rt2x00: Push beacon TX descriptor writing to drivers.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2800pci.c
blob88dba7f76aeff521a9b23a81078e9684ed918888
1 /*
2 Copyright (C) 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 Copyright (C) 2009 Alban Browaeys <prahal@yahoo.com>
4 Copyright (C) 2009 Felix Fietkau <nbd@openwrt.org>
5 Copyright (C) 2009 Luis Correia <luis.f.correia@gmail.com>
6 Copyright (C) 2009 Mattias Nissler <mattias.nissler@gmx.de>
7 Copyright (C) 2009 Mark Asselstine <asselsm@gmail.com>
8 Copyright (C) 2009 Xose Vazquez Perez <xose.vazquez@gmail.com>
9 Copyright (C) 2009 Bart Zolnierkiewicz <bzolnier@gmail.com>
10 <http://rt2x00.serialmonkey.com>
12 This program is free software; you can redistribute it and/or modify
13 it under the terms of the GNU General Public License as published by
14 the Free Software Foundation; either version 2 of the License, or
15 (at your option) any later version.
17 This program is distributed in the hope that it will be useful,
18 but WITHOUT ANY WARRANTY; without even the implied warranty of
19 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 GNU General Public License for more details.
22 You should have received a copy of the GNU General Public License
23 along with this program; if not, write to the
24 Free Software Foundation, Inc.,
25 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
29 Module: rt2800pci
30 Abstract: rt2800pci device specific routines.
31 Supported chipsets: RT2800E & RT2800ED.
34 #include <linux/crc-ccitt.h>
35 #include <linux/delay.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/kernel.h>
39 #include <linux/module.h>
40 #include <linux/pci.h>
41 #include <linux/platform_device.h>
42 #include <linux/eeprom_93cx6.h>
44 #include "rt2x00.h"
45 #include "rt2x00pci.h"
46 #include "rt2x00soc.h"
47 #include "rt2800lib.h"
48 #include "rt2800.h"
49 #include "rt2800pci.h"
52 * Allow hardware encryption to be disabled.
54 static int modparam_nohwcrypt = 1;
55 module_param_named(nohwcrypt, modparam_nohwcrypt, bool, S_IRUGO);
56 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption.");
58 static void rt2800pci_mcu_status(struct rt2x00_dev *rt2x00dev, const u8 token)
60 unsigned int i;
61 u32 reg;
64 * SOC devices don't support MCU requests.
66 if (rt2x00_is_soc(rt2x00dev))
67 return;
69 for (i = 0; i < 200; i++) {
70 rt2800_register_read(rt2x00dev, H2M_MAILBOX_CID, &reg);
72 if ((rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD0) == token) ||
73 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD1) == token) ||
74 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD2) == token) ||
75 (rt2x00_get_field32(reg, H2M_MAILBOX_CID_CMD3) == token))
76 break;
78 udelay(REGISTER_BUSY_DELAY);
81 if (i == 200)
82 ERROR(rt2x00dev, "MCU request failed, no response from hardware\n");
84 rt2800_register_write(rt2x00dev, H2M_MAILBOX_STATUS, ~0);
85 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CID, ~0);
88 #ifdef CONFIG_RT2800PCI_SOC
89 static void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
91 u32 *base_addr = (u32 *) KSEG1ADDR(0x1F040000); /* XXX for RT3052 */
93 memcpy_fromio(rt2x00dev->eeprom, base_addr, EEPROM_SIZE);
95 #else
96 static inline void rt2800pci_read_eeprom_soc(struct rt2x00_dev *rt2x00dev)
99 #endif /* CONFIG_RT2800PCI_SOC */
101 #ifdef CONFIG_RT2800PCI_PCI
102 static void rt2800pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
104 struct rt2x00_dev *rt2x00dev = eeprom->data;
105 u32 reg;
107 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
109 eeprom->reg_data_in = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_IN);
110 eeprom->reg_data_out = !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_OUT);
111 eeprom->reg_data_clock =
112 !!rt2x00_get_field32(reg, E2PROM_CSR_DATA_CLOCK);
113 eeprom->reg_chip_select =
114 !!rt2x00_get_field32(reg, E2PROM_CSR_CHIP_SELECT);
117 static void rt2800pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
119 struct rt2x00_dev *rt2x00dev = eeprom->data;
120 u32 reg = 0;
122 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_IN, !!eeprom->reg_data_in);
123 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_OUT, !!eeprom->reg_data_out);
124 rt2x00_set_field32(&reg, E2PROM_CSR_DATA_CLOCK,
125 !!eeprom->reg_data_clock);
126 rt2x00_set_field32(&reg, E2PROM_CSR_CHIP_SELECT,
127 !!eeprom->reg_chip_select);
129 rt2800_register_write(rt2x00dev, E2PROM_CSR, reg);
132 static void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
134 struct eeprom_93cx6 eeprom;
135 u32 reg;
137 rt2800_register_read(rt2x00dev, E2PROM_CSR, &reg);
139 eeprom.data = rt2x00dev;
140 eeprom.register_read = rt2800pci_eepromregister_read;
141 eeprom.register_write = rt2800pci_eepromregister_write;
142 eeprom.width = !rt2x00_get_field32(reg, E2PROM_CSR_TYPE) ?
