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1392 opipe
->waiting_writers
++;
1394 opipe
->waiting_writers
--;
1399 * No input buffers, do the usual checks for available
1400 * writers and blocking and wait if necessary
1402 if (!ipipe
->writers
)
1404 if (!ipipe
->waiting_writers
) {
1409 * pipe_wait() drops the ipipe mutex. To avoid deadlocks
1410 * with another process, we can only safely do that if
1411 * the ipipe lock is ordered last.
1413 if ((flags
& SPLICE_F_NONBLOCK
) || ipipe_first
) {
1418 if (signal_pending(current
)) {
1424 if (waitqueue_active(&ipipe
->wait
))
1425 wake_up_interruptible_sync(&ipipe
->wait
);
1426 kill_fasync(&ipipe
->fasync_writers
, SIGIO
, POLL_OUT
);
1431 mutex_unlock(&ipipe
->inode
->i_mutex
);
1432 mutex_unlock(&opipe
->inode
->i_mutex
);
1436 if (waitqueue_active(&opipe
->wait
))
1437 wake_up_interruptible(&opipe
->wait
);
1438 kill_fasync(&opipe
->fasync_readers
, SIGIO
, POLL_IN
);
1445 * This is a tee(1) implementation that works on pipes. It doesn't copy
1446 * any data, it simply references the 'in' pages on the 'out' pipe.
1447 * The 'flags' used are the SPLICE_F_* variants, currently the only
1448 * applicable one is SPLICE_F_NONBLOCK.
1450 static long do_tee(struct file
*in
, struct file
*out
, size_t len
,
1453 struct pipe_inode_info
*ipipe
= in
->f_dentry
->d_inode
->i_pipe
;
1454 struct pipe_inode_info
*opipe
= out
->f_dentry
->d_inode
->i_pipe
;
1457 * Link ipipe to the two output pipes, consuming as we go along.
1460 return link_pipe(ipipe
, opipe
, len
, flags
);
1465 asmlinkage
long sys_tee(int fdin
, int fdout
, size_t len
, unsigned int flags
)
1474 in
= fget_light(fdin
, &fput_in
);
1476 if (in
->f_mode
& FMODE_READ
) {
1478 struct file
*out
= fget_light(fdout
, &fput_out
);
1481 if (out
->f_mode
& FMODE_WRITE
)
1482 error
= do_tee(in
, out
, len
, flags
);
1483 fput_light(out
, fput_out
);
1486 fput_light(in
, fput_in
);