KVM: Move kvm_exit tracepoint rip reading inside tracepoint
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / kvm / vmx.c
blob3dbfc20824b72a9c37e8eee900c217588f6ef234
1 /*
2 * Kernel-based Virtual Machine driver for Linux
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
7 * Copyright (C) 2006 Qumranet, Inc.
9 * Authors:
10 * Avi Kivity <avi@qumranet.com>
11 * Yaniv Kamay <yaniv@qumranet.com>
13 * This work is licensed under the terms of the GNU GPL, version 2. See
14 * the COPYING file in the top-level directory.
18 #include "irq.h"
19 #include "mmu.h"
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/kernel.h>
24 #include <linux/mm.h>
25 #include <linux/highmem.h>
26 #include <linux/sched.h>
27 #include <linux/moduleparam.h>
28 #include <linux/ftrace_event.h>
29 #include <linux/slab.h>
30 #include "kvm_cache_regs.h"
31 #include "x86.h"
33 #include <asm/io.h>
34 #include <asm/desc.h>
35 #include <asm/vmx.h>
36 #include <asm/virtext.h>
37 #include <asm/mce.h>
39 #include "trace.h"
41 #define __ex(x) __kvm_handle_fault_on_reboot(x)
43 MODULE_AUTHOR("Qumranet");
44 MODULE_LICENSE("GPL");
46 static int __read_mostly bypass_guest_pf = 1;
47 module_param(bypass_guest_pf, bool, S_IRUGO);
49 static int __read_mostly enable_vpid = 1;
50 module_param_named(vpid, enable_vpid, bool, 0444);
52 static int __read_mostly flexpriority_enabled = 1;
53 module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
55 static int __read_mostly enable_ept = 1;
56 module_param_named(ept, enable_ept, bool, S_IRUGO);
58 static int __read_mostly enable_unrestricted_guest = 1;
59 module_param_named(unrestricted_guest,
60 enable_unrestricted_guest, bool, S_IRUGO);
62 static int __read_mostly emulate_invalid_guest_state = 0;
63 module_param(emulate_invalid_guest_state, bool, S_IRUGO);
65 #define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
66 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
67 #define KVM_GUEST_CR0_MASK \
68 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
69 #define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
70 (X86_CR0_WP | X86_CR0_NE)
71 #define KVM_VM_CR0_ALWAYS_ON \
72 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
73 #define KVM_CR4_GUEST_OWNED_BITS \
74 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
75 | X86_CR4_OSXMMEXCPT)
77 #define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
78 #define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
80 #define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
83 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
84 * ple_gap: upper bound on the amount of time between two successive
85 * executions of PAUSE in a loop. Also indicate if ple enabled.
86 * According to test, this time is usually small than 41 cycles.
87 * ple_window: upper bound on the amount of time a guest is allowed to execute
88 * in a PAUSE loop. Tests indicate that most spinlocks are held for
89 * less than 2^12 cycles
90 * Time is measured based on a counter that runs at the same rate as the TSC,
91 * refer SDM volume 3b section 21.6.13 & 22.1.3.
93 #define KVM_VMX_DEFAULT_PLE_GAP 41
94 #define KVM_VMX_DEFAULT_PLE_WINDOW 4096
95 static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
96 module_param(ple_gap, int, S_IRUGO);
98 static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
99 module_param(ple_window, int, S_IRUGO);
101 struct vmcs {
102 u32 revision_id;
103 u32 abort;
104 char data[0];
107 struct shared_msr_entry {
108 unsigned index;
109 u64 data;
110 u64 mask;
113 struct vcpu_vmx {
114 struct kvm_vcpu vcpu;
115 struct list_head local_vcpus_link;
116 unsigned long host_rsp;
117 int launched;
118 u8 fail;
119 u32 idt_vectoring_info;
120 struct shared_msr_entry *guest_msrs;
121 int nmsrs;
122 int save_nmsrs;
123 #ifdef CONFIG_X86_64
124 u64 msr_host_kernel_gs_base;
125 u64 msr_guest_kernel_gs_base;
126 #endif
127 struct vmcs *vmcs;
128 struct {
129 int loaded;
130 u16 fs_sel, gs_sel, ldt_sel;
131 int gs_ldt_reload_needed;
132 int fs_reload_needed;
133 } host_state;
134 struct {
135 int vm86_active;
136 ulong save_rflags;
137 struct kvm_save_segment {
138 u16 selector;
139 unsigned long base;
140 u32 limit;
141 u32 ar;
142 } tr, es, ds, fs, gs;
143 struct {
144 bool pending;
145 u8 vector;
146 unsigned rip;
147 } irq;
148 } rmode;
149 int vpid;
150 bool emulation_required;
152 /* Support for vnmi-less CPUs */
153 int soft_vnmi_blocked;
154 ktime_t entry_time;
155 s64 vnmi_blocked_time;
156 u32 exit_reason;
158 bool rdtscp_enabled;
161 static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
163 return container_of(vcpu, struct vcpu_vmx, vcpu);
166 static int init_rmode(struct kvm *kvm);
167 static u64 construct_eptp(unsigned long root_hpa);
169 static DEFINE_PER_CPU(struct vmcs *, vmxarea);
170 static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
171 static DEFINE_PER_CPU(struct list_head, vcpus_on_cpu);
173 static unsigned long *vmx_io_bitmap_a;
174 static unsigned long *vmx_io_bitmap_b;
175 static unsigned long *vmx_msr_bitmap_legacy;
176 static unsigned long *vmx_msr_bitmap_longmode;
178 static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
179 static DEFINE_SPINLOCK(vmx_vpid_lock);
181 static struct vmcs_config {
182 int size;
183 int order;
184 u32 revision_id;
185 u32 pin_based_exec_ctrl;
186 u32 cpu_based_exec_ctrl;
187 u32 cpu_based_2nd_exec_ctrl;
188 u32 vmexit_ctrl;
189 u32 vmentry_ctrl;
190 } vmcs_config;
192 static struct vmx_capability {
193 u32 ept;
194 u32 vpid;
195 } vmx_capability;
197 #define VMX_SEGMENT_FIELD(seg) \
198 [VCPU_SREG_##seg] = { \
199 .selector = GUEST_##seg##_SELECTOR, \
200 .base = GUEST_##seg##_BASE, \
201 .limit = GUEST_##seg##_LIMIT, \
202 .ar_bytes = GUEST_##seg##_AR_BYTES, \
205 static struct kvm_vmx_segment_field {
206 unsigned selector;
207 unsigned base;
208 unsigned limit;
209 unsigned ar_bytes;
210 } kvm_vmx_segment_fields[] = {
211 VMX_SEGMENT_FIELD(CS),
212 VMX_SEGMENT_FIELD(DS),
213 VMX_SEGMENT_FIELD(ES),
214 VMX_SEGMENT_FIELD(FS),
215 VMX_SEGMENT_FIELD(GS),
216 VMX_SEGMENT_FIELD(SS),
217 VMX_SEGMENT_FIELD(TR),
218 VMX_SEGMENT_FIELD(LDTR),
221 static u64 host_efer;
223 static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
226 * Keep MSR_K6_STAR at the end, as setup_msrs() will try to optimize it
227 * away by decrementing the array size.
229 static const u32 vmx_msr_index[] = {
230 #ifdef CONFIG_X86_64
231 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
232 #endif
233 MSR_EFER, MSR_TSC_AUX, MSR_K6_STAR,
235 #define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
237 static inline int is_page_fault(u32 intr_info)
239 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
240 INTR_INFO_VALID_MASK)) ==
241 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
244 static inline int is_no_device(u32 intr_info)
246 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
247 INTR_INFO_VALID_MASK)) ==
248 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
251 static inline int is_invalid_opcode(u32 intr_info)
253 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
254 INTR_INFO_VALID_MASK)) ==
255 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
258 static inline int is_external_interrupt(u32 intr_info)
260 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
261 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
264 static inline int is_machine_check(u32 intr_info)
266 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
267 INTR_INFO_VALID_MASK)) ==
268 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
271 static inline int cpu_has_vmx_msr_bitmap(void)
273 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
276 static inline int cpu_has_vmx_tpr_shadow(void)
278 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
281 static inline int vm_need_tpr_shadow(struct kvm *kvm)
283 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
286 static inline int cpu_has_secondary_exec_ctrls(void)
288 return vmcs_config.cpu_based_exec_ctrl &
289 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
292 static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
294 return vmcs_config.cpu_based_2nd_exec_ctrl &
295 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
298 static inline bool cpu_has_vmx_flexpriority(void)
300 return cpu_has_vmx_tpr_shadow() &&
301 cpu_has_vmx_virtualize_apic_accesses();
304 static inline bool cpu_has_vmx_ept_execute_only(void)
306 return !!(vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT);
309 static inline bool cpu_has_vmx_eptp_uncacheable(void)
311 return !!(vmx_capability.ept & VMX_EPTP_UC_BIT);
314 static inline bool cpu_has_vmx_eptp_writeback(void)
316 return !!(vmx_capability.ept & VMX_EPTP_WB_BIT);
319 static inline bool cpu_has_vmx_ept_2m_page(void)
321 return !!(vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT);
324 static inline bool cpu_has_vmx_ept_1g_page(void)
326 return !!(vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT);
329 static inline int cpu_has_vmx_invept_individual_addr(void)
331 return !!(vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT);
334 static inline int cpu_has_vmx_invept_context(void)
336 return !!(vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT);
339 static inline int cpu_has_vmx_invept_global(void)
341 return !!(vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT);
344 static inline int cpu_has_vmx_ept(void)
346 return vmcs_config.cpu_based_2nd_exec_ctrl &
347 SECONDARY_EXEC_ENABLE_EPT;
350 static inline int cpu_has_vmx_unrestricted_guest(void)
352 return vmcs_config.cpu_based_2nd_exec_ctrl &
353 SECONDARY_EXEC_UNRESTRICTED_GUEST;
356 static inline int cpu_has_vmx_ple(void)
358 return vmcs_config.cpu_based_2nd_exec_ctrl &
359 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
362 static inline int vm_need_virtualize_apic_accesses(struct kvm *kvm)
364 return flexpriority_enabled && irqchip_in_kernel(kvm);
367 static inline int cpu_has_vmx_vpid(void)
369 return vmcs_config.cpu_based_2nd_exec_ctrl &
370 SECONDARY_EXEC_ENABLE_VPID;
373 static inline int cpu_has_vmx_rdtscp(void)
375 return vmcs_config.cpu_based_2nd_exec_ctrl &
376 SECONDARY_EXEC_RDTSCP;
379 static inline int cpu_has_virtual_nmis(void)
381 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
384 static inline bool report_flexpriority(void)
386 return flexpriority_enabled;
389 static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
391 int i;
393 for (i = 0; i < vmx->nmsrs; ++i)
394 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
395 return i;
396 return -1;
399 static inline void __invvpid(int ext, u16 vpid, gva_t gva)
401 struct {
402 u64 vpid : 16;
403 u64 rsvd : 48;
404 u64 gva;
405 } operand = { vpid, 0, gva };
407 asm volatile (__ex(ASM_VMX_INVVPID)
408 /* CF==1 or ZF==1 --> rc = -1 */
409 "; ja 1f ; ud2 ; 1:"
410 : : "a"(&operand), "c"(ext) : "cc", "memory");
413 static inline void __invept(int ext, u64 eptp, gpa_t gpa)
415 struct {
416 u64 eptp, gpa;
417 } operand = {eptp, gpa};
419 asm volatile (__ex(ASM_VMX_INVEPT)
420 /* CF==1 or ZF==1 --> rc = -1 */
421 "; ja 1f ; ud2 ; 1:\n"
422 : : "a" (&operand), "c" (ext) : "cc", "memory");
425 static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
427 int i;
429 i = __find_msr_index(vmx, msr);
430 if (i >= 0)
431 return &vmx->guest_msrs[i];
432 return NULL;
435 static void vmcs_clear(struct vmcs *vmcs)
437 u64 phys_addr = __pa(vmcs);
438 u8 error;
440 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
441 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
442 : "cc", "memory");
443 if (error)
444 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
445 vmcs, phys_addr);
448 static void __vcpu_clear(void *arg)
450 struct vcpu_vmx *vmx = arg;
451 int cpu = raw_smp_processor_id();
453 if (vmx->vcpu.cpu == cpu)
454 vmcs_clear(vmx->vmcs);
455 if (per_cpu(current_vmcs, cpu) == vmx->vmcs)
456 per_cpu(current_vmcs, cpu) = NULL;
457 rdtscll(vmx->vcpu.arch.host_tsc);
458 list_del(&vmx->local_vcpus_link);
459 vmx->vcpu.cpu = -1;
460 vmx->launched = 0;
463 static void vcpu_clear(struct vcpu_vmx *vmx)
465 if (vmx->vcpu.cpu == -1)
466 return;
467 smp_call_function_single(vmx->vcpu.cpu, __vcpu_clear, vmx, 1);
470 static inline void vpid_sync_vcpu_all(struct vcpu_vmx *vmx)
472 if (vmx->vpid == 0)
473 return;
475 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
478 static inline void ept_sync_global(void)
480 if (cpu_has_vmx_invept_global())
481 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
484 static inline void ept_sync_context(u64 eptp)
486 if (enable_ept) {
487 if (cpu_has_vmx_invept_context())
488 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
489 else
490 ept_sync_global();
494 static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
496 if (enable_ept) {
497 if (cpu_has_vmx_invept_individual_addr())
498 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
499 eptp, gpa);
500 else
501 ept_sync_context(eptp);
505 static unsigned long vmcs_readl(unsigned long field)
507 unsigned long value;
509 asm volatile (__ex(ASM_VMX_VMREAD_RDX_RAX)
510 : "=a"(value) : "d"(field) : "cc");
511 return value;
514 static u16 vmcs_read16(unsigned long field)
516 return vmcs_readl(field);
519 static u32 vmcs_read32(unsigned long field)
521 return vmcs_readl(field);
524 static u64 vmcs_read64(unsigned long field)
526 #ifdef CONFIG_X86_64
527 return vmcs_readl(field);
528 #else
529 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
530 #endif
533 static noinline void vmwrite_error(unsigned long field, unsigned long value)
535 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
536 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
537 dump_stack();
540 static void vmcs_writel(unsigned long field, unsigned long value)
542 u8 error;
544 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
545 : "=q"(error) : "a"(value), "d"(field) : "cc");
546 if (unlikely(error))
547 vmwrite_error(field, value);
550 static void vmcs_write16(unsigned long field, u16 value)
552 vmcs_writel(field, value);
555 static void vmcs_write32(unsigned long field, u32 value)
557 vmcs_writel(field, value);
560 static void vmcs_write64(unsigned long field, u64 value)
562 vmcs_writel(field, value);
563 #ifndef CONFIG_X86_64
564 asm volatile ("");
565 vmcs_writel(field+1, value >> 32);
566 #endif
569 static void vmcs_clear_bits(unsigned long field, u32 mask)
571 vmcs_writel(field, vmcs_readl(field) & ~mask);
574 static void vmcs_set_bits(unsigned long field, u32 mask)
576 vmcs_writel(field, vmcs_readl(field) | mask);
579 static void update_exception_bitmap(struct kvm_vcpu *vcpu)
581 u32 eb;
583 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
584 (1u << NM_VECTOR) | (1u << DB_VECTOR);
585 if ((vcpu->guest_debug &
586 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
587 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
588 eb |= 1u << BP_VECTOR;
589 if (to_vmx(vcpu)->rmode.vm86_active)
590 eb = ~0;
591 if (enable_ept)
592 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
593 if (vcpu->fpu_active)
594 eb &= ~(1u << NM_VECTOR);
595 vmcs_write32(EXCEPTION_BITMAP, eb);
598 static void reload_tss(void)
601 * VT restores TR but not its size. Useless.