143 PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
144 eeprom.reg_data_in = 0;
145 eeprom.reg_data_out = 0;
146 eeprom.reg_data_clock = 0;
147 eeprom.reg_chip_select = 0;
149 eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
150 EEPROM_SIZE / sizeof(u16));
153 static int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
155 return rt2800_efuse_detect(rt2x00dev);
158 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
160 rt2800_read_eeprom_efuse(rt2x00dev);
162 #else
163 static inline void rt2800pci_read_eeprom_pci(struct rt2x00_dev *rt2x00dev)
167 static inline int rt2800pci_efuse_detect(struct rt2x00_dev *rt2x00dev)
169 return 0;
172 static inline void rt2800pci_read_eeprom_efuse(struct rt2x00_dev *rt2x00dev)
175 #endif /* CONFIG_RT2800PCI_PCI */
178 * Firmware functions
180 static char *rt2800pci_get_firmware_name(struct rt2x00_dev *rt2x00dev)
182 return FIRMWARE_RT2860;
185 static int rt2800pci_check_firmware(struct rt2x00_dev *rt2x00dev,
186 const u8 *data, const size_t len)
188 u16 fw_crc;
189 u16 crc;
192 * Only support 8kb firmware files.
194 if (len != 8192)
195 return FW_BAD_LENGTH;
198 * The last 2 bytes in the firmware array are the crc checksum itself,
199 * this means that we should never pass those 2 bytes to the crc
200 * algorithm.
202 fw_crc = (data[len - 2] << 8 | data[len - 1]);
205 * Use the crc ccitt algorithm.
206 * This will return the same value as the legacy driver which
207 * used bit ordering reversion on the both the firmware bytes
208 * before input input as well as on the final output.
209 * Obviously using crc ccitt directly is much more efficient.
211 crc = crc_ccitt(~0, data, len - 2);
214 * There is a small difference between the crc-itu-t + bitrev and
215 * the crc-ccitt crc calculation. In the latter method the 2 bytes
216 * will be swapped, use swab16 to convert the crc to the correct
217 * value.
219 crc = swab16(crc);
221 return (fw_crc == crc) ? FW_OK : FW_BAD_CRC;
224 static int rt2800pci_load_firmware(struct rt2x00_dev *rt2x00dev,
225 const u8 *data, const size_t len)
227 unsigned int i;
228 u32 reg;
231 * Wait for stable hardware.
233 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
234 rt2800_register_read(rt2x00dev, MAC_CSR0, &reg);
235 if (reg && reg != ~0)
236 break;
237 msleep(1);
240 if (i == REGISTER_BUSY_COUNT) {
241 ERROR(rt2x00dev, "Unstable hardware.\n");
242 return -EBUSY;
245 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0x00000002);
246 rt2800_register_write(rt2x00dev, AUTOWAKEUP_CFG, 0x00000000);
249 * Disable DMA, will be reenabled later when enabling
250 * the radio.
252 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
253 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
254 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
255 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
256 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
257 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
258 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
261 * enable Host program ram write selection
263 reg = 0;
264 rt2x00_set_field32(&reg, PBF_SYS_CTRL_HOST_RAM_WRITE, 1);
265 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, reg);
268 * Write firmware to device.
270 rt2800_register_multiwrite(rt2x00dev, FIRMWARE_IMAGE_BASE,
271 data, len);
273 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000);
274 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001);
277 * Wait for device to stabilize.
279 for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
280 rt2800_register_read(rt2x00dev, PBF_SYS_CTRL, &reg);
281 if (rt2x00_get_field32(reg, PBF_SYS_CTRL_READY))
282 break;
283 msleep(1);
286 if (i == REGISTER_BUSY_COUNT) {
287 ERROR(rt2x00dev, "PBF system register not ready.\n");
288 return -EBUSY;
292 * Disable interrupts
294 rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_RADIO_IRQ_OFF);
297 * Initialize BBP R/W access agent
299 rt2800_register_write(rt2x00dev, H2M_BBP_AGENT, 0);
300 rt2800_register_write(rt2x00dev, H2M_MAILBOX_CSR, 0);
302 return 0;
306 * Initialization functions.
308 static bool rt2800pci_get_entry_state(struct queue_entry *entry)
310 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
311 u32 word;
313 if (entry->queue->qid == QID_RX) {
314 rt2x00_desc_read(entry_priv->desc, 1, &word);
316 return (!rt2x00_get_field32(word, RXD_W1_DMA_DONE));
317 } else {
318 rt2x00_desc_read(entry_priv->desc, 1, &word);
320 return (!rt2x00_get_field32(word, TXD_W1_DMA_DONE));
324 static void rt2800pci_clear_entry(struct queue_entry *entry)
326 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
327 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
328 u32 word;
330 if (entry->queue->qid == QID_RX) {
331 rt2x00_desc_read(entry_priv->desc, 0, &word);
332 rt2x00_set_field32(&word, RXD_W0_SDP0, skbdesc->skb_dma);
333 rt2x00_desc_write(entry_priv->desc, 0, word);
335 rt2x00_desc_read(entry_priv->desc, 1, &word);
336 rt2x00_set_field32(&word, RXD_W1_DMA_DONE, 0);
337 rt2x00_desc_write(entry_priv->desc, 1, word);
338 } else {
339 rt2x00_desc_read(entry_priv->desc, 1, &word);
340 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 1);
341 rt2x00_desc_write(entry_priv->desc, 1, word);
345 static int rt2800pci_init_queues(struct rt2x00_dev *rt2x00dev)
347 struct queue_entry_priv_pci *entry_priv;
348 u32 reg;
351 * Initialize registers.
