nand/denali: Fixed probe function bugs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / denali.c
blobab960efb67f0b3050561db79f5d7a995661470c9
1 /*
2 * NAND Flash Controller Device Driver
3 * Copyright © 2009-2010, Intel Corporation and its suppliers.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/mutex.h>
24 #include <linux/slab.h>
25 #include <linux/pci.h>
26 #include <linux/mtd/mtd.h>
27 #include <linux/module.h>
29 #include "denali.h"
31 MODULE_LICENSE("GPL");
33 /* We define a module parameter that allows the user to override
34 * the hardware and decide what timing mode should be used.
36 #define NAND_DEFAULT_TIMINGS -1
38 static int onfi_timing_mode = NAND_DEFAULT_TIMINGS;
39 module_param(onfi_timing_mode, int, S_IRUGO);
40 MODULE_PARM_DESC(onfi_timing_mode, "Overrides default ONFI setting."
41 " -1 indicates use default timings");
43 #define DENALI_NAND_NAME "denali-nand"
45 /* We define a macro here that combines all interrupts this driver uses into
46 * a single constant value, for convenience. */
47 #define DENALI_IRQ_ALL (INTR_STATUS0__DMA_CMD_COMP | \
48 INTR_STATUS0__ECC_TRANSACTION_DONE | \
49 INTR_STATUS0__ECC_ERR | \
50 INTR_STATUS0__PROGRAM_FAIL | \
51 INTR_STATUS0__LOAD_COMP | \
52 INTR_STATUS0__PROGRAM_COMP | \
53 INTR_STATUS0__TIME_OUT | \
54 INTR_STATUS0__ERASE_FAIL | \
55 INTR_STATUS0__RST_COMP | \
56 INTR_STATUS0__ERASE_COMP)
58 /* indicates whether or not the internal value for the flash bank is
59 valid or not */
60 #define CHIP_SELECT_INVALID -1
62 #define SUPPORT_8BITECC 1
64 /* This macro divides two integers and rounds fractional values up
65 * to the nearest integer value. */
66 #define CEIL_DIV(X, Y) (((X)%(Y)) ? ((X)/(Y)+1) : ((X)/(Y)))
68 /* this macro allows us to convert from an MTD structure to our own
69 * device context (denali) structure.
71 #define mtd_to_denali(m) container_of(m, struct denali_nand_info, mtd)
73 /* These constants are defined by the driver to enable common driver
74 configuration options. */
75 #define SPARE_ACCESS 0x41
76 #define MAIN_ACCESS 0x42
77 #define MAIN_SPARE_ACCESS 0x43
79 #define DENALI_READ 0
80 #define DENALI_WRITE 0x100
82 /* types of device accesses. We can issue commands and get status */
83 #define COMMAND_CYCLE 0
84 #define ADDR_CYCLE 1
85 #define STATUS_CYCLE 2
87 /* this is a helper macro that allows us to
88 * format the bank into the proper bits for the controller */
89 #define BANK(x) ((x) << 24)
91 /* List of platforms this NAND controller has be integrated into */
92 static const struct pci_device_id denali_pci_ids[] = {
93 { PCI_VDEVICE(INTEL, 0x0701), INTEL_CE4100 },
94 { PCI_VDEVICE(INTEL, 0x0809), INTEL_MRST },
95 { /* end: all zeroes */ }
99 /* these are static lookup tables that give us easy access to
100 registers in the NAND controller.
102 static const uint32_t intr_status_addresses[4] = {INTR_STATUS0,
103 INTR_STATUS1,
104 INTR_STATUS2,
105 INTR_STATUS3};
107 static const uint32_t device_reset_banks[4] = {DEVICE_RESET__BANK0,
108 DEVICE_RESET__BANK1,
109 DEVICE_RESET__BANK2,
110 DEVICE_RESET__BANK3};
112 static const uint32_t operation_timeout[4] = {INTR_STATUS0__TIME_OUT,
113 INTR_STATUS1__TIME_OUT,
114 INTR_STATUS2__TIME_OUT,
115 INTR_STATUS3__TIME_OUT};
117 static const uint32_t reset_complete[4] = {INTR_STATUS0__RST_COMP,
118 INTR_STATUS1__RST_COMP,
119 INTR_STATUS2__RST_COMP,
120 INTR_STATUS3__RST_COMP};
122 /* specifies the debug level of the driver */
123 static int nand_debug_level;
125 /* forward declarations */
126 static void clear_interrupts(struct denali_nand_info *denali);
127 static uint32_t wait_for_irq(struct denali_nand_info *denali,
128 uint32_t irq_mask);
129 static void denali_irq_enable(struct denali_nand_info *denali,
130 uint32_t int_mask);
131 static uint32_t read_interrupt_status(struct denali_nand_info *denali);
133 #define DEBUG_DENALI 0
135 /* This is a wrapper for writing to the denali registers.
136 * this allows us to create debug information so we can
137 * observe how the driver is programming the device.
138 * it uses standard linux convention for (val, addr) */
139 static void denali_write32(uint32_t value, void *addr)
141 iowrite32(value, addr);
143 #if DEBUG_DENALI
144 printk(KERN_INFO "wrote: 0x%x -> 0x%x\n", value,
145 (uint32_t)((uint32_t)addr & 0x1fff));
146 #endif
149 /* Certain operations for the denali NAND controller use
150 * an indexed mode to read/write data. The operation is
151 * performed by writing the address value of the command
152 * to the device memory followed by the data. This function
153 * abstracts this common operation.
155 static void index_addr(struct denali_nand_info *denali,
156 uint32_t address, uint32_t data)
158 denali_write32(address, denali->flash_mem);
159 denali_write32(data, denali->flash_mem + 0x10);
162 /* Perform an indexed read of the device */
163 static void index_addr_read_data(struct denali_nand_info *denali,
164 uint32_t address, uint32_t *pdata)
166 denali_write32(address, denali->flash_mem);
167 *pdata = ioread32(denali->flash_mem + 0x10);
170 /* We need to buffer some data for some of the NAND core routines.
171 * The operations manage buffering that data. */
172 static void reset_buf(struct denali_nand_info *denali)
174 denali->buf.head = denali->buf.tail = 0;
177 static void write_byte_to_buf(struct denali_nand_info *denali, uint8_t byte)
179 BUG_ON(denali->buf.tail >= sizeof(denali->buf.buf));
180 denali->buf.buf[denali->buf.tail++] = byte;
183 /* reads the status of the device */
184 static void read_status(struct denali_nand_info *denali)
186 uint32_t cmd = 0x0;
188 /* initialize the data buffer to store status */
189 reset_buf(denali);
191 /* initiate a device status read */
192 cmd = MODE_11 | BANK(denali->flash_bank);
193 index_addr(denali, cmd | COMMAND_CYCLE, 0x70);
194 denali_write32(cmd | STATUS_CYCLE, denali->flash_mem);
196 /* update buffer with status value */
197 write_byte_to_buf(denali, ioread32(denali->flash_mem + 0x10));
199 #if DEBUG_DENALI
200 printk(KERN_INFO "device reporting status value of 0x%2x\n",
201 denali->buf.buf[0]);
202 #endif
205 /* resets a specific device connected to the core */
206 static void reset_bank(struct denali_nand_info *denali)
208 uint32_t irq_status = 0;
209 uint32_t irq_mask = reset_complete[denali->flash_bank] |
210 operation_timeout[denali->flash_bank];
211 int bank = 0;
213 clear_interrupts(denali);
215 bank = device_reset_banks[denali->flash_bank];
216 denali_write32(bank, denali->flash_reg + DEVICE_RESET);
218 irq_status = wait_for_irq(denali, irq_mask);
220 if (irq_status & operation_timeout[denali->flash_bank])
221 printk(KERN_ERR "reset bank failed.\n");
224 /* Reset the flash controller */
225 static uint16_t denali_nand_reset(struct denali_nand_info *denali)
227 uint32_t i;
229 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
230 __FILE__, __LINE__, __func__);
232 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++)
233 denali_write32(reset_complete[i] | operation_timeout[i],
234 denali->flash_reg + intr_status_addresses[i]);
236 for (i = 0 ; i < LLD_MAX_FLASH_BANKS; i++) {
237 denali_write32(device_reset_banks[i],
238 denali->flash_reg + DEVICE_RESET);
239 while (!(ioread32(denali->flash_reg +
240 intr_status_addresses[i]) &
241 (reset_complete[i] | operation_timeout[i])))
243 if (ioread32(denali->flash_reg + intr_status_addresses[i]) &
244 operation_timeout[i])
245 nand_dbg_print(NAND_DBG_WARN,
246 "NAND Reset operation timed out on bank %d\n", i);
249 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++)
250 denali_write32(reset_complete[i] | operation_timeout[i],
251 denali->flash_reg + intr_status_addresses[i]);
253 return PASS;
256 /* this routine calculates the ONFI timing values for a given mode and
257 * programs the clocking register accordingly. The mode is determined by
258 * the get_onfi_nand_para routine.
