Loading bzImage directly.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / Documentation / lguest / lguest.c
blob3949620e42fa82eebef85e1e6c9494a02a0f74d7
1 /*P:100 This is the Launcher code, a simple program which lays out the
2 * "physical" memory for the new Guest by mapping the kernel image and the
3 * virtual devices, then reads repeatedly from /dev/lguest to run the Guest.
4 :*/
5 #define _LARGEFILE64_SOURCE
6 #define _GNU_SOURCE
7 #include <stdio.h>
8 #include <string.h>
9 #include <unistd.h>
10 #include <err.h>
11 #include <stdint.h>
12 #include <stdlib.h>
13 #include <elf.h>
14 #include <sys/mman.h>
15 #include <sys/param.h>
16 #include <sys/types.h>
17 #include <sys/stat.h>
18 #include <sys/wait.h>
19 #include <fcntl.h>
20 #include <stdbool.h>
21 #include <errno.h>
22 #include <ctype.h>
23 #include <sys/socket.h>
24 #include <sys/ioctl.h>
25 #include <sys/time.h>
26 #include <time.h>
27 #include <netinet/in.h>
28 #include <net/if.h>
29 #include <linux/sockios.h>
30 #include <linux/if_tun.h>
31 #include <sys/uio.h>
32 #include <termios.h>
33 #include <getopt.h>
34 #include <zlib.h>
35 #include <assert.h>
36 #include <sched.h>
37 /*L:110 We can ignore the 30 include files we need for this program, but I do
38 * want to draw attention to the use of kernel-style types.
40 * As Linus said, "C is a Spartan language, and so should your naming be." I
41 * like these abbreviations and the header we need uses them, so we define them
42 * here.
44 typedef unsigned long long u64;
45 typedef uint32_t u32;
46 typedef uint16_t u16;
47 typedef uint8_t u8;
48 #include "linux/lguest_launcher.h"
49 #include "linux/pci_ids.h"
50 #include "linux/virtio_config.h"
51 #include "linux/virtio_net.h"
52 #include "linux/virtio_blk.h"
53 #include "linux/virtio_console.h"
54 #include "linux/virtio_ring.h"
55 #include "asm-x86/e820.h"
56 /*:*/
58 #define PAGE_PRESENT 0x7 /* Present, RW, Execute */
59 #define NET_PEERNUM 1
60 #define BRIDGE_PFX "bridge:"
61 #ifndef SIOCBRADDIF
62 #define SIOCBRADDIF 0x89a2 /* add interface to bridge */
63 #endif
64 /* We can have up to 256 pages for devices. */
65 #define DEVICE_PAGES 256
66 /* This fits nicely in a single 4096-byte page. */
67 #define VIRTQUEUE_NUM 127
69 /*L:120 verbose is both a global flag and a macro. The C preprocessor allows
70 * this, and although I wouldn't recommend it, it works quite nicely here. */
71 static bool verbose;
72 #define verbose(args...) \
73 do { if (verbose) printf(args); } while(0)
74 /*:*/
76 /* The pipe to send commands to the waker process */
77 static int waker_fd;
78 /* The pointer to the start of guest memory. */
79 static void *guest_base;
80 /* The maximum guest physical address allowed, and maximum possible. */
81 static unsigned long guest_limit, guest_max;
83 /* This is our list of devices. */
84 struct device_list
86 /* Summary information about the devices in our list: ready to pass to
87 * select() to ask which need servicing.*/
88 fd_set infds;
89 int max_infd;
91 /* Counter to assign interrupt numbers. */
92 unsigned int next_irq;
94 /* Counter to print out convenient device numbers. */
95 unsigned int device_num;
97 /* The descriptor page for the devices. */
98 u8 *descpage;
100 /* The tail of the last descriptor. */
101 unsigned int desc_used;
103 /* A single linked list of devices. */
104 struct device *dev;
105 /* ... And an end pointer so we can easily append new devices */
106 struct device **lastdev;
109 /* The list of Guest devices, based on command line arguments. */
110 static struct device_list devices;
112 /* The device structure describes a single device. */
113 struct device
115 /* The linked-list pointer. */
116 struct device *next;
118 /* The this device's descriptor, as mapped into the Guest. */
119 struct lguest_device_desc *desc;
121 /* The name of this device, for --verbose. */
122 const char *name;
124 /* If handle_input is set, it wants to be called when this file
125 * descriptor is ready. */
126 int fd;
127 bool (*handle_input)(int fd, struct device *me);
129 /* Any queues attached to this device */
130 struct virtqueue *vq;
132 /* Device-specific data. */
133 void *priv;
136 /* The virtqueue structure describes a queue attached to a device. */
137 struct virtqueue
139 struct virtqueue *next;
141 /* Which device owns me. */
142 struct device *dev;
144 /* The configuration for this queue. */
145 struct lguest_vqconfig config;
147 /* The actual ring of buffers. */
148 struct vring vring;
150 /* Last available index we saw. */
151 u16 last_avail_idx;
153 /* The routine to call when the Guest pings us. */
154 void (*handle_output)(int fd, struct virtqueue *me);
157 /* Since guest is UP and we don't run at the same time, we don't need barriers.
158 * But I include them in the code in case others copy it. */
159 #define wmb()
161 /* Convert an iovec element to the given type.
163 * This is a fairly ugly trick: we need to know the size of the type and
164 * alignment requirement to check the pointer is kosher. It's also nice to
165 * have the name of the type in case we report failure.
167 * Typing those three things all the time is cumbersome and error prone, so we
168 * have a macro which sets them all up and passes to the real function. */
169 #define convert(iov, type) \
170 ((type *)_convert((iov), sizeof(type), __alignof__(type), #type))
172 static void *_convert(struct iovec *iov, size_t size, size_t align,
173 const char *name)
175 if (iov->iov_len != size)
176 errx(1, "Bad iovec size %zu for %s", iov->iov_len, name);
177 if ((unsigned long)iov->iov_base % align != 0)
178 errx(1, "Bad alignment %p for %s", iov->iov_base, name);
179 return iov->iov_base;
182 /* The virtio configuration space is defined to be little-endian. x86 is
183 * little-endian too, but it's nice to be explicit so we have these helpers. */
184 #define cpu_to_le16(v16) (v16)
185 #define cpu_to_le32(v32) (v32)
186 #define cpu_to_le64(v64) (v64)
187 #define le16_to_cpu(v16) (v16)
188 #define le32_to_cpu(v32) (v32)
189 #define le64_to_cpu(v32) (v64)
191 /*L:100 The Launcher code itself takes us out into userspace, that scary place
192 * where pointers run wild and free! Unfortunately, like most userspace
193 * programs, it's quite boring (which is why everyone likes to hack on the
194 * kernel!). Perhaps if you make up an Lguest Drinking Game at this point, it
195 * will get you through this section. Or, maybe not.
197 * The Launcher sets up a big chunk of memory to be the Guest's "physical"
198 * memory and stores it in "guest_base". In other words, Guest physical ==
199 * Launcher virtual with an offset.
201 * This can be tough to get your head around, but usually it just means that we
202 * use these trivial conversion functions when the Guest gives us it's
203 * "physical" addresses: */
204 static void *from_guest_phys(unsigned long addr)
206 return guest_base + addr;
209 static unsigned long to_guest_phys(const void *addr)
211 return (addr - guest_base);
214 /*L:130
215 * Loading the Kernel.