353 entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
354 rt2800_register_write(rt2x00dev, TX_BASE_PTR0, entry_priv->desc_dma);
355 rt2800_register_write(rt2x00dev, TX_MAX_CNT0, rt2x00dev->tx[0].limit);
356 rt2800_register_write(rt2x00dev, TX_CTX_IDX0, 0);
357 rt2800_register_write(rt2x00dev, TX_DTX_IDX0, 0);
359 entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
360 rt2800_register_write(rt2x00dev, TX_BASE_PTR1, entry_priv->desc_dma);
361 rt2800_register_write(rt2x00dev, TX_MAX_CNT1, rt2x00dev->tx[1].limit);
362 rt2800_register_write(rt2x00dev, TX_CTX_IDX1, 0);
363 rt2800_register_write(rt2x00dev, TX_DTX_IDX1, 0);
365 entry_priv = rt2x00dev->tx[2].entries[0].priv_data;
366 rt2800_register_write(rt2x00dev, TX_BASE_PTR2, entry_priv->desc_dma);
367 rt2800_register_write(rt2x00dev, TX_MAX_CNT2, rt2x00dev->tx[2].limit);
368 rt2800_register_write(rt2x00dev, TX_CTX_IDX2, 0);
369 rt2800_register_write(rt2x00dev, TX_DTX_IDX2, 0);
371 entry_priv = rt2x00dev->tx[3].entries[0].priv_data;
372 rt2800_register_write(rt2x00dev, TX_BASE_PTR3, entry_priv->desc_dma);
373 rt2800_register_write(rt2x00dev, TX_MAX_CNT3, rt2x00dev->tx[3].limit);
374 rt2800_register_write(rt2x00dev, TX_CTX_IDX3, 0);
375 rt2800_register_write(rt2x00dev, TX_DTX_IDX3, 0);
377 entry_priv = rt2x00dev->rx->entries[0].priv_data;
378 rt2800_register_write(rt2x00dev, RX_BASE_PTR, entry_priv->desc_dma);
379 rt2800_register_write(rt2x00dev, RX_MAX_CNT, rt2x00dev->rx[0].limit);
380 rt2800_register_write(rt2x00dev, RX_CRX_IDX, rt2x00dev->rx[0].limit - 1);
381 rt2800_register_write(rt2x00dev, RX_DRX_IDX, 0);
384 * Enable global DMA configuration
386 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
387 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
388 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
389 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
390 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
392 rt2800_register_write(rt2x00dev, DELAY_INT_CFG, 0);
394 return 0;
398 * Device state switch handlers.
400 static void rt2800pci_toggle_rx(struct rt2x00_dev *rt2x00dev,
401 enum dev_state state)
403 u32 reg;
405 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
406 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX,
407 (state == STATE_RADIO_RX_ON) ||
408 (state == STATE_RADIO_RX_ON_LINK));
409 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
412 static void rt2800pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
413 enum dev_state state)
415 int mask = (state == STATE_RADIO_IRQ_ON);
416 u32 reg;
419 * When interrupts are being enabled, the interrupt registers
420 * should clear the register to assure a clean state.
422 if (state == STATE_RADIO_IRQ_ON) {
423 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
424 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
427 rt2800_register_read(rt2x00dev, INT_MASK_CSR, &reg);
428 rt2x00_set_field32(&reg, INT_MASK_CSR_RXDELAYINT, mask);
429 rt2x00_set_field32(&reg, INT_MASK_CSR_TXDELAYINT, mask);
430 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_DONE, mask);
431 rt2x00_set_field32(&reg, INT_MASK_CSR_AC0_DMA_DONE, mask);
432 rt2x00_set_field32(&reg, INT_MASK_CSR_AC1_DMA_DONE, mask);
433 rt2x00_set_field32(&reg, INT_MASK_CSR_AC2_DMA_DONE, mask);
434 rt2x00_set_field32(&reg, INT_MASK_CSR_AC3_DMA_DONE, mask);
435 rt2x00_set_field32(&reg, INT_MASK_CSR_HCCA_DMA_DONE, mask);
436 rt2x00_set_field32(&reg, INT_MASK_CSR_MGMT_DMA_DONE, mask);
437 rt2x00_set_field32(&reg, INT_MASK_CSR_MCU_COMMAND, mask);
438 rt2x00_set_field32(&reg, INT_MASK_CSR_RXTX_COHERENT, mask);
439 rt2x00_set_field32(&reg, INT_MASK_CSR_TBTT, mask);
440 rt2x00_set_field32(&reg, INT_MASK_CSR_PRE_TBTT, mask);
441 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_FIFO_STATUS, mask);
442 rt2x00_set_field32(&reg, INT_MASK_CSR_AUTO_WAKEUP, mask);
443 rt2x00_set_field32(&reg, INT_MASK_CSR_GPTIMER, mask);
444 rt2x00_set_field32(&reg, INT_MASK_CSR_RX_COHERENT, mask);
445 rt2x00_set_field32(&reg, INT_MASK_CSR_TX_COHERENT, mask);
446 rt2800_register_write(rt2x00dev, INT_MASK_CSR, reg);
449 static int rt2800pci_enable_radio(struct rt2x00_dev *rt2x00dev)
451 u32 reg;
452 u16 word;
455 * Initialize all registers.
457 if (unlikely(rt2800_wait_wpdma_ready(rt2x00dev) ||
458 rt2800pci_init_queues(rt2x00dev) ||
459 rt2800_init_registers(rt2x00dev) ||
460 rt2800_wait_wpdma_ready(rt2x00dev) ||
461 rt2800_init_bbp(rt2x00dev) ||
462 rt2800_init_rfcsr(rt2x00dev)))
463 return -EIO;
466 * Send signal to firmware during boot time.
468 rt2800_mcu_request(rt2x00dev, MCU_BOOT_SIGNAL, 0xff, 0, 0);
471 * Enable RX.