260 static void nand_onfi_timing_set(struct denali_nand_info *denali,
261 uint16_t mode)
263 uint16_t Trea[6] = {40, 30, 25, 20, 20, 16};
264 uint16_t Trp[6] = {50, 25, 17, 15, 12, 10};
265 uint16_t Treh[6] = {30, 15, 15, 10, 10, 7};
266 uint16_t Trc[6] = {100, 50, 35, 30, 25, 20};
267 uint16_t Trhoh[6] = {0, 15, 15, 15, 15, 15};
268 uint16_t Trloh[6] = {0, 0, 0, 0, 5, 5};
269 uint16_t Tcea[6] = {100, 45, 30, 25, 25, 25};
270 uint16_t Tadl[6] = {200, 100, 100, 100, 70, 70};
271 uint16_t Trhw[6] = {200, 100, 100, 100, 100, 100};
272 uint16_t Trhz[6] = {200, 100, 100, 100, 100, 100};
273 uint16_t Twhr[6] = {120, 80, 80, 60, 60, 60};
274 uint16_t Tcs[6] = {70, 35, 25, 25, 20, 15};
276 uint16_t TclsRising = 1;
277 uint16_t data_invalid_rhoh, data_invalid_rloh, data_invalid;
278 uint16_t dv_window = 0;
279 uint16_t en_lo, en_hi;
280 uint16_t acc_clks;
281 uint16_t addr_2_data, re_2_we, re_2_re, we_2_re, cs_cnt;
283 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
284 __FILE__, __LINE__, __func__);
286 en_lo = CEIL_DIV(Trp[mode], CLK_X);
287 en_hi = CEIL_DIV(Treh[mode], CLK_X);
288 #if ONFI_BLOOM_TIME
289 if ((en_hi * CLK_X) < (Treh[mode] + 2))
290 en_hi++;
291 #endif
293 if ((en_lo + en_hi) * CLK_X < Trc[mode])
294 en_lo += CEIL_DIV((Trc[mode] - (en_lo + en_hi) * CLK_X), CLK_X);
296 if ((en_lo + en_hi) < CLK_MULTI)
297 en_lo += CLK_MULTI - en_lo - en_hi;
299 while (dv_window < 8) {
300 data_invalid_rhoh = en_lo * CLK_X + Trhoh[mode];
302 data_invalid_rloh = (en_lo + en_hi) * CLK_X + Trloh[mode];
304 data_invalid =
305 data_invalid_rhoh <
306 data_invalid_rloh ? data_invalid_rhoh : data_invalid_rloh;
308 dv_window = data_invalid - Trea[mode];
310 if (dv_window < 8)
311 en_lo++;
314 acc_clks = CEIL_DIV(Trea[mode], CLK_X);
316 while (((acc_clks * CLK_X) - Trea[mode]) < 3)
317 acc_clks++;
319 if ((data_invalid - acc_clks * CLK_X) < 2)
320 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d: Warning!\n",
321 __FILE__, __LINE__);
323 addr_2_data = CEIL_DIV(Tadl[mode], CLK_X);
324 re_2_we = CEIL_DIV(Trhw[mode], CLK_X);
325 re_2_re = CEIL_DIV(Trhz[mode], CLK_X);
326 we_2_re = CEIL_DIV(Twhr[mode], CLK_X);
327 cs_cnt = CEIL_DIV((Tcs[mode] - Trp[mode]), CLK_X);
328 if (!TclsRising)
329 cs_cnt = CEIL_DIV(Tcs[mode], CLK_X);
330 if (cs_cnt == 0)
331 cs_cnt = 1;
333 if (Tcea[mode]) {
334 while (((cs_cnt * CLK_X) + Trea[mode]) < Tcea[mode])
335 cs_cnt++;
338 #if MODE5_WORKAROUND
339 if (mode == 5)
340 acc_clks = 5;
341 #endif
343 /* Sighting 3462430: Temporary hack for MT29F128G08CJABAWP:B */
344 if ((ioread32(denali->flash_reg + MANUFACTURER_ID) == 0) &&
345 (ioread32(denali->flash_reg + DEVICE_ID) == 0x88))
346 acc_clks = 6;
348 denali_write32(acc_clks, denali->flash_reg + ACC_CLKS);
349 denali_write32(re_2_we, denali->flash_reg + RE_2_WE);
350 denali_write32(re_2_re, denali->flash_reg + RE_2_RE);
351 denali_write32(we_2_re, denali->flash_reg + WE_2_RE);
352 denali_write32(addr_2_data, denali->flash_reg + ADDR_2_DATA);
353 denali_write32(en_lo, denali->flash_reg + RDWR_EN_LO_CNT);
354 denali_write32(en_hi, denali->flash_reg + RDWR_EN_HI_CNT);
355 denali_write32(cs_cnt, denali->flash_reg + CS_SETUP_CNT);
358 /* queries the NAND device to see what ONFI modes it supports. */
359 static uint16_t get_onfi_nand_para(struct denali_nand_info *denali)
361 int i;
362 /* we needn't to do a reset here because driver has already
363 * reset all the banks before
364 * */
365 if (!(ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
366 ONFI_TIMING_MODE__VALUE))
367 return FAIL;
369 for (i = 5; i > 0; i--) {
370 if (ioread32(denali->flash_reg + ONFI_TIMING_MODE) &
371 (0x01 << i))
372 break;
375 nand_onfi_timing_set(denali, i);
377 /* By now, all the ONFI devices we know support the page cache */
378 /* rw feature. So here we enable the pipeline_rw_ahead feature */
379 /* iowrite32(1, denali->flash_reg + CACHE_WRITE_ENABLE); */
380 /* iowrite32(1, denali->flash_reg + CACHE_READ_ENABLE); */
382 return PASS;
385 static void get_samsung_nand_para(struct denali_nand_info *denali,
386 uint8_t device_id)
388 if (device_id == 0xd3) { /* Samsung K9WAG08U1A */
389 /* Set timing register values according to datasheet */
390 denali_write32(5, denali->flash_reg + ACC_CLKS);
391 denali_write32(20, denali->flash_reg + RE_2_WE);
392 denali_write32(12, denali->flash_reg + WE_2_RE);
393 denali_write32(14, denali->flash_reg + ADDR_2_DATA);
394 denali_write32(3, denali->flash_reg + RDWR_EN_LO_CNT);
395 denali_write32(2, denali->flash_reg + RDWR_EN_HI_CNT);
396 denali_write32(2, denali->flash_reg + CS_SETUP_CNT);
400 static void get_toshiba_nand_para(struct denali_nand_info *denali)
402 uint32_t tmp;
404 /* Workaround to fix a controller bug which reports a wrong */
405 /* spare area size for some kind of Toshiba NAND device */
406 if ((ioread32(denali->flash_reg + DEVICE_MAIN_AREA_SIZE) == 4096) &&
407 (ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE) == 64)) {
408 denali_write32(216, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
409 tmp = ioread32(denali->flash_reg + DEVICES_CONNECTED) *
410 ioread32(denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
411 denali_write32(tmp,
412 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
413 #if SUPPORT_15BITECC
414 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
415 #elif SUPPORT_8BITECC
416 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
417 #endif
421 static void get_hynix_nand_para(struct denali_nand_info *denali,
422 uint8_t device_id)
424 uint32_t main_size, spare_size;
426 switch (device_id) {
427 case 0xD5: /* Hynix H27UAG8T2A, H27UBG8U5A or H27UCG8VFA */
428 case 0xD7: /* Hynix H27UDG8VEM, H27UCG8UDM or H27UCG8V5A */
429 denali_write32(128, denali->flash_reg + PAGES_PER_BLOCK);
430 denali_write32(4096, denali->flash_reg + DEVICE_MAIN_AREA_SIZE);
431 denali_write32(224, denali->flash_reg + DEVICE_SPARE_AREA_SIZE);
432 main_size = 4096 *
433 ioread32(denali->flash_reg + DEVICES_CONNECTED);
434 spare_size = 224 *
435 ioread32(denali->flash_reg + DEVICES_CONNECTED);
436 denali_write32(main_size,
437 denali->flash_reg + LOGICAL_PAGE_DATA_SIZE);
438 denali_write32(spare_size,
439 denali->flash_reg + LOGICAL_PAGE_SPARE_SIZE);
440 denali_write32(0, denali->flash_reg + DEVICE_WIDTH);
441 #if SUPPORT_15BITECC
442 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
443 #elif SUPPORT_8BITECC
444 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
445 #endif
446 break;
447 default:
448 nand_dbg_print(NAND_DBG_WARN,
449 "Spectra: Unknown Hynix NAND (Device ID: 0x%x)."