603 struct desc_ptr gdt;
604 struct desc_struct *descs;
606 native_store_gdt(&gdt);
607 descs = (void *)gdt.address;
608 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
609 load_TR_desc();
612 static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
614 u64 guest_efer;
615 u64 ignore_bits;
617 guest_efer = vmx->vcpu.arch.efer;
620 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
621 * outside long mode
623 ignore_bits = EFER_NX | EFER_SCE;
624 #ifdef CONFIG_X86_64
625 ignore_bits |= EFER_LMA | EFER_LME;
626 /* SCE is meaningful only in long mode on Intel */
627 if (guest_efer & EFER_LMA)
628 ignore_bits &= ~(u64)EFER_SCE;
629 #endif
630 guest_efer &= ~ignore_bits;
631 guest_efer |= host_efer & ignore_bits;
632 vmx->guest_msrs[efer_offset].data = guest_efer;
633 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
634 return true;
637 static unsigned long segment_base(u16 selector)
639 struct desc_ptr gdt;
640 struct desc_struct *d;
641 unsigned long table_base;
642 unsigned long v;
644 if (!(selector & ~3))
645 return 0;
647 native_store_gdt(&gdt);
648 table_base = gdt.address;
650 if (selector & 4) { /* from ldt */
651 u16 ldt_selector = kvm_read_ldt();
653 if (!(ldt_selector & ~3))
654 return 0;
656 table_base = segment_base(ldt_selector);
658 d = (struct desc_struct *)(table_base + (selector & ~7));
659 v = get_desc_base(d);
660 #ifdef CONFIG_X86_64
661 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
662 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
663 #endif
664 return v;
667 static inline unsigned long kvm_read_tr_base(void)
669 u16 tr;
670 asm("str %0" : "=g"(tr));
671 return segment_base(tr);
674 static void vmx_save_host_state(struct kvm_vcpu *vcpu)
676 struct vcpu_vmx *vmx = to_vmx(vcpu);
677 int i;
679 if (vmx->host_state.loaded)
680 return;
682 vmx->host_state.loaded = 1;
684 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
685 * allow segment selectors with cpl > 0 or ti == 1.
687 vmx->host_state.ldt_sel = kvm_read_ldt();
688 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
689 vmx->host_state.fs_sel = kvm_read_fs();
690 if (!(vmx->host_state.fs_sel & 7)) {
691 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
692 vmx->host_state.fs_reload_needed = 0;
693 } else {
694 vmcs_write16(HOST_FS_SELECTOR, 0);
695 vmx->host_state.fs_reload_needed = 1;
697 vmx->host_state.gs_sel = kvm_read_gs();
698 if (!(vmx->host_state.gs_sel & 7))
699 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
700 else {
701 vmcs_write16(HOST_GS_SELECTOR, 0);
702 vmx->host_state.gs_ldt_reload_needed = 1;
705 #ifdef CONFIG_X86_64
706 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
707 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
708 #else
709 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
710 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
711 #endif
713 #ifdef CONFIG_X86_64
714 if (is_long_mode(&vmx->vcpu)) {
715 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
716 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
718 #endif
719 for (i = 0; i < vmx->save_nmsrs; ++i)
720 kvm_set_shared_msr(vmx->guest_msrs[i].index,
721 vmx->guest_msrs[i].data,
722 vmx->guest_msrs[i].mask);
725 static void __vmx_load_host_state(struct vcpu_vmx *vmx)
727 unsigned long flags;
729 if (!vmx->host_state.loaded)
730 return;
732 ++vmx->vcpu.stat.host_state_reload;
733 vmx->host_state.loaded = 0;
734 if (vmx->host_state.fs_reload_needed)
735 kvm_load_fs(vmx->host_state.fs_sel);
736 if (vmx->host_state.gs_ldt_reload_needed) {
737 kvm_load_ldt(vmx->host_state.ldt_sel);
739 * If we have to reload gs, we must take care to
740 * preserve our gs base.
742 local_irq_save(flags);
743 kvm_load_gs(vmx->host_state.gs_sel);
744 #ifdef CONFIG_X86_64
745 wrmsrl(MSR_GS_BASE, vmcs_readl(HOST_GS_BASE));
746 #endif
747 local_irq_restore(flags);
749 reload_tss();
750 #ifdef CONFIG_X86_64
751 if (is_long_mode(&vmx->vcpu)) {
752 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
753 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
755 #endif
758 static void vmx_load_host_state(struct vcpu_vmx *vmx)
760 preempt_disable();
761 __vmx_load_host_state(vmx);
762 preempt_enable();
766 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
767 * vcpu mutex is already taken.
769 static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
771 struct vcpu_vmx *vmx = to_vmx(vcpu);
772 u64 phys_addr = __pa(vmx->vmcs);
773 u64 tsc_this, delta, new_offset;
775 if (vcpu->cpu != cpu) {
776 vcpu_clear(vmx);
777 kvm_migrate_timers(vcpu);
778 set_bit(KVM_REQ_TLB_FLUSH, &vcpu->requests);
779 local_irq_disable();
780 list_add(&vmx->local_vcpus_link,
781 &per_cpu(vcpus_on_cpu, cpu));
782 local_irq_enable();
785 if (per_cpu(current_vmcs, cpu) != vmx->vmcs) {
786 u8 error;
788 per_cpu(current_vmcs, cpu) = vmx->vmcs;
789 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
790 : "=g"(error) : "a"(&phys_addr), "m"(phys_addr)
791 : "cc");
792 if (error)
793 printk(KERN_ERR "kvm: vmptrld %p/%llx fail\n",
794 vmx->vmcs, phys_addr);
797 if (vcpu->cpu != cpu) {
798 struct desc_ptr dt;
799 unsigned long sysenter_esp;
801 vcpu->cpu = cpu;
803 * Linux uses per-cpu TSS and GDT, so set these when switching
804 * processors.
806 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
807 native_store_gdt(&dt);
808 vmcs_writel(HOST_GDTR_BASE, dt.address); /* 22.2.4 */
810 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
811 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
814 * Make sure the time stamp counter is monotonous.
816 rdtscll(tsc_this);
817 if (tsc_this < vcpu->arch.host_tsc) {
818 delta = vcpu->arch.host_tsc - tsc_this;
819 new_offset = vmcs_read64(TSC_OFFSET) + delta;
820 vmcs_write64(TSC_OFFSET, new_offset);
825 static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
827 __vmx_load_host_state(to_vmx(vcpu));
830 static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
832 ulong cr0;
834 if (vcpu->fpu_active)
835 return;
836 vcpu->fpu_active = 1;
837 cr0 = vmcs_readl(GUEST_CR0);
838 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
839 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
840 vmcs_writel(GUEST_CR0, cr0);
841 update_exception_bitmap(vcpu);
842 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
843 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
846 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
848 static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
850 vmx_decache_cr0_guest_bits(vcpu);
851 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
852 update_exception_bitmap(vcpu);
853 vcpu->arch.cr0_guest_owned_bits = 0;
854 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
855 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
858 static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
860 unsigned long rflags, save_rflags;
862 rflags = vmcs_readl(GUEST_RFLAGS);
863 if (to_vmx(vcpu)->rmode.vm86_active) {
864 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
865 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
866 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
868 return rflags;
871 static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
873 if (to_vmx(vcpu)->rmode.vm86_active) {
874 to_vmx(vcpu)->rmode.save_rflags = rflags;
875 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
877 vmcs_writel(GUEST_RFLAGS, rflags);
880 static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
882 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
883 int ret = 0;
885 if (interruptibility & GUEST_INTR_STATE_STI)
886 ret |= KVM_X86_SHADOW_INT_STI;
887 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
888 ret |= KVM_X86_SHADOW_INT_MOV_SS;
890 return ret & mask;
893 static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
895 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
896 u32 interruptibility = interruptibility_old;
898 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
900 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
901 interruptibility |= GUEST_INTR_STATE_MOV_SS;
902 else if (mask & KVM_X86_SHADOW_INT_STI)
903 interruptibility |= GUEST_INTR_STATE_STI;
905 if ((interruptibility != interruptibility_old))
906 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
909 static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
911 unsigned long rip;
913 rip = kvm_rip_read(vcpu);
914 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
915 kvm_rip_write(vcpu, rip);
917 /* skipping an emulated instruction also counts */
918 vmx_set_interrupt_shadow(vcpu, 0);
921 static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
922 bool has_error_code, u32 error_code)
924 struct vcpu_vmx *vmx = to_vmx(vcpu);
925 u32 intr_info = nr | INTR_INFO_VALID_MASK;
927 if (has_error_code) {
928 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
929 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
932 if (vmx->rmode.vm86_active) {
933 vmx->rmode.irq.pending = true;
934 vmx->rmode.irq.vector = nr;
935 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
936 if (kvm_exception_is_soft(nr))
937 vmx->rmode.irq.rip +=
938 vmx->vcpu.arch.event_exit_inst_len;
939 intr_info |= INTR_TYPE_SOFT_INTR;
940 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
941 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
942 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
943 return;
946 if (kvm_exception_is_soft(nr)) {
947 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
948 vmx->vcpu.arch.event_exit_inst_len);
949 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
950 } else
951 intr_info |= INTR_TYPE_HARD_EXCEPTION;
953 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
956 static bool vmx_rdtscp_supported(void)
958 return cpu_has_vmx_rdtscp();
962 * Swap MSR entry in host/guest MSR entry array.
964 static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
966 struct shared_msr_entry tmp;
968 tmp = vmx->guest_msrs[to];
969 vmx->guest_msrs[to] = vmx->guest_msrs[from];
970 vmx->guest_msrs[from] = tmp;
974 * Set up the vmcs to automatically save and restore system
975 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
976 * mode, as fiddling with msrs is very expensive.
978 static void setup_msrs(struct vcpu_vmx *vmx)
980 int save_nmsrs, index;
981 unsigned long *msr_bitmap;
983 vmx_load_host_state(vmx);
984 save_nmsrs = 0;
985 #ifdef CONFIG_X86_64
986 if (is_long_mode(&vmx->vcpu)) {
987 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
988 if (index >= 0)
989 move_msr_up(vmx, index, save_nmsrs++);
990 index = __find_msr_index(vmx, MSR_LSTAR);
991 if (index >= 0)
992 move_msr_up(vmx, index, save_nmsrs++);
993 index = __find_msr_index(vmx, MSR_CSTAR);
994 if (index >= 0)
995 move_msr_up(vmx, index, save_nmsrs++);
996 index = __find_msr_index(vmx, MSR_TSC_AUX);
997 if (index >= 0 && vmx->rdtscp_enabled)
998 move_msr_up(vmx, index, save_nmsrs++);
1000 * MSR_K6_STAR is only needed on long mode guests, and only
1001 * if efer.sce is enabled.
1003 index = __find_msr_index(vmx, MSR_K6_STAR);
1004 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
1005 move_msr_up(vmx, index, save_nmsrs++);
1007 #endif
1008 index = __find_msr_index(vmx, MSR_EFER);
1009 if (index >= 0 && update_transition_efer(vmx, index))
1010 move_msr_up(vmx, index, save_nmsrs++);
1012 vmx->save_nmsrs = save_nmsrs;
1014 if (cpu_has_vmx_msr_bitmap()) {
1015 if (is_long_mode(&vmx->vcpu))
1016 msr_bitmap = vmx_msr_bitmap_longmode;
1017 else
1018 msr_bitmap = vmx_msr_bitmap_legacy;
1020 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1025 * reads and returns guest's timestamp counter "register"
1026 * guest_tsc = host_tsc + tsc_offset -- 21.3
1028 static u64 guest_read_tsc(void)
1030 u64 host_tsc, tsc_offset;
1032 rdtscll(host_tsc);
1033 tsc_offset = vmcs_read64(TSC_OFFSET);
1034 return host_tsc + tsc_offset;
1038 * writes 'guest_tsc' into guest's timestamp counter "register"
1039 * guest_tsc = host_tsc + tsc_offset ==> tsc_offset = guest_tsc - host_tsc
1041 static void guest_write_tsc(u64 guest_tsc, u64 host_tsc)
1043 vmcs_write64(TSC_OFFSET, guest_tsc - host_tsc);
1047 * Reads an msr value (of 'msr_index') into 'pdata'.
1048 * Returns 0 on success, non-0 otherwise.
1049 * Assumes vcpu_load() was already called.
1051 static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
1053 u64 data;
1054 struct shared_msr_entry *msr;
1056 if (!pdata) {
1057 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
1058 return -EINVAL;
1061 switch (msr_index) {
1062 #ifdef CONFIG_X86_64
1063 case MSR_FS_BASE:
1064 data = vmcs_readl(GUEST_FS_BASE);
1065 break;
1066 case MSR_GS_BASE:
1067 data = vmcs_readl(GUEST_GS_BASE);
1068 break;
1069 case MSR_KERNEL_GS_BASE:
1070 vmx_load_host_state(to_vmx(vcpu));
1071 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
1072 break;
1073 #endif
1074 case MSR_EFER:
1075 return kvm_get_msr_common(vcpu, msr_index, pdata);
1076 case MSR_IA32_TSC:
1077 data = guest_read_tsc();
1078 break;
1079 case MSR_IA32_SYSENTER_CS:
1080 data = vmcs_read32(GUEST_SYSENTER_CS);
1081 break;
1082 case MSR_IA32_SYSENTER_EIP:
1083 data = vmcs_readl(GUEST_SYSENTER_EIP);
1084 break;
1085 case MSR_IA32_SYSENTER_ESP:
1086 data = vmcs_readl(GUEST_SYSENTER_ESP);
1087 break;
1088 case MSR_TSC_AUX:
1089 if (!to_vmx(vcpu)->rdtscp_enabled)
1090 return 1;
1091 /* Otherwise falls through */
1092 default:
1093 vmx_load_host_state(to_vmx(vcpu));
1094 msr = find_msr_entry(to_vmx(vcpu), msr_index);
1095 if (msr) {
1096 vmx_load_host_state(to_vmx(vcpu));
1097 data = msr->data;
1098 break;
1100 return kvm_get_msr_common(vcpu, msr_index, pdata);
1103 *pdata = data;
1104 return 0;
1108 * Writes msr value into into the appropriate "register".
1109 * Returns 0 on success, non-0 otherwise.
1110 * Assumes vcpu_load() was already called.