473 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
474 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
475 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 0);
476 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
478 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
479 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 1);
480 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 1);
481 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_WP_DMA_BURST_SIZE, 2);
482 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
483 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
485 rt2800_register_read(rt2x00dev, MAC_SYS_CTRL, &reg);
486 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_TX, 1);
487 rt2x00_set_field32(&reg, MAC_SYS_CTRL_ENABLE_RX, 1);
488 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, reg);
491 * Initialize LED control
493 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED1, &word);
494 rt2800_mcu_request(rt2x00dev, MCU_LED_1, 0xff,
495 word & 0xff, (word >> 8) & 0xff);
497 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED2, &word);
498 rt2800_mcu_request(rt2x00dev, MCU_LED_2, 0xff,
499 word & 0xff, (word >> 8) & 0xff);
501 rt2x00_eeprom_read(rt2x00dev, EEPROM_LED3, &word);
502 rt2800_mcu_request(rt2x00dev, MCU_LED_3, 0xff,
503 word & 0xff, (word >> 8) & 0xff);
505 return 0;
508 static void rt2800pci_disable_radio(struct rt2x00_dev *rt2x00dev)
510 u32 reg;
512 rt2800_register_read(rt2x00dev, WPDMA_GLO_CFG, &reg);
513 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_TX_DMA, 0);
514 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_DMA_BUSY, 0);
515 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_ENABLE_RX_DMA, 0);
516 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_RX_DMA_BUSY, 0);
517 rt2x00_set_field32(&reg, WPDMA_GLO_CFG_TX_WRITEBACK_DONE, 1);
518 rt2800_register_write(rt2x00dev, WPDMA_GLO_CFG, reg);
520 rt2800_register_write(rt2x00dev, MAC_SYS_CTRL, 0);
521 rt2800_register_write(rt2x00dev, PWR_PIN_CFG, 0);
522 rt2800_register_write(rt2x00dev, TX_PIN_CFG, 0);
524 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00001280);
526 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
527 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, 1);
528 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, 1);
529 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, 1);
530 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, 1);
531 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX4, 1);
532 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX5, 1);
533 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DRX_IDX0, 1);
534 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
536 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e1f);
537 rt2800_register_write(rt2x00dev, PBF_SYS_CTRL, 0x00000e00);
539 /* Wait for DMA, ignore error */
540 rt2800_wait_wpdma_ready(rt2x00dev);
543 static int rt2800pci_set_state(struct rt2x00_dev *rt2x00dev,
544 enum dev_state state)
547 * Always put the device to sleep (even when we intend to wakeup!)
548 * if the device is booting and wasn't asleep it will return
549 * failure when attempting to wakeup.
551 rt2800_mcu_request(rt2x00dev, MCU_SLEEP, 0xff, 0, 2);
553 if (state == STATE_AWAKE) {
554 rt2800_mcu_request(rt2x00dev, MCU_WAKEUP, TOKEN_WAKUP, 0, 0);
555 rt2800pci_mcu_status(rt2x00dev, TOKEN_WAKUP);
558 return 0;
561 static int rt2800pci_set_device_state(struct rt2x00_dev *rt2x00dev,
562 enum dev_state state)
564 int retval = 0;
566 switch (state) {
567 case STATE_RADIO_ON:
569 * Before the radio can be enabled, the device first has
570 * to be woken up. After that it needs a bit of time
571 * to be fully awake and then the radio can be enabled.
573 rt2800pci_set_state(rt2x00dev, STATE_AWAKE);
574 msleep(1);
575 retval = rt2800pci_enable_radio(rt2x00dev);
576 break;
577 case STATE_RADIO_OFF:
579 * After the radio has been disabled, the device should
580 * be put to sleep for powersaving.
582 rt2800pci_disable_radio(rt2x00dev);
583 rt2800pci_set_state(rt2x00dev, STATE_SLEEP);
584 break;
585 case STATE_RADIO_RX_ON:
586 case STATE_RADIO_RX_ON_LINK:
587 case STATE_RADIO_RX_OFF:
588 case STATE_RADIO_RX_OFF_LINK:
589 rt2800pci_toggle_rx(rt2x00dev, state);
590 break;
591 case STATE_RADIO_IRQ_ON:
592 case STATE_RADIO_IRQ_OFF:
593 rt2800pci_toggle_irq(rt2x00dev, state);
594 break;
595 case STATE_DEEP_SLEEP:
596 case STATE_SLEEP:
597 case STATE_STANDBY:
598 case STATE_AWAKE:
599 retval = rt2800pci_set_state(rt2x00dev, state);
600 break;
601 default:
602 retval = -ENOTSUPP;
603 break;
606 if (unlikely(retval))
607 ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
608 state, retval);
610 return retval;
614 * TX descriptor initialization
616 static int rt2800pci_write_tx_data(struct queue_entry* entry,
617 struct txentry_desc *txdesc)
619 int ret;
621 ret = rt2x00pci_write_tx_data(entry, txdesc);
622 if (ret)
623 return ret;
625 rt2800_write_txwi(entry->skb, txdesc);
627 return 0;
631 static void rt2800pci_write_tx_desc(struct rt2x00_dev *rt2x00dev,
632 struct sk_buff *skb,
633 struct txentry_desc *txdesc)
635 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
636 struct queue_entry_priv_pci *entry_priv = skbdesc->entry->priv_data;
637 __le32 *txd = entry_priv->desc;
638 u32 word;
641 * The buffers pointed by SD_PTR0/SD_LEN0 and SD_PTR1/SD_LEN1
642 * must contains a TXWI structure + 802.11 header + padding + 802.11
643 * data. We choose to have SD_PTR0/SD_LEN0 only contains TXWI and
644 * SD_PTR1/SD_LEN1 contains 802.11 header + padding + 802.11
645 * data. It means that LAST_SEC0 is always 0.