217 * We start with couple of simple helper routines. open_or_die() avoids
218 * error-checking code cluttering the callers: */
219 static int open_or_die(const char *name, int flags)
221 int fd = open(name, flags);
222 if (fd < 0)
223 err(1, "Failed to open %s", name);
224 return fd;
227 /* map_zeroed_pages() takes a number of pages. */
228 static void *map_zeroed_pages(unsigned int num)
230 int fd = open_or_die("/dev/zero", O_RDONLY);
231 void *addr;
233 /* We use a private mapping (ie. if we write to the page, it will be
234 * copied). */
235 addr = mmap(NULL, getpagesize() * num,
236 PROT_READ|PROT_WRITE|PROT_EXEC, MAP_PRIVATE, fd, 0);
237 if (addr == MAP_FAILED)
238 err(1, "Mmaping %u pages of /dev/zero", num);
240 return addr;
243 /* Get some more pages for a device. */
244 static void *get_pages(unsigned int num)
246 void *addr = from_guest_phys(guest_limit);
248 guest_limit += num * getpagesize();
249 if (guest_limit > guest_max)
250 errx(1, "Not enough memory for devices");
251 return addr;
254 /* This routine is used to load the kernel or initrd. It tries mmap, but if
255 * that fails (Plan 9's kernel file isn't nicely aligned on page boundaries),
256 * it falls back to reading the memory in. */
257 static void map_at(int fd, void *addr, unsigned long offset, unsigned long len)
259 ssize_t r;
261 /* We map writable even though for some segments are marked read-only.
262 * The kernel really wants to be writable: it patches its own
263 * instructions.
265 * MAP_PRIVATE means that the page won't be copied until a write is
266 * done to it. This allows us to share untouched memory between
267 * Guests. */
268 if (mmap(addr, len, PROT_READ|PROT_WRITE|PROT_EXEC,
269 MAP_FIXED|MAP_PRIVATE, fd, offset) != MAP_FAILED)
270 return;
272 /* pread does a seek and a read in one shot: saves a few lines. */
273 r = pread(fd, addr, len, offset);
274 if (r != len)
275 err(1, "Reading offset %lu len %lu gave %zi", offset, len, r);
278 /* This routine takes an open vmlinux image, which is in ELF, and maps it into
279 * the Guest memory. ELF = Embedded Linking Format, which is the format used
280 * by all modern binaries on Linux including the kernel.
282 * The ELF headers give *two* addresses: a physical address, and a virtual
283 * address. We use the physical address; the Guest will map itself to the
284 * virtual address.
286 * We return the starting address. */
287 static unsigned long map_elf(int elf_fd, const Elf32_Ehdr *ehdr)
289 Elf32_Phdr phdr[ehdr->e_phnum];
290 unsigned int i;
292 /* Sanity checks on the main ELF header: an x86 executable with a
293 * reasonable number of correctly-sized program headers. */
294 if (ehdr->e_type != ET_EXEC
295 || ehdr->e_machine != EM_386
296 || ehdr->e_phentsize != sizeof(Elf32_Phdr)
297 || ehdr->e_phnum < 1 || ehdr->e_phnum > 65536U/sizeof(Elf32_Phdr))
298 errx(1, "Malformed elf header");
300 /* An ELF executable contains an ELF header and a number of "program"
301 * headers which indicate which parts ("segments") of the program to
302 * load where. */
304 /* We read in all the program headers at once: */
305 if (lseek(elf_fd, ehdr->e_phoff, SEEK_SET) < 0)
306 err(1, "Seeking to program headers");
307 if (read(elf_fd, phdr, sizeof(phdr)) != sizeof(phdr))
308 err(1, "Reading program headers");
310 /* Try all the headers: there are usually only three. A read-only one,
311 * a read-write one, and a "note" section which isn't loadable. */
312 for (i = 0; i < ehdr->e_phnum; i++) {
313 /* If this isn't a loadable segment, we ignore it */
314 if (phdr[i].p_type != PT_LOAD)
315 continue;
317 verbose("Section %i: size %i addr %p\n",
318 i, phdr[i].p_memsz, (void *)phdr[i].p_paddr);
320 /* We map this section of the file at its physical address. */
321 map_at(elf_fd, from_guest_phys(phdr[i].p_paddr),
322 phdr[i].p_offset, phdr[i].p_filesz);
325 /* The entry point is given in the ELF header. */
326 return ehdr->e_entry;
329 /*L:150 A bzImage, unlike an ELF file, is not meant to be loaded. You're
330 * supposed to jump into it and it will unpack itself. We used to have to
331 * perform some hairy magic because the unpacking code scared me.
333 * Fortunately, Jeremy Fitzhardinge convinced me it wasn't that hard and wrote
334 * a small patch to jump over the tricky bits in the Guest, so now we just read
335 * the funky header so we know where in the file to load, and away we go! */
336 static unsigned long load_bzimage(int fd)
338 u8 hdr[1024];
339 int r;
340 /* Modern bzImages get loaded at 1M. */
341 void *p = from_guest_phys(0x100000);
343 /* Go back to the start of the file and read the header. It should be
344 * a Linux boot header (see Documentation/i386/boot.txt) */
345 lseek(fd, 0, SEEK_SET);
346 read(fd, hdr, sizeof(hdr));
348 /* At offset 0x202, we expect the magic "HdrS" */
349 if (memcmp(hdr + 0x202, "HdrS", 4) != 0)
350 errx(1, "This doesn't look like a bzImage to me");
352 /* The byte at 0x1F1 tells us how many extra sectors of
353 * header: skip over them all. */
354 lseek(fd, (unsigned long)(hdr[0x1F1]+1) * 512, SEEK_SET);
356 /* Now read everything into memory. in nice big chunks. */
357 while ((r = read(fd, p, 65536)) > 0)
358 p += r;
360 /* Finally, 0x214 tells us where to start the kernel. */
361 return *(unsigned long *)&hdr[0x214];
364 /*L:140 Loading the kernel is easy when it's a "vmlinux", but most kernels
365 * come wrapped up in the self-decompressing "bzImage" format. With some funky
366 * coding, we can load those, too. */
367 static unsigned long load_kernel(int fd)
369 Elf32_Ehdr hdr;
371 /* Read in the first few bytes. */
372 if (read(fd, &hdr, sizeof(hdr)) != sizeof(hdr))
373 err(1, "Reading kernel");
375 /* If it's an ELF file, it starts with "\177ELF" */
376 if (memcmp(hdr.e_ident, ELFMAG, SELFMAG) == 0)
377 return map_elf(fd, &hdr);
379 /* Otherwise we assume it's a bzImage, and try to unpack it */
380 return load_bzimage(fd);
383 /* This is a trivial little helper to align pages. Andi Kleen hated it because
384 * it calls getpagesize() twice: "it's dumb code."
386 * Kernel guys get really het up about optimization, even when it's not
387 * necessary. I leave this code as a reaction against that. */
388 static inline unsigned long page_align(unsigned long addr)
390 /* Add upwards and truncate downwards. */
391 return ((addr + getpagesize()-1) & ~(getpagesize()-1));
394 /*L:180 An "initial ram disk" is a disk image loaded into memory along with
395 * the kernel which the kernel can use to boot from without needing any
396 * drivers. Most distributions now use this as standard: the initrd contains
397 * the code to load the appropriate driver modules for the current machine.
399 * Importantly, James Morris works for RedHat, and Fedora uses initrds for its
400 * kernels. He sent me this (and tells me when I break it). */
401 static unsigned long load_initrd(const char *name, unsigned long mem)
403 int ifd;
404 struct stat st;
405 unsigned long len;
407 ifd = open_or_die(name, O_RDONLY);
408 /* fstat() is needed to get the file size. */
409 if (fstat(ifd, &st) < 0)
410 err(1, "fstat() on initrd '%s'", name);
412 /* We map the initrd at the top of memory, but mmap wants it to be
413 * page-aligned, so we round the size up for that. */
414 len = page_align(st.st_size);
415 map_at(ifd, from_guest_phys(mem - len), 0, st.st_size);
416 /* Once a file is mapped, you can close the file descriptor. It's a
417 * little odd, but quite useful. */
418 close(ifd);
419 verbose("mapped initrd %s size=%lu @ %p\n", name, len, (void*)mem-len);
421 /* We return the initrd size. */
422 return len;
425 /* Once we know how much memory we have, we can construct simple linear page
426 * tables which set virtual == physical which will get the Guest far enough
427 * into the boot to create its own.
