2 * Procedures for maintaining information about logical memory blocks.
4 * Peter Bergner, IBM Corp. June 2001.
5 * Copyright (C) 2001 Peter Bergner.
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
13 #include <linux/kernel.h>
14 #include <linux/init.h>
15 #include <linux/bitops.h>
16 #include <linux/lmb.h>
18 #define LMB_ALLOC_ANYWHERE 0
24 static int __init
early_lmb(char *p
)
26 if (p
&& strstr(p
, "debug"))
30 early_param("lmb", early_lmb
);
32 static void lmb_dump(struct lmb_region
*region
, char *name
)
34 unsigned long long base
, size
;
37 pr_info(" %s.cnt = 0x%lx\n", name
, region
->cnt
);
39 for (i
= 0; i
< region
->cnt
; i
++) {
40 base
= region
->region
[i
].base
;
41 size
= region
->region
[i
].size
;
43 pr_info(" %s[0x%x]\t0x%016llx - 0x%016llx, 0x%llx bytes\n",
44 name
, i
, base
, base
+ size
- 1, size
);
48 void lmb_dump_all(void)
53 pr_info("LMB configuration:\n");
54 pr_info(" rmo_size = 0x%llx\n", (unsigned long long)lmb
.rmo_size
);
55 pr_info(" memory.size = 0x%llx\n", (unsigned long long)lmb
.memory
.size
);
57 lmb_dump(&lmb
.memory
, "memory");
58 lmb_dump(&lmb
.reserved
, "reserved");
61 static unsigned long lmb_addrs_overlap(u64 base1
, u64 size1
, u64 base2
,
64 return ((base1
< (base2
+ size2
)) && (base2
< (base1
+ size1
)));
67 static long lmb_addrs_adjacent(u64 base1
, u64 size1
, u64 base2
, u64 size2
)
69 if (base2
== base1
+ size1
)
71 else if (base1
== base2
+ size2
)
77 static long lmb_regions_adjacent(struct lmb_region
*rgn
,
78 unsigned long r1
, unsigned long r2
)
80 u64 base1
= rgn
->region
[r1
].base
;
81 u64 size1
= rgn
->region
[r1
].size
;
82 u64 base2
= rgn
->region
[r2
].base
;
83 u64 size2
= rgn
->region
[r2
].size
;
85 return lmb_addrs_adjacent(base1
, size1
, base2
, size2
);
88 static void lmb_remove_region(struct lmb_region
*rgn
, unsigned long r
)
92 for (i
= r
; i
< rgn
->cnt
- 1; i
++) {
93 rgn
->region
[i
].base
= rgn
->region
[i
+ 1].base
;
94 rgn
->region
[i
].size
= rgn
->region
[i
+ 1].size
;
99 /* Assumption: base addr of region 1 < base addr of region 2 */
100 static void lmb_coalesce_regions(struct lmb_region
*rgn
,
101 unsigned long r1
, unsigned long r2
)
103 rgn
->region
[r1
].size
+= rgn
->region
[r2
].size
;
104 lmb_remove_region(rgn
, r2
);
107 void __init
lmb_init(void)
109 /* Create a dummy zero size LMB which will get coalesced away later.
110 * This simplifies the lmb_add() code below...
112 lmb
.memory
.region
[0].base
= 0;
113 lmb
.memory
.region
[0].size
= 0;
117 lmb
.reserved
.region
[0].base
= 0;
118 lmb
.reserved
.region
[0].size
= 0;
119 lmb
.reserved
.cnt
= 1;
122 void __init
lmb_analyze(void)
128 for (i
= 0; i
< lmb
.memory
.cnt
; i
++)
129 lmb
.memory
.size
+= lmb
.memory
.region
[i
].size
;
132 static long lmb_add_region(struct lmb_region
*rgn
, u64 base
, u64 size
)
134 unsigned long coalesced
= 0;
137 if ((rgn
->cnt
== 1) && (rgn
->region
[0].size
== 0)) {
138 rgn
->region
[0].base
= base
;
139 rgn
->region
[0].size
= size
;
143 /* First try and coalesce this LMB with another. */
144 for (i
= 0; i
< rgn
->cnt
; i
++) {
145 u64 rgnbase
= rgn
->region
[i
].base
;
146 u64 rgnsize
= rgn
->region
[i
].size
;
148 if ((rgnbase
== base
) && (rgnsize
== size
))
149 /* Already have this region, so we're done */
152 adjacent
= lmb_addrs_adjacent(base
, size
, rgnbase
, rgnsize
);
154 rgn
->region
[i
].base
-= size
;
155 rgn
->region
[i
].size
+= size
;
158 } else if (adjacent
< 0) {
159 rgn
->region
[i
].size
+= size
;
165 if ((i
< rgn
->cnt
- 1) && lmb_regions_adjacent(rgn