649 * Initialize TX descriptor
651 rt2x00_desc_read(txd, 0, &word);
652 rt2x00_set_field32(&word, TXD_W0_SD_PTR0, skbdesc->skb_dma);
653 rt2x00_desc_write(txd, 0, word);
655 rt2x00_desc_read(txd, 1, &word);
656 rt2x00_set_field32(&word, TXD_W1_SD_LEN1, skb->len);
657 rt2x00_set_field32(&word, TXD_W1_LAST_SEC1,
658 !test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
659 rt2x00_set_field32(&word, TXD_W1_BURST,
660 test_bit(ENTRY_TXD_BURST, &txdesc->flags));
661 rt2x00_set_field32(&word, TXD_W1_SD_LEN0, TXWI_DESC_SIZE);
662 rt2x00_set_field32(&word, TXD_W1_LAST_SEC0, 0);
663 rt2x00_set_field32(&word, TXD_W1_DMA_DONE, 0);
664 rt2x00_desc_write(txd, 1, word);
666 rt2x00_desc_read(txd, 2, &word);
667 rt2x00_set_field32(&word, TXD_W2_SD_PTR1,
668 skbdesc->skb_dma + TXWI_DESC_SIZE);
669 rt2x00_desc_write(txd, 2, word);
671 rt2x00_desc_read(txd, 3, &word);
672 rt2x00_set_field32(&word, TXD_W3_WIV,
673 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc->flags));
674 rt2x00_set_field32(&word, TXD_W3_QSEL, 2);
675 rt2x00_desc_write(txd, 3, word);
678 * Register descriptor details in skb frame descriptor.
680 skbdesc->desc = txd;
681 skbdesc->desc_len = TXD_DESC_SIZE;
685 * TX data initialization
687 static void rt2800pci_write_beacon(struct queue_entry *entry,
688 struct txentry_desc *txdesc)
690 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
691 struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
692 unsigned int beacon_base;
693 u32 reg;
696 * Disable beaconing while we are reloading the beacon data,
697 * otherwise we might be sending out invalid data.
699 rt2800_register_read(rt2x00dev, BCN_TIME_CFG, &reg);
700 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 0);
701 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
704 * Register descriptor details in skb frame descriptor.
706 skbdesc->desc = entry->skb->data - TXWI_DESC_SIZE;
707 skbdesc->desc_len = TXWI_DESC_SIZE;
710 * Add the TXWI for the beacon to the skb.
712 rt2800_write_txwi(entry->skb, txdesc);
715 * Dump beacon to userspace through debugfs.
717 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
720 * Adjust skb to take TXWI into account.
722 skb_push(entry->skb, TXWI_DESC_SIZE);
725 * Write entire beacon with TXWI to register.
727 beacon_base = HW_BEACON_OFFSET(entry->entry_idx);
728 rt2800_register_multiwrite(rt2x00dev, beacon_base,
729 entry->skb->data, entry->skb->len);
732 * Enable beaconing again.
734 rt2x00_set_field32(&reg, BCN_TIME_CFG_TSF_TICKING, 1);
735 rt2x00_set_field32(&reg, BCN_TIME_CFG_TBTT_ENABLE, 1);
736 rt2x00_set_field32(&reg, BCN_TIME_CFG_BEACON_GEN, 1);
737 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, reg);
740 * Clean up beacon skb.
742 dev_kfree_skb_any(entry->skb);
743 entry->skb = NULL;
746 static void rt2800pci_kick_tx_queue(struct rt2x00_dev *rt2x00dev,
747 const enum data_queue_qid queue_idx)
749 struct data_queue *queue;
750 unsigned int idx, qidx = 0;
752 if (queue_idx > QID_HCCA && queue_idx != QID_MGMT)
753 return;
755 queue = rt2x00queue_get_queue(rt2x00dev, queue_idx);
756 idx = queue->index[Q_INDEX];
758 if (queue_idx == QID_MGMT)
759 qidx = 5;
760 else
761 qidx = queue_idx;
763 rt2800_register_write(rt2x00dev, TX_CTX_IDX(qidx), idx);
766 static void rt2800pci_kill_tx_queue(struct rt2x00_dev *rt2x00dev,
767 const enum data_queue_qid qid)
769 u32 reg;
771 if (qid == QID_BEACON) {
772 rt2800_register_write(rt2x00dev, BCN_TIME_CFG, 0);
773 return;
776 rt2800_register_read(rt2x00dev, WPDMA_RST_IDX, &reg);
777 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX0, (qid == QID_AC_BE));
778 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX1, (qid == QID_AC_BK));
779 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX2, (qid == QID_AC_VI));
780 rt2x00_set_field32(&reg, WPDMA_RST_IDX_DTX_IDX3, (qid == QID_AC_VO));
781 rt2800_register_write(rt2x00dev, WPDMA_RST_IDX, reg);
785 * RX control handlers
787 static void rt2800pci_fill_rxdone(struct queue_entry *entry,
788 struct rxdone_entry_desc *rxdesc)
790 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
791 struct queue_entry_priv_pci *entry_priv = entry->priv_data;
792 __le32 *rxd = entry_priv->desc;
793 u32 word;
795 rt2x00_desc_read(rxd, 3, &word);
797 if (rt2x00_get_field32(word, RXD_W3_CRC_ERROR))
798 rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
801 * Unfortunately we don't know the cipher type used during
802 * decryption. This prevents us from correct providing
803 * correct statistics through debugfs.
805 rxdesc->cipher_status = rt2x00_get_field32(word, RXD_W3_CIPHER_ERROR);
807 if (rt2x00_get_field32(word, RXD_W3_DECRYPTED)) {
809 * Hardware has stripped IV/EIV data from 802.11 frame during
810 * decryption. Unfortunately the descriptor doesn't contain
811 * any fields with the EIV/IV data either, so they can't
812 * be restored by rt2x00lib.
814 rxdesc->flags |= RX_FLAG_IV_STRIPPED;
816 if (rxdesc->cipher_status == RX_CRYPTO_SUCCESS)
817 rxdesc->flags |= RX_FLAG_DECRYPTED;
818 else if (rxdesc->cipher_status == RX_CRYPTO_FAIL_MIC)
819 rxdesc->flags |= RX_FLAG_MMIC_ERROR;
822 if (rt2x00_get_field32(word, RXD_W3_MY_BSS))
823 rxdesc->dev_flags |= RXDONE_MY_BSS;
825 if (rt2x00_get_field32(word, RXD_W3_L2PAD))
826 rxdesc->dev_flags |= RXDONE_L2PAD;
829 * Process the RXWI structure that is at the start of the buffer.