429 * We lay them out of the way, just below the initrd (which is why we need to
430 * know its size). */
431 static unsigned long setup_pagetables(unsigned long mem,
432 unsigned long initrd_size)
434 unsigned long *pgdir, *linear;
435 unsigned int mapped_pages, i, linear_pages;
436 unsigned int ptes_per_page = getpagesize()/sizeof(void *);
438 mapped_pages = mem/getpagesize();
440 /* Each PTE page can map ptes_per_page pages: how many do we need? */
441 linear_pages = (mapped_pages + ptes_per_page-1)/ptes_per_page;
443 /* We put the toplevel page directory page at the top of memory. */
444 pgdir = from_guest_phys(mem) - initrd_size - getpagesize();
446 /* Now we use the next linear_pages pages as pte pages */
447 linear = (void *)pgdir - linear_pages*getpagesize();
449 /* Linear mapping is easy: put every page's address into the mapping in
450 * order. PAGE_PRESENT contains the flags Present, Writable and
451 * Executable. */
452 for (i = 0; i < mapped_pages; i++)
453 linear[i] = ((i * getpagesize()) | PAGE_PRESENT);
455 /* The top level points to the linear page table pages above. */
456 for (i = 0; i < mapped_pages; i += ptes_per_page) {
457 pgdir[i/ptes_per_page]
458 = ((to_guest_phys(linear) + i*sizeof(void *))
459 | PAGE_PRESENT);
462 verbose("Linear mapping of %u pages in %u pte pages at %#lx\n",
463 mapped_pages, linear_pages, to_guest_phys(linear));
465 /* We return the top level (guest-physical) address: the kernel needs
466 * to know where it is. */
467 return to_guest_phys(pgdir);
470 /* Simple routine to roll all the commandline arguments together with spaces
471 * between them. */
472 static void concat(char *dst, char *args[])
474 unsigned int i, len = 0;
476 for (i = 0; args[i]; i++) {
477 strcpy(dst+len, args[i]);
478 strcat(dst+len, " ");
479 len += strlen(args[i]) + 1;
481 /* In case it's empty. */
482 dst[len] = '\0';
485 /* This is where we actually tell the kernel to initialize the Guest. We saw
486 * the arguments it expects when we looked at initialize() in lguest_user.c:
487 * the base of guest "physical" memory, the top physical page to allow, the
488 * top level pagetable and the entry point for the Guest. */
489 static int tell_kernel(unsigned long pgdir, unsigned long start)
491 unsigned long args[] = { LHREQ_INITIALIZE,
492 (unsigned long)guest_base,
493 guest_limit / getpagesize(), pgdir, start };
494 int fd;
496 verbose("Guest: %p - %p (%#lx)\n",
497 guest_base, guest_base + guest_limit, guest_limit);
498 fd = open_or_die("/dev/lguest", O_RDWR);
499 if (write(fd, args, sizeof(args)) < 0)
500 err(1, "Writing to /dev/lguest");
502 /* We return the /dev/lguest file descriptor to control this Guest */
503 return fd;
505 /*:*/
507 static void add_device_fd(int fd)
509 FD_SET(fd, &devices.infds);
510 if (fd > devices.max_infd)
511 devices.max_infd = fd;
514 /*L:200
515 * The Waker.
517 * With a console and network devices, we can have lots of input which we need
518 * to process. We could try to tell the kernel what file descriptors to watch,
519 * but handing a file descriptor mask through to the kernel is fairly icky.
521 * Instead, we fork off a process which watches the file descriptors and writes
522 * the LHREQ_BREAK command to the /dev/lguest filedescriptor to tell the Host
523 * loop to stop running the Guest. This causes it to return from the
524 * /dev/lguest read with -EAGAIN, where it will write to /dev/lguest to reset
525 * the LHREQ_BREAK and wake us up again.
527 * This, of course, is merely a different *kind* of icky.
529 static void wake_parent(int pipefd, int lguest_fd)
531 /* Add the pipe from the Launcher to the fdset in the device_list, so
532 * we watch it, too. */
533 add_device_fd(pipefd);
535 for (;;) {
536 fd_set rfds = devices.infds;
537 unsigned long args[] = { LHREQ_BREAK, 1 };
539 /* Wait until input is ready from one of the devices. */
540 select(devices.max_infd+1, &rfds, NULL, NULL, NULL);
541 /* Is it a message from the Launcher? */
542 if (FD_ISSET(pipefd, &rfds)) {
543 int fd;
544 /* If read() returns 0, it means the Launcher has
545 * exited. We silently follow. */
546 if (read(pipefd, &fd, sizeof(fd)) == 0)
547 exit(0);
548 /* Otherwise it's telling us to change what file
549 * descriptors we're to listen to. */
550 if (fd >= 0)
551 FD_SET(fd, &devices.infds);
552 else
553 FD_CLR(-fd - 1, &devices.infds);
554 } else /* Send LHREQ_BREAK command. */
555 write(lguest_fd, args, sizeof(args));
559 /* This routine just sets up a pipe to the Waker process. */
560 static int setup_waker(int lguest_fd)
562 int pipefd[2], child;
564 /* We create a pipe to talk to the waker, and also so it knows when the
565 * Launcher dies (and closes pipe). */
566 pipe(pipefd);
567 child = fork();
568 if (child == -1)
569 err(1, "forking");
571 if (child == 0) {
572 /* Close the "writing" end of our copy of the pipe */
573 close(pipefd[1]);
574 wake_parent(pipefd[0], lguest_fd);
576 /* Close the reading end of our copy of the pipe. */
577 close(pipefd[0]);
579 /* Here is the fd used to talk to the waker. */
580 return pipefd[1];
583 /*L:210
584 * Device Handling.
586 * When the Guest sends DMA to us, it sends us an array of addresses and sizes.
587 * We need to make sure it's not trying to reach into the Launcher itself, so
588 * we have a convenient routine which check it and exits with an error message
589 * if something funny is going on:
591 static void *_check_pointer(unsigned long addr, unsigned int size,
592 unsigned int line)
594 /* We have to separately check addr and addr+size, because size could
595 * be huge and addr + size might wrap around. */
596 if (addr >= guest_limit || addr + size >= guest_limit)
597 errx(1, "%s:%i: Invalid address %#lx", __FILE__, line, addr);
598 /* We return a pointer for the caller's convenience, now we know it's
599 * safe to use. */
600 return from_guest_phys(addr);
602 /* A macro which transparently hands the line number to the real function. */
603 #define check_pointer(addr,size) _check_pointer(addr, size, __LINE__)
605 /* This function returns the next descriptor in the chain, or vq->vring.num. */
606 static unsigned next_desc(struct virtqueue *vq, unsigned int i)
608 unsigned int next;
610 /* If this descriptor says it doesn't chain, we're done. */
611 if (!(vq->vring.desc[i].flags & VRING_DESC_F_NEXT))
612 return vq->vring.num;
614 /* Check they're not leading us off end of descriptors. */
615 next = vq->vring.desc[i].next;
616 /* Make sure compiler knows to grab that: we don't want it changing! */
617 wmb();
619 if (next >= vq->vring.num)
620 errx(1, "Desc next is %u", next);
622 return next;
625 /* This looks in the virtqueue and for the first available buffer, and converts
626 * it to an iovec for convenient access. Since descriptors consist of some
627 * number of output then some number of input descriptors, it's actually two
628 * iovecs, but we pack them into one and note how many of each there were.