1112 static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1114 struct vcpu_vmx *vmx = to_vmx(vcpu);
1115 struct shared_msr_entry *msr;
1116 u64 host_tsc;
1117 int ret = 0;
1119 switch (msr_index) {
1120 case MSR_EFER:
1121 vmx_load_host_state(vmx);
1122 ret = kvm_set_msr_common(vcpu, msr_index, data);
1123 break;
1124 #ifdef CONFIG_X86_64
1125 case MSR_FS_BASE:
1126 vmcs_writel(GUEST_FS_BASE, data);
1127 break;
1128 case MSR_GS_BASE:
1129 vmcs_writel(GUEST_GS_BASE, data);
1130 break;
1131 case MSR_KERNEL_GS_BASE:
1132 vmx_load_host_state(vmx);
1133 vmx->msr_guest_kernel_gs_base = data;
1134 break;
1135 #endif
1136 case MSR_IA32_SYSENTER_CS:
1137 vmcs_write32(GUEST_SYSENTER_CS, data);
1138 break;
1139 case MSR_IA32_SYSENTER_EIP:
1140 vmcs_writel(GUEST_SYSENTER_EIP, data);
1141 break;
1142 case MSR_IA32_SYSENTER_ESP:
1143 vmcs_writel(GUEST_SYSENTER_ESP, data);
1144 break;
1145 case MSR_IA32_TSC:
1146 rdtscll(host_tsc);
1147 guest_write_tsc(data, host_tsc);
1148 break;
1149 case MSR_IA32_CR_PAT:
1150 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
1151 vmcs_write64(GUEST_IA32_PAT, data);
1152 vcpu->arch.pat = data;
1153 break;
1155 ret = kvm_set_msr_common(vcpu, msr_index, data);
1156 break;
1157 case MSR_TSC_AUX:
1158 if (!vmx->rdtscp_enabled)
1159 return 1;
1160 /* Check reserved bit, higher 32 bits should be zero */
1161 if ((data >> 32) != 0)
1162 return 1;
1163 /* Otherwise falls through */
1164 default:
1165 msr = find_msr_entry(vmx, msr_index);
1166 if (msr) {
1167 vmx_load_host_state(vmx);
1168 msr->data = data;
1169 break;
1171 ret = kvm_set_msr_common(vcpu, msr_index, data);
1174 return ret;
1177 static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1179 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
1180 switch (reg) {
1181 case VCPU_REGS_RSP:
1182 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
1183 break;
1184 case VCPU_REGS_RIP:
1185 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
1186 break;
1187 case VCPU_EXREG_PDPTR:
1188 if (enable_ept)
1189 ept_save_pdptrs(vcpu);
1190 break;
1191 default:
1192 break;
1196 static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
1198 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1199 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
1200 else
1201 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
1203 update_exception_bitmap(vcpu);
1206 static __init int cpu_has_kvm_support(void)
1208 return cpu_has_vmx();
1211 static __init int vmx_disabled_by_bios(void)
1213 u64 msr;
1215 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
1216 return (msr & (FEATURE_CONTROL_LOCKED |
1217 FEATURE_CONTROL_VMXON_ENABLED))
1218 == FEATURE_CONTROL_LOCKED;
1219 /* locked but not enabled */
1222 static int hardware_enable(void *garbage)
1224 int cpu = raw_smp_processor_id();
1225 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1226 u64 old;
1228 if (read_cr4() & X86_CR4_VMXE)
1229 return -EBUSY;
1231 INIT_LIST_HEAD(&per_cpu(vcpus_on_cpu, cpu));
1232 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
1233 if ((old & (FEATURE_CONTROL_LOCKED |
1234 FEATURE_CONTROL_VMXON_ENABLED))
1235 != (FEATURE_CONTROL_LOCKED |
1236 FEATURE_CONTROL_VMXON_ENABLED))
1237 /* enable and lock */
1238 wrmsrl(MSR_IA32_FEATURE_CONTROL, old |
1239 FEATURE_CONTROL_LOCKED |
1240 FEATURE_CONTROL_VMXON_ENABLED);
1241 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
1242 asm volatile (ASM_VMX_VMXON_RAX
1243 : : "a"(&phys_addr), "m"(phys_addr)
1244 : "memory", "cc");
1246 ept_sync_global();
1248 return 0;
1251 static void vmclear_local_vcpus(void)
1253 int cpu = raw_smp_processor_id();
1254 struct vcpu_vmx *vmx, *n;
1256 list_for_each_entry_safe(vmx, n, &per_cpu(vcpus_on_cpu, cpu),
1257 local_vcpus_link)
1258 __vcpu_clear(vmx);
1262 /* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
1263 * tricks.
1265 static void kvm_cpu_vmxoff(void)
1267 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1268 write_cr4(read_cr4() & ~X86_CR4_VMXE);
1271 static void hardware_disable(void *garbage)
1273 vmclear_local_vcpus();
1274 kvm_cpu_vmxoff();
1277 static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
1278 u32 msr, u32 *result)
1280 u32 vmx_msr_low, vmx_msr_high;
1281 u32 ctl = ctl_min | ctl_opt;
1283 rdmsr(msr, vmx_msr_low, vmx_msr_high);
1285 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
1286 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
1288 /* Ensure minimum (required) set of control bits are supported. */
1289 if (ctl_min & ~ctl)
1290 return -EIO;
1292 *result = ctl;
1293 return 0;
1296 static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
1298 u32 vmx_msr_low, vmx_msr_high;
1299 u32 min, opt, min2, opt2;
1300 u32 _pin_based_exec_control = 0;
1301 u32 _cpu_based_exec_control = 0;
1302 u32 _cpu_based_2nd_exec_control = 0;
1303 u32 _vmexit_control = 0;
1304 u32 _vmentry_control = 0;
1306 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
1307 opt = PIN_BASED_VIRTUAL_NMIS;
1308 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
1309 &_pin_based_exec_control) < 0)
1310 return -EIO;
1312 min = CPU_BASED_HLT_EXITING |
1313 #ifdef CONFIG_X86_64
1314 CPU_BASED_CR8_LOAD_EXITING |
1315 CPU_BASED_CR8_STORE_EXITING |
1316 #endif
1317 CPU_BASED_CR3_LOAD_EXITING |
1318 CPU_BASED_CR3_STORE_EXITING |
1319 CPU_BASED_USE_IO_BITMAPS |
1320 CPU_BASED_MOV_DR_EXITING |
1321 CPU_BASED_USE_TSC_OFFSETING |
1322 CPU_BASED_MWAIT_EXITING |
1323 CPU_BASED_MONITOR_EXITING |
1324 CPU_BASED_INVLPG_EXITING;
1325 opt = CPU_BASED_TPR_SHADOW |
1326 CPU_BASED_USE_MSR_BITMAPS |
1327 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1328 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
1329 &_cpu_based_exec_control) < 0)
1330 return -EIO;
1331 #ifdef CONFIG_X86_64
1332 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
1333 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
1334 ~CPU_BASED_CR8_STORE_EXITING;
1335 #endif
1336 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
1337 min2 = 0;
1338 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1339 SECONDARY_EXEC_WBINVD_EXITING |
1340 SECONDARY_EXEC_ENABLE_VPID |
1341 SECONDARY_EXEC_ENABLE_EPT |
1342 SECONDARY_EXEC_UNRESTRICTED_GUEST |
1343 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
1344 SECONDARY_EXEC_RDTSCP;
1345 if (adjust_vmx_controls(min2, opt2,
1346 MSR_IA32_VMX_PROCBASED_CTLS2,
1347 &_cpu_based_2nd_exec_control) < 0)
1348 return -EIO;
1350 #ifndef CONFIG_X86_64
1351 if (!(_cpu_based_2nd_exec_control &
1352 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
1353 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
1354 #endif
1355 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
1356 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
1357 enabled */
1358 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
1359 CPU_BASED_CR3_STORE_EXITING |
1360 CPU_BASED_INVLPG_EXITING);
1361 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
1362 vmx_capability.ept, vmx_capability.vpid);
1365 min = 0;
1366 #ifdef CONFIG_X86_64
1367 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
1368 #endif
1369 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1370 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
1371 &_vmexit_control) < 0)
1372 return -EIO;
1374 min = 0;
1375 opt = VM_ENTRY_LOAD_IA32_PAT;
1376 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
1377 &_vmentry_control) < 0)
1378 return -EIO;
1380 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1382 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
1383 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
1384 return -EIO;
1386 #ifdef CONFIG_X86_64
1387 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
1388 if (vmx_msr_high & (1u<<16))
1389 return -EIO;
1390 #endif
1392 /* Require Write-Back (WB) memory type for VMCS accesses. */
1393 if (((vmx_msr_high >> 18) & 15) != 6)
1394 return -EIO;
1396 vmcs_conf->size = vmx_msr_high & 0x1fff;
1397 vmcs_conf->order = get_order(vmcs_config.size);
1398 vmcs_conf->revision_id = vmx_msr_low;
1400 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
1401 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
1402 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
1403 vmcs_conf->vmexit_ctrl = _vmexit_control;
1404 vmcs_conf->vmentry_ctrl = _vmentry_control;
1406 return 0;
1409 static struct vmcs *alloc_vmcs_cpu(int cpu)
1411 int node = cpu_to_node(cpu);
1412 struct page *pages;
1413 struct vmcs *vmcs;
1415 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
1416 if (!pages)
1417 return NULL;
1418 vmcs = page_address(pages);
1419 memset(vmcs, 0, vmcs_config.size);
1420 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
1421 return vmcs;
1424 static struct vmcs *alloc_vmcs(void)
1426 return alloc_vmcs_cpu(raw_smp_processor_id());
1429 static void free_vmcs(struct vmcs *vmcs)
1431 free_pages((unsigned long)vmcs, vmcs_config.order);
1434 static void free_kvm_area(void)
1436 int cpu;
1438 for_each_possible_cpu(cpu) {
1439 free_vmcs(per_cpu(vmxarea, cpu));
1440 per_cpu(vmxarea, cpu) = NULL;
1444 static __init int alloc_kvm_area(void)
1446 int cpu;
1448 for_each_possible_cpu(cpu) {
1449 struct vmcs *vmcs;
1451 vmcs = alloc_vmcs_cpu(cpu);
1452 if (!vmcs) {
1453 free_kvm_area();
1454 return -ENOMEM;
1457 per_cpu(vmxarea, cpu) = vmcs;
1459 return 0;
1462 static __init int hardware_setup(void)
1464 if (setup_vmcs_config(&vmcs_config) < 0)
1465 return -EIO;
1467 if (boot_cpu_has(X86_FEATURE_NX))
1468 kvm_enable_efer_bits(EFER_NX);
1470 if (!cpu_has_vmx_vpid())
1471 enable_vpid = 0;
1473 if (!cpu_has_vmx_ept()) {
1474 enable_ept = 0;
1475 enable_unrestricted_guest = 0;
1478 if (!cpu_has_vmx_unrestricted_guest())
1479 enable_unrestricted_guest = 0;
1481 if (!cpu_has_vmx_flexpriority())
1482 flexpriority_enabled = 0;
1484 if (!cpu_has_vmx_tpr_shadow())
1485 kvm_x86_ops->update_cr8_intercept = NULL;
1487 if (enable_ept && !cpu_has_vmx_ept_2m_page())
1488 kvm_disable_largepages();
1490 if (!cpu_has_vmx_ple())
1491 ple_gap = 0;
1493 return alloc_kvm_area();
1496 static __exit void hardware_unsetup(void)
1498 free_kvm_area();
1501 static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
1503 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1505 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
1506 vmcs_write16(sf->selector, save->selector);
1507 vmcs_writel(sf->base, save->base);
1508 vmcs_write32(sf->limit, save->limit);
1509 vmcs_write32(sf->ar_bytes, save->ar);
1510 } else {
1511 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
1512 << AR_DPL_SHIFT;
1513 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
1517 static void enter_pmode(struct kvm_vcpu *vcpu)
1519 unsigned long flags;
1520 struct vcpu_vmx *vmx = to_vmx(vcpu);
1522 vmx->emulation_required = 1;
1523 vmx->rmode.vm86_active = 0;
1525 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
1526 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
1527 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
1529 flags = vmcs_readl(GUEST_RFLAGS);
1530 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1531 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1532 vmcs_writel(GUEST_RFLAGS, flags);
1534 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
1535 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
1537 update_exception_bitmap(vcpu);
1539 if (emulate_invalid_guest_state)
1540 return;
1542 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
1543 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
1544 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
1545 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
1547 vmcs_write16(GUEST_SS_SELECTOR, 0);
1548 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
1550 vmcs_write16(GUEST_CS_SELECTOR,
1551 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
1552 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
1555 static gva_t rmode_tss_base(struct kvm *kvm)
1557 if (!kvm->arch.tss_addr) {
1558 struct kvm_memslots *slots;
1559 gfn_t base_gfn;
1561 slots = rcu_dereference(kvm->memslots);
1562 base_gfn = kvm->memslots->memslots[0].base_gfn +
1563 kvm->memslots->memslots[0].npages - 3;
1564 return base_gfn << PAGE_SHIFT;
1566 return kvm->arch.tss_addr;
1569 static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
1571 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1573 save->selector = vmcs_read16(sf->selector);
1574 save->base = vmcs_readl(sf->base);
1575 save->limit = vmcs_read32(sf->limit);
1576 save->ar = vmcs_read32(sf->ar_bytes);
1577 vmcs_write16(sf->selector, save->base >> 4);
1578 vmcs_write32(sf->base, save->base & 0xfffff);
1579 vmcs_write32(sf->limit, 0xffff);
1580 vmcs_write32(sf->ar_bytes, 0xf3);
1583 static void enter_rmode(struct kvm_vcpu *vcpu)
1585 unsigned long flags;
1586 struct vcpu_vmx *vmx = to_vmx(vcpu);
1588 if (enable_unrestricted_guest)
1589 return;
1591 vmx->emulation_required = 1;
1592 vmx->rmode.vm86_active = 1;
1594 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
1595 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
1597 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
1598 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
1600 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
1601 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
1603 flags = vmcs_readl(GUEST_RFLAGS);
1604 vmx->rmode.save_rflags = flags;
1606 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1608 vmcs_writel(GUEST_RFLAGS, flags);
1609 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
1610 update_exception_bitmap(vcpu);
1612 if (emulate_invalid_guest_state)
1613 goto continue_rmode;
1615 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
1616 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
1617 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
1619 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
1620 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
1621 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
1622 vmcs_writel(GUEST_CS_BASE, 0xf0000);
1623 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
1625 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
1626 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
1627 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
1628 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
1630 continue_rmode:
1631 kvm_mmu_reset_context(vcpu);
1632 init_rmode(vcpu->kvm);
1635 static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
1637 struct vcpu_vmx *vmx = to_vmx(vcpu);
1638 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
1640 if (!msr)
1641 return;
1644 * Force kernel_gs_base reloading before EFER changes, as control
1645 * of this msr depends on is_long_mode().