831 rt2800_process_rxwi(entry->skb, rxdesc);
834 * Set RX IDX in register to inform hardware that we have handled
835 * this entry and it is available for reuse again.
837 rt2800_register_write(rt2x00dev, RX_CRX_IDX, entry->entry_idx);
841 * Interrupt functions.
843 static void rt2800pci_txdone(struct rt2x00_dev *rt2x00dev)
845 struct data_queue *queue;
846 struct queue_entry *entry;
847 __le32 *txwi;
848 struct txdone_entry_desc txdesc;
849 u32 word;
850 u32 reg;
851 u32 old_reg;
852 int wcid, ack, pid, tx_wcid, tx_ack, tx_pid;
853 u16 mcs, real_mcs;
856 * During each loop we will compare the freshly read
857 * TX_STA_FIFO register value with the value read from
858 * the previous loop. If the 2 values are equal then
859 * we should stop processing because the chance it
860 * quite big that the device has been unplugged and
861 * we risk going into an endless loop.
863 old_reg = 0;
865 while (1) {
866 rt2800_register_read(rt2x00dev, TX_STA_FIFO, &reg);
867 if (!rt2x00_get_field32(reg, TX_STA_FIFO_VALID))
868 break;
870 if (old_reg == reg)
871 break;
872 old_reg = reg;
874 wcid = rt2x00_get_field32(reg, TX_STA_FIFO_WCID);
875 ack = rt2x00_get_field32(reg, TX_STA_FIFO_TX_ACK_REQUIRED);
876 pid = rt2x00_get_field32(reg, TX_STA_FIFO_PID_TYPE);
879 * Skip this entry when it contains an invalid
880 * queue identication number.
882 if (pid <= 0 || pid > QID_RX)
883 continue;
885 queue = rt2x00queue_get_queue(rt2x00dev, pid - 1);
886 if (unlikely(!queue))
887 continue;
890 * Inside each queue, we process each entry in a chronological
891 * order. We first check that the queue is not empty.
893 if (rt2x00queue_empty(queue))
894 continue;
895 entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
897 /* Check if we got a match by looking at WCID/ACK/PID
898 * fields */
899 txwi = (__le32 *)(entry->skb->data -
900 rt2x00dev->ops->extra_tx_headroom);
902 rt2x00_desc_read(txwi, 1, &word);
903 tx_wcid = rt2x00_get_field32(word, TXWI_W1_WIRELESS_CLI_ID);
904 tx_ack = rt2x00_get_field32(word, TXWI_W1_ACK);
905 tx_pid = rt2x00_get_field32(word, TXWI_W1_PACKETID);
907 if ((wcid != tx_wcid) || (ack != tx_ack) || (pid != tx_pid))
908 WARNING(rt2x00dev, "invalid TX_STA_FIFO content\n");
911 * Obtain the status about this packet.
913 txdesc.flags = 0;
914 rt2x00_desc_read(txwi, 0, &word);
915 mcs = rt2x00_get_field32(word, TXWI_W0_MCS);
916 real_mcs = rt2x00_get_field32(reg, TX_STA_FIFO_MCS);
919 * Ralink has a retry mechanism using a global fallback
920 * table. We setup this fallback table to try the immediate
921 * lower rate for all rates. In the TX_STA_FIFO, the MCS field
922 * always contains the MCS used for the last transmission, be
923 * it successful or not.
925 if (rt2x00_get_field32(reg, TX_STA_FIFO_TX_SUCCESS)) {
927 * Transmission succeeded. The number of retries is
928 * mcs - real_mcs
930 __set_bit(TXDONE_SUCCESS, &txdesc.flags);
931 txdesc.retry = ((mcs > real_mcs) ? mcs - real_mcs : 0);
932 } else {
934 * Transmission failed. The number of retries is
935 * always 7 in this case (for a total number of 8
936 * frames sent).
938 __set_bit(TXDONE_FAILURE, &txdesc.flags);
939 txdesc.retry = 7;
942 __set_bit(TXDONE_FALLBACK, &txdesc.flags);
945 rt2x00lib_txdone(entry, &txdesc);
949 static void rt2800pci_wakeup(struct rt2x00_dev *rt2x00dev)
951 struct ieee80211_conf conf = { .flags = 0 };
952 struct rt2x00lib_conf libconf = { .conf = &conf };
954 rt2800_config(rt2x00dev, &libconf, IEEE80211_CONF_CHANGE_PS);
957 static irqreturn_t rt2800pci_interrupt(int irq, void *dev_instance)
959 struct rt2x00_dev *rt2x00dev = dev_instance;
960 u32 reg;
962 /* Read status and ACK all interrupts */
963 rt2800_register_read(rt2x00dev, INT_SOURCE_CSR, &reg);
964 rt2800_register_write(rt2x00dev, INT_SOURCE_CSR, reg);
966 if (!reg)
967 return IRQ_NONE;
969 if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
970 return IRQ_HANDLED;
973 * 1 - Rx ring done interrupt.
975 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_RX_DONE))
976 rt2x00pci_rxdone(rt2x00dev);
978 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_TX_FIFO_STATUS))
979 rt2800pci_txdone(rt2x00dev);
981 if (rt2x00_get_field32(reg, INT_SOURCE_CSR_AUTO_WAKEUP))
982 rt2800pci_wakeup(rt2x00dev);
984 return IRQ_HANDLED;
988 * Device probe functions.