630 * This function returns the descriptor number found, or vq->vring.num (which
631 * is never a valid descriptor number) if none was found. */
632 static unsigned get_vq_desc(struct virtqueue *vq,
633 struct iovec iov[],
634 unsigned int *out_num, unsigned int *in_num)
636 unsigned int i, head;
638 /* Check it isn't doing very strange things with descriptor numbers. */
639 if ((u16)(vq->vring.avail->idx - vq->last_avail_idx) > vq->vring.num)
640 errx(1, "Guest moved used index from %u to %u",
641 vq->last_avail_idx, vq->vring.avail->idx);
643 /* If there's nothing new since last we looked, return invalid. */
644 if (vq->vring.avail->idx == vq->last_avail_idx)
645 return vq->vring.num;
647 /* Grab the next descriptor number they're advertising, and increment
648 * the index we've seen. */
649 head = vq->vring.avail->ring[vq->last_avail_idx++ % vq->vring.num];
651 /* If their number is silly, that's a fatal mistake. */
652 if (head >= vq->vring.num)
653 errx(1, "Guest says index %u is available", head);
655 /* When we start there are none of either input nor output. */
656 *out_num = *in_num = 0;
658 i = head;
659 do {
660 /* Grab the first descriptor, and check it's OK. */
661 iov[*out_num + *in_num].iov_len = vq->vring.desc[i].len;
662 iov[*out_num + *in_num].iov_base
663 = check_pointer(vq->vring.desc[i].addr,
664 vq->vring.desc[i].len);
665 /* If this is an input descriptor, increment that count. */
666 if (vq->vring.desc[i].flags & VRING_DESC_F_WRITE)
667 (*in_num)++;
668 else {
669 /* If it's an output descriptor, they're all supposed
670 * to come before any input descriptors. */
671 if (*in_num)
672 errx(1, "Descriptor has out after in");
673 (*out_num)++;
676 /* If we've got too many, that implies a descriptor loop. */
677 if (*out_num + *in_num > vq->vring.num)
678 errx(1, "Looped descriptor");
679 } while ((i = next_desc(vq, i)) != vq->vring.num);
681 return head;
684 /* Once we've used one of their buffers, we tell them about it. We'll then
685 * want to send them an interrupt, using trigger_irq(). */
686 static void add_used(struct virtqueue *vq, unsigned int head, int len)
688 struct vring_used_elem *used;
690 /* Get a pointer to the next entry in the used ring. */
691 used = &vq->vring.used->ring[vq->vring.used->idx % vq->vring.num];
692 used->id = head;
693 used->len = len;
694 /* Make sure buffer is written before we update index. */
695 wmb();
696 vq->vring.used->idx++;
699 /* This actually sends the interrupt for this virtqueue */
700 static void trigger_irq(int fd, struct virtqueue *vq)
702 unsigned long buf[] = { LHREQ_IRQ, vq->config.irq };
704 if (vq->vring.avail->flags & VRING_AVAIL_F_NO_INTERRUPT)
705 return;
707 /* Send the Guest an interrupt tell them we used something up. */
708 if (write(fd, buf, sizeof(buf)) != 0)
709 err(1, "Triggering irq %i", vq->config.irq);
712 /* And here's the combo meal deal. Supersize me! */
713 static void add_used_and_trigger(int fd, struct virtqueue *vq,
714 unsigned int head, int len)
716 add_used(vq, head, len);
717 trigger_irq(fd, vq);
720 /* Here is the input terminal setting we save, and the routine to restore them
721 * on exit so the user can see what they type next. */
722 static struct termios orig_term;
723 static void restore_term(void)
725 tcsetattr(STDIN_FILENO, TCSANOW, &orig_term);
728 /* We associate some data with the console for our exit hack. */
729 struct console_abort
731 /* How many times have they hit ^C? */
732 int count;
733 /* When did they start? */
734 struct timeval start;
737 /* This is the routine which handles console input (ie. stdin). */
738 static bool handle_console_input(int fd, struct device *dev)
740 int len;
741 unsigned int head, in_num, out_num;
742 struct iovec iov[dev->vq->vring.num];
743 struct console_abort *abort = dev->priv;
745 /* First we need a console buffer from the Guests's input virtqueue. */
746 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
748 /* If they're not ready for input, stop listening to this file
749 * descriptor. We'll start again once they add an input buffer. */
750 if (head == dev->vq->vring.num)
751 return false;
753 if (out_num)
754 errx(1, "Output buffers in console in queue?");
756 /* This is why we convert to iovecs: the readv() call uses them, and so
757 * it reads straight into the Guest's buffer. */
758 len = readv(dev->fd, iov, in_num);
759 if (len <= 0) {
760 /* This implies that the console is closed, is /dev/null, or
761 * something went terribly wrong. */
762 warnx("Failed to get console input, ignoring console.");
763 /* Put the input terminal back. */
764 restore_term();
765 /* Remove callback from input vq, so it doesn't restart us. */
766 dev->vq->handle_output = NULL;
767 /* Stop listening to this fd: don't call us again. */
768 return false;
771 /* Tell the Guest about the new input. */
772 add_used_and_trigger(fd, dev->vq, head, len);
774 /* Three ^C within one second? Exit.
776 * This is such a hack, but works surprisingly well. Each ^C has to be
777 * in a buffer by itself, so they can't be too fast. But we check that
778 * we get three within about a second, so they can't be too slow. */
779 if (len == 1 && ((char *)iov[0].iov_base)[0] == 3) {
780 if (!abort->count++)
781 gettimeofday(&abort->start, NULL);
782 else if (abort->count == 3) {
783 struct timeval now;
784 gettimeofday(&now, NULL);
785 if (now.tv_sec <= abort->start.tv_sec+1) {
786 unsigned long args[] = { LHREQ_BREAK, 0 };
787 /* Close the fd so Waker will know it has to
788 * exit. */
789 close(waker_fd);
790 /* Just in case waker is blocked in BREAK, send
791 * unbreak now. */
792 write(fd, args, sizeof(args));
793 exit(2);
795 abort->count = 0;
797 } else
798 /* Any other key resets the abort counter. */
799 abort->count = 0;
801 /* Everything went OK! */
802 return true;
805 /* Handling output for console is simple: we just get all the output buffers
806 * and write them to stdout. */
807 static void handle_console_output(int fd, struct virtqueue *vq)
809 unsigned int head, out, in;
810 int len;
811 struct iovec iov[vq->vring.num];
813 /* Keep getting output buffers from the Guest until we run out. */
814 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
815 if (in)
816 errx(1, "Input buffers in output queue?");
817 len = writev(STDOUT_FILENO, iov, out);
818 add_used_and_trigger(fd, vq, head, len);
822 /* Handling output for network is also simple: we get all the output buffers
823 * and write them (ignoring the first element) to this device's file descriptor
824 * (stdout). */
825 static void handle_net_output(int fd, struct virtqueue *vq)
827 unsigned int head, out, in;
828 int len;
829 struct iovec iov[vq->vring.num];
831 /* Keep getting output buffers from the Guest until we run out. */
832 while ((head = get_vq_desc(vq, iov, &out, &in)) != vq->vring.num) {
833 if (in)
834 errx(1, "Input buffers in output queue?");
835 /* Check header, but otherwise ignore it (we said we supported
836 * no features). */
837 (void)convert(&iov[0], struct virtio_net_hdr);
838 len = writev(vq->dev->fd, iov+1, out-1);
839 add_used_and_trigger(fd, vq, head, len);
843 /* This is where we handle a packet coming in from the tun device to our
844 * Guest. */
845 static bool handle_tun_input(int fd, struct device *dev)
847 unsigned int head, in_num, out_num;
848 int len;
849 struct iovec iov[dev->vq->vring.num];
850 struct virtio_net_hdr *hdr;
852 /* First we need a network buffer from the Guests's recv virtqueue. */
853 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
854 if (head == dev->vq->vring.num) {
855 /* Now, it's expected that if we try to send a packet too
856 * early, the Guest won't be ready yet. Wait until the device
857 * status says it's ready. */
858 /* FIXME: Actually want DRIVER_ACTIVE here. */
859 if (dev->desc->status & VIRTIO_CONFIG_S_DRIVER_OK)
860 warn("network: no dma buffer!");
861 /* We'll turn this back on if input buffers are registered. */
862 return false;
863 } else if (out_num)
864 errx(1, "Output buffers in network recv queue?");
866 /* First element is the header: we set it to 0 (no features). */
867 hdr = convert(&iov[0], struct virtio_net_hdr);
868 hdr->flags = 0;
869 hdr->gso_type = VIRTIO_NET_HDR_GSO_NONE;
871 /* Read the packet from the device directly into the Guest's buffer. */
872 len = readv(dev->fd, iov+1, in_num-1);
873 if (len <= 0)
874 err(1, "reading network");
876 /* Tell the Guest about the new packet. */