450 "Will use default parameter values instead.\n",
451 device_id);
455 /* determines how many NAND chips are connected to the controller. Note for
456 Intel CE4100 devices we don't support more than one device.
458 static void find_valid_banks(struct denali_nand_info *denali)
460 uint32_t id[LLD_MAX_FLASH_BANKS];
461 int i;
463 denali->total_used_banks = 1;
464 for (i = 0; i < LLD_MAX_FLASH_BANKS; i++) {
465 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 0), 0x90);
466 index_addr(denali, (uint32_t)(MODE_11 | (i << 24) | 1), 0);
467 index_addr_read_data(denali,
468 (uint32_t)(MODE_11 | (i << 24) | 2), &id[i]);
470 nand_dbg_print(NAND_DBG_DEBUG,
471 "Return 1st ID for bank[%d]: %x\n", i, id[i]);
473 if (i == 0) {
474 if (!(id[i] & 0x0ff))
475 break; /* WTF? */
476 } else {
477 if ((id[i] & 0x0ff) == (id[0] & 0x0ff))
478 denali->total_used_banks++;
479 else
480 break;
484 if (denali->platform == INTEL_CE4100) {
485 /* Platform limitations of the CE4100 device limit
486 * users to a single chip solution for NAND.
487 * Multichip support is not enabled.
489 if (denali->total_used_banks != 1) {
490 printk(KERN_ERR "Sorry, Intel CE4100 only supports "
491 "a single NAND device.\n");
492 BUG();
495 nand_dbg_print(NAND_DBG_DEBUG,
496 "denali->total_used_banks: %d\n", denali->total_used_banks);
499 static void detect_partition_feature(struct denali_nand_info *denali)
501 /* For MRST platform, denali->fwblks represent the
502 * number of blocks firmware is taken,
503 * FW is in protect partition and MTD driver has no
504 * permission to access it. So let driver know how many
505 * blocks it can't touch.
506 * */
507 if (ioread32(denali->flash_reg + FEATURES) & FEATURES__PARTITION) {
508 if ((ioread32(denali->flash_reg + PERM_SRC_ID_1) &
509 PERM_SRC_ID_1__SRCID) == SPECTRA_PARTITION_ID) {
510 denali->fwblks =
511 ((ioread32(denali->flash_reg + MIN_MAX_BANK_1) &
512 MIN_MAX_BANK_1__MIN_VALUE) *
513 denali->blksperchip)
515 (ioread32(denali->flash_reg + MIN_BLK_ADDR_1) &
516 MIN_BLK_ADDR_1__VALUE);
517 } else
518 denali->fwblks = SPECTRA_START_BLOCK;
519 } else
520 denali->fwblks = SPECTRA_START_BLOCK;
523 static uint16_t denali_nand_timing_set(struct denali_nand_info *denali)
525 uint16_t status = PASS;
526 uint32_t id_bytes[5], addr;
527 uint8_t i, maf_id, device_id;
529 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
530 __FILE__, __LINE__, __func__);
532 /* Use read id method to get device ID and other
533 * params. For some NAND chips, controller can't
534 * report the correct device ID by reading from
535 * DEVICE_ID register
536 * */
537 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
538 index_addr(denali, (uint32_t)addr | 0, 0x90);
539 index_addr(denali, (uint32_t)addr | 1, 0);
540 for (i = 0; i < 5; i++)
541 index_addr_read_data(denali, addr | 2, &id_bytes[i]);
542 maf_id = id_bytes[0];
543 device_id = id_bytes[1];
545 if (ioread32(denali->flash_reg + ONFI_DEVICE_NO_OF_LUNS) &
546 ONFI_DEVICE_NO_OF_LUNS__ONFI_DEVICE) { /* ONFI 1.0 NAND */
547 if (FAIL == get_onfi_nand_para(denali))
548 return FAIL;
549 } else if (maf_id == 0xEC) { /* Samsung NAND */
550 get_samsung_nand_para(denali, device_id);
551 } else if (maf_id == 0x98) { /* Toshiba NAND */
552 get_toshiba_nand_para(denali);
553 } else if (maf_id == 0xAD) { /* Hynix NAND */
554 get_hynix_nand_para(denali, device_id);
557 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
558 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
559 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
560 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
561 ioread32(denali->flash_reg + ACC_CLKS),
562 ioread32(denali->flash_reg + RE_2_WE),
563 ioread32(denali->flash_reg + WE_2_RE),
564 ioread32(denali->flash_reg + ADDR_2_DATA),
565 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
566 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
567 ioread32(denali->flash_reg + CS_SETUP_CNT));
569 find_valid_banks(denali);
571 detect_partition_feature(denali);
573 /* If the user specified to override the default timings
574 * with a specific ONFI mode, we apply those changes here.
576 if (onfi_timing_mode != NAND_DEFAULT_TIMINGS)
577 nand_onfi_timing_set(denali, onfi_timing_mode);
579 return status;
582 static void denali_set_intr_modes(struct denali_nand_info *denali,
583 uint16_t INT_ENABLE)
585 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
586 __FILE__, __LINE__, __func__);
588 if (INT_ENABLE)
589 denali_write32(1, denali->flash_reg + GLOBAL_INT_ENABLE);
590 else
591 denali_write32(0, denali->flash_reg + GLOBAL_INT_ENABLE);
594 /* validation function to verify that the controlling software is making
595 a valid request
597 static inline bool is_flash_bank_valid(int flash_bank)
599 return (flash_bank >= 0 && flash_bank < 4);
602 static void denali_irq_init(struct denali_nand_info *denali)
604 uint32_t int_mask = 0;
606 /* Disable global interrupts */
607 denali_set_intr_modes(denali, false);
609 int_mask = DENALI_IRQ_ALL;
611 /* Clear all status bits */
612 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS0);
613 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS1);
614 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS2);
615 denali_write32(0xFFFF, denali->flash_reg + INTR_STATUS3);
617 denali_irq_enable(denali, int_mask);
620 static void denali_irq_cleanup(int irqnum, struct denali_nand_info *denali)
622 denali_set_intr_modes(denali, false);
623 free_irq(irqnum, denali);
626 static void denali_irq_enable(struct denali_nand_info *denali,
627 uint32_t int_mask)
629 denali_write32(int_mask, denali->flash_reg + INTR_EN0);
630 denali_write32(int_mask, denali->flash_reg + INTR_EN1);
631 denali_write32(int_mask, denali->flash_reg + INTR_EN2);
632 denali_write32(int_mask, denali->flash_reg + INTR_EN3);
635 /* This function only returns when an interrupt that this driver cares about
636 * occurs. This is to reduce the overhead of servicing interrupts
638 static inline uint32_t denali_irq_detected(struct denali_nand_info *denali)
640 return read_interrupt_status(denali) & DENALI_IRQ_ALL;
643 /* Interrupts are cleared by writing a 1 to the appropriate status bit */
644 static inline void clear_interrupt(struct denali_nand_info *denali,
645 uint32_t irq_mask)
647 uint32_t intr_status_reg = 0;
649 intr_status_reg = intr_status_addresses[denali->flash_bank];
651 denali_write32(irq_mask, denali->flash_reg + intr_status_reg);
654 static void clear_interrupts(struct denali_nand_info *denali)
656 uint32_t status = 0x0;
657 spin_lock_irq(&denali->irq_lock);
659 status = read_interrupt_status(denali);
661 #if DEBUG_DENALI
662 denali->irq_debug_array[denali->idx++] = 0x30000000 | status;
663 denali->idx %= 32;
664 #endif
666 denali->irq_status = 0x0;
667 spin_unlock_irq(&denali->irq_lock);
670 static uint32_t read_interrupt_status(struct denali_nand_info *denali)
672 uint32_t intr_status_reg = 0;
674 intr_status_reg = intr_status_addresses[denali->flash_bank];
676 return ioread32(denali->flash_reg + intr_status_reg);
679 #if DEBUG_DENALI
680 static void print_irq_log(struct denali_nand_info *denali)
682 int i = 0;
684 printk(KERN_INFO "ISR debug log index = %X\n", denali->idx);
685 for (i = 0; i < 32; i++)
686 printk(KERN_INFO "%08X: %08X\n", i, denali->irq_debug_array[i]);
688 #endif
690 /* This is the interrupt service routine. It handles all interrupts
691 * sent to this device. Note that on CE4100, this is a shared
692 * interrupt.