990 static int rt2800pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
993 * Read EEPROM into buffer
995 if (rt2x00_is_soc(rt2x00dev))
996 rt2800pci_read_eeprom_soc(rt2x00dev);
997 else if (rt2800pci_efuse_detect(rt2x00dev))
998 rt2800pci_read_eeprom_efuse(rt2x00dev);
999 else
1000 rt2800pci_read_eeprom_pci(rt2x00dev);
1002 return rt2800_validate_eeprom(rt2x00dev);
1005 static const struct rt2800_ops rt2800pci_rt2800_ops = {
1006 .register_read = rt2x00pci_register_read,
1007 .register_read_lock = rt2x00pci_register_read, /* same for PCI */
1008 .register_write = rt2x00pci_register_write,
1009 .register_write_lock = rt2x00pci_register_write, /* same for PCI */
1011 .register_multiread = rt2x00pci_register_multiread,
1012 .register_multiwrite = rt2x00pci_register_multiwrite,
1014 .regbusy_read = rt2x00pci_regbusy_read,
1017 static int rt2800pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1019 int retval;
1021 rt2x00dev->priv = (void *)&rt2800pci_rt2800_ops;
1024 * Allocate eeprom data.
1026 retval = rt2800pci_validate_eeprom(rt2x00dev);
1027 if (retval)
1028 return retval;
1030 retval = rt2800_init_eeprom(rt2x00dev);
1031 if (retval)
1032 return retval;
1035 * Initialize hw specifications.
1037 retval = rt2800_probe_hw_mode(rt2x00dev);
1038 if (retval)
1039 return retval;
1042 * This device has multiple filters for control frames
1043 * and has a separate filter for PS Poll frames.
1045 __set_bit(DRIVER_SUPPORT_CONTROL_FILTERS, &rt2x00dev->flags);
1046 __set_bit(DRIVER_SUPPORT_CONTROL_FILTER_PSPOLL, &rt2x00dev->flags);
1049 * This device requires firmware.
1051 if (!rt2x00_is_soc(rt2x00dev))
1052 __set_bit(DRIVER_REQUIRE_FIRMWARE, &rt2x00dev->flags);
1053 __set_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags);
1054 __set_bit(DRIVER_REQUIRE_L2PAD, &rt2x00dev->flags);
1055 if (!modparam_nohwcrypt)
1056 __set_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags);
1059 * Set the rssi offset.
1061 rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1063 return 0;
1066 static const struct rt2x00lib_ops rt2800pci_rt2x00_ops = {
1067 .irq_handler = rt2800pci_interrupt,
1068 .probe_hw = rt2800pci_probe_hw,
1069 .get_firmware_name = rt2800pci_get_firmware_name,
1070 .check_firmware = rt2800pci_check_firmware,
1071 .load_firmware = rt2800pci_load_firmware,
1072 .initialize = rt2x00pci_initialize,
1073 .uninitialize = rt2x00pci_uninitialize,
1074 .get_entry_state = rt2800pci_get_entry_state,
1075 .clear_entry = rt2800pci_clear_entry,
1076 .set_device_state = rt2800pci_set_device_state,
1077 .rfkill_poll = rt2800_rfkill_poll,
1078 .link_stats = rt2800_link_stats,
1079 .reset_tuner = rt2800_reset_tuner,
1080 .link_tuner = rt2800_link_tuner,
1081 .write_tx_desc = rt2800pci_write_tx_desc,
1082 .write_tx_data = rt2800pci_write_tx_data,
1083 .write_beacon = rt2800pci_write_beacon,
1084 .kick_tx_queue = rt2800pci_kick_tx_queue,
1085 .kill_tx_queue = rt2800pci_kill_tx_queue,
1086 .fill_rxdone = rt2800pci_fill_rxdone,
1087 .config_shared_key = rt2800_config_shared_key,
1088 .config_pairwise_key = rt2800_config_pairwise_key,
1089 .config_filter = rt2800_config_filter,
1090 .config_intf = rt2800_config_intf,
1091 .config_erp = rt2800_config_erp,
1092 .config_ant = rt2800_config_ant,
1093 .config = rt2800_config,
1096 static const struct data_queue_desc rt2800pci_queue_rx = {
1097 .entry_num = RX_ENTRIES,
1098 .data_size = AGGREGATION_SIZE,
1099 .desc_size = RXD_DESC_SIZE,
1100 .priv_size = sizeof(struct queue_entry_priv_pci),
1103 static const struct data_queue_desc rt2800pci_queue_tx = {
1104 .entry_num = TX_ENTRIES,
1105 .data_size = AGGREGATION_SIZE,
1106 .desc_size = TXD_DESC_SIZE,
1107 .priv_size = sizeof(struct queue_entry_priv_pci),
1110 static const struct data_queue_desc rt2800pci_queue_bcn = {
1111 .entry_num = 8 * BEACON_ENTRIES,
1112 .data_size = 0, /* No DMA required for beacons */
1113 .desc_size = TXWI_DESC_SIZE,
1114 .priv_size = sizeof(struct queue_entry_priv_pci),
1117 static const struct rt2x00_ops rt2800pci_ops = {
1118 .name = KBUILD_MODNAME,
1119 .max_sta_intf = 1,
1120 .max_ap_intf = 8,
1121 .eeprom_size = EEPROM_SIZE,
1122 .rf_size = RF_SIZE,
1123 .tx_queues = NUM_TX_QUEUES,
1124 .extra_tx_headroom = TXWI_DESC_SIZE,
1125 .rx = &rt2800pci_queue_rx,
1126 .tx = &rt2800pci_queue_tx,
1127 .bcn = &rt2800pci_queue_bcn,
1128 .lib = &rt2800pci_rt2x00_ops,
1129 .hw = &rt2800_mac80211_ops,
1130 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
1131 .debugfs = &rt2800_rt2x00debug,
1132 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
1136 * RT2800pci module information.