877 add_used_and_trigger(fd, dev->vq, head, sizeof(*hdr) + len);
879 verbose("tun input packet len %i [%02x %02x] (%s)\n", len,
880 ((u8 *)iov[1].iov_base)[0], ((u8 *)iov[1].iov_base)[1],
881 head != dev->vq->vring.num ? "sent" : "discarded");
883 /* All good. */
884 return true;
887 /* This callback ensures we try again, in case we stopped console or net
888 * delivery because Guest didn't have any buffers. */
889 static void enable_fd(int fd, struct virtqueue *vq)
891 add_device_fd(vq->dev->fd);
892 /* Tell waker to listen to it again */
893 write(waker_fd, &vq->dev->fd, sizeof(vq->dev->fd));
896 /* This is the generic routine we call when the Guest uses LHCALL_NOTIFY. */
897 static void handle_output(int fd, unsigned long addr)
899 struct device *i;
900 struct virtqueue *vq;
902 /* Check each virtqueue. */
903 for (i = devices.dev; i; i = i->next) {
904 for (vq = i->vq; vq; vq = vq->next) {
905 if (vq->config.pfn == addr/getpagesize()
906 && vq->handle_output) {
907 verbose("Output to %s\n", vq->dev->name);
908 vq->handle_output(fd, vq);
909 return;
914 /* Early console write is done using notify on a nul-terminated string
915 * in Guest memory. */
916 if (addr >= guest_limit)
917 errx(1, "Bad NOTIFY %#lx", addr);
919 write(STDOUT_FILENO, from_guest_phys(addr),
920 strnlen(from_guest_phys(addr), guest_limit - addr));
923 /* This is called when the waker wakes us up: check for incoming file
924 * descriptors. */
925 static void handle_input(int fd)
927 /* select() wants a zeroed timeval to mean "don't wait". */
928 struct timeval poll = { .tv_sec = 0, .tv_usec = 0 };
930 for (;;) {
931 struct device *i;
932 fd_set fds = devices.infds;
934 /* If nothing is ready, we're done. */
935 if (select(devices.max_infd+1, &fds, NULL, NULL, &poll) == 0)
936 break;
938 /* Otherwise, call the device(s) which have readable
939 * file descriptors and a method of handling them. */
940 for (i = devices.dev; i; i = i->next) {
941 if (i->handle_input && FD_ISSET(i->fd, &fds)) {
942 int dev_fd;
943 if (i->handle_input(fd, i))
944 continue;
946 /* If handle_input() returns false, it means we
947 * should no longer service it. Networking and
948 * console do this when there's no input
949 * buffers to deliver into. Console also uses
950 * it when it discovers that stdin is
951 * closed. */
952 FD_CLR(i->fd, &devices.infds);
953 /* Tell waker to ignore it too, by sending a
954 * negative fd number (-1, since 0 is a valid
955 * FD number). */
956 dev_fd = -i->fd - 1;
957 write(waker_fd, &dev_fd, sizeof(dev_fd));
963 /*L:190
964 * Device Setup
966 * All devices need a descriptor so the Guest knows it exists, and a "struct
967 * device" so the Launcher can keep track of it. We have common helper
968 * routines to allocate them.
970 * This routine allocates a new "struct lguest_device_desc" from descriptor
971 * table just above the Guest's normal memory. It returns a pointer to that
972 * descriptor. */
973 static struct lguest_device_desc *new_dev_desc(u16 type)
975 struct lguest_device_desc *d;
977 /* We only have one page for all the descriptors. */
978 if (devices.desc_used + sizeof(*d) > getpagesize())
979 errx(1, "Too many devices");
981 /* We don't need to set config_len or status: page is 0 already. */
982 d = (void *)devices.descpage + devices.desc_used;
983 d->type = type;
984 devices.desc_used += sizeof(*d);
986 return d;
989 /* Each device descriptor is followed by some configuration information.
990 * The first byte is a "status" byte for the Guest to report what's happening.
991 * After that are fields: u8 type, u8 len, [... len bytes...].
993 * This routine adds a new field to an existing device's descriptor. It only
994 * works for the last device, but that's OK because that's how we use it. */
995 static void add_desc_field(struct device *dev, u8 type, u8 len, const void *c)
997 /* This is the last descriptor, right? */
998 assert(devices.descpage + devices.desc_used
999 == (u8 *)(dev->desc + 1) + dev->desc->config_len);
1001 /* We only have one page of device descriptions. */
1002 if (devices.desc_used + 2 + len > getpagesize())
1003 errx(1, "Too many devices");
1005 /* Copy in the new config header: type then length. */
1006 devices.descpage[devices.desc_used++] = type;
1007 devices.descpage[devices.desc_used++] = len;
1008 memcpy(devices.descpage + devices.desc_used, c, len);
1009 devices.desc_used += len;
1011 /* Update the device descriptor length: two byte head then data. */
1012 dev->desc->config_len += 2 + len;
1015 /* This routine adds a virtqueue to a device. We specify how many descriptors
1016 * the virtqueue is to have. */
1017 static void add_virtqueue(struct device *dev, unsigned int num_descs,
1018 void (*handle_output)(int fd, struct virtqueue *me))
1020 unsigned int pages;
1021 struct virtqueue **i, *vq = malloc(sizeof(*vq));
1022 void *p;
1024 /* First we need some pages for this virtqueue. */
1025 pages = (vring_size(num_descs) + getpagesize() - 1) / getpagesize();
1026 p = get_pages(pages);
1028 /* Initialize the configuration. */
1029 vq->config.num = num_descs;
1030 vq->config.irq = devices.next_irq++;
1031 vq->config.pfn = to_guest_phys(p) / getpagesize();
1033 /* Initialize the vring. */
1034 vring_init(&vq->vring, num_descs, p);
1036 /* Add the configuration information to this device's descriptor. */
1037 add_desc_field(dev, VIRTIO_CONFIG_F_VIRTQUEUE,
1038 sizeof(vq->config), &vq->config);
1040 /* Add to tail of list, so dev->vq is first vq, dev->vq->next is
1041 * second. */
1042 for (i = &dev->vq; *i; i = &(*i)->next);
1043 *i = vq;
1045 /* Link virtqueue back to device. */
1046 vq->dev = dev;
1048 /* Set up handler. */
1049 vq->handle_output = handle_output;
1050 if (!handle_output)
1051 vq->vring.used->flags = VRING_USED_F_NO_NOTIFY;
1054 /* This routine does all the creation and setup of a new device, including
1055 * caling new_dev_desc() to allocate the descriptor and device memory. */
1056 static struct device *new_device(const char *name, u16 type, int fd,
1057 bool (*handle_input)(int, struct device *))
1059 struct device *dev = malloc(sizeof(*dev));
1061 /* Append to device list. Prepending to a single-linked list is
1062 * easier, but the user expects the devices to be arranged on the bus
1063 * in command-line order. The first network device on the command line
1064 * is eth0, the first block device /dev/lgba, etc. */
1065 *devices.lastdev = dev;
1066 dev->next = NULL;
1067 devices.lastdev = &dev->next;
1069 /* Now we populate the fields one at a time. */
1070 dev->fd = fd;
1071 /* If we have an input handler for this file descriptor, then we add it
1072 * to the device_list's fdset and maxfd. */
1073 if (handle_input)
1074 add_device_fd(dev->fd);
1075 dev->desc = new_dev_desc(type);
1076 dev->handle_input = handle_input;
1077 dev->name = name;
1078 return dev;
1081 /* Our first setup routine is the console. It's a fairly simple device, but
1082 * UNIX tty handling makes it uglier than it could be. */
1083 static void setup_console(void)
1085 struct device *dev;
1087 /* If we can save the initial standard input settings... */
1088 if (tcgetattr(STDIN_FILENO, &orig_term) == 0) {
1089 struct termios term = orig_term;
1090 /* Then we turn off echo, line buffering and ^C etc. We want a
1091 * raw input stream to the Guest. */
1092 term.c_lflag &= ~(ISIG|ICANON|ECHO);
1093 tcsetattr(STDIN_FILENO, TCSANOW, &term);
1094 /* If we exit gracefully, the original settings will be
1095 * restored so the user can see what they're typing. */
1096 atexit(restore_term);
1099 dev = new_device("console", VIRTIO_ID_CONSOLE,
1100 STDIN_FILENO, handle_console_input);
1101 /* We store the console state in dev->priv, and initialize it. */
1102 dev->priv = malloc(sizeof(struct console_abort));
1103 ((struct console_abort *)dev->priv)->count = 0;
1105 /* The console needs two virtqueues: the input then the output. When
1106 * they put something the input queue, we make sure we're listening to
1107 * stdin. When they put something in the output queue, we write it to
1108 * stdout. */
1109 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1110 add_virtqueue(dev, VIRTQUEUE_NUM, handle_console_output);
1112 verbose("device %u: console\n", devices.device_num++);
1114 /*:*/
1116 /*M:010 Inter-guest networking is an interesting area. Simplest is to have a
1117 * --sharenet=<name> option which opens or creates a named pipe. This can be
1118 * used to send packets to another guest in a 1:1 manner.