, i
, i
+1)) {
166 lmb_coalesce_regions(rgn
, i
, i
+1);
172 if (rgn
->cnt
>= MAX_LMB_REGIONS
)
175 /* Couldn't coalesce the LMB, so add it to the sorted table. */
176 for (i
= rgn
->cnt
- 1; i
>= 0; i
--) {
177 if (base
< rgn
->region
[i
].base
) {
178 rgn
->region
[i
+1].base
= rgn
->region
[i
].base
;
179 rgn
->region
[i
+1].size
= rgn
->region
[i
].size
;
181 rgn
->region
[i
+1].base
= base
;
182 rgn
->region
[i
+1].size
= size
;
187 if (base
< rgn
->region
[0].base
) {
188 rgn
->region
[0].base
= base
;
189 rgn
->region
[0].size
= size
;
196 long lmb_add(u64 base
, u64 size
)
198 struct lmb_region
*_rgn
= &lmb
.memory
;
200 /* On pSeries LPAR systems, the first LMB is our RMO region. */
204 return lmb_add_region(_rgn
, base
, size
);
208 long lmb_remove(u64 base
, u64 size
)
210 struct lmb_region
*rgn
= &(lmb
.memory
);
211 u64 rgnbegin
, rgnend
;
212 u64 end
= base
+ size
;
215 rgnbegin
= rgnend
= 0; /* supress gcc warnings */
217 /* Find the region where (base, size) belongs to */
218 for (i
=0; i
< rgn
->cnt
; i
++) {
219 rgnbegin
= rgn
->region
[i
].base
;
220 rgnend
= rgnbegin
+ rgn
->region
[i
].size
;
222 if ((rgnbegin
<= base
) && (end
<= rgnend
))
226 /* Didn't find the region */
230 /* Check to see if we are removing entire region */
231 if ((rgnbegin
== base
) && (rgnend
== end
)) {
232 lmb_remove_region(rgn
, i
);
236 /* Check to see if region is matching at the front */
237 if (rgnbegin
== base
) {
238 rgn
->region
[i
].base
= end
;
239 rgn
->region
[i
].size
-= size
;
243 /* Check to see if the region is matching at the end */
245 rgn
->region
[i
].size
-= size
;
250 * We need to split the entry - adjust the current one to the
251 * beginging of the hole and add the region after hole.
253 rgn
->region
[i
].size
= base
- rgn
->region
[i
].base
;
254 return lmb_add_region(rgn
, end
, rgnend
- end
);
257 long __init
lmb_reserve(u64 base
, u64 size
)
259 struct lmb_region
*_rgn
= &lmb
.reserved
;
263 return lmb_add_region(_rgn
, base
, size
);
266 long lmb_overlaps_region(struct lmb_region
*rgn
, u64 base
, u64 size
)
270 for (i
= 0; i
< rgn
->cnt
; i
++) {
271 u64 rgnbase
= rgn
->region
[i
].base
;
272 u64 rgnsize
= rgn
->region
[i
].size
;
273 if (lmb_addrs_overlap(base
, size
, rgnbase
, rgnsize
))
277 return (i
< rgn
->cnt
) ? i
: -1;
280 static u64
lmb_align_down(u64 addr
, u64 size
)
282 return addr
& ~(size
- 1);
285 static u64
lmb_align_up(u64 addr
, u64 size
)
287 return (addr
+ (size
- 1)) & ~(size
- 1);
290 static u64 __init
lmb_alloc_nid_unreserved(u64 start
, u64 end
,
296 base
= lmb_align_down((end
- size
), align
);
297 while (start
<= base
) {
298 j
= lmb_overlaps_region(&lmb
.reserved
, base
, size
);
300 /* this area isn't reserved, take it */
301 if (lmb_add_region(&lmb
.reserved
, base
, size
) < 0)
305 res_base
= lmb
.reserved
.region
[j
].base
;
308 base
= lmb_align_down(res_base
- size
, align
);
314 static u64 __init
lmb_alloc_nid_region(struct lmb_property
*mp
,
315 u64 (*nid_range
)(u64
, u64
, int *),
316 u64 size
, u64 align
, int nid
)
321 end
= start
+ mp
->size
;
323 start
= lmb_align_up(start
, align
);
324 while (start
< end
) {
328 this_end
= nid_range(start
, end
, &this_nid
);
329 if (this_nid
== nid
) {
330 u64 ret
= lmb_alloc_nid_unreserved(start
, this_end
,
341 u64 __init
lmb_alloc_nid(u64 size
, u64 align
, int nid
,
342 u64 (*nid_range
)(u64 start
, u64 end
, int *nid
))
344 struct lmb_region
*mem
= &lmb
.memory
;
349 size
= lmb_align_up(size
, align
);
351 for (i
= 0; i
< mem