1138 #ifdef CONFIG_RT2800PCI_PCI
1139 static DEFINE_PCI_DEVICE_TABLE(rt2800pci_device_table) = {
1140 { PCI_DEVICE(0x1814, 0x0601), PCI_DEVICE_DATA(&rt2800pci_ops) },
1141 { PCI_DEVICE(0x1814, 0x0681), PCI_DEVICE_DATA(&rt2800pci_ops) },
1142 { PCI_DEVICE(0x1814, 0x0701), PCI_DEVICE_DATA(&rt2800pci_ops) },
1143 { PCI_DEVICE(0x1814, 0x0781), PCI_DEVICE_DATA(&rt2800pci_ops) },
1144 { PCI_DEVICE(0x1432, 0x7708), PCI_DEVICE_DATA(&rt2800pci_ops) },
1145 { PCI_DEVICE(0x1432, 0x7727), PCI_DEVICE_DATA(&rt2800pci_ops) },
1146 { PCI_DEVICE(0x1432, 0x7728), PCI_DEVICE_DATA(&rt2800pci_ops) },
1147 { PCI_DEVICE(0x1432, 0x7738), PCI_DEVICE_DATA(&rt2800pci_ops) },
1148 { PCI_DEVICE(0x1432, 0x7748), PCI_DEVICE_DATA(&rt2800pci_ops) },
1149 { PCI_DEVICE(0x1432, 0x7758), PCI_DEVICE_DATA(&rt2800pci_ops) },
1150 { PCI_DEVICE(0x1432, 0x7768), PCI_DEVICE_DATA(&rt2800pci_ops) },
1151 { PCI_DEVICE(0x1a3b, 0x1059), PCI_DEVICE_DATA(&rt2800pci_ops) },
1152 #ifdef CONFIG_RT2800PCI_RT30XX
1153 { PCI_DEVICE(0x1814, 0x3090), PCI_DEVICE_DATA(&rt2800pci_ops) },
1154 { PCI_DEVICE(0x1814, 0x3091), PCI_DEVICE_DATA(&rt2800pci_ops) },
1155 { PCI_DEVICE(0x1814, 0x3092), PCI_DEVICE_DATA(&rt2800pci_ops) },
1156 { PCI_DEVICE(0x1462, 0x891a), PCI_DEVICE_DATA(&rt2800pci_ops) },
1157 #endif
1158 #ifdef CONFIG_RT2800PCI_RT35XX
1159 { PCI_DEVICE(0x1814, 0x3060), PCI_DEVICE_DATA(&rt2800pci_ops) },
1160 { PCI_DEVICE(0x1814, 0x3062), PCI_DEVICE_DATA(&rt2800pci_ops) },
1161 { PCI_DEVICE(0x1814, 0x3562), PCI_DEVICE_DATA(&rt2800pci_ops) },
1162 { PCI_DEVICE(0x1814, 0x3592), PCI_DEVICE_DATA(&rt2800pci_ops) },
1163 { PCI_DEVICE(0x1814, 0x3593), PCI_DEVICE_DATA(&rt2800pci_ops) },
1164 #endif
1165 { 0, }
1167 #endif /* CONFIG_RT2800PCI_PCI */
1169 MODULE_AUTHOR(DRV_PROJECT);
1170 MODULE_VERSION(DRV_VERSION);
1171 MODULE_DESCRIPTION("Ralink RT2800 PCI & PCMCIA Wireless LAN driver.");
1172 MODULE_SUPPORTED_DEVICE("Ralink RT2860 PCI & PCMCIA chipset based cards");
1173 #ifdef CONFIG_RT2800PCI_PCI
1174 MODULE_FIRMWARE(FIRMWARE_RT2860);
1175 MODULE_DEVICE_TABLE(pci, rt2800pci_device_table);
1176 #endif /* CONFIG_RT2800PCI_PCI */
1177 MODULE_LICENSE("GPL");
1179 #ifdef CONFIG_RT2800PCI_SOC
1180 static int rt2800soc_probe(struct platform_device *pdev)
1182 return rt2x00soc_probe(pdev, &rt2800pci_ops);
1185 static struct platform_driver rt2800soc_driver = {
1186 .driver = {
1187 .name = "rt2800_wmac",
1188 .owner = THIS_MODULE,
1189 .mod_name = KBUILD_MODNAME,
1191 .probe = rt2800soc_probe,
1192 .remove = __devexit_p(rt2x00soc_remove),
1193 .suspend = rt2x00soc_suspend,
1194 .resume = rt2x00soc_resume,
1196 #endif /* CONFIG_RT2800PCI_SOC */
1198 #ifdef CONFIG_RT2800PCI_PCI
1199 static struct pci_driver rt2800pci_driver = {
1200 .name = KBUILD_MODNAME,
1201 .id_table = rt2800pci_device_table,
1202 .probe = rt2x00pci_probe,
1203 .remove = __devexit_p(rt2x00pci_remove),
1204 .suspend = rt2x00pci_suspend,
1205 .resume = rt2x00pci_resume,
1207 #endif /* CONFIG_RT2800PCI_PCI */
1209 static int __init rt2800pci_init(void)
1211 int ret = 0;
1213 #ifdef CONFIG_RT2800PCI_SOC
1214 ret = platform_driver_register(&rt2800soc_driver);
1215 if (ret)
1216 return ret;
1217 #endif
1218 #ifdef CONFIG_RT2800PCI_PCI
1219 ret = pci_register_driver(&rt2800pci_driver);
1220 if (ret) {
1221 #ifdef CONFIG_RT2800PCI_SOC
1222 platform_driver_unregister(&rt2800soc_driver);
1223 #endif
1224 return ret;
1226 #endif
1228 return ret;
1231 static void __exit rt2800pci_exit(void)
1233 #ifdef CONFIG_RT2800PCI_PCI
1234 pci_unregister_driver(&rt2800pci_driver);
1235 #endif
1236 #ifdef CONFIG_RT2800PCI_SOC
1237 platform_driver_unregister(&rt2800soc_driver);
1238 #endif
1241 module_init(rt2800pci_init);
1242 module_exit(rt2800pci_exit);