1120 * More sopisticated is to use one of the tools developed for project like UML
1121 * to do networking.
1123 * Faster is to do virtio bonding in kernel. Doing this 1:1 would be
1124 * completely generic ("here's my vring, attach to your vring") and would work
1125 * for any traffic. Of course, namespace and permissions issues need to be
1126 * dealt with. A more sophisticated "multi-channel" virtio_net.c could hide
1127 * multiple inter-guest channels behind one interface, although it would
1128 * require some manner of hotplugging new virtio channels.
1130 * Finally, we could implement a virtio network switch in the kernel. :*/
1132 static u32 str2ip(const char *ipaddr)
1134 unsigned int byte[4];
1136 sscanf(ipaddr, "%u.%u.%u.%u", &byte[0], &byte[1], &byte[2], &byte[3]);
1137 return (byte[0] << 24) | (byte[1] << 16) | (byte[2] << 8) | byte[3];
1140 /* This code is "adapted" from libbridge: it attaches the Host end of the
1141 * network device to the bridge device specified by the command line.
1143 * This is yet another James Morris contribution (I'm an IP-level guy, so I
1144 * dislike bridging), and I just try not to break it. */
1145 static void add_to_bridge(int fd, const char *if_name, const char *br_name)
1147 int ifidx;
1148 struct ifreq ifr;
1150 if (!*br_name)
1151 errx(1, "must specify bridge name");
1153 ifidx = if_nametoindex(if_name);
1154 if (!ifidx)
1155 errx(1, "interface %s does not exist!", if_name);
1157 strncpy(ifr.ifr_name, br_name, IFNAMSIZ);
1158 ifr.ifr_ifindex = ifidx;
1159 if (ioctl(fd, SIOCBRADDIF, &ifr) < 0)
1160 err(1, "can't add %s to bridge %s", if_name, br_name);
1163 /* This sets up the Host end of the network device with an IP address, brings
1164 * it up so packets will flow, the copies the MAC address into the hwaddr
1165 * pointer. */
1166 static void configure_device(int fd, const char *devname, u32 ipaddr,
1167 unsigned char hwaddr[6])
1169 struct ifreq ifr;
1170 struct sockaddr_in *sin = (struct sockaddr_in *)&ifr.ifr_addr;
1172 /* Don't read these incantations. Just cut & paste them like I did! */
1173 memset(&ifr, 0, sizeof(ifr));
1174 strcpy(ifr.ifr_name, devname);
1175 sin->sin_family = AF_INET;
1176 sin->sin_addr.s_addr = htonl(ipaddr);
1177 if (ioctl(fd, SIOCSIFADDR, &ifr) != 0)
1178 err(1, "Setting %s interface address", devname);
1179 ifr.ifr_flags = IFF_UP;
1180 if (ioctl(fd, SIOCSIFFLAGS, &ifr) != 0)
1181 err(1, "Bringing interface %s up", devname);
1183 /* SIOC stands for Socket I/O Control. G means Get (vs S for Set
1184 * above). IF means Interface, and HWADDR is hardware address.
1185 * Simple! */
1186 if (ioctl(fd, SIOCGIFHWADDR, &ifr) != 0)
1187 err(1, "getting hw address for %s", devname);
1188 memcpy(hwaddr, ifr.ifr_hwaddr.sa_data, 6);
1191 /*L:195 Our network is a Host<->Guest network. This can either use bridging or
1192 * routing, but the principle is the same: it uses the "tun" device to inject
1193 * packets into the Host as if they came in from a normal network card. We
1194 * just shunt packets between the Guest and the tun device. */
1195 static void setup_tun_net(const char *arg)
1197 struct device *dev;
1198 struct ifreq ifr;
1199 int netfd, ipfd;
1200 u32 ip;
1201 const char *br_name = NULL;
1202 u8 hwaddr[6];
1204 /* We open the /dev/net/tun device and tell it we want a tap device. A
1205 * tap device is like a tun device, only somehow different. To tell
1206 * the truth, I completely blundered my way through this code, but it
1207 * works now! */
1208 netfd = open_or_die("/dev/net/tun", O_RDWR);
1209 memset(&ifr, 0, sizeof(ifr));
1210 ifr.ifr_flags = IFF_TAP | IFF_NO_PI;
1211 strcpy(ifr.ifr_name, "tap%d");
1212 if (ioctl(netfd, TUNSETIFF, &ifr) != 0)
1213 err(1, "configuring /dev/net/tun");
1214 /* We don't need checksums calculated for packets coming in this
1215 * device: trust us! */
1216 ioctl(netfd, TUNSETNOCSUM, 1);
1218 /* First we create a new network device. */
1219 dev = new_device("net", VIRTIO_ID_NET, netfd, handle_tun_input);
1221 /* Network devices need a receive and a send queue, just like
1222 * console. */
1223 add_virtqueue(dev, VIRTQUEUE_NUM, enable_fd);
1224 add_virtqueue(dev, VIRTQUEUE_NUM, handle_net_output);
1226 /* We need a socket to perform the magic network ioctls to bring up the
1227 * tap interface, connect to the bridge etc. Any socket will do! */
1228 ipfd = socket(PF_INET, SOCK_DGRAM, IPPROTO_IP);
1229 if (ipfd < 0)
1230 err(1, "opening IP socket");
1232 /* If the command line was --tunnet=bridge:<name> do bridging. */
1233 if (!strncmp(BRIDGE_PFX, arg, strlen(BRIDGE_PFX))) {
1234 ip = INADDR_ANY;
1235 br_name = arg + strlen(BRIDGE_PFX);
1236 add_to_bridge(ipfd, ifr.ifr_name, br_name);
1237 } else /* It is an IP address to set up the device with */
1238 ip = str2ip(arg);
1240 /* Set up the tun device, and get the mac address for the interface. */
1241 configure_device(ipfd, ifr.ifr_name, ip, hwaddr);
1243 /* Tell Guest what MAC address to use. */
1244 add_desc_field(dev, VIRTIO_CONFIG_NET_MAC_F, sizeof(hwaddr), hwaddr);
1246 /* We don't seed the socket any more; setup is done. */
1247 close(ipfd);
1249 verbose("device %u: tun net %u.%u.%u.%u\n",
1250 devices.device_num++,
1251 (u8)(ip>>24),(u8)(ip>>16),(u8)(ip>>8),(u8)ip);
1252 if (br_name)
1253 verbose("attached to bridge: %s\n", br_name);
1258 * Block device.