->cnt
; i
++) {
352 u64 ret
= lmb_alloc_nid_region(&mem
->region
[i
],
359 return lmb_alloc(size
, align
);
362 u64 __init
lmb_alloc(u64 size
, u64 align
)
364 return lmb_alloc_base(size
, align
, LMB_ALLOC_ANYWHERE
);
367 u64 __init
lmb_alloc_base(u64 size
, u64 align
, u64 max_addr
)
371 alloc
= __lmb_alloc_base(size
, align
, max_addr
);
374 panic("ERROR: Failed to allocate 0x%llx bytes below 0x%llx.\n",
375 (unsigned long long) size
, (unsigned long long) max_addr
);
380 u64 __init
__lmb_alloc_base(u64 size
, u64 align
, u64 max_addr
)
388 size
= lmb_align_up(size
, align
);
390 /* On some platforms, make sure we allocate lowmem */
391 /* Note that LMB_REAL_LIMIT may be LMB_ALLOC_ANYWHERE */
392 if (max_addr
== LMB_ALLOC_ANYWHERE
)
393 max_addr
= LMB_REAL_LIMIT
;
395 for (i
= lmb
.memory
.cnt
- 1; i
>= 0; i
--) {
396 u64 lmbbase
= lmb
.memory
.region
[i
].base
;
397 u64 lmbsize
= lmb
.memory
.region
[i
].size
;
401 if (max_addr
== LMB_ALLOC_ANYWHERE
)
402 base
= lmb_align_down(lmbbase
+ lmbsize
- size
, align
);
403 else if (lmbbase
< max_addr
) {
404 base
= min(lmbbase
+ lmbsize
, max_addr
);
405 base
= lmb_align_down(base
- size
, align
);
409 while (base
&& lmbbase
<= base
) {
410 j
= lmb_overlaps_region(&lmb
.reserved
, base
, size
);
412 /* this area isn't reserved, take it */
413 if (lmb_add_region(&lmb
.reserved
, base
, size
) < 0)
417 res_base
= lmb
.reserved
.region
[j
].base
;
420 base
= lmb_align_down(res_base
- size
, align
);
426 /* You must call lmb_analyze() before this. */
427 u64 __init
lmb_phys_mem_size(void)
429 return lmb
.memory
.size
;
432 u64
lmb_end_of_DRAM(void)
434 int idx
= lmb
.memory
.cnt
- 1;
436 return (lmb
.memory
.region
[idx
].base
+ lmb
.memory
.region
[idx
].size
);
439 /* You must call lmb_analyze() after this. */
440 void __init
lmb_enforce_memory_limit(u64 memory_limit
)
444 struct lmb_property
*p
;
449 /* Truncate the lmb regions to satisfy the memory limit. */
450 limit
= memory_limit
;
451 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
452 if (limit
> lmb
.memory
.region
[i
].size
) {
453 limit
-= lmb
.memory
.region
[i
].size
;
457 lmb
.memory
.region
[i
].size
= limit
;
458 lmb
.memory
.cnt
= i
+ 1;
462 if (lmb
.memory
.region
[0].size
< lmb
.rmo_size
)
463 lmb
.rmo_size
= lmb
.memory
.region
[0].size
;
465 memory_limit
= lmb_end_of_DRAM();
467 /* And truncate any reserves above the limit also. */
468 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
469 p
= &lmb
.reserved
.region
[i
];
471 if (p
->base
> memory_limit
)
473 else if ((p
->base
+ p
->size
) > memory_limit
)
474 p
->size
= memory_limit
- p
->base
;
477 lmb_remove_region(&lmb
.reserved
, i
);
483 int __init
lmb_is_reserved(u64 addr
)
487 for (i
= 0; i
< lmb
.reserved
.cnt
; i
++) {
488 u64 upper
= lmb
.reserved
.region
[i
].base
+
489 lmb
.reserved
.region
[i
].size
- 1;
490 if ((addr
>= lmb
.reserved
.region
[i
].base
) && (addr
<= upper
))
496 int lmb_is_region_reserved(u64 base
, u64 size
)
498 return lmb_overlaps_region(&lmb
.reserved
, base
, size
);
502 * Given a <base, len>, find which memory regions belong to this range.
503 * Adjust the request and return a contiguous chunk.
505 int lmb_find(struct lmb_property
*res
)
511 rend
= rstart
+ res
->size
- 1;
513 for (i
= 0; i
< lmb
.memory
.cnt
; i
++) {
514 u64 start
= lmb
.memory
.region
[i
].base
;
515 u64 end
= start
+ lmb
.memory
.region
[i
].size
- 1;
520 if ((end
>= rstart
) && (start
< rend
)) {
521 /* adjust the request */
527 res
->size
= rend
- rstart
+ 1;