dm table: reject devices without request fns
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / nand_base.c
blobc4c2b7326a0597bed18005f0d0d7af3c1990795f
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/doc/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
27 * BBT table is not serialized, has to be fixed
29 * This program is free software; you can redistribute it and/or modify
30 * it under the terms of the GNU General Public License version 2 as
31 * published by the Free Software Foundation.
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <linux/io.h>
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2} }
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8} }
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38} }
84 static struct nand_ecclayout nand_oob_128 = {
85 .eccbytes = 48,
86 .eccpos = {
87 80, 81, 82, 83, 84, 85, 86, 87,
88 88, 89, 90, 91, 92, 93, 94, 95,
89 96, 97, 98, 99, 100, 101, 102, 103,
90 104, 105, 106, 107, 108, 109, 110, 111,
91 112, 113, 114, 115, 116, 117, 118, 119,
92 120, 121, 122, 123, 124, 125, 126, 127},
93 .oobfree = {
94 {.offset = 2,
95 .length = 78} }
98 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
99 int new_state);
101 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
102 struct mtd_oob_ops *ops);
105 * For devices which display every fart in the system on a separate LED. Is
106 * compiled away when LED support is disabled.
108 DEFINE_LED_TRIGGER(nand_led_trigger);
110 static int check_offs_len(struct mtd_info *mtd,
111 loff_t ofs, uint64_t len)
113 struct nand_chip *chip = mtd->priv;
114 int ret = 0;
116 /* Start address must align on block boundary */
117 if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
118 DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
119 ret = -EINVAL;
122 /* Length must align on block boundary */
123 if (len & ((1 << chip->phys_erase_shift) - 1)) {
124 DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
125 __func__);
126 ret = -EINVAL;
129 /* Do not allow past end of device */
130 if (ofs + len > mtd->size) {
131 DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
132 __func__);
133 ret = -EINVAL;
136 return ret;
140 * nand_release_device - [GENERIC] release chip
141 * @mtd: MTD device structure
143 * Deselect, release chip lock and wake up anyone waiting on the device
145 static void nand_release_device(struct mtd_info *mtd)
147 struct nand_chip *chip = mtd->priv;
149 /* De-select the NAND device */
150 chip->select_chip(mtd, -1);
152 /* Release the controller and the chip */
153 spin_lock(&chip->controller->lock);
154 chip->controller->active = NULL;
155 chip->state = FL_READY;
156 wake_up(&chip->controller->wq);
157 spin_unlock(&chip->controller->lock);
161 * nand_read_byte - [DEFAULT] read one byte from the chip
162 * @mtd: MTD device structure
164 * Default read function for 8bit buswith
166 static uint8_t nand_read_byte(struct mtd_info *mtd)
168 struct nand_chip *chip = mtd->priv;
169 return readb(chip->IO_ADDR_R);
173 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
174 * @mtd: MTD device structure
176 * Default read function for 16bit buswith with
177 * endianess conversion
179 static uint8_t nand_read_byte16(struct mtd_info *mtd)
181 struct nand_chip *chip = mtd->priv;
182 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
186 * nand_read_word - [DEFAULT] read one word from the chip
187 * @mtd: MTD device structure
189 * Default read function for 16bit buswith without
190 * endianess conversion
192 static u16 nand_read_word(struct mtd_info *mtd)
194 struct nand_chip *chip = mtd->priv;
195 return readw(chip->IO_ADDR_R);
199 * nand_select_chip - [DEFAULT] control CE line
200 * @mtd: MTD device structure
201 * @chipnr: chipnumber to select, -1 for deselect
203 * Default select function for 1 chip devices.
205 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
207 struct nand_chip *chip = mtd->priv;
209 switch (chipnr) {
210 case -1:
211 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
212 break;
213 case 0:
214 break;
216 default:
217 BUG();
222 * nand_write_buf - [DEFAULT] write buffer to chip
223 * @mtd: MTD device structure
224 * @buf: data buffer
225 * @len: number of bytes to write
227 * Default write function for 8bit buswith
229 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
231 int i;
232 struct nand_chip *chip = mtd->priv;
234 for (i = 0; i < len; i++)
235 writeb(buf[i], chip->IO_ADDR_W);
239 * nand_read_buf - [DEFAULT] read chip data into buffer
240 * @mtd: MTD device structure
241 * @buf: buffer to store date
242 * @len: number of bytes to read
244 * Default read function for 8bit buswith
246 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
248 int i;
249 struct nand_chip *chip = mtd->priv;
251 for (i = 0; i < len; i++)
252 buf[i] = readb(chip->IO_ADDR_R);
256 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
257 * @mtd: MTD device structure
258 * @buf: buffer containing the data to compare
259 * @len: number of bytes to compare
261 * Default verify function for 8bit buswith
263 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
265 int i;
266 struct nand_chip *chip = mtd->priv;
268 for (i = 0; i < len; i++)
269 if (buf[i] != readb(chip->IO_ADDR_R))
270 return -EFAULT;
271 return 0;
275 * nand_write_buf16 - [DEFAULT] write buffer to chip
276 * @mtd: MTD device structure
277 * @buf: data buffer
278 * @len: number of bytes to write
280 * Default write function for 16bit buswith
282 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
284 int i;
285 struct nand_chip *chip = mtd->