1260 * Serving a block device is really easy: the Guest asks for a block number and
1261 * we read or write that position in the file.
1263 * Unfortunately, this is amazingly slow: the Guest waits until the read is
1264 * finished before running anything else, even if it could be doing useful
1265 * work. We could use async I/O, except it's reputed to suck so hard that
1266 * characters actually go missing from your code when you try to use it.
1268 * So we farm the I/O out to thread, and communicate with it via a pipe. */
1270 /* This hangs off device->priv, with the data. */
1271 struct vblk_info
1273 /* The size of the file. */
1274 off64_t len;
1276 /* The file descriptor for the file. */
1277 int fd;
1279 /* IO thread listens on this file descriptor [0]. */
1280 int workpipe[2];
1282 /* IO thread writes to this file descriptor to mark it done, then
1283 * Launcher triggers interrupt to Guest. */
1284 int done_fd;
1287 /* This is the core of the I/O thread. It returns true if it did something. */
1288 static bool service_io(struct device *dev)
1290 struct vblk_info *vblk = dev->priv;
1291 unsigned int head, out_num, in_num, wlen;
1292 int ret;
1293 struct virtio_blk_inhdr *in;
1294 struct virtio_blk_outhdr *out;
1295 struct iovec iov[dev->vq->vring.num];
1296 off64_t off;
1298 head = get_vq_desc(dev->vq, iov, &out_num, &in_num);
1299 if (head == dev->vq->vring.num)
1300 return false;
1302 if (out_num == 0 || in_num == 0)
1303 errx(1, "Bad virtblk cmd %u out=%u in=%u",
1304 head, out_num, in_num);
1306 out = convert(&iov[0], struct virtio_blk_outhdr);
1307 in = convert(&iov[out_num+in_num-1], struct virtio_blk_inhdr);
1308 off = out->sector * 512;
1310 /* This is how we implement barriers. Pretty poor, no? */
1311 if (out->type & VIRTIO_BLK_T_BARRIER)
1312 fdatasync(vblk->fd);
1314 if (out->type & VIRTIO_BLK_T_SCSI_CMD) {
1315 fprintf(stderr, "Scsi commands unsupported\n");
1316 in->status = VIRTIO_BLK_S_UNSUPP;
1317 wlen = sizeof(in);
1318 } else if (out->type & VIRTIO_BLK_T_OUT) {
1319 /* Write */
1321 /* Move to the right location in the block file. This can fail
1322 * if they try to write past end. */
1323 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1324 err(1, "Bad seek to sector %llu", out->sector);
1326 ret = writev(vblk->fd, iov+1, out_num-1);
1327 verbose("WRITE to sector %llu: %i\n", out->sector, ret);
1329 /* Grr... Now we know how long the descriptor they sent was, we
1330 * make sure they didn't try to write over the end of the block
1331 * file (possibly extending it). */
1332 if (ret > 0 && off + ret > vblk->len) {
1333 /* Trim it back to the correct length */
1334 ftruncate64(vblk->fd, vblk->len);
1335 /* Die, bad Guest, die. */
1336 errx(1, "Write past end %llu+%u", off, ret);
1338 wlen = sizeof(in);
1339 in->status = (ret >= 0 ? VIRTIO_BLK_S_OK : VIRTIO_BLK_S_IOERR);
1340 } else {
1341 /* Read */
1343 /* Move to the right location in the block file. This can fail
1344 * if they try to read past end. */
1345 if (lseek64(vblk->fd, off, SEEK_SET) != off)
1346 err(1, "Bad seek to sector %llu", out->sector);
1348 ret = readv(vblk->fd, iov+1, in_num-1);
1349 verbose("READ from sector %llu: %i\n", out->sector, ret);
1350 if (ret >= 0) {
1351 wlen = sizeof(in) + ret;
1352 in->status = VIRTIO_BLK_S_OK;
1353 } else {
1354 wlen = sizeof(in);
1355 in->status = VIRTIO_BLK_S_IOERR;
1359 /* We can't trigger an IRQ, because we're not the Launcher. It does
1360 * that when we tell it we're done. */
1361 add_used(dev->vq, head, wlen);
1362 return true;
1365 /* This is the thread which actually services the I/O. */
1366 static int io_thread(void *_dev)
1368 struct device *dev = _dev;
1369 struct vblk_info *vblk = dev->priv;
1370 char c;
1372 /* Close other side of workpipe so we get 0 read when main dies. */
1373 close(vblk->workpipe[1]);
1374 /* Close the other side of the done_fd pipe. */
1375 close(dev->fd);
1377 /* When this read fails, it means Launcher died, so we follow. */
1378 while (read(vblk->workpipe[0], &c, 1) == 1) {
1379 /* We acknowledge each request immediately, to reduce latency,
1380 * rather than waiting until we've done them all. I haven't
1381 * measured to see if it makes any difference. */
1382 while (service_io(dev))
1383 write(vblk->done_fd, &c, 1);
1385 return 0;
1388 /* When the thread says some I/O is done, we interrupt the Guest. */
1389 static bool handle_io_finish(int fd, struct device *dev)
1391 char c;
1393 /* If child died, presumably it printed message. */
1394 if (read(dev->fd, &c, 1) != 1)
1395 exit(1);
1397 /* It did some work, so trigger the irq. */
1398 trigger_irq(fd, dev->vq);
1399 return true;
1402 /* When the Guest submits some I/O, we wake the I/O thread. */
1403 static void handle_virtblk_output(int fd, struct virtqueue *vq)
1405 struct vblk_info *vblk = vq->dev->priv;
1406 char c = 0;
1408 /* Wake up I/O thread and tell it to go to work! */
1409 if (write(vblk->workpipe[1], &c, 1) != 1)
1410 /* Presumably it indicated why it died. */
1411 exit(1);
1414 /* This creates a virtual block device. */
1415 static void setup_block_file(const char *filename)
1417 int p[2];
1418 struct device *dev;
1419 struct vblk_info *vblk;
1420 void *stack;
1421 u64 cap;
1422 unsigned int val;
1424 /* This is the pipe the I/O thread will use to tell us I/O is done. */
1425 pipe(p);
1427 /* The device responds to return from I/O thread. */
1428 dev = new_device("block", VIRTIO_ID_BLOCK, p[0], handle_io_finish);
1430 /* The device has a virtqueue. */
1431 add_virtqueue(dev, VIRTQUEUE_NUM, handle_virtblk_output);
1433 /* Allocate the room for our own bookkeeping */
1434 vblk = dev->priv = malloc(sizeof(*vblk));
1436 /* First we open the file and store the length. */
1437 vblk->fd = open_or_die(filename, O_RDWR|O_LARGEFILE);
1438 vblk->len = lseek64(vblk->fd, 0, SEEK_END);
1440 /* Tell Guest how many sectors this device has. */
1441 cap = cpu_to_le64(vblk->len / 512);
1442 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_CAPACITY, sizeof(cap), &cap);
1444 /* Tell Guest not to put in too many descriptors at once: two are used
1445 * for the in and out elements. */
1446 val = cpu_to_le32(VIRTQUEUE_NUM - 2);
1447 add_desc_field(dev, VIRTIO_CONFIG_BLK_F_SEG_MAX, sizeof(val), &val);
1449 /* The I/O thread writes to this end of the pipe when done. */
1450 vblk->done_fd = p[1];
1452 /* This is how we tell the I/O thread about more work. */
1453 pipe(vblk->workpipe);
1455 /* Create stack for thread and run it */
1456 stack = malloc(32768);
1457 if (clone(io_thread, stack + 32768, CLONE_VM, dev) == -1)
1458 err(1, "Creating clone");
1460 /* We don't need to keep the I/O thread's end of the pipes open. */
1461 close(vblk->done_fd);
1462 close(vblk->workpipe[0]);
1464 verbose("device %u: virtblock %llu sectors\n",
1465 devices.device_num, cap);
1467 /* That's the end of device setup. */
1469 /*L:220 Finally we reach the core of the Launcher, which runs the Guest, serves
1470 * its input and output, and finally, lays it to rest. */
1471 static void __attribute__((noreturn)) run_guest(int lguest_fd)
1473 for (;;) {
1474 unsigned long args[] = { LHREQ_BREAK, 0 };
1475 unsigned long notify_addr;
1476 int readval;
1478 /* We read from the /dev/lguest device to run the Guest. */
1479 readval = read(lguest_fd, &notify_addr, sizeof(notify_addr));
1481 /* One unsigned long means the Guest did HCALL_NOTIFY */
1482 if (readval == sizeof(notify_addr)) {
1483 verbose("Notify on address %#lx\n", notify_addr);
1484 handle_output(lguest_fd, notify_addr);
1485 continue;
1486 /* ENOENT means the Guest died. Reading tells us why. */
1487 } else if (errno == ENOENT) {
1488 char reason[1024] = { 0 };
1489 read(lguest_fd, reason, sizeof(reason)-1);
1490 errx(1, "%s", reason);
1491 /* EAGAIN means the waker wanted us to look at some input.