1647 vmx_load_host_state(to_vmx(vcpu));
1648 vcpu->arch.efer = efer;
1649 if (efer & EFER_LMA) {
1650 vmcs_write32(VM_ENTRY_CONTROLS,
1651 vmcs_read32(VM_ENTRY_CONTROLS) |
1652 VM_ENTRY_IA32E_MODE);
1653 msr->data = efer;
1654 } else {
1655 vmcs_write32(VM_ENTRY_CONTROLS,
1656 vmcs_read32(VM_ENTRY_CONTROLS) &
1657 ~VM_ENTRY_IA32E_MODE);
1659 msr->data = efer & ~EFER_LME;
1661 setup_msrs(vmx);
1664 #ifdef CONFIG_X86_64
1666 static void enter_lmode(struct kvm_vcpu *vcpu)
1668 u32 guest_tr_ar;
1670 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
1671 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
1672 printk(KERN_DEBUG "%s: tss fixup for long mode. \n",
1673 __func__);
1674 vmcs_write32(GUEST_TR_AR_BYTES,
1675 (guest_tr_ar & ~AR_TYPE_MASK)
1676 | AR_TYPE_BUSY_64_TSS);
1678 vcpu->arch.efer |= EFER_LMA;
1679 vmx_set_efer(vcpu, vcpu->arch.efer);
1682 static void exit_lmode(struct kvm_vcpu *vcpu)
1684 vcpu->arch.efer &= ~EFER_LMA;
1686 vmcs_write32(VM_ENTRY_CONTROLS,
1687 vmcs_read32(VM_ENTRY_CONTROLS)
1688 & ~VM_ENTRY_IA32E_MODE);
1691 #endif
1693 static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
1695 vpid_sync_vcpu_all(to_vmx(vcpu));
1696 if (enable_ept)
1697 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
1700 static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1702 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
1704 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
1705 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
1708 static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1710 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
1712 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
1713 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
1716 static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
1718 if (!test_bit(VCPU_EXREG_PDPTR,
1719 (unsigned long *)&vcpu->arch.regs_dirty))
1720 return;
1722 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1723 vmcs_write64(GUEST_PDPTR0, vcpu->arch.pdptrs[0]);
1724 vmcs_write64(GUEST_PDPTR1, vcpu->arch.pdptrs[1]);
1725 vmcs_write64(GUEST_PDPTR2, vcpu->arch.pdptrs[2]);
1726 vmcs_write64(GUEST_PDPTR3, vcpu->arch.pdptrs[3]);
1730 static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
1732 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
1733 vcpu->arch.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
1734 vcpu->arch.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
1735 vcpu->arch.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
1736 vcpu->arch.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
1739 __set_bit(VCPU_EXREG_PDPTR,
1740 (unsigned long *)&vcpu->arch.regs_avail);
1741 __set_bit(VCPU_EXREG_PDPTR,
1742 (unsigned long *)&vcpu->arch.regs_dirty);
1745 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1747 static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
1748 unsigned long cr0,
1749 struct kvm_vcpu *vcpu)
1751 if (!(cr0 & X86_CR0_PG)) {
1752 /* From paging/starting to nonpaging */
1753 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1754 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1755 (CPU_BASED_CR3_LOAD_EXITING |
1756 CPU_BASED_CR3_STORE_EXITING));
1757 vcpu->arch.cr0 = cr0;
1758 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1759 } else if (!is_paging(vcpu)) {
1760 /* From nonpaging to paging */
1761 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
1762 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1763 ~(CPU_BASED_CR3_LOAD_EXITING |
1764 CPU_BASED_CR3_STORE_EXITING));
1765 vcpu->arch.cr0 = cr0;
1766 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1769 if (!(cr0 & X86_CR0_WP))
1770 *hw_cr0 &= ~X86_CR0_WP;
1773 static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1775 struct vcpu_vmx *vmx = to_vmx(vcpu);
1776 unsigned long hw_cr0;
1778 if (enable_unrestricted_guest)
1779 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
1780 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
1781 else
1782 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1784 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
1785 enter_pmode(vcpu);
1787 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
1788 enter_rmode(vcpu);
1790 #ifdef CONFIG_X86_64
1791 if (vcpu->arch.efer & EFER_LME) {
1792 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
1793 enter_lmode(vcpu);
1794 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
1795 exit_lmode(vcpu);
1797 #endif
1799 if (enable_ept)
1800 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
1802 if (!vcpu->fpu_active)
1803 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
1805 vmcs_writel(CR0_READ_SHADOW, cr0);
1806 vmcs_writel(GUEST_CR0, hw_cr0);
1807 vcpu->arch.cr0 = cr0;
1810 static u64 construct_eptp(unsigned long root_hpa)
1812 u64 eptp;
1814 /* TODO write the value reading from MSR */
1815 eptp = VMX_EPT_DEFAULT_MT |
1816 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
1817 eptp |= (root_hpa & PAGE_MASK);
1819 return eptp;
1822 static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
1824 unsigned long guest_cr3;
1825 u64 eptp;
1827 guest_cr3 = cr3;
1828 if (enable_ept) {
1829 eptp = construct_eptp(cr3);
1830 vmcs_write64(EPT_POINTER, eptp);
1831 guest_cr3 = is_paging(vcpu) ? vcpu->arch.cr3 :
1832 vcpu->kvm->arch.ept_identity_map_addr;
1833 ept_load_pdptrs(vcpu);
1836 vmx_flush_tlb(vcpu);
1837 vmcs_writel(GUEST_CR3, guest_cr3);
1840 static void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1842 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1843 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1845 vcpu->arch.cr4 = cr4;
1846 if (enable_ept) {
1847 if (!is_paging(vcpu)) {
1848 hw_cr4 &= ~X86_CR4_PAE;
1849 hw_cr4 |= X86_CR4_PSE;
1850 } else if (!(cr4 & X86_CR4_PAE)) {
1851 hw_cr4 &= ~X86_CR4_PAE;
1855 vmcs_writel(CR4_READ_SHADOW, cr4);
1856 vmcs_writel(GUEST_CR4, hw_cr4);
1859 static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1861 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1863 return vmcs_readl(sf->base);
1866 static void vmx_get_segment(struct kvm_vcpu *vcpu,
1867 struct kvm_segment *var, int seg)
1869 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1870 u32 ar;
1872 var->base = vmcs_readl(sf->base);
1873 var->limit = vmcs_read32(sf->limit);
1874 var->selector = vmcs_read16(sf->selector);
1875 ar = vmcs_read32(sf->ar_bytes);
1876 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
1877 ar = 0;
1878 var->type = ar & 15;
1879 var->s = (ar >> 4) & 1;
1880 var->dpl = (ar >> 5) & 3;
1881 var->present = (ar >> 7) & 1;
1882 var->avl = (ar >> 12) & 1;
1883 var->l = (ar >> 13) & 1;
1884 var->db = (ar >> 14) & 1;
1885 var->g = (ar >> 15) & 1;
1886 var->unusable = (ar >> 16) & 1;
1889 static int vmx_get_cpl(struct kvm_vcpu *vcpu)
1891 if (!is_protmode(vcpu))
1892 return 0;
1894 if (vmx_get_rflags(vcpu) & X86_EFLAGS_VM) /* if virtual 8086 */
1895 return 3;
1897 return vmcs_read16(GUEST_CS_SELECTOR) & 3;
1900 static u32 vmx_segment_access_rights(struct kvm_segment *var)
1902 u32 ar;
1904 if (var->unusable)
1905 ar = 1 << 16;
1906 else {
1907 ar = var->type & 15;
1908 ar |= (var->s & 1) << 4;
1909 ar |= (var->dpl & 3) << 5;
1910 ar |= (var->present & 1) << 7;
1911 ar |= (var->avl & 1) << 12;
1912 ar |= (var->l & 1) << 13;
1913 ar |= (var->db & 1) << 14;
1914 ar |= (var->g & 1) << 15;
1916 if (ar == 0) /* a 0 value means unusable */
1917 ar = AR_UNUSABLE_MASK;
1919 return ar;
1922 static void vmx_set_segment(struct kvm_vcpu *vcpu,
1923 struct kvm_segment *var, int seg)
1925 struct vcpu_vmx *vmx = to_vmx(vcpu);
1926 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
1927 u32 ar;
1929 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
1930 vmx->rmode.tr.selector = var->selector;
1931 vmx->rmode.tr.base = var->base;
1932 vmx->rmode.tr.limit = var->limit;
1933 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
1934 return;
1936 vmcs_writel(sf->base, var->base);
1937 vmcs_write32(sf->limit, var->limit);
1938 vmcs_write16(sf->selector, var->selector);
1939 if (vmx->rmode.vm86_active && var->s) {
1941 * Hack real-mode segments into vm86 compatibility.
1943 if (var->base == 0xffff0000 && var->selector == 0xf000)
1944 vmcs_writel(sf->base, 0xf0000);
1945 ar = 0xf3;
1946 } else
1947 ar = vmx_segment_access_rights(var);
1950 * Fix the "Accessed" bit in AR field of segment registers for older
1951 * qemu binaries.
1952 * IA32 arch specifies that at the time of processor reset the
1953 * "Accessed" bit in the AR field of segment registers is 1. And qemu
1954 * is setting it to 0 in the usedland code. This causes invalid guest
1955 * state vmexit when "unrestricted guest" mode is turned on.
1956 * Fix for this setup issue in cpu_reset is being pushed in the qemu
1957 * tree. Newer qemu binaries with that qemu fix would not need this
1958 * kvm hack.
1960 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
1961 ar |= 0x1; /* Accessed */
1963 vmcs_write32(sf->ar_bytes, ar);
1966 static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
1968 u32 ar = vmcs_read32(GUEST_CS_AR_BYTES);
1970 *db = (ar >> 14) & 1;
1971 *l = (ar >> 13) & 1;
1974 static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1976 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
1977 dt->address = vmcs_readl(GUEST_IDTR_BASE);
1980 static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1982 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
1983 vmcs_writel(GUEST_IDTR_BASE, dt->address);
1986 static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1988 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
1989 dt->address = vmcs_readl(GUEST_GDTR_BASE);
1992 static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1994 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
1995 vmcs_writel(GUEST_GDTR_BASE, dt->address);
1998 static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
2000 struct kvm_segment var;
2001 u32 ar;
2003 vmx_get_segment(vcpu, &var, seg);
2004 ar = vmx_segment_access_rights(&var);
2006 if (var.base != (var.selector << 4))
2007 return false;
2008 if (var.limit != 0xffff)
2009 return false;
2010 if (ar != 0xf3)
2011 return false;
2013 return true;
2016 static bool code_segment_valid(struct kvm_vcpu *vcpu)
2018 struct kvm_segment cs;
2019 unsigned int cs_rpl;
2021 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2022 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
2024 if (cs.unusable)
2025 return false;
2026 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
2027 return false;
2028 if (!cs.s)
2029 return false;
2030 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
2031 if (cs.dpl > cs_rpl)
2032 return false;
2033 } else {
2034 if (cs.dpl != cs_rpl)
2035 return false;
2037 if (!cs.present)
2038 return false;
2040 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
2041 return true;
2044 static bool stack_segment_valid(struct kvm_vcpu *vcpu)
2046 struct kvm_segment ss;
2047 unsigned int ss_rpl;
2049 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2050 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
2052 if (ss.unusable)
2053 return true;
2054 if (ss.type != 3 && ss.type != 7)
2055 return false;
2056 if (!ss.s)
2057 return false;
2058 if (ss.dpl != ss_rpl) /* DPL != RPL */
2059 return false;
2060 if (!ss.present)
2061 return false;
2063 return true;
2066 static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
2068 struct kvm_segment var;
2069 unsigned int rpl;
2071 vmx_get_segment(vcpu, &var, seg);
2072 rpl = var.selector & SELECTOR_RPL_MASK;
2074 if (var.unusable)
2075 return true;
2076 if (!var.s)
2077 return false;
2078 if (!var.present)
2079 return false;
2080 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
2081 if (var.dpl < rpl) /* DPL < RPL */
2082 return false;
2085 /* TODO: Add other members to kvm_segment_field to allow checking for other access
2086 * rights flags
2088 return true;
2091 static bool tr_valid(struct kvm_vcpu *vcpu)
2093 struct kvm_segment tr;
2095 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
2097 if (tr.unusable)
2098 return false;
2099 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2100 return false;
2101 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
2102 return false;
2103 if (!tr.present)
2104 return false;
2106 return true;
2109 static bool ldtr_valid(struct kvm_vcpu *vcpu)
2111 struct kvm_segment ldtr;
2113 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
2115 if (ldtr.unusable)
2116 return true;
2117 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
2118 return false;
2119 if (ldtr.type != 2)
2120 return false;
2121 if (!ldtr.present)
2122 return false;
2124 return true;
2127 static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
2129 struct kvm_segment cs, ss;
2131 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
2132 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
2134 return ((cs.selector & SELECTOR_RPL_MASK) ==
2135 (ss.selector & SELECTOR_RPL_MASK));
2139 * Check if guest state is valid. Returns true if valid, false if
2140 * not.
2141 * We assume that registers are always usable
2143 static bool guest_state_valid(struct kvm_vcpu *vcpu)
2145 /* real mode guest state checks */
2146 if (!is_protmode(vcpu)) {
2147 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
2148 return false;
2149 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
2150 return false;
2151 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
2152 return false;
2153 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
2154 return false;
2155 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
2156 return false;
2157 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
2158 return false;
2159 } else {
2160 /* protected mode guest state checks */
2161 if (!cs_ss_rpl_check(vcpu))
2162 return false;
2163 if (!code_segment_valid(vcpu))
2164 return false;
2165 if (!stack_segment_valid(vcpu))
2166 return false;
2167 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
2168 return false;
2169 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
2170 return false;
2171 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
2172 return false;
2173 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
2174 return false;
2175 if (!tr_valid(vcpu))
2176 return false;
2177 if (!ldtr_valid(vcpu))
2178 return false;
2180 /* TODO:
2181 * - Add checks on RIP
2182 * - Add checks on RFLAGS
2185 return true;
2188 static int init_rmode_tss(struct kvm *kvm)
2190 gfn_t fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
2191 u16 data = 0;
2192 int ret = 0;
2193 int r;
2195 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2196 if (r < 0)
2197 goto out;
2198 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
2199 r = kvm_write_guest_page(kvm, fn++, &data,
2200 TSS_IOPB_BASE_OFFSET, sizeof(u16));
2201 if (r < 0)
2202 goto out;
2203 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
2204 if (r < 0)
2205 goto out;
2206 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
2207 if (r < 0)
2208 goto out;
2209 data = ~0;
2210 r = kvm_write_guest_page(kvm, fn, &data,
2211 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
2212 sizeof(u8));
2213 if (r < 0)
2214 goto out;
2216 ret = 1;
2217 out:
2218 return ret;
2221 static int init_rmode_identity_map(struct kvm *kvm)
2223 int i, r, ret;
2224 pfn_t identity_map_pfn;
2225 u32 tmp;
2227 if (!enable_ept)
2228 return 1;
2229 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
2230 printk(KERN_ERR "EPT: identity-mapping pagetable "
2231 "haven't been allocated!\n");
2232 return 0;
2234 if (likely(kvm->arch.ept_identity_pagetable_done))
2235 return 1;
2236 ret = 0;
2237 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
2238 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
2239 if (r < 0)
2240 goto out;
2241 /* Set up identity-mapping pagetable for EPT in real mode */
2242 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
2243 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
2244 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
2245 r = kvm_write_guest_page(kvm, identity_map_pfn,
2246 &tmp, i * sizeof(tmp), sizeof(tmp));
2247 if (r < 0)
2248 goto out;
2250 kvm->arch.ept_identity_pagetable_done = true;
2251 ret = 1;
2252 out:
2253 return ret;
2256 static void seg_setup(int seg)
2258 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2259 unsigned int ar;
2261 vmcs_write16(sf->selector, 0);
2262 vmcs_writel(sf->base, 0);
2263 vmcs_write32(sf->limit, 0xffff);
2264 if (enable_unrestricted_guest) {
2265 ar = 0x93;
2266 if (seg == VCPU_SREG_CS)
2267 ar |= 0x08; /* code segment */
2268 } else
2269 ar = 0xf3;
2271 vmcs_write32(sf->ar_bytes, ar);
2274 static int alloc_apic_access_page(struct kvm *kvm)
2276 struct kvm_userspace_memory_region kvm_userspace_mem;
2277 int r = 0;
2279 mutex_lock(&kvm->slots_lock);
2280 if (kvm->arch.apic_access_page)
2281 goto out;
2282 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
2283 kvm_userspace_mem.flags = 0;
2284 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
2285 kvm_userspace_mem.memory_size = PAGE_SIZE;
2286 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2287 if (r)
2288 goto out;
2290 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
2291 out:
2292 mutex_unlock(&kvm->slots_lock);
2293 return r;
2296 static int alloc_identity_pagetable(struct kvm *kvm)
2298 struct kvm_userspace_memory_region kvm_userspace_mem;
2299 int r = 0;
2301 mutex_lock(&kvm->slots_lock);
2302 if (kvm->arch.ept_identity_pagetable)
2303 goto out;
2304 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
2305 kvm_userspace_mem.flags = 0;
2306 kvm_userspace_mem.guest_phys_addr =
2307 kvm->arch.ept_identity_map_addr;
2308 kvm_userspace_mem.memory_size = PAGE_SIZE;
2309 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
2310 if (r)
2311 goto out;
2313 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
2314 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
2315 out:
2316 mutex_unlock(&kvm->slots_lock);
2317 return r;
2320 static void allocate_vpid(struct vcpu_vmx *vmx)
2322 int vpid;
2324 vmx->vpid = 0;
2325 if (!enable_vpid)
2326 return;
2327 spin_lock(&vmx_vpid_lock);
2328 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
2329 if (vpid < VMX_NR_VPIDS) {
2330 vmx->vpid = vpid;
2331 __set_bit(vpid, vmx_vpid_bitmap);
2333 spin_unlock(&vmx_vpid_lock);
2336 static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
2338 int f = sizeof(unsigned long);
2340 if (!cpu_has_vmx_msr_bitmap())
2341 return;
2344 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
2345 * have the write-low and read-high bitmap offsets the wrong way round.