694 static irqreturn_t denali_isr(int irq, void *dev_id)
696 struct denali_nand_info *denali = dev_id;
697 uint32_t irq_status = 0x0;
698 irqreturn_t result = IRQ_NONE;
700 spin_lock(&denali->irq_lock);
702 /* check to see if a valid NAND chip has
703 * been selected.
705 if (is_flash_bank_valid(denali->flash_bank)) {
706 /* check to see if controller generated
707 * the interrupt, since this is a shared interrupt */
708 irq_status = denali_irq_detected(denali);
709 if (irq_status != 0) {
710 #if DEBUG_DENALI
711 denali->irq_debug_array[denali->idx++] =
712 0x10000000 | irq_status;
713 denali->idx %= 32;
715 printk(KERN_INFO "IRQ status = 0x%04x\n", irq_status);
716 #endif
717 /* handle interrupt */
718 /* first acknowledge it */
719 clear_interrupt(denali, irq_status);
720 /* store the status in the device context for someone
721 to read */
722 denali->irq_status |= irq_status;
723 /* notify anyone who cares that it happened */
724 complete(&denali->complete);
725 /* tell the OS that we've handled this */
726 result = IRQ_HANDLED;
729 spin_unlock(&denali->irq_lock);
730 return result;
732 #define BANK(x) ((x) << 24)
734 static uint32_t wait_for_irq(struct denali_nand_info *denali, uint32_t irq_mask)
736 unsigned long comp_res = 0;
737 uint32_t intr_status = 0;
738 bool retry = false;
739 unsigned long timeout = msecs_to_jiffies(1000);
741 do {
742 #if DEBUG_DENALI
743 printk(KERN_INFO "waiting for 0x%x\n", irq_mask);
744 #endif
745 comp_res =
746 wait_for_completion_timeout(&denali->complete, timeout);
747 spin_lock_irq(&denali->irq_lock);
748 intr_status = denali->irq_status;
750 #if DEBUG_DENALI
751 denali->irq_debug_array[denali->idx++] =
752 0x20000000 | (irq_mask << 16) | intr_status;
753 denali->idx %= 32;
754 #endif
756 if (intr_status & irq_mask) {
757 denali->irq_status &= ~irq_mask;
758 spin_unlock_irq(&denali->irq_lock);
759 #if DEBUG_DENALI
760 if (retry)
761 printk(KERN_INFO "status on retry = 0x%x\n",
762 intr_status);
763 #endif
764 /* our interrupt was detected */
765 break;
766 } else {
767 /* these are not the interrupts you are looking for -
768 * need to wait again */
769 spin_unlock_irq(&denali->irq_lock);
770 #if DEBUG_DENALI
771 print_irq_log(denali);
772 printk(KERN_INFO "received irq nobody cared:"
773 " irq_status = 0x%x, irq_mask = 0x%x,"
774 " timeout = %ld\n", intr_status,
775 irq_mask, comp_res);
776 #endif
777 retry = true;
779 } while (comp_res != 0);
781 if (comp_res == 0) {
782 /* timeout */
783 printk(KERN_ERR "timeout occurred, status = 0x%x, mask = 0x%x\n",
784 intr_status, irq_mask);
786 intr_status = 0;
788 return intr_status;
791 /* This helper function setups the registers for ECC and whether or not
792 the spare area will be transfered. */
793 static void setup_ecc_for_xfer(struct denali_nand_info *denali, bool ecc_en,
794 bool transfer_spare)
796 int ecc_en_flag = 0, transfer_spare_flag = 0;
798 /* set ECC, transfer spare bits if needed */
799 ecc_en_flag = ecc_en ? ECC_ENABLE__FLAG : 0;
800 transfer_spare_flag = transfer_spare ? TRANSFER_SPARE_REG__FLAG : 0;
802 /* Enable spare area/ECC per user's request. */
803 denali_write32(ecc_en_flag, denali->flash_reg + ECC_ENABLE);
804 denali_write32(transfer_spare_flag,
805 denali->flash_reg + TRANSFER_SPARE_REG);
808 /* sends a pipeline command operation to the controller. See the Denali NAND
809 controller's user guide for more information (section 4.2.3.6).
811 static int denali_send_pipeline_cmd(struct denali_nand_info *denali,
812 bool ecc_en,
813 bool transfer_spare,
814 int access_type,
815 int op)
817 int status = PASS;
818 uint32_t addr = 0x0, cmd = 0x0, page_count = 1, irq_status = 0,
819 irq_mask = 0;
821 if (op == DENALI_READ)
822 irq_mask = INTR_STATUS0__LOAD_COMP;
823 else if (op == DENALI_WRITE)
824 irq_mask = 0;
825 else
826 BUG();
828 setup_ecc_for_xfer(denali, ecc_en, transfer_spare);
830 #if DEBUG_DENALI
831 spin_lock_irq(&denali->irq_lock);
832 denali->irq_debug_array[denali->idx++] =
833 0x40000000 | ioread32(denali->flash_reg + ECC_ENABLE) |
834 (access_type << 4);
835 denali->idx %= 32;
836 spin_unlock_irq(&denali->irq_lock);
837 #endif
840 /* clear interrupts */
841 clear_interrupts(denali);
843 addr = BANK(denali->flash_bank) | denali->page;
845 if (op == DENALI_WRITE && access_type != SPARE_ACCESS) {
846 cmd = MODE_01 | addr;
847 denali_write32(cmd, denali->flash_mem);
848 } else if (op == DENALI_WRITE && access_type == SPARE_ACCESS) {
849 /* read spare area */
850 cmd = MODE_10 | addr;
851 index_addr(denali, (uint32_t)cmd, access_type);
853 cmd = MODE_01 | addr;
854 denali_write32(cmd, denali->flash_mem);
855 } else if (op == DENALI_READ) {
856 /* setup page read request for access type */
857 cmd = MODE_10 | addr;
858 index_addr(denali, (uint32_t)cmd, access_type);
860 /* page 33 of the NAND controller spec indicates we should not
861 use the pipeline commands in Spare area only mode. So we
862 don't.
864 if (access_type == SPARE_ACCESS) {
865 cmd = MODE_01 | addr;
866 denali_write32(cmd, denali->flash_mem);
867 } else {
868 index_addr(denali, (uint32_t)cmd,
869 0x2000 | op | page_count);
871 /* wait for command to be accepted
872 * can always use status0 bit as the
873 * mask is identical for each
874 * bank. */
875 irq_status = wait_for_irq(denali, irq_mask);
877 if (irq_status == 0) {
878 printk(KERN_ERR "cmd, page, addr on timeout "
879 "(0x%x, 0x%x, 0x%x)\n", cmd,
880 denali->page, addr);
881 status = FAIL;
882 } else {
883 cmd = MODE_01 | addr;
884 denali_write32(cmd, denali->flash_mem);
888 return status;
891 /* helper function that simply writes a buffer to the flash */
892 static int write_data_to_flash_mem(struct denali_nand_info *denali,
893 const uint8_t *buf,
894 int len)
896 uint32_t i = 0, *buf32;
898 /* verify that the len is a multiple of 4. see comment in
899 * read_data_from_flash_mem() */
900 BUG_ON((len % 4) != 0);
902 /* write the data to the flash memory */
903 buf32 = (uint32_t *)buf;
904 for (i = 0; i < len / 4; i++)
905 denali_write32(*buf32++, denali->flash_mem + 0x10);
906 return i*4; /* intent is to return the number of bytes read */
909 /* helper function that simply reads a buffer from the flash */
910 static int read_data_from_flash_mem(struct denali_nand_info *denali,
911 uint8_t *buf,
912 int len)
914 uint32_t i = 0, *buf32;
916 /* we assume that len will be a multiple of 4, if not
917 * it would be nice to know about it ASAP rather than
918 * have random failures...
919 * This assumption is based on the fact that this
920 * function is designed to be used to read flash pages,
921 * which are typically multiples of 4...