1492 * Anything else means a bug or incompatible change. */
1493 } else if (errno != EAGAIN)
1494 err(1, "Running guest failed");
1496 /* Service input, then unset the BREAK which releases
1497 * the Waker. */
1498 handle_input(lguest_fd);
1499 if (write(lguest_fd, args, sizeof(args)) < 0)
1500 err(1, "Resetting break");
1504 * This is the end of the Launcher.
1506 * But wait! We've seen I/O from the Launcher, and we've seen I/O from the
1507 * Drivers. If we were to see the Host kernel I/O code, our understanding
1508 * would be complete... :*/
1510 static struct option opts[] = {
1511 { "verbose", 0, NULL, 'v' },
1512 { "tunnet", 1, NULL, 't' },
1513 { "block", 1, NULL, 'b' },
1514 { "initrd", 1, NULL, 'i' },
1515 { NULL },
1517 static void usage(void)
1519 errx(1, "Usage: lguest [--verbose] "
1520 "[--tunnet=(<ipaddr>|bridge:<bridgename>)\n"
1521 "|--block=<filename>|--initrd=<filename>]...\n"
1522 "<mem-in-mb> vmlinux [args...]");
1525 /*L:105 The main routine is where the real work begins: */
1526 int main(int argc, char *argv[])
1528 /* Memory, top-level pagetable, code startpoint and size of the
1529 * (optional) initrd. */
1530 unsigned long mem = 0, pgdir, start, initrd_size = 0;
1531 /* A temporary and the /dev/lguest file descriptor. */
1532 int i, c, lguest_fd;
1533 /* The boot information for the Guest. */
1534 void *boot;
1535 /* If they specify an initrd file to load. */
1536 const char *initrd_name = NULL;
1538 /* First we initialize the device list. Since console and network
1539 * device receive input from a file descriptor, we keep an fdset
1540 * (infds) and the maximum fd number (max_infd) with the head of the
1541 * list. We also keep a pointer to the last device, for easy appending
1542 * to the list. Finally, we keep the next interrupt number to hand out
1543 * (1: remember that 0 is used by the timer). */
1544 FD_ZERO(&devices.infds);
1545 devices.max_infd = -1;
1546 devices.lastdev = &devices.dev;
1547 devices.next_irq = 1;
1549 /* We need to know how much memory so we can set up the device
1550 * descriptor and memory pages for the devices as we parse the command
1551 * line. So we quickly look through the arguments to find the amount
1552 * of memory now. */
1553 for (i = 1; i < argc; i++) {
1554 if (argv[i][0] != '-') {
1555 mem = atoi(argv[i]) * 1024 * 1024;
1556 /* We start by mapping anonymous pages over all of
1557 * guest-physical memory range. This fills it with 0,
1558 * and ensures that the Guest won't be killed when it
1559 * tries to access it. */
1560 guest_base = map_zeroed_pages(mem / getpagesize()
1561 + DEVICE_PAGES);
1562 guest_limit = mem;
1563 guest_max = mem + DEVICE_PAGES*getpagesize();
1564 devices.descpage = get_pages(1);
1565 break;
1569 /* The options are fairly straight-forward */
1570 while ((c = getopt_long(argc, argv, "v", opts, NULL)) != EOF) {
1571 switch (c) {
1572 case 'v':
1573 verbose = true;
1574 break;
1575 case 't':
1576 setup_tun_net(optarg);
1577 break;
1578 case 'b':
1579 setup_block_file(optarg);
1580 break;
1581 case 'i':
1582 initrd_name = optarg;
1583 break;
1584 default:
1585 warnx("Unknown argument %s", argv[optind]);
1586 usage();
1589 /* After the other arguments we expect memory and kernel image name,
1590 * followed by command line arguments for the kernel. */
1591 if (optind + 2 > argc)
1592 usage();
1594 verbose("Guest base is at %p\n", guest_base);
1596 /* We always have a console device */
1597 setup_console();
1599 /* Now we load the kernel */
1600 start = load_kernel(open_or_die(argv[optind+1], O_RDONLY));
1602 /* Boot information is stashed at physical address 0 */
1603 boot = from_guest_phys(0);
1605 /* Map the initrd image if requested (at top of physical memory) */
1606 if (initrd_name) {
1607 initrd_size = load_initrd(initrd_name, mem);
1608 /* These are the location in the Linux boot header where the
1609 * start and size of the initrd are expected to be found. */
1610 *(unsigned long *)(boot+0x218) = mem - initrd_size;
1611 *(unsigned long *)(boot+0x21c) = initrd_size;
1612 /* The bootloader type 0xFF means "unknown"; that's OK. */
1613 *(unsigned char *)(boot+0x210) = 0xFF;
1616 /* Set up the initial linear pagetables, starting below the initrd. */
1617 pgdir = setup_pagetables(mem, initrd_size);
1619 /* The Linux boot header contains an "E820" memory map: ours is a
1620 * simple, single region. */
1621 *(char*)(boot+E820NR) = 1;
1622 *((struct e820entry *)(boot+E820MAP))
1623 = ((struct e820entry) { 0, mem, E820_RAM });
1624 /* The boot header contains a command line pointer: we put the command
1625 * line after the boot header (at address 4096) */
1626 *(u32 *)(boot + 0x228) = 4096;
1627 concat(boot + 4096, argv+optind+2);
1629 /* Boot protocol version: 2.07 supports the fields for lguest. */
1630 *(u16 *)(boot + 0x206) = 0x207;
1632 /* The hardware_subarch value of "1" tells the Guest it's an lguest. */
1633 *(u32 *)(boot + 0x23c) = 1;
1635 /* Set bit 6 of the loadflags (aka. KEEP_SEGMENTS) so the entry path
1636 * does not try to reload segment registers. */
1637 *(u8 *)(boot + 0x211) |= (1 << 6);
1639 /* We tell the kernel to initialize the Guest: this returns the open
1640 * /dev/lguest file descriptor. */
1641 lguest_fd = tell_kernel(pgdir, start);
1643 /* We fork off a child process, which wakes the Launcher whenever one
1644 * of the input file descriptors needs attention. Otherwise we would
1645 * run the Guest until it tries to output something. */
1646 waker_fd = setup_waker(lguest_fd);
1648 /* Finally, run the Guest. This doesn't return. */
1649 run_guest(lguest_fd);
1651 /*:*/
1653 /*M:999
1654 * Mastery is done: you now know everything I do.
1656 * But surely you have seen code, features and bugs in your wanderings which
1657 * you now yearn to attack? That is the real game, and I look forward to you
1658 * patching and forking lguest into the Your-Name-Here-visor.
1660 * Farewell, and good coding!
1661 * Rusty Russell.