2346 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
2348 if (msr <= 0x1fff) {
2349 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
2350 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
2351 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2352 msr &= 0x1fff;
2353 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
2354 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
2358 static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
2360 if (!longmode_only)
2361 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
2362 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
2366 * Sets up the vmcs for emulated real mode.
2368 static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
2370 u32 host_sysenter_cs, msr_low, msr_high;
2371 u32 junk;
2372 u64 host_pat, tsc_this, tsc_base;
2373 unsigned long a;
2374 struct desc_ptr dt;
2375 int i;
2376 unsigned long kvm_vmx_return;
2377 u32 exec_control;
2379 /* I/O */
2380 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
2381 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
2383 if (cpu_has_vmx_msr_bitmap())
2384 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
2386 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
2388 /* Control */
2389 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
2390 vmcs_config.pin_based_exec_ctrl);
2392 exec_control = vmcs_config.cpu_based_exec_ctrl;
2393 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
2394 exec_control &= ~CPU_BASED_TPR_SHADOW;
2395 #ifdef CONFIG_X86_64
2396 exec_control |= CPU_BASED_CR8_STORE_EXITING |
2397 CPU_BASED_CR8_LOAD_EXITING;
2398 #endif
2400 if (!enable_ept)
2401 exec_control |= CPU_BASED_CR3_STORE_EXITING |
2402 CPU_BASED_CR3_LOAD_EXITING |
2403 CPU_BASED_INVLPG_EXITING;
2404 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2406 if (cpu_has_secondary_exec_ctrls()) {
2407 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
2408 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2409 exec_control &=
2410 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
2411 if (vmx->vpid == 0)
2412 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
2413 if (!enable_ept) {
2414 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
2415 enable_unrestricted_guest = 0;
2417 if (!enable_unrestricted_guest)
2418 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2419 if (!ple_gap)
2420 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
2421 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2424 if (ple_gap) {
2425 vmcs_write32(PLE_GAP, ple_gap);
2426 vmcs_write32(PLE_WINDOW, ple_window);
2429 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, !!bypass_guest_pf);
2430 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, !!bypass_guest_pf);
2431 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
2433 vmcs_writel(HOST_CR0, read_cr0()); /* 22.2.3 */
2434 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
2435 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
2437 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
2438 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2439 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2440 vmcs_write16(HOST_FS_SELECTOR, kvm_read_fs()); /* 22.2.4 */
2441 vmcs_write16(HOST_GS_SELECTOR, kvm_read_gs()); /* 22.2.4 */
2442 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
2443 #ifdef CONFIG_X86_64
2444 rdmsrl(MSR_FS_BASE, a);
2445 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
2446 rdmsrl(MSR_GS_BASE, a);
2447 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
2448 #else
2449 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
2450 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
2451 #endif
2453 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
2455 kvm_get_idt(&dt);
2456 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
2458 asm("mov $.Lkvm_vmx_return, %0" : "=r"(kvm_vmx_return));
2459 vmcs_writel(HOST_RIP, kvm_vmx_return); /* 22.2.5 */
2460 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2461 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2462 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2464 rdmsr(MSR_IA32_SYSENTER_CS, host_sysenter_cs, junk);
2465 vmcs_write32(HOST_IA32_SYSENTER_CS, host_sysenter_cs);
2466 rdmsrl(MSR_IA32_SYSENTER_ESP, a);
2467 vmcs_writel(HOST_IA32_SYSENTER_ESP, a); /* 22.2.3 */
2468 rdmsrl(MSR_IA32_SYSENTER_EIP, a);
2469 vmcs_writel(HOST_IA32_SYSENTER_EIP, a); /* 22.2.3 */
2471 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
2472 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2473 host_pat = msr_low | ((u64) msr_high << 32);
2474 vmcs_write64(HOST_IA32_PAT, host_pat);
2476 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2477 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
2478 host_pat = msr_low | ((u64) msr_high << 32);
2479 /* Write the default value follow host pat */
2480 vmcs_write64(GUEST_IA32_PAT, host_pat);
2481 /* Keep arch.pat sync with GUEST_IA32_PAT */
2482 vmx->vcpu.arch.pat = host_pat;
2485 for (i = 0; i < NR_VMX_MSR; ++i) {
2486 u32 index = vmx_msr_index[i];
2487 u32 data_low, data_high;
2488 int j = vmx->nmsrs;
2490 if (rdmsr_safe(index, &data_low, &data_high) < 0)
2491 continue;
2492 if (wrmsr_safe(index, data_low, data_high) < 0)
2493 continue;
2494 vmx->guest_msrs[j].index = i;
2495 vmx->guest_msrs[j].data = 0;
2496 vmx->guest_msrs[j].mask = -1ull;
2497 ++vmx->nmsrs;
2500 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
2502 /* 22.2.1, 20.8.1 */
2503 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
2505 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
2506 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
2507 if (enable_ept)
2508 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
2509 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
2511 tsc_base = vmx->vcpu.kvm->arch.vm_init_tsc;
2512 rdtscll(tsc_this);
2513 if (tsc_this < vmx->vcpu.kvm->arch.vm_init_tsc)
2514 tsc_base = tsc_this;
2516 guest_write_tsc(0, tsc_base);
2518 return 0;
2521 static int init_rmode(struct kvm *kvm)
2523 if (!init_rmode_tss(kvm))
2524 return 0;
2525 if (!init_rmode_identity_map(kvm))
2526 return 0;
2527 return 1;
2530 static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
2532 struct vcpu_vmx *vmx = to_vmx(vcpu);
2533 u64 msr;
2534 int ret, idx;
2536 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
2537 idx = srcu_read_lock(&vcpu->kvm->srcu);
2538 if (!init_rmode(vmx->vcpu.kvm)) {
2539 ret = -ENOMEM;
2540 goto out;
2543 vmx->rmode.vm86_active = 0;
2545 vmx->soft_vnmi_blocked = 0;
2547 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2548 kvm_set_cr8(&vmx->vcpu, 0);
2549 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
2550 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2551 msr |= MSR_IA32_APICBASE_BSP;
2552 kvm_set_apic_base(&vmx->vcpu, msr);
2554 fx_init(&vmx->vcpu);
2556 seg_setup(VCPU_SREG_CS);
2558 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
2559 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
2561 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
2562 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
2563 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
2564 } else {
2565 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
2566 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
2569 seg_setup(VCPU_SREG_DS);
2570 seg_setup(VCPU_SREG_ES);
2571 seg_setup(VCPU_SREG_FS);
2572 seg_setup(VCPU_SREG_GS);
2573 seg_setup(VCPU_SREG_SS);
2575 vmcs_write16(GUEST_TR_SELECTOR, 0);
2576 vmcs_writel(GUEST_TR_BASE, 0);
2577 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
2578 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2580 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
2581 vmcs_writel(GUEST_LDTR_BASE, 0);
2582 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
2583 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
2585 vmcs_write32(GUEST_SYSENTER_CS, 0);
2586 vmcs_writel(GUEST_SYSENTER_ESP, 0);
2587 vmcs_writel(GUEST_SYSENTER_EIP, 0);
2589 vmcs_writel(GUEST_RFLAGS, 0x02);
2590 if (kvm_vcpu_is_bsp(&vmx->vcpu))
2591 kvm_rip_write(vcpu, 0xfff0);
2592 else
2593 kvm_rip_write(vcpu, 0);
2594 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
2596 vmcs_writel(GUEST_DR7, 0x400);
2598 vmcs_writel(GUEST_GDTR_BASE, 0);
2599 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
2601 vmcs_writel(GUEST_IDTR_BASE, 0);
2602 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
2604 vmcs_write32(GUEST_ACTIVITY_STATE, 0);
2605 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
2606 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
2608 /* Special registers */
2609 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
2611 setup_msrs(vmx);
2613 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
2615 if (cpu_has_vmx_tpr_shadow()) {
2616 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
2617 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
2618 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
2619 page_to_phys(vmx->vcpu.arch.apic->regs_page));
2620 vmcs_write32(TPR_THRESHOLD, 0);
2623 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
2624 vmcs_write64(APIC_ACCESS_ADDR,
2625 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
2627 if (vmx->vpid != 0)
2628 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2630 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
2631 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
2632 vmx_set_cr4(&vmx->vcpu, 0);
2633 vmx_set_efer(&vmx->vcpu, 0);
2634 vmx_fpu_activate(&vmx->vcpu);
2635 update_exception_bitmap(&vmx->vcpu);
2637 vpid_sync_vcpu_all(vmx);
2639 ret = 0;
2641 /* HACK: Don't enable emulation on guest boot/reset */
2642 vmx->emulation_required = 0;
2644 out:
2645 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2646 return ret;
2649 static void enable_irq_window(struct kvm_vcpu *vcpu)
2651 u32 cpu_based_vm_exec_control;
2653 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2654 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
2655 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2658 static void enable_nmi_window(struct kvm_vcpu *vcpu)
2660 u32 cpu_based_vm_exec_control;
2662 if (!cpu_has_virtual_nmis()) {
2663 enable_irq_window(vcpu);
2664 return;
2667 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
2668 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
2669 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2672 static void vmx_inject_irq(struct kvm_vcpu *vcpu)
2674 struct vcpu_vmx *vmx = to_vmx(vcpu);
2675 uint32_t intr;
2676 int irq = vcpu->arch.interrupt.nr;
2678 trace_kvm_inj_virq(irq);
2680 ++vcpu->stat.irq_injections;
2681 if (vmx->rmode.vm86_active) {
2682 vmx->rmode.irq.pending = true;
2683 vmx->rmode.irq.vector = irq;
2684 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2685 if (vcpu->arch.interrupt.soft)
2686 vmx->rmode.irq.rip +=
2687 vmx->vcpu.arch.event_exit_inst_len;
2688 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2689 irq | INTR_TYPE_SOFT_INTR | INTR_INFO_VALID_MASK);
2690 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2691 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2692 return;
2694 intr = irq | INTR_INFO_VALID_MASK;
2695 if (vcpu->arch.interrupt.soft) {
2696 intr |= INTR_TYPE_SOFT_INTR;
2697 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2698 vmx->vcpu.arch.event_exit_inst_len);
2699 } else
2700 intr |= INTR_TYPE_EXT_INTR;
2701 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
2704 static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
2706 struct vcpu_vmx *vmx = to_vmx(vcpu);
2708 if (!cpu_has_virtual_nmis()) {
2710 * Tracking the NMI-blocked state in software is built upon
2711 * finding the next open IRQ window. This, in turn, depends on
2712 * well-behaving guests: They have to keep IRQs disabled at
2713 * least as long as the NMI handler runs. Otherwise we may
2714 * cause NMI nesting, maybe breaking the guest. But as this is
2715 * highly unlikely, we can live with the residual risk.
2717 vmx->soft_vnmi_blocked = 1;
2718 vmx->vnmi_blocked_time = 0;
2721 ++vcpu->stat.nmi_injections;
2722 if (vmx->rmode.vm86_active) {
2723 vmx->rmode.irq.pending = true;
2724 vmx->rmode.irq.vector = NMI_VECTOR;
2725 vmx->rmode.irq.rip = kvm_rip_read(vcpu);
2726 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2727 NMI_VECTOR | INTR_TYPE_SOFT_INTR |
2728 INTR_INFO_VALID_MASK);
2729 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN, 1);
2730 kvm_rip_write(vcpu, vmx->rmode.irq.rip - 1);
2731 return;
2733 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2734 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
2737 static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
2739 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
2740 return 0;
2742 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2743 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS |
2744 GUEST_INTR_STATE_NMI));
2747 static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
2749 if (!cpu_has_virtual_nmis())
2750 return to_vmx(vcpu)->soft_vnmi_blocked;
2751 else
2752 return !!(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2753 GUEST_INTR_STATE_NMI);
2756 static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
2758 struct vcpu_vmx *vmx = to_vmx(vcpu);
2760 if (!cpu_has_virtual_nmis()) {
2761 if (vmx->soft_vnmi_blocked != masked) {
2762 vmx->soft_vnmi_blocked = masked;
2763 vmx->vnmi_blocked_time = 0;
2765 } else {
2766 if (masked)
2767 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
2768 GUEST_INTR_STATE_NMI);
2769 else
2770 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
2771 GUEST_INTR_STATE_NMI);
2775 static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
2777 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
2778 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
2779 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
2782 static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
2784 int ret;
2785 struct kvm_userspace_memory_region tss_mem = {
2786 .slot = TSS_PRIVATE_MEMSLOT,
2787 .guest_phys_addr = addr,
2788 .memory_size = PAGE_SIZE * 3,
2789 .flags = 0,
2792 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
2793 if (ret)
2794 return ret;
2795 kvm->arch.tss_addr = addr;
2796 return 0;
2799 static int handle_rmode_exception(struct kvm_vcpu *vcpu,
2800 int vec, u32 err_code)
2803 * Instruction with address size override prefix opcode 0x67
2804 * Cause the #SS fault with 0 error code in VM86 mode.
2806 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
2807 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DONE)
2808 return 1;
2810 * Forward all other exceptions that are valid in real mode.
2811 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
2812 * the required debugging infrastructure rework.