924 BUG_ON((len % 4) != 0);
926 /* transfer the data from the flash */
927 buf32 = (uint32_t *)buf;
928 for (i = 0; i < len / 4; i++)
929 *buf32++ = ioread32(denali->flash_mem + 0x10);
930 return i*4; /* intent is to return the number of bytes read */
933 /* writes OOB data to the device */
934 static int write_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
936 struct denali_nand_info *denali = mtd_to_denali(mtd);
937 uint32_t irq_status = 0;
938 uint32_t irq_mask = INTR_STATUS0__PROGRAM_COMP |
939 INTR_STATUS0__PROGRAM_FAIL;
940 int status = 0;
942 denali->page = page;
944 if (denali_send_pipeline_cmd(denali, false, false, SPARE_ACCESS,
945 DENALI_WRITE) == PASS) {
946 write_data_to_flash_mem(denali, buf, mtd->oobsize);
948 #if DEBUG_DENALI
949 spin_lock_irq(&denali->irq_lock);
950 denali->irq_debug_array[denali->idx++] =
951 0x80000000 | mtd->oobsize;
952 denali->idx %= 32;
953 spin_unlock_irq(&denali->irq_lock);
954 #endif
957 /* wait for operation to complete */
958 irq_status = wait_for_irq(denali, irq_mask);
960 if (irq_status == 0) {
961 printk(KERN_ERR "OOB write failed\n");
962 status = -EIO;
964 } else {
965 printk(KERN_ERR "unable to send pipeline command\n");
966 status = -EIO;
968 return status;
971 /* reads OOB data from the device */
972 static void read_oob_data(struct mtd_info *mtd, uint8_t *buf, int page)
974 struct denali_nand_info *denali = mtd_to_denali(mtd);
975 uint32_t irq_mask = INTR_STATUS0__LOAD_COMP,
976 irq_status = 0, addr = 0x0, cmd = 0x0;
978 denali->page = page;
980 #if DEBUG_DENALI
981 printk(KERN_INFO "read_oob %d\n", page);
982 #endif
983 if (denali_send_pipeline_cmd(denali, false, true, SPARE_ACCESS,
984 DENALI_READ) == PASS) {
985 read_data_from_flash_mem(denali, buf, mtd->oobsize);
987 /* wait for command to be accepted
988 * can always use status0 bit as the mask is identical for each
989 * bank. */
990 irq_status = wait_for_irq(denali, irq_mask);
992 if (irq_status == 0)
993 printk(KERN_ERR "page on OOB timeout %d\n",
994 denali->page);
996 /* We set the device back to MAIN_ACCESS here as I observed
997 * instability with the controller if you do a block erase
998 * and the last transaction was a SPARE_ACCESS. Block erase
999 * is reliable (according to the MTD test infrastructure)
1000 * if you are in MAIN_ACCESS.
1002 addr = BANK(denali->flash_bank) | denali->page;
1003 cmd = MODE_10 | addr;
1004 index_addr(denali, (uint32_t)cmd, MAIN_ACCESS);
1006 #if DEBUG_DENALI
1007 spin_lock_irq(&denali->irq_lock);
1008 denali->irq_debug_array[denali->idx++] =
1009 0x60000000 | mtd->oobsize;
1010 denali->idx %= 32;
1011 spin_unlock_irq(&denali->irq_lock);
1012 #endif
1016 /* this function examines buffers to see if they contain data that
1017 * indicate that the buffer is part of an erased region of flash.
1019 bool is_erased(uint8_t *buf, int len)
1021 int i = 0;
1022 for (i = 0; i < len; i++)
1023 if (buf[i] != 0xFF)
1024 return false;
1025 return true;
1027 #define ECC_SECTOR_SIZE 512
1029 #define ECC_SECTOR(x) (((x) & ECC_ERROR_ADDRESS__SECTOR_NR) >> 12)
1030 #define ECC_BYTE(x) (((x) & ECC_ERROR_ADDRESS__OFFSET))
1031 #define ECC_CORRECTION_VALUE(x) ((x) & ERR_CORRECTION_INFO__BYTEMASK)
1032 #define ECC_ERROR_CORRECTABLE(x) (!((x) & ERR_CORRECTION_INFO))
1033 #define ECC_ERR_DEVICE(x) ((x) & ERR_CORRECTION_INFO__DEVICE_NR >> 8)
1034 #define ECC_LAST_ERR(x) ((x) & ERR_CORRECTION_INFO__LAST_ERR_INFO)
1036 static bool handle_ecc(struct denali_nand_info *denali, uint8_t *buf,
1037 uint8_t *oobbuf, uint32_t irq_status)
1039 bool check_erased_page = false;
1041 if (irq_status & INTR_STATUS0__ECC_ERR) {
1042 /* read the ECC errors. we'll ignore them for now */
1043 uint32_t err_address = 0, err_correction_info = 0;
1044 uint32_t err_byte = 0, err_sector = 0, err_device = 0;
1045 uint32_t err_correction_value = 0;
1047 do {
1048 err_address = ioread32(denali->flash_reg +
1049 ECC_ERROR_ADDRESS);
1050 err_sector = ECC_SECTOR(err_address);
1051 err_byte = ECC_BYTE(err_address);
1054 err_correction_info = ioread32(denali->flash_reg +
1055 ERR_CORRECTION_INFO);
1056 err_correction_value =
1057 ECC_CORRECTION_VALUE(err_correction_info);
1058 err_device = ECC_ERR_DEVICE(err_correction_info);
1060 if (ECC_ERROR_CORRECTABLE(err_correction_info)) {
1061 /* offset in our buffer is computed as:
1062 sector number * sector size + offset in
1063 sector
1065 int offset = err_sector * ECC_SECTOR_SIZE +
1066 err_byte;
1067 if (offset < denali->mtd.writesize) {
1068 /* correct the ECC error */
1069 buf[offset] ^= err_correction_value;
1070 denali->mtd.ecc_stats.corrected++;
1071 } else {
1072 /* bummer, couldn't correct the error */
1073 printk(KERN_ERR "ECC offset invalid\n");
1074 denali->mtd.ecc_stats.failed++;
1076 } else {
1077 /* if the error is not correctable, need to
1078 * look at the page to see if it is an erased
1079 * page. if so, then it's not a real ECC error
1080 * */
1081 check_erased_page = true;
1084 #if DEBUG_DENALI
1085 printk(KERN_INFO "Detected ECC error in page %d:"
1086 " err_addr = 0x%08x, info to fix is"
1087 " 0x%08x\n", denali->page, err_address,
1088 err_correction_info);
1089 #endif
1090 } while (!ECC_LAST_ERR(err_correction_info));
1092 return check_erased_page;
1095 /* programs the controller to either enable/disable DMA transfers */
1096 static void denali_enable_dma(struct denali_nand_info *denali, bool en)
1098 uint32_t reg_val = 0x0;
1100 if (en)
1101 reg_val = DMA_ENABLE__FLAG;
1103 denali_write32(reg_val, denali->flash_reg + DMA_ENABLE);
1104 ioread32(denali->flash_reg + DMA_ENABLE);
1107 /* setups the HW to perform the data DMA */
1108 static void denali_setup_dma(struct denali_nand_info *denali, int op)
1110 uint32_t mode = 0x0;
1111 const int page_count = 1;
1112 dma_addr_t addr = denali->buf.dma_buf;
1114 mode = MODE_10 | BANK(denali->flash_bank);
1116 /* DMA is a four step process */
1118 /* 1. setup transfer type and # of pages */
1119 index_addr(denali, mode | denali->page, 0x2000 | op | page_count);
1121 /* 2. set memory high address bits 23:8 */
1122 index_addr(denali, mode | ((uint16_t)(addr >> 16) << 8), 0x2200);
1124 /* 3. set memory low address bits 23:8 */
1125 index_addr(denali, mode | ((uint16_t)addr << 8), 0x2300);
1127 /* 4. interrupt when complete, burst len = 64 bytes*/
1128 index_addr(denali, mode | 0x14000, 0x2400);
1131 /* writes a page. user specifies type, and this function handles the
1132 configuration details. */
1133 static void write_page(struct mtd_info *mtd, struct nand_chip *chip,
1134 const uint8_t *buf, bool raw_xfer)
1136 struct denali_nand_info *denali = mtd_to_denali(mtd);
1137 struct pci_dev *pci_dev = denali->dev;
1139 dma_addr_t addr = denali->buf.dma_buf;
1140 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1142 uint32_t irq_status = 0;
1143 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP |
1144 INTR_STATUS0__PROGRAM_FAIL;
1146 /* if it is a raw xfer, we want to disable ecc, and send
1147 * the spare area.
1148 * !raw_xfer - enable ecc
1149 * raw_xfer - transfer spare
1151 setup_ecc_for_xfer(denali, !raw_xfer, raw_xfer);
1153 /* copy buffer into DMA buffer */
1154 memcpy(denali->buf.buf, buf, mtd->writesize);
1156 if (raw_xfer) {
1157 /* transfer the data to the spare area */
1158 memcpy(denali->buf.buf + mtd->writesize,
1159 chip->oob_poi,
1160 mtd->oobsize);
1163 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_TODEVICE);
1165 clear_interrupts(denali);
1166 denali_enable_dma(denali, true);
1168 denali_setup_dma(denali, DENALI_WRITE);
1170 /* wait for operation to complete */
1171 irq_status = wait_for_irq(denali, irq_mask);
1173 if (irq_status == 0) {
1174 printk(KERN_ERR "timeout on write_page"
1175 " (type = %d)\n", raw_xfer);
1176 denali->status =
1177 (irq_status & INTR_STATUS0__PROGRAM_FAIL) ?