2814 switch (vec) {
2815 case DB_VECTOR:
2816 if (vcpu->guest_debug &
2817 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
2818 return 0;
2819 kvm_queue_exception(vcpu, vec);
2820 return 1;
2821 case BP_VECTOR:
2823 * Update instruction length as we may reinject the exception
2824 * from user space while in guest debugging mode.
2826 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
2827 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2828 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
2829 return 0;
2830 /* fall through */
2831 case DE_VECTOR:
2832 case OF_VECTOR:
2833 case BR_VECTOR:
2834 case UD_VECTOR:
2835 case DF_VECTOR:
2836 case SS_VECTOR:
2837 case GP_VECTOR:
2838 case MF_VECTOR:
2839 kvm_queue_exception(vcpu, vec);
2840 return 1;
2842 return 0;
2846 * Trigger machine check on the host. We assume all the MSRs are already set up
2847 * by the CPU and that we still run on the same CPU as the MCE occurred on.
2848 * We pass a fake environment to the machine check handler because we want
2849 * the guest to be always treated like user space, no matter what context
2850 * it used internally.
2852 static void kvm_machine_check(void)
2854 #if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
2855 struct pt_regs regs = {
2856 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
2857 .flags = X86_EFLAGS_IF,
2860 do_machine_check(&regs, 0);
2861 #endif
2864 static int handle_machine_check(struct kvm_vcpu *vcpu)
2866 /* already handled by vcpu_run */
2867 return 1;
2870 static int handle_exception(struct kvm_vcpu *vcpu)
2872 struct vcpu_vmx *vmx = to_vmx(vcpu);
2873 struct kvm_run *kvm_run = vcpu->run;
2874 u32 intr_info, ex_no, error_code;
2875 unsigned long cr2, rip, dr6;
2876 u32 vect_info;
2877 enum emulation_result er;
2879 vect_info = vmx->idt_vectoring_info;
2880 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
2882 if (is_machine_check(intr_info))
2883 return handle_machine_check(vcpu);
2885 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
2886 !is_page_fault(intr_info)) {
2887 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2888 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
2889 vcpu->run->internal.ndata = 2;
2890 vcpu->run->internal.data[0] = vect_info;
2891 vcpu->run->internal.data[1] = intr_info;
2892 return 0;
2895 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
2896 return 1; /* already handled by vmx_vcpu_run() */
2898 if (is_no_device(intr_info)) {
2899 vmx_fpu_activate(vcpu);
2900 return 1;
2903 if (is_invalid_opcode(intr_info)) {
2904 er = emulate_instruction(vcpu, 0, 0, EMULTYPE_TRAP_UD);
2905 if (er != EMULATE_DONE)
2906 kvm_queue_exception(vcpu, UD_VECTOR);
2907 return 1;
2910 error_code = 0;
2911 rip = kvm_rip_read(vcpu);
2912 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
2913 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
2914 if (is_page_fault(intr_info)) {
2915 /* EPT won't cause page fault directly */
2916 if (enable_ept)
2917 BUG();
2918 cr2 = vmcs_readl(EXIT_QUALIFICATION);
2919 trace_kvm_page_fault(cr2, error_code);
2921 if (kvm_event_needs_reinjection(vcpu))
2922 kvm_mmu_unprotect_page_virt(vcpu, cr2);
2923 return kvm_mmu_page_fault(vcpu, cr2, error_code);
2926 if (vmx->rmode.vm86_active &&
2927 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
2928 error_code)) {
2929 if (vcpu->arch.halt_request) {
2930 vcpu->arch.halt_request = 0;
2931 return kvm_emulate_halt(vcpu);
2933 return 1;
2936 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
2937 switch (ex_no) {
2938 case DB_VECTOR:
2939 dr6 = vmcs_readl(EXIT_QUALIFICATION);
2940 if (!(vcpu->guest_debug &
2941 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
2942 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
2943 kvm_queue_exception(vcpu, DB_VECTOR);
2944 return 1;
2946 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
2947 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
2948 /* fall through */
2949 case BP_VECTOR:
2951 * Update instruction length as we may reinject #BP from
2952 * user space while in guest debugging mode. Reading it for
2953 * #DB as well causes no harm, it is not used in that case.
2955 vmx->vcpu.arch.event_exit_inst_len =
2956 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
2957 kvm_run->exit_reason = KVM_EXIT_DEBUG;
2958 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
2959 kvm_run->debug.arch.exception = ex_no;
2960 break;
2961 default:
2962 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
2963 kvm_run->ex.exception = ex_no;
2964 kvm_run->ex.error_code = error_code;
2965 break;
2967 return 0;
2970 static int handle_external_interrupt(struct kvm_vcpu *vcpu)
2972 ++vcpu->stat.irq_exits;
2973 return 1;
2976 static int handle_triple_fault(struct kvm_vcpu *vcpu)
2978 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
2979 return 0;
2982 static int handle_io(struct kvm_vcpu *vcpu)
2984 unsigned long exit_qualification;
2985 int size, in, string;
2986 unsigned port;
2988 ++vcpu->stat.io_exits;
2989 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
2990 string = (exit_qualification & 16) != 0;
2992 if (string) {
2993 if (emulate_instruction(vcpu, 0, 0, 0) == EMULATE_DO_MMIO)
2994 return 0;
2995 return 1;
2998 size = (exit_qualification & 7) + 1;
2999 in = (exit_qualification & 8) != 0;
3000 port = exit_qualification >> 16;
3002 skip_emulated_instruction(vcpu);
3003 return kvm_emulate_pio(vcpu, in, size, port);
3006 static void
3007 vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3010 * Patch in the VMCALL instruction:
3012 hypercall[0] = 0x0f;
3013 hypercall[1] = 0x01;
3014 hypercall[2] = 0xc1;
3017 static int handle_cr(struct kvm_vcpu *vcpu)
3019 unsigned long exit_qualification, val;
3020 int cr;
3021 int reg;
3023 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3024 cr = exit_qualification & 15;
3025 reg = (exit_qualification >> 8) & 15;
3026 switch ((exit_qualification >> 4) & 3) {
3027 case 0: /* mov to cr */
3028 val = kvm_register_read(vcpu, reg);
3029 trace_kvm_cr_write(cr, val);
3030 switch (cr) {
3031 case 0:
3032 kvm_set_cr0(vcpu, val);
3033 skip_emulated_instruction(vcpu);
3034 return 1;
3035 case 3:
3036 kvm_set_cr3(vcpu, val);
3037 skip_emulated_instruction(vcpu);
3038 return 1;
3039 case 4:
3040 kvm_set_cr4(vcpu, val);
3041 skip_emulated_instruction(vcpu);
3042 return 1;
3043 case 8: {
3044 u8 cr8_prev = kvm_get_cr8(vcpu);
3045 u8 cr8 = kvm_register_read(vcpu, reg);
3046 kvm_set_cr8(vcpu, cr8);
3047 skip_emulated_instruction(vcpu);
3048 if (irqchip_in_kernel(vcpu->kvm))
3049 return 1;
3050 if (cr8_prev <= cr8)
3051 return 1;
3052 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
3053 return 0;
3056 break;
3057 case 2: /* clts */
3058 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
3059 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
3060 skip_emulated_instruction(vcpu);
3061 vmx_fpu_activate(vcpu);
3062 return 1;
3063 case 1: /*mov from cr*/
3064 switch (cr) {
3065 case 3:
3066 kvm_register_write(vcpu, reg, vcpu->arch.cr3);
3067 trace_kvm_cr_read(cr, vcpu->arch.cr3);
3068 skip_emulated_instruction(vcpu);
3069 return 1;
3070 case 8:
3071 val = kvm_get_cr8(vcpu);
3072 kvm_register_write(vcpu, reg, val);
3073 trace_kvm_cr_read(cr, val);
3074 skip_emulated_instruction(vcpu);
3075 return 1;
3077 break;
3078 case 3: /* lmsw */
3079 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
3080 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
3081 kvm_lmsw(vcpu, val);
3083 skip_emulated_instruction(vcpu);
3084 return 1;
3085 default:
3086 break;
3088 vcpu->run->exit_reason = 0;
3089 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
3090 (int)(exit_qualification >> 4) & 3, cr);
3091 return 0;
3094 static int check_dr_alias(struct kvm_vcpu *vcpu)
3096 if (kvm_read_cr4_bits(vcpu, X86_CR4_DE)) {
3097 kvm_queue_exception(vcpu, UD_VECTOR);
3098 return -1;
3100 return 0;
3103 static int handle_dr(struct kvm_vcpu *vcpu)
3105 unsigned long exit_qualification;
3106 unsigned long val;
3107 int dr, reg;
3109 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
3110 if (!kvm_require_cpl(vcpu, 0))
3111 return 1;
3112 dr = vmcs_readl(GUEST_DR7);
3113 if (dr & DR7_GD) {
3115 * As the vm-exit takes precedence over the debug trap, we
3116 * need to emulate the latter, either for the host or the
3117 * guest debugging itself.
3119 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
3120 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
3121 vcpu->run->debug.arch.dr7 = dr;
3122 vcpu->run->debug.arch.pc =
3123 vmcs_readl(GUEST_CS_BASE) +
3124 vmcs_readl(GUEST_RIP);
3125 vcpu->run->debug.arch.exception = DB_VECTOR;
3126 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
3127 return 0;
3128 } else {
3129 vcpu->arch.dr7 &= ~DR7_GD;
3130 vcpu->arch.dr6 |= DR6_BD;
3131 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3132 kvm_queue_exception(vcpu, DB_VECTOR);
3133 return 1;
3137 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3138 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
3139 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
3140 if (exit_qualification & TYPE_MOV_FROM_DR) {
3141 switch (dr) {
3142 case 0 ... 3:
3143 val = vcpu->arch.db[dr];
3144 break;
3145 case 4:
3146 if (check_dr_alias(vcpu) < 0)
3147 return 1;
3148 /* fall through */
3149 case 6:
3150 val = vcpu->arch.dr6;
3151 break;
3152 case 5:
3153 if (check_dr_alias(vcpu) < 0)
3154 return 1;
3155 /* fall through */
3156 default: /* 7 */
3157 val = vcpu->arch.dr7;
3158 break;
3160 kvm_register_write(vcpu, reg, val);
3161 } else {
3162 val = vcpu->arch.regs[reg];
3163 switch (dr) {
3164 case 0 ... 3:
3165 vcpu->arch.db[dr] = val;
3166 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
3167 vcpu->arch.eff_db[dr] = val;
3168 break;
3169 case 4:
3170 if (check_dr_alias(vcpu) < 0)
3171 return 1;
3172 /* fall through */
3173 case 6:
3174 if (val & 0xffffffff00000000ULL) {
3175 kvm_inject_gp(vcpu, 0);
3176 return 1;
3178 vcpu->arch.dr6 = (val & DR6_VOLATILE) | DR6_FIXED_1;
3179 break;
3180 case 5:
3181 if (check_dr_alias(vcpu) < 0)
3182 return 1;
3183 /* fall through */
3184 default: /* 7 */
3185 if (val & 0xffffffff00000000ULL) {
3186 kvm_inject_gp(vcpu, 0);
3187 return 1;
3189 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
3190 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
3191 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
3192 vcpu->arch.switch_db_regs =
3193 (val & DR7_BP_EN_MASK);
3195 break;
3198 skip_emulated_instruction(vcpu);
3199 return 1;
3202 static int handle_cpuid(struct kvm_vcpu *vcpu)
3204 kvm_emulate_cpuid(vcpu);
3205 return 1;
3208 static int handle_rdmsr(struct kvm_vcpu *vcpu)
3210 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3211 u64 data;
3213 if (vmx_get_msr(vcpu, ecx, &data)) {
3214 trace_kvm_msr_read_ex(ecx);
3215 kvm_inject_gp(vcpu, 0);
3216 return 1;
3219 trace_kvm_msr_read(ecx, data);
3221 /* FIXME: handling of bits 32:63 of rax, rdx */
3222 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
3223 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
3224 skip_emulated_instruction(vcpu);
3225 return 1;
3228 static int handle_wrmsr(struct kvm_vcpu *vcpu)
3230 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
3231 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
3232 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3234 if (vmx_set_msr(vcpu, ecx, data) != 0) {
3235 trace_kvm_msr_write_ex(ecx, data);
3236 kvm_inject_gp(vcpu, 0);
3237 return 1;
3240 trace_kvm_msr_write(ecx, data);
3241 skip_emulated_instruction(vcpu);
3242 return 1;
3245 static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
3247 return 1;
3250 static int handle_interrupt_window(struct kvm_vcpu *vcpu)
3252 u32 cpu_based_vm_exec_control;
3254 /* clear pending irq */
3255 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3256 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
3257 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3259 ++vcpu->stat.irq_window_exits;
3262 * If the user space waits to inject interrupts, exit as soon as
3263 * possible
3265 if (!irqchip_in_kernel(vcpu->kvm) &&
3266 vcpu->run->request_interrupt_window &&
3267 !kvm_cpu_has_interrupt(vcpu)) {
3268 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3269 return 0;
3271 return 1;
3274 static int handle_halt(struct kvm_vcpu *vcpu)
3276 skip_emulated_instruction(vcpu);
3277 return kvm_emulate_halt(vcpu);
3280 static int handle_vmcall(struct kvm_vcpu *vcpu)
3282 skip_emulated_instruction(vcpu);
3283 kvm_emulate_hypercall(vcpu);
3284 return 1;
3287 static int handle_vmx_insn(struct kvm_vcpu *vcpu)
3289 kvm_queue_exception(vcpu, UD_VECTOR);
3290 return 1;
3293 static int handle_invlpg(struct kvm_vcpu *vcpu)
3295 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3297 kvm_mmu_invlpg(vcpu, exit_qualification);
3298 skip_emulated_instruction(vcpu);
3299 return 1;
3302 static int handle_wbinvd(struct kvm_vcpu *vcpu)
3304 skip_emulated_instruction(vcpu);
3305 /* TODO: Add support for VT-d/pass-through device */
3306 return 1;
3309 static int handle_apic_access(struct kvm_vcpu *vcpu)
3311 unsigned long exit_qualification;
3312 enum emulation_result er;
3313 unsigned long offset;
3315 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3316 offset = exit_qualification & 0xffful;
3318 er = emulate_instruction(vcpu, 0, 0, 0);
3320 if (er != EMULATE_DONE) {
3321 printk(KERN_ERR
3322 "Fail to handle apic access vmexit! Offset is 0x%lx\n",
3323 offset);
3324 return -ENOEXEC;
3326 return 1;
3329 static int handle_task_switch(struct kvm_vcpu *vcpu)
3331 struct vcpu_vmx *vmx = to_vmx(vcpu);
3332 unsigned long exit_qualification;
3333 u16 tss_selector;
3334 int reason, type, idt_v;
3336 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
3337 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
3339 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3341 reason = (u32)exit_qualification >> 30;
3342 if (reason == TASK_SWITCH_GATE && idt_v) {
3343 switch (type) {
3344 case INTR_TYPE_NMI_INTR:
3345 vcpu->arch.nmi_injected = false;
3346 if (cpu_has_virtual_nmis())
3347 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3348 GUEST_INTR_STATE_NMI);
3349 break;
3350 case INTR_TYPE_EXT_INTR:
3351 case INTR_TYPE_SOFT_INTR:
3352 kvm_clear_interrupt_queue(vcpu);
3353 break;
3354 case INTR_TYPE_HARD_EXCEPTION:
3355 case INTR_TYPE_SOFT_EXCEPTION:
3356 kvm_clear_exception_queue(vcpu);
3357 break;
3358 default:
3359 break;
3362 tss_selector = exit_qualification;
3364 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
3365 type != INTR_TYPE_EXT_INTR &&
3366 type != INTR_TYPE_NMI_INTR))
3367 skip_emulated_instruction(vcpu);
3369 if (!kvm_task_switch(vcpu, tss_selector, reason))
3370 return 0;
3372 /* clear all local breakpoint enable flags */
3373 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
3376 * TODO: What about debug traps on tss switch?
3377 * Are we supposed to inject them and update dr6?
3380 return 1;
3383 static int handle_ept_violation(struct kvm_vcpu *vcpu)
3385 unsigned long exit_qualification;
3386 gpa_t gpa;
3387 int gla_validity;
3389 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
3391 if (exit_qualification & (1 << 6)) {
3392 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
3393 return -EINVAL;
3396 gla_validity = (exit_qualification >> 7) & 0x3;
3397 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
3398 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
3399 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
3400 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
3401 vmcs_readl(GUEST_LINEAR_ADDRESS));
3402 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
3403 (long unsigned int)exit_qualification);
3404 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3405 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
3406 return 0;
3409 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3410 trace_kvm_page_fault(gpa, exit_qualification);
3411 return kvm_mmu_page_fault(vcpu, gpa & PAGE_MASK, 0);
3414 static u64 ept_rsvd_mask(u64 spte, int level)
3416 int i;
3417 u64 mask = 0;
3419 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
3420 mask |= (1ULL << i);
3422 if (level > 2)
3423 /* bits 7:3 reserved */
3424 mask |= 0xf8;
3425 else if (level == 2) {
3426 if (spte & (1ULL << 7))
3427 /* 2MB ref, bits 20:12 reserved */
3428 mask |= 0x1ff000;
3429 else
3430 /* bits 6:3 reserved */
3431 mask |= 0x78;
3434 return mask;
3437 static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
3438 int level)
3440 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
3442 /* 010b (write-only) */
3443 WARN_ON((spte & 0x7) == 0x2);
3445 /* 110b (write/execute) */
3446 WARN_ON((spte & 0x7) == 0x6);
3448 /* 100b (execute-only) and value not supported by logical processor */
3449 if (!cpu_has_vmx_ept_execute_only())
3450 WARN_ON((spte & 0x7) == 0x4);
3452 /* not 000b */
3453 if ((spte & 0x7)) {
3454 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
3456 if (rsvd_bits != 0) {
3457 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
3458 __func__, rsvd_bits);
3459 WARN_ON(1);
3462 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
3463 u64 ept_mem_type = (spte & 0x38) >> 3;
3465 if (ept_mem_type == 2 || ept_mem_type == 3 ||
3466 ept_mem_type == 7) {
3467 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
3468 __func__, ept_mem_type);
3469 WARN_ON(1);
3475 static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
3477 u64 sptes[4];
3478 int nr_sptes, i;
3479 gpa_t gpa;
3481 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
3483 printk(KERN_ERR "EPT: Misconfiguration.\n");
3484 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
3486 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
3488 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
3489 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
3491 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3492 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
3494 return 0;
3497 static int handle_nmi_window(struct kvm_vcpu *vcpu)
3499 u32 cpu_based_vm_exec_control;
3501 /* clear pending NMI */
3502 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3503 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
3504 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3505 ++vcpu->stat.nmi_window_exits;
3507 return 1;
3510 static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
3512 struct vcpu_vmx *vmx = to_vmx(vcpu);
3513 enum emulation_result err = EMULATE_DONE;
3514 int ret = 1;
3516 while (!guest_state_valid(vcpu)) {
3517 err = emulate_instruction(vcpu, 0, 0, 0);
3519 if (err == EMULATE_DO_MMIO) {
3520 ret = 0;
3521 goto out;
3524 if (err != EMULATE_DONE) {
3525 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3526 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
3527 vcpu->run->internal.ndata = 0;
3528 ret = 0;
3529 goto out;
3532 if (signal_pending(current))
3533 goto out;
3534 if (need_resched())
3535 schedule();
3538 vmx->emulation_required = 0;
3539 out:
3540 return ret;
3544 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
3545 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
3547 static int handle_pause(struct kvm_vcpu *vcpu)
3549 skip_emulated_instruction(vcpu);
3550 kvm_vcpu_on_spin(vcpu);
3552 return 1;
3555 static int handle_invalid_op(struct kvm_vcpu *vcpu)
3557 kvm_queue_exception(vcpu, UD_VECTOR);
3558 return 1;
3562 * The exit handlers return 1 if the exit was handled fully and guest execution
3563 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
3564 * to be done to userspace and return 0.
3566 static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
3567 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
3568 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
3569 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
3570 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
3571 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
3572 [EXIT_REASON_CR_ACCESS] = handle_cr,
3573 [EXIT_REASON_DR_ACCESS] = handle_dr,
3574 [EXIT_REASON_CPUID] = handle_cpuid,
3575 [EXIT_REASON_MSR_READ] = handle_rdmsr,
3576 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
3577 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
3578 [EXIT_REASON_HLT] = handle_halt,
3579 [EXIT_REASON_INVLPG] = handle_invlpg,
3580 [EXIT_REASON_VMCALL] = handle_vmcall,
3581 [EXIT_REASON_VMCLEAR] = handle_vmx_insn,
3582 [EXIT_REASON_VMLAUNCH] = handle_vmx_insn,
3583 [EXIT_REASON_VMPTRLD] = handle_vmx_insn,
3584 [EXIT_REASON_VMPTRST] = handle_vmx_insn,
3585 [EXIT_REASON_VMREAD] = handle_vmx_insn,
3586 [EXIT_REASON_VMRESUME] = handle_vmx_insn,
3587 [EXIT_REASON_VMWRITE] = handle_vmx_insn,
3588 [EXIT_REASON_VMOFF] = handle_vmx_insn,
3589 [EXIT_REASON_VMON] = handle_vmx_insn,
3590 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
3591 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
3592 [EXIT_REASON_WBINVD] = handle_wbinvd,
3593 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
3594 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
3595 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
3596 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
3597 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
3598 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
3599 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
3602 static const int kvm_vmx_max_exit_handlers =
3603 ARRAY_SIZE(kvm_vmx_exit_handlers);
3606 * The guest has exited. See if we can fix it or if we need userspace
3607 * assistance.
3609 static int vmx_handle_exit(struct kvm_vcpu *vcpu)
3611 struct vcpu_vmx *vmx = to_vmx(vcpu);
3612 u32 exit_reason = vmx->exit_reason;
3613 u32 vectoring_info = vmx->idt_vectoring_info;
3615 trace_kvm_exit(exit_reason, vcpu);
3617 /* If guest state is invalid, start emulating */
3618 if (vmx->emulation_required && emulate_invalid_guest_state)
3619 return handle_invalid_guest_state(vcpu);
3621 /* Access CR3 don't cause VMExit in paging mode, so we need
3622 * to sync with guest real CR3. */
3623 if (enable_ept && is_paging(vcpu))
3624 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3626 if (unlikely(vmx->fail)) {
3627 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3628 vcpu->run->fail_entry.hardware_entry_failure_reason
3629 = vmcs_read32(VM_INSTRUCTION_ERROR);
3630 return 0;
3633 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
3634 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
3635 exit_reason != EXIT_REASON_EPT_VIOLATION &&
3636 exit_reason != EXIT_REASON_TASK_SWITCH))
3637 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
3638 "(0x%x) and exit reason is 0x%x\n",
3639 __func__, vectoring_info, exit_reason);
3641 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked)) {
3642 if (vmx_interrupt_allowed(vcpu)) {
3643 vmx->soft_vnmi_blocked = 0;
3644 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
3645 vcpu->arch.nmi_pending) {
3647 * This CPU don't support us in finding the end of an
3648 * NMI-blocked window if the guest runs with IRQs
3649 * disabled. So we pull the trigger after 1 s of
3650 * futile waiting, but inform the user about this.
3652 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
3653 "state on VCPU %d after 1 s timeout\n",
3654 __func__, vcpu->vcpu_id);
3655 vmx->soft_vnmi_blocked = 0;
3659 if (exit_reason < kvm_vmx_max_exit_handlers
3660 && kvm_vmx_exit_handlers[exit_reason])
3661 return kvm_vmx_exit_handlers[exit_reason](vcpu);
3662 else {
3663 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
3664 vcpu->run->hw.hardware_exit_reason = exit_reason;
3666 return 0;
3669 static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3671 if (irr == -1 || tpr < irr) {
3672 vmcs_write32(TPR_THRESHOLD, 0);
3673 return;
3676 vmcs_write32(TPR_THRESHOLD, irr);
3679 static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
3681 u32 exit_intr_info;
3682 u32 idt_vectoring_info = vmx->idt_vectoring_info;
3683 bool unblock_nmi;
3684 u8 vector;
3685 int type;
3686 bool idtv_info_valid;
3688 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3690 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
3692 /* Handle machine checks before interrupts are enabled */
3693 if ((vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY)
3694 || (vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI
3695 && is_machine_check(exit_intr_info)))
3696 kvm_machine_check();
3698 /* We need to handle NMIs before interrupts are enabled */
3699 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
3700 (exit_intr_info & INTR_INFO_VALID_MASK))
3701 asm("int $2");
3703 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
3705 if (cpu_has_virtual_nmis()) {
3706 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
3707 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
3709 * SDM 3: 27.7.1.2 (September 2008)
3710 * Re-set bit "block by NMI" before VM entry if vmexit caused by
3711 * a guest IRET fault.
3712 * SDM 3: 23.2.2 (September 2008)
3713 * Bit 12 is undefined in any of the following cases:
3714 * If the VM exit sets the valid bit in the IDT-vectoring
3715 * information field.
3716 * If the VM exit is due to a double fault.
3718 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
3719 vector != DF_VECTOR && !idtv_info_valid)
3720 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
3721 GUEST_INTR_STATE_NMI);
3722 } else if (unlikely(vmx->soft_vnmi_blocked))
3723 vmx->vnmi_blocked_time +=
3724 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
3726 vmx->vcpu.arch.nmi_injected = false;
3727 kvm_clear_exception_queue(&vmx->vcpu);
3728 kvm_clear_interrupt_queue(&vmx->vcpu);
3730 if (!idtv_info_valid)
3731 return;
3733 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
3734 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
3736 switch (type) {
3737 case INTR_TYPE_NMI_INTR:
3738 vmx->vcpu.arch.nmi_injected = true;
3740 * SDM 3: 27.7.1.2 (September 2008)
3741 * Clear bit "block by NMI" before VM entry if a NMI
3742 * delivery faulted.
3744 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
3745 GUEST_INTR_STATE_NMI);
3746 break;
3747 case INTR_TYPE_SOFT_EXCEPTION:
3748 vmx->vcpu.arch.event_exit_inst_len =
3749 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3750 /* fall through */
3751 case INTR_TYPE_HARD_EXCEPTION:
3752 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
3753 u32 err = vmcs_read32(IDT_VECTORING_ERROR_CODE);
3754 kvm_queue_exception_e(&vmx->vcpu, vector, err);
3755 } else
3756 kvm_queue_exception(&vmx->vcpu, vector);
3757 break;
3758 case INTR_TYPE_SOFT_INTR:
3759 vmx->vcpu.arch.event_exit_inst_len =
3760 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3761 /* fall through */
3762 case INTR_TYPE_EXT_INTR:
3763 kvm_queue_interrupt(&vmx->vcpu, vector,
3764 type == INTR_TYPE_SOFT_INTR);
3765 break;
3766 default:
3767 break;
3772 * Failure to inject an interrupt should give us the information
3773 * in IDT_VECTORING_INFO_FIELD. However, if the failure occurs
3774 * when fetching the interrupt redirection bitmap in the real-mode
3775 * tss, this doesn't happen. So we do it ourselves.
3777 static void fixup_rmode_irq(struct vcpu_vmx *vmx)
3779 vmx->rmode.irq.pending = 0;
3780 if (kvm_rip_read(&vmx->vcpu) + 1 != vmx->rmode.irq.rip)
3781 return;
3782 kvm_rip_write(&vmx->vcpu, vmx->rmode.irq.rip);
3783 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
3784 vmx->idt_vectoring_info &= ~VECTORING_INFO_TYPE_MASK;
3785 vmx->idt_vectoring_info |= INTR_TYPE_EXT_INTR;
3786 return;
3788 vmx->idt_vectoring_info =
3789 VECTORING_INFO_VALID_MASK
3790 | INTR_TYPE_EXT_INTR
3791 | vmx->rmode.irq.vector;
3794 #ifdef CONFIG_X86_64
3795 #define R "r"
3796 #define Q "q"
3797 #else
3798 #define R "e"
3799 #define Q "l"
3800 #endif
3802 static void vmx_vcpu_run(struct kvm_vcpu *vcpu)
3804 struct vcpu_vmx *vmx = to_vmx(vcpu);
3806 /* Record the guest's net vcpu time for enforced NMI injections. */
3807 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
3808 vmx->entry_time = ktime_get();
3810 /* Don't enter VMX if guest state is invalid, let the exit handler
3811 start emulation until we arrive back to a valid state */
3812 if (vmx->emulation_required && emulate_invalid_guest_state)
3813 return;
3815 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
3816 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
3817 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
3818 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
3820 /* When single-stepping over STI and MOV SS, we must clear the
3821 * corresponding interruptibility bits in the guest state. Otherwise
3822 * vmentry fails as it then expects bit 14 (BS) in pending debug
3823 * exceptions being set, but that's not correct for the guest debugging
3824 * case. */
3825 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
3826 vmx_set_interrupt_shadow(vcpu, 0);
3829 * Loading guest fpu may have cleared host cr0.ts
3831 vmcs_writel(HOST_CR0, read_cr0());
3833 asm(
3834 /* Store host registers */
3835 "push %%"R"dx; push %%"R"bp;"
3836 "push %%"R"cx \n\t"
3837 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
3838 "je 1f \n\t"
3839 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
3840 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
3841 "1: \n\t"
3842 /* Reload cr2 if changed */
3843 "mov %c[cr2](%0), %%"R"ax \n\t"
3844 "mov %%cr2, %%"R"dx \n\t"
3845 "cmp %%"R"ax, %%"R"dx \n\t"
3846 "je 2f \n\t"
3847 "mov %%"R"ax, %%cr2 \n\t"
3848 "2: \n\t"
3849 /* Check if vmlaunch of vmresume is needed */
3850 "cmpl $0, %c[launched](%0) \n\t"
3851 /* Load guest registers. Don't clobber flags. */
3852 "mov %c[rax](%0), %%"R"ax \n\t"
3853 "mov %c[rbx](%0), %%"R"bx \n\t"
3854 "mov %c[rdx](%0), %%"R"dx \n\t"
3855 "mov %c[rsi](%0), %%"R"si \n\t"
3856 "mov %c[rdi](%0), %%"R"di \n\t"
3857 "mov %c[rbp](%0), %%"R"bp \n\t"
3858 #ifdef CONFIG_X86_64
3859 "mov %c[r8](%0), %%r8 \n\t"
3860 "mov %c[r9](%0), %%r9 \n\t"
3861 "mov %c[r10](%0), %%r10 \n\t"
3862 "mov %c[r11](%0), %%r11 \n\t"
3863 "mov %c[r12](%0), %%r12 \n\t"
3864 "mov %c[r13](%0), %%r13 \n\t"
3865 "mov %c[r14](%0), %%r14 \n\t"
3866 "mov %c[r15](%0), %%r15 \n\t"
3867 #endif
3868 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
3870 /* Enter guest mode */
3871 "jne .Llaunched \n\t"
3872 __ex(ASM_VMX_VMLAUNCH) "\n\t"
3873 "jmp .Lkvm_vmx_return \n\t"
3874 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
3875 ".Lkvm_vmx_return: "
3876 /* Save guest registers, load host registers, keep flags */
3877 "xchg %0, (%%"R"sp) \n\t"
3878 "mov %%"R"ax, %c[rax](%0) \n\t"
3879 "mov %%"R"bx, %c[rbx](%0) \n\t"
3880 "push"Q" (%%"R"sp); pop"Q" %c[rcx](%0) \n\t"
3881 "mov %%"R"dx, %c[rdx](%0) \n\t"
3882 "mov %%"R"si, %c[rsi](%0) \n\t"
3883 "mov %%"R"di, %c[rdi](%0) \n\t"
3884 "mov %%"R"bp, %c[rbp](%0) \n\t"
3885 #ifdef CONFIG_X86_64
3886 "mov %%r8, %c[r8](%0) \n\t"
3887 "mov %%r9, %c[r9](%0) \n\t"
3888 "mov %%r10, %c[r10](%0) \n\t"
3889 "mov %%r11, %c[r11](%0) \n\t"
3890 "mov %%r12, %c[r12](%0) \n\t"
3891 "mov %%r13, %c[r13](%0) \n\t"
3892 "mov %%r14, %c[r14](%0) \n\t"
3893 "mov %%r15, %c[r15](%0) \n\t"
3894 #endif
3895 "mov %%cr2, %%"R"ax \n\t"
3896 "mov %%"R"ax, %c[cr2](%0) \n\t"
3898 "pop %%"R"bp; pop %%"R"bp; pop %%"R"dx \n\t"
3899 "setbe %c[fail](%0) \n\t"
3900 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
3901 [launched]"i"(offsetof(struct vcpu_vmx, launched)),
3902 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
3903 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
3904 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
3905 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
3906 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
3907 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
3908 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
3909 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
3910 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
3911 #ifdef CONFIG_X86_64
3912 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
3913 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
3914 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
3915 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
3916 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
3917 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
3918 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
3919 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
3920 #endif
3921 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2))
3922 : "cc", "memory"
3923 , R"bx", R"di", R"si"
3924 #ifdef CONFIG_X86_64
3925 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
3926 #endif
3929 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
3930 | (1 << VCPU_EXREG_PDPTR));
3931 vcpu->arch.regs_dirty = 0;
3933 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
3934 if (vmx->rmode.irq.pending)
3935 fixup_rmode_irq(vmx);
3937 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
3938 vmx->launched = 1;
3940 vmx_complete_interrupts(vmx);
3943 #undef R
3944 #undef Q
3946 static void vmx_free_vmcs(struct kvm_vcpu *vcpu)
3948 struct vcpu_vmx *vmx = to_vmx(vcpu);
3950 if (vmx->vmcs) {
3951 vcpu_clear(vmx);
3952 free_vmcs(vmx->vmcs);
3953 vmx->vmcs = NULL;
3957 static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
3959 struct vcpu_vmx *vmx = to_vmx(vcpu);
3961 spin_lock(&vmx_vpid_lock);
3962 if (vmx->vpid != 0)
3963 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3964 spin_unlock(&vmx_vpid_lock);
3965 vmx_free_vmcs(vcpu);
3966 kfree(vmx->guest_msrs);
3967 kvm_vcpu_uninit(vcpu);
3968 kmem_cache_free(kvm_vcpu_cache, vmx);
3971 static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
3973 int err;
3974 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
3975 int cpu;
3977 if (!vmx)
3978 return ERR_PTR(-ENOMEM);
3980 allocate_vpid(vmx);
3982 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
3983 if (err)
3984 goto free_vcpu;
3986 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
3987 if (!vmx->guest_msrs) {
3988 err = -ENOMEM;
3989 goto uninit_vcpu;
3992 vmx->vmcs = alloc_vmcs();
3993 if (!vmx->vmcs)
3994 goto free_msrs;
3996 vmcs_clear(vmx->vmcs);
3998 cpu = get_cpu();
3999 vmx_vcpu_load(&vmx->vcpu, cpu);
4000 err = vmx_vcpu_setup(vmx);
4001 vmx_vcpu_put(&vmx->vcpu);
4002 put_cpu();
4003 if (err)
4004 goto free_vmcs;
4005 if (vm_need_virtualize_apic_accesses(kvm))
4006 if (alloc_apic_access_page(kvm) != 0)
4007 goto free_vmcs;
4009 if (enable_ept) {
4010 if (!kvm->arch.ept_identity_map_addr)
4011 kvm->arch.ept_identity_map_addr =
4012 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
4013 if (alloc_identity_pagetable(kvm) != 0)
4014 goto free_vmcs;
4017 return &vmx->vcpu;
4019 free_vmcs:
4020 free_vmcs(vmx->vmcs);
4021 free_msrs:
4022 kfree(vmx->guest_msrs);
4023 uninit_vcpu:
4024 kvm_vcpu_uninit(&vmx->vcpu);
4025 free_vcpu:
4026 kmem_cache_free(kvm_vcpu_cache, vmx);
4027 return ERR_PTR(err);
4030 static void __init vmx_check_processor_compat(void *rtn)
4032 struct vmcs_config vmcs_conf;
4034 *(int *)rtn = 0;
4035 if (setup_vmcs_config(&vmcs_conf) < 0)
4036 *(int *)rtn = -EIO;
4037 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
4038 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
4039 smp_processor_id());
4040 *(int *)rtn = -EIO;
4044 static int get_ept_level(void)
4046 return VMX_EPT_DEFAULT_GAW + 1;
4049 static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4051 u64 ret;
4053 /* For VT-d and EPT combination
4054 * 1. MMIO: always map as UC
4055 * 2. EPT with VT-d:
4056 * a. VT-d without snooping control feature: can't guarantee the
4057 * result, try to trust guest.
4058 * b. VT-d with snooping control feature: snooping control feature of
4059 * VT-d engine can guarantee the cache correctness. Just set it
4060 * to WB to keep consistent with host. So the same as item 3.
4061 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
4062 * consistent with host MTRR
4064 if (is_mmio)
4065 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
4066 else if (vcpu->kvm->arch.iommu_domain &&
4067 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
4068 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
4069 VMX_EPT_MT_EPTE_SHIFT;
4070 else
4071 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
4072 | VMX_EPT_IPAT_BIT;
4074 return ret;
4077 #define _ER(x) { EXIT_REASON_##x, #x }
4079 static const struct trace_print_flags vmx_exit_reasons_str[] = {
4080 _ER(EXCEPTION_NMI),
4081 _ER(EXTERNAL_INTERRUPT),
4082 _ER(TRIPLE_FAULT),
4083 _ER(PENDING_INTERRUPT),
4084 _ER(NMI_WINDOW),
4085 _ER(TASK_SWITCH),
4086 _ER(CPUID),
4087 _ER(HLT),
4088 _ER(INVLPG),
4089 _ER(RDPMC),
4090 _ER(RDTSC),
4091 _ER(VMCALL),
4092 _ER(VMCLEAR),
4093 _ER(VMLAUNCH),
4094 _ER(VMPTRLD),
4095 _ER(VMPTRST),
4096 _ER(VMREAD),
4097 _ER(VMRESUME),
4098 _ER(VMWRITE),
4099 _ER(VMOFF),
4100 _ER(VMON),
4101 _ER(CR_ACCESS),
4102 _ER(DR_ACCESS),
4103 _ER(IO_INSTRUCTION),
4104 _ER(MSR_READ),
4105 _ER(MSR_WRITE),
4106 _ER(MWAIT_INSTRUCTION),
4107 _ER(MONITOR_INSTRUCTION),
4108 _ER(PAUSE_INSTRUCTION),
4109 _ER(MCE_DURING_VMENTRY),
4110 _ER(TPR_BELOW_THRESHOLD),
4111 _ER(APIC_ACCESS),
4112 _ER(EPT_VIOLATION),
4113 _ER(EPT_MISCONFIG),
4114 _ER(WBINVD),
4115 { -1, NULL }
4118 #undef _ER
4120 static int vmx_get_lpage_level(void)
4122 if (enable_ept && !cpu_has_vmx_ept_1g_page())
4123 return PT_DIRECTORY_LEVEL;
4124 else
4125 /* For shadow and EPT supported 1GB page */
4126 return PT_PDPE_LEVEL;
4129 static inline u32 bit(int bitno)
4131 return 1 << (bitno & 31);
4134 static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
4136 struct kvm_cpuid_entry2 *best;
4137 struct vcpu_vmx *vmx = to_vmx(vcpu);
4138 u32 exec_control;
4140 vmx->rdtscp_enabled = false;
4141 if (vmx_rdtscp_supported()) {
4142 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
4143 if (exec_control & SECONDARY_EXEC_RDTSCP) {
4144 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
4145 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
4146 vmx->rdtscp_enabled = true;
4147 else {
4148 exec_control &= ~SECONDARY_EXEC_RDTSCP;
4149 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4150 exec_control);
4156 static struct kvm_x86_ops vmx_x86_ops = {
4157 .cpu_has_kvm_support = cpu_has_kvm_support,
4158 .disabled_by_bios = vmx_disabled_by_bios,
4159 .hardware_setup = hardware_setup,
4160 .hardware_unsetup = hardware_unsetup,
4161 .check_processor_compatibility = vmx_check_processor_compat,
4162 .hardware_enable = hardware_enable,
4163 .hardware_disable = hardware_disable,
4164 .cpu_has_accelerated_tpr = report_flexpriority,
4166 .vcpu_create = vmx_create_vcpu,
4167 .vcpu_free = vmx_free_vcpu,
4168 .vcpu_reset = vmx_vcpu_reset,
4170 .prepare_guest_switch = vmx_save_host_state,
4171 .vcpu_load = vmx_vcpu_load,
4172 .vcpu_put = vmx_vcpu_put,
4174 .set_guest_debug = set_guest_debug,
4175 .get_msr = vmx_get_msr,
4176 .set_msr = vmx_set_msr,
4177 .get_segment_base = vmx_get_segment_base,
4178 .get_segment = vmx_get_segment,
4179 .set_segment = vmx_set_segment,
4180 .get_cpl = vmx_get_cpl,
4181 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
4182 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
4183 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
4184 .set_cr0 = vmx_set_cr0,
4185 .set_cr3 = vmx_set_cr3,
4186 .set_cr4 = vmx_set_cr4,
4187 .set_efer = vmx_set_efer,
4188 .get_idt = vmx_get_idt,
4189 .set_idt = vmx_set_idt,
4190 .get_gdt = vmx_get_gdt,
4191 .set_gdt = vmx_set_gdt,
4192 .cache_reg = vmx_cache_reg,
4193 .get_rflags = vmx_get_rflags,
4194 .set_rflags = vmx_set_rflags,
4195 .fpu_activate = vmx_fpu_activate,
4196 .fpu_deactivate = vmx_fpu_deactivate,
4198 .tlb_flush = vmx_flush_tlb,
4200 .run = vmx_vcpu_run,
4201 .handle_exit = vmx_handle_exit,
4202 .skip_emulated_instruction = skip_emulated_instruction,
4203 .set_interrupt_shadow = vmx_set_interrupt_shadow,
4204 .get_interrupt_shadow = vmx_get_interrupt_shadow,
4205 .patch_hypercall = vmx_patch_hypercall,
4206 .set_irq = vmx_inject_irq,
4207 .set_nmi = vmx_inject_nmi,
4208 .queue_exception = vmx_queue_exception,
4209 .interrupt_allowed = vmx_interrupt_allowed,
4210 .nmi_allowed = vmx_nmi_allowed,
4211 .get_nmi_mask = vmx_get_nmi_mask,
4212 .set_nmi_mask = vmx_set_nmi_mask,
4213 .enable_nmi_window = enable_nmi_window,
4214 .enable_irq_window = enable_irq_window,
4215 .update_cr8_intercept = update_cr8_intercept,
4217 .set_tss_addr = vmx_set_tss_addr,
4218 .get_tdp_level = get_ept_level,
4219 .get_mt_mask = vmx_get_mt_mask,
4221 .exit_reasons_str = vmx_exit_reasons_str,
4222 .get_lpage_level = vmx_get_lpage_level,
4224 .cpuid_update = vmx_cpuid_update,
4226 .rdtscp_supported = vmx_rdtscp_supported,
4229 static int __init vmx_init(void)
4231 int r, i;
4233 rdmsrl_safe(MSR_EFER, &host_efer);
4235 for (i = 0; i < NR_VMX_MSR; ++i)
4236 kvm_define_shared_msr(i, vmx_msr_index[i]);
4238 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
4239 if (!vmx_io_bitmap_a)
4240 return -ENOMEM;
4242 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
4243 if (!vmx_io_bitmap_b) {
4244 r = -ENOMEM;
4245 goto out;
4248 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
4249 if (!vmx_msr_bitmap_legacy) {
4250 r = -ENOMEM;
4251 goto out1;
4254 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
4255 if (!vmx_msr_bitmap_longmode) {
4256 r = -ENOMEM;
4257 goto out2;
4261 * Allow direct access to the PC debug port (it is often used for I/O
4262 * delays, but the vmexits simply slow things down).
4264 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
4265 clear_bit(0x80, vmx_io_bitmap_a);
4267 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
4269 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
4270 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
4272 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
4274 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx), THIS_MODULE);
4275 if (r)
4276 goto out3;
4278 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
4279 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
4280 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
4281 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
4282 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
4283 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
4285 if (enable_ept) {
4286 bypass_guest_pf = 0;
4287 kvm_mmu_set_base_ptes(VMX_EPT_READABLE_MASK |
4288 VMX_EPT_WRITABLE_MASK);
4289 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4290 VMX_EPT_EXECUTABLE_MASK);
4291 kvm_enable_tdp();
4292 } else
4293 kvm_disable_tdp();
4295 if (bypass_guest_pf)
4296 kvm_mmu_set_nonpresent_ptes(~0xffeull, 0ull);
4298 return 0;
4300 out3:
4301 free_page((unsigned long)vmx_msr_bitmap_longmode);
4302 out2:
4303 free_page((unsigned long)vmx_msr_bitmap_legacy);
4304 out1:
4305 free_page((unsigned long)vmx_io_bitmap_b);
4306 out:
4307 free_page((unsigned long)vmx_io_bitmap_a);
4308 return r;
4311 static void __exit vmx_exit(void)
4313 free_page((unsigned long)vmx_msr_bitmap_legacy);
4314 free_page((unsigned long)vmx_msr_bitmap_longmode);
4315 free_page((unsigned long)vmx_io_bitmap_b);
4316 free_page((unsigned long)vmx_io_bitmap_a);
4318 kvm_exit();
4321 module_init(vmx_init)
4322 module_exit(vmx_exit)