1178 NAND_STATUS_FAIL : PASS;
1181 denali_enable_dma(denali, false);
1182 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_TODEVICE);
1185 /* NAND core entry points */
1187 /* this is the callback that the NAND core calls to write a page. Since
1188 writing a page with ECC or without is similar, all the work is done
1189 by write_page above. */
1190 static void denali_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1191 const uint8_t *buf)
1193 /* for regular page writes, we let HW handle all the ECC
1194 * data written to the device. */
1195 write_page(mtd, chip, buf, false);
1198 /* This is the callback that the NAND core calls to write a page without ECC.
1199 raw access is similiar to ECC page writes, so all the work is done in the
1200 write_page() function above.
1202 static void denali_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1203 const uint8_t *buf)
1205 /* for raw page writes, we want to disable ECC and simply write
1206 whatever data is in the buffer. */
1207 write_page(mtd, chip, buf, true);
1210 static int denali_write_oob(struct mtd_info *mtd, struct nand_chip *chip,
1211 int page)
1213 return write_oob_data(mtd, chip->oob_poi, page);
1216 static int denali_read_oob(struct mtd_info *mtd, struct nand_chip *chip,
1217 int page, int sndcmd)
1219 read_oob_data(mtd, chip->oob_poi, page);
1221 return 0; /* notify NAND core to send command to
1222 NAND device. */
1225 static int denali_read_page(struct mtd_info *mtd, struct nand_chip *chip,
1226 uint8_t *buf, int page)
1228 struct denali_nand_info *denali = mtd_to_denali(mtd);
1229 struct pci_dev *pci_dev = denali->dev;
1231 dma_addr_t addr = denali->buf.dma_buf;
1232 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1234 uint32_t irq_status = 0;
1235 uint32_t irq_mask = INTR_STATUS0__ECC_TRANSACTION_DONE |
1236 INTR_STATUS0__ECC_ERR;
1237 bool check_erased_page = false;
1239 setup_ecc_for_xfer(denali, true, false);
1241 denali_enable_dma(denali, true);
1242 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1244 clear_interrupts(denali);
1245 denali_setup_dma(denali, DENALI_READ);
1247 /* wait for operation to complete */
1248 irq_status = wait_for_irq(denali, irq_mask);
1250 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1252 memcpy(buf, denali->buf.buf, mtd->writesize);
1254 check_erased_page = handle_ecc(denali, buf, chip->oob_poi, irq_status);
1255 denali_enable_dma(denali, false);
1257 if (check_erased_page) {
1258 read_oob_data(&denali->mtd, chip->oob_poi, denali->page);
1260 /* check ECC failures that may have occurred on erased pages */
1261 if (check_erased_page) {
1262 if (!is_erased(buf, denali->mtd.writesize))
1263 denali->mtd.ecc_stats.failed++;
1264 if (!is_erased(buf, denali->mtd.oobsize))
1265 denali->mtd.ecc_stats.failed++;
1268 return 0;
1271 static int denali_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1272 uint8_t *buf, int page)
1274 struct denali_nand_info *denali = mtd_to_denali(mtd);
1275 struct pci_dev *pci_dev = denali->dev;
1277 dma_addr_t addr = denali->buf.dma_buf;
1278 size_t size = denali->mtd.writesize + denali->mtd.oobsize;
1280 uint32_t irq_status = 0;
1281 uint32_t irq_mask = INTR_STATUS0__DMA_CMD_COMP;
1283 setup_ecc_for_xfer(denali, false, true);
1284 denali_enable_dma(denali, true);
1286 pci_dma_sync_single_for_device(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1288 clear_interrupts(denali);
1289 denali_setup_dma(denali, DENALI_READ);
1291 /* wait for operation to complete */
1292 irq_status = wait_for_irq(denali, irq_mask);
1294 pci_dma_sync_single_for_cpu(pci_dev, addr, size, PCI_DMA_FROMDEVICE);
1296 denali_enable_dma(denali, false);
1298 memcpy(buf, denali->buf.buf, mtd->writesize);
1299 memcpy(chip->oob_poi, denali->buf.buf + mtd->writesize, mtd->oobsize);
1301 return 0;
1304 static uint8_t denali_read_byte(struct mtd_info *mtd)
1306 struct denali_nand_info *denali = mtd_to_denali(mtd);
1307 uint8_t result = 0xff;
1309 if (denali->buf.head < denali->buf.tail)
1310 result = denali->buf.buf[denali->buf.head++];
1312 #if DEBUG_DENALI
1313 printk(KERN_INFO "read byte -> 0x%02x\n", result);
1314 #endif
1315 return result;
1318 static void denali_select_chip(struct mtd_info *mtd, int chip)
1320 struct denali_nand_info *denali = mtd_to_denali(mtd);
1321 #if DEBUG_DENALI
1322 printk(KERN_INFO "denali select chip %d\n", chip);
1323 #endif
1324 spin_lock_irq(&denali->irq_lock);
1325 denali->flash_bank = chip;
1326 spin_unlock_irq(&denali->irq_lock);
1329 static int denali_waitfunc(struct mtd_info *mtd, struct nand_chip *chip)
1331 struct denali_nand_info *denali = mtd_to_denali(mtd);
1332 int status = denali->status;
1333 denali->status = 0;
1335 #if DEBUG_DENALI
1336 printk(KERN_INFO "waitfunc %d\n", status);
1337 #endif
1338 return status;
1341 static void denali_erase(struct mtd_info *mtd, int page)
1343 struct denali_nand_info *denali = mtd_to_denali(mtd);
1345 uint32_t cmd = 0x0, irq_status = 0;
1347 #if DEBUG_DENALI
1348 printk(KERN_INFO "erase page: %d\n", page);
1349 #endif
1350 /* clear interrupts */
1351 clear_interrupts(denali);
1353 /* setup page read request for access type */
1354 cmd = MODE_10 | BANK(denali->flash_bank) | page;
1355 index_addr(denali, (uint32_t)cmd, 0x1);
1357 /* wait for erase to complete or failure to occur */
1358 irq_status = wait_for_irq(denali, INTR_STATUS0__ERASE_COMP |
1359 INTR_STATUS0__ERASE_FAIL);
1361 denali->status = (irq_status & INTR_STATUS0__ERASE_FAIL) ?
1362 NAND_STATUS_FAIL : PASS;
1365 static void denali_cmdfunc(struct mtd_info *mtd, unsigned int cmd, int col,
1366 int page)
1368 struct denali_nand_info *denali = mtd_to_denali(mtd);
1369 uint32_t addr, id;
1370 int i;
1372 #if DEBUG_DENALI
1373 printk(KERN_INFO "cmdfunc: 0x%x %d %d\n", cmd, col, page);
1374 #endif
1375 switch (cmd) {
1376 case NAND_CMD_PAGEPROG:
1377 break;
1378 case NAND_CMD_STATUS:
1379 read_status(denali);
1380 break;
1381 case NAND_CMD_READID:
1382 reset_buf(denali);
1383 /*sometimes ManufactureId read from register is not right
1384 * e.g. some of Micron MT29F32G08QAA MLC NAND chips
1385 * So here we send READID cmd to NAND insteand
1386 * */
1387 addr = (uint32_t)MODE_11 | BANK(denali->flash_bank);
1388 index_addr(denali, (uint32_t)addr | 0, 0x90);
1389 index_addr(denali, (uint32_t)addr | 1, 0);
1390 for (i = 0; i < 5; i++) {
1391 index_addr_read_data(denali,
1392 (uint32_t)addr | 2,
1393 &id);
1394 write_byte_to_buf(denali, id);
1396 break;
1397 case NAND_CMD_READ0:
1398 case NAND_CMD_SEQIN:
1399 denali->page = page;
1400 break;
1401 case NAND_CMD_RESET:
1402 reset_bank(denali);
1403 break;
1404 case NAND_CMD_READOOB:
1405 /* TODO: Read OOB data */
1406 break;
1407 default:
1408 printk(KERN_ERR ": unsupported command"
1409 " received 0x%x\n", cmd);
1410 break;
1414 /* stubs for ECC functions not used by the NAND core */
1415 static int denali_ecc_calculate(struct mtd_info *mtd, const uint8_t *data,
1416 uint8_t *ecc_code)
1418 printk(KERN_ERR "denali_ecc_calculate called unexpectedly\n");
1419 BUG();
1420 return -EIO;
1423 static int denali_ecc_correct(struct mtd_info *mtd, uint8_t *data,
1424 uint8_t *read_ecc, uint8_t *calc_ecc)
1426 printk(KERN_ERR "denali_ecc_correct called unexpectedly\n");
1427 BUG();
1428 return -EIO;
1431 static void denali_ecc_hwctl(struct mtd_info *mtd, int mode)
1433 printk(KERN_ERR "denali_ecc_hwctl called unexpectedly\n");
1434 BUG();
1436 /* end NAND core entry points */
1438 /* Initialization code to bring the device up to a known good state */
1439 static void denali_hw_init(struct denali_nand_info *denali)
1441 /* tell driver how many bit controller will skip before
1442 * writing ECC code in OOB, this register may be already
1443 * set by firmware. So we read this value out.
1444 * if this value is 0, just let it be.
1445 * */
1446 denali->bbtskipbytes = ioread32(denali->flash_reg +
1447 SPARE_AREA_SKIP_BYTES);
1448 denali_irq_init(denali);
1449 denali_nand_reset(denali);
1450 denali_write32(0x0F, denali->flash_reg + RB_PIN_ENABLED);
1451 denali_write32(CHIP_EN_DONT_CARE__FLAG,
1452 denali->flash_reg + CHIP_ENABLE_DONT_CARE);
1454 denali_write32(0x0, denali->flash_reg + SPARE_AREA_SKIP_BYTES);
1455 denali_write32(0xffff, denali->flash_reg + SPARE_AREA_MARKER);
1457 /* Should set value for these registers when init */
1458 denali_write32(0, denali->flash_reg + TWO_ROW_ADDR_CYCLES);
1459 denali_write32(1, denali->flash_reg + ECC_ENABLE);
1462 /* Althogh controller spec said SLC ECC is forceb to be 4bit,
1463 * but denali controller in MRST only support 15bit and 8bit ECC
1464 * correction
1465 * */
1466 #define ECC_8BITS 14
1467 static struct nand_ecclayout nand_8bit_oob = {
1468 .eccbytes = 14,
1471 #define ECC_15BITS 26
1472 static struct nand_ecclayout nand_15bit_oob = {
1473 .eccbytes = 26,
1476 static uint8_t bbt_pattern[] = {'B', 'b', 't', '0' };
1477 static uint8_t mirror_pattern[] = {'1', 't', 'b', 'B' };
1479 static struct nand_bbt_descr bbt_main_descr = {
1480 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1481 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1482 .offs = 8,
1483 .len = 4,
1484 .veroffs = 12,
1485 .maxblocks = 4,
1486 .pattern = bbt_pattern,
1489 static struct nand_bbt_descr bbt_mirror_descr = {
1490 .options = NAND_BBT_LASTBLOCK | NAND_BBT_CREATE | NAND_BBT_WRITE
1491 | NAND_BBT_2BIT | NAND_BBT_VERSION | NAND_BBT_PERCHIP,
1492 .offs = 8,
1493 .len = 4,
1494 .veroffs = 12,
1495 .maxblocks = 4,
1496 .pattern = mirror_pattern,
1499 /* initialize driver data structures */
1500 void denali_drv_init(struct denali_nand_info *denali)
1502 denali->idx = 0;
1504 /* setup interrupt handler */
1505 /* the completion object will be used to notify
1506 * the callee that the interrupt is done */
1507 init_completion(&denali->complete);
1509 /* the spinlock will be used to synchronize the ISR
1510 * with any element that might be access shared
1511 * data (interrupt status) */
1512 spin_lock_init(&denali->irq_lock);
1514 /* indicate that MTD has not selected a valid bank yet */
1515 denali->flash_bank = CHIP_SELECT_INVALID;
1517 /* initialize our irq_status variable to indicate no interrupts */
1518 denali->irq_status = 0;
1521 /* driver entry point */
1522 static int denali_pci_probe(struct pci_dev *dev, const struct pci_device_id *id)
1524 int ret = -ENODEV;
1525 resource_size_t csr_base, mem_base;
1526 unsigned long csr_len, mem_len;
1527 struct denali_nand_info *denali;
1529 nand_dbg_print(NAND_DBG_TRACE, "%s, Line %d, Function: %s\n",
1530 __FILE__, __LINE__, __func__);
1532 denali = kzalloc(sizeof(*denali), GFP_KERNEL);
1533 if (!denali)
1534 return -ENOMEM;
1536 ret = pci_enable_device(dev);
1537 if (ret) {
1538 printk(KERN_ERR "Spectra: pci_enable_device failed.\n");
1539 goto failed_alloc_memery;
1542 if (id->driver_data == INTEL_CE4100) {
1543 /* Due to a silicon limitation, we can only support
1544 * ONFI timing mode 1 and below.
1546 if (onfi_timing_mode < -1 || onfi_timing_mode > 1) {
1547 printk(KERN_ERR "Intel CE4100 only supports"
1548 " ONFI timing mode 1 or below\n");
1549 ret = -EINVAL;
1550 goto failed_enable_dev;
1552 denali->platform = INTEL_CE4100;
1553 mem_base = pci_resource_start(dev, 0);
1554 mem_len = pci_resource_len(dev, 1);
1555 csr_base = pci_resource_start(dev, 1);
1556 csr_len = pci_resource_len(dev, 1);
1557 } else {
1558 denali->platform = INTEL_MRST;
1559 csr_base = pci_resource_start(dev, 0);
1560 csr_len = pci_resource_len(dev, 0);
1561 mem_base = pci_resource_start(dev, 1);
1562 mem_len = pci_resource_len(dev, 1);
1563 if (!mem_len) {
1564 mem_base = csr_base + csr_len;
1565 mem_len = csr_len;
1566 nand_dbg_print(NAND_DBG_WARN,
1567 "Spectra: No second"
1568 " BAR for PCI device;"
1569 " assuming %08Lx\n",
1570 (uint64_t)csr_base);
1574 /* Is 32-bit DMA supported? */
1575 ret = pci_set_dma_mask(dev, DMA_BIT_MASK(32));
1577 if (ret) {
1578 printk(KERN_ERR "Spectra: no usable DMA configuration\n");
1579 goto failed_enable_dev;
1581 denali->buf.dma_buf =
1582 pci_map_single(dev, denali->buf.buf,
1583 DENALI_BUF_SIZE,
1584 PCI_DMA_BIDIRECTIONAL);
1586 if (pci_dma_mapping_error(dev, denali->buf.dma_buf)) {
1587 printk(KERN_ERR "Spectra: failed to map DMA buffer\n");
1588 goto failed_enable_dev;
1591 pci_set_master(dev);
1592 denali->dev = dev;
1594 ret = pci_request_regions(dev, DENALI_NAND_NAME);
1595 if (ret) {
1596 printk(KERN_ERR "Spectra: Unable to request memory regions\n");
1597 goto failed_dma_map;
1600 denali->flash_reg = ioremap_nocache(csr_base, csr_len);
1601 if (!denali->flash_reg) {
1602 printk(KERN_ERR "Spectra: Unable to remap memory region\n");
1603 ret = -ENOMEM;
1604 goto failed_req_regions;
1606 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: CSR 0x%08Lx -> 0x%p (0x%lx)\n",
1607 (uint64_t)csr_base, denali->flash_reg, csr_len);
1609 denali->flash_mem = ioremap_nocache(mem_base, mem_len);
1610 if (!denali->flash_mem) {
1611 printk(KERN_ERR "Spectra: ioremap_nocache failed!");
1612 ret = -ENOMEM;
1613 goto failed_remap_reg;
1616 nand_dbg_print(NAND_DBG_WARN,
1617 "Spectra: Remapped flash base address: "
1618 "0x%p, len: %ld\n",
1619 denali->flash_mem, csr_len);
1621 denali_hw_init(denali);
1622 denali_drv_init(denali);
1624 nand_dbg_print(NAND_DBG_DEBUG, "Spectra: IRQ %d\n", dev->irq);
1625 if (request_irq(dev->irq, denali_isr, IRQF_SHARED,
1626 DENALI_NAND_NAME, denali)) {
1627 printk(KERN_ERR "Spectra: Unable to allocate IRQ\n");
1628 ret = -ENODEV;
1629 goto failed_remap_mem;
1632 /* now that our ISR is registered, we can enable interrupts */
1633 denali_set_intr_modes(denali, true);
1635 pci_set_drvdata(dev, denali);
1637 denali_nand_timing_set(denali);
1639 nand_dbg_print(NAND_DBG_DEBUG, "Dump timing register values:"
1640 "acc_clks: %d, re_2_we: %d, we_2_re: %d,"
1641 "addr_2_data: %d, rdwr_en_lo_cnt: %d, "
1642 "rdwr_en_hi_cnt: %d, cs_setup_cnt: %d\n",
1643 ioread32(denali->flash_reg + ACC_CLKS),
1644 ioread32(denali->flash_reg + RE_2_WE),
1645 ioread32(denali->flash_reg + WE_2_RE),
1646 ioread32(denali->flash_reg + ADDR_2_DATA),
1647 ioread32(denali->flash_reg + RDWR_EN_LO_CNT),
1648 ioread32(denali->flash_reg + RDWR_EN_HI_CNT),
1649 ioread32(denali->flash_reg + CS_SETUP_CNT));
1651 denali->mtd.name = "Denali NAND";
1652 denali->mtd.owner = THIS_MODULE;
1653 denali->mtd.priv = &denali->nand;
1655 /* register the driver with the NAND core subsystem */
1656 denali->nand.select_chip = denali_select_chip;
1657 denali->nand.cmdfunc = denali_cmdfunc;
1658 denali->nand.read_byte = denali_read_byte;
1659 denali->nand.waitfunc = denali_waitfunc;
1661 /* scan for NAND devices attached to the controller
1662 * this is the first stage in a two step process to register
1663 * with the nand subsystem */
1664 if (nand_scan_ident(&denali->mtd, LLD_MAX_FLASH_BANKS, NULL)) {
1665 ret = -ENXIO;
1666 goto failed_req_irq;
1669 /* MTD supported page sizes vary by kernel. We validate our
1670 * kernel supports the device here.
1672 if (denali->mtd.writesize > NAND_MAX_PAGESIZE + NAND_MAX_OOBSIZE) {
1673 ret = -ENODEV;
1674 printk(KERN_ERR "Spectra: device size not supported by this "
1675 "version of MTD.");
1676 goto failed_req_irq;
1679 /* support for multi nand
1680 * MTD known nothing about multi nand,
1681 * so we should tell it the real pagesize
1682 * and anything necessery
1684 denali->devnum = ioread32(denali->flash_reg + DEVICES_CONNECTED);
1685 denali->nand.chipsize <<= (denali->devnum - 1);
1686 denali->nand.page_shift += (denali->devnum - 1);
1687 denali->nand.pagemask = (denali->nand.chipsize >>
1688 denali->nand.page_shift) - 1;
1689 denali->nand.bbt_erase_shift += (denali->devnum - 1);
1690 denali->nand.phys_erase_shift = denali->nand.bbt_erase_shift;
1691 denali->nand.chip_shift += (denali->devnum - 1);
1692 denali->mtd.writesize <<= (denali->devnum - 1);
1693 denali->mtd.oobsize <<= (denali->devnum - 1);
1694 denali->mtd.erasesize <<= (denali->devnum - 1);
1695 denali->mtd.size = denali->nand.numchips * denali->nand.chipsize;
1696 denali->bbtskipbytes *= denali->devnum;
1698 /* second stage of the NAND scan
1699 * this stage requires information regarding ECC and
1700 * bad block management. */
1702 /* Bad block management */
1703 denali->nand.bbt_td = &bbt_main_descr;
1704 denali->nand.bbt_md = &bbt_mirror_descr;
1706 /* skip the scan for now until we have OOB read and write support */
1707 denali->nand.options |= NAND_USE_FLASH_BBT | NAND_SKIP_BBTSCAN;
1708 denali->nand.ecc.mode = NAND_ECC_HW_SYNDROME;
1710 /* Denali Controller only support 15bit and 8bit ECC in MRST,
1711 * so just let controller do 15bit ECC for MLC and 8bit ECC for
1712 * SLC if possible.
1713 * */
1714 if (denali->nand.cellinfo & 0xc &&
1715 (denali->mtd.oobsize > (denali->bbtskipbytes +
1716 ECC_15BITS * (denali->mtd.writesize /
1717 ECC_SECTOR_SIZE)))) {
1718 /* if MLC OOB size is large enough, use 15bit ECC*/
1719 denali->nand.ecc.layout = &nand_15bit_oob;
1720 denali->nand.ecc.bytes = ECC_15BITS;
1721 denali_write32(15, denali->flash_reg + ECC_CORRECTION);
1722 } else if (denali->mtd.oobsize < (denali->bbtskipbytes +
1723 ECC_8BITS * (denali->mtd.writesize /
1724 ECC_SECTOR_SIZE))) {
1725 printk(KERN_ERR "Your NAND chip OOB is not large enough to"
1726 " contain 8bit ECC correction codes");
1727 goto failed_req_irq;
1728 } else {
1729 denali->nand.ecc.layout = &nand_8bit_oob;
1730 denali->nand.ecc.bytes = ECC_8BITS;
1731 denali_write32(8, denali->flash_reg + ECC_CORRECTION);
1734 denali->nand.ecc.bytes *= denali->devnum;
1735 denali->nand.ecc.layout->eccbytes *=
1736 denali->mtd.writesize / ECC_SECTOR_SIZE;
1737 denali->nand.ecc.layout->oobfree[0].offset =
1738 denali->bbtskipbytes + denali->nand.ecc.layout->eccbytes;
1739 denali->nand.ecc.layout->oobfree[0].length =
1740 denali->mtd.oobsize - denali->nand.ecc.layout->eccbytes -
1741 denali->bbtskipbytes;
1743 /* Let driver know the total blocks number and
1744 * how many blocks contained by each nand chip.
1745 * blksperchip will help driver to know how many
1746 * blocks is taken by FW.
1747 * */
1748 denali->totalblks = denali->mtd.size >>
1749 denali->nand.phys_erase_shift;
1750 denali->blksperchip = denali->totalblks / denali->nand.numchips;
1752 /* These functions are required by the NAND core framework, otherwise,
1753 * the NAND core will assert. However, we don't need them, so we'll stub
1754 * them out. */
1755 denali->nand.ecc.calculate = denali_ecc_calculate;
1756 denali->nand.ecc.correct = denali_ecc_correct;
1757 denali->nand.ecc.hwctl = denali_ecc_hwctl;
1759 /* override the default read operations */
1760 denali->nand.ecc.size = ECC_SECTOR_SIZE * denali->devnum;
1761 denali->nand.ecc.read_page = denali_read_page;
1762 denali->nand.ecc.read_page_raw = denali_read_page_raw;
1763 denali->nand.ecc.write_page = denali_write_page;
1764 denali->nand.ecc.write_page_raw = denali_write_page_raw;
1765 denali->nand.ecc.read_oob = denali_read_oob;
1766 denali->nand.ecc.write_oob = denali_write_oob;
1767 denali->nand.erase_cmd = denali_erase;
1769 if (nand_scan_tail(&denali->mtd)) {
1770 ret = -ENXIO;
1771 goto failed_req_irq;
1774 ret = add_mtd_device(&denali->mtd);
1775 if (ret) {
1776 printk(KERN_ERR "Spectra: Failed to register"
1777 " MTD device: %d\n", ret);
1778 goto failed_req_irq;
1780 return 0;
1782 failed_req_irq:
1783 denali_irq_cleanup(dev->irq, denali);
1784 failed_remap_mem:
1785 iounmap(denali->flash_mem);
1786 failed_remap_reg:
1787 iounmap(denali->flash_reg);
1788 failed_req_regions:
1789 pci_release_regions(dev);
1790 failed_dma_map:
1791 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1792 PCI_DMA_BIDIRECTIONAL);
1793 failed_enable_dev:
1794 pci_disable_device(dev);
1795 failed_alloc_memery:
1796 kfree(denali);
1797 return ret;
1800 /* driver exit point */
1801 static void denali_pci_remove(struct pci_dev *dev)
1803 struct denali_nand_info *denali = pci_get_drvdata(dev);
1805 nand_dbg_print(NAND_DBG_WARN, "%s, Line %d, Function: %s\n",
1806 __FILE__, __LINE__, __func__);
1808 nand_release(&denali->mtd);
1809 del_mtd_device(&denali->mtd);
1811 denali_irq_cleanup(dev->irq, denali);
1813 iounmap(denali->flash_reg);
1814 iounmap(denali->flash_mem);
1815 pci_release_regions(dev);
1816 pci_disable_device(dev);
1817 pci_unmap_single(dev, denali->buf.dma_buf, DENALI_BUF_SIZE,
1818 PCI_DMA_BIDIRECTIONAL);
1819 pci_set_drvdata(dev, NULL);
1820 kfree(denali);
1823 MODULE_DEVICE_TABLE(pci, denali_pci_ids);
1825 static struct pci_driver denali_pci_driver = {
1826 .name = DENALI_NAND_NAME,
1827 .id_table = denali_pci_ids,
1828 .probe = denali_pci_probe,
1829 .remove = denali_pci_remove,
1832 static int __devinit denali_init(void)
1834 printk(KERN_INFO "Spectra MTD driver built on %s @ %s\n",
1835 __DATE__, __TIME__);
1836 return pci_register_driver(&denali_pci_driver);
1839 /* Free memory */
1840 static void __devexit denali_exit(void)
1842 pci_unregister_driver(&denali_pci_driver);
1845 module_init(denali_init);
1846 module_exit(denali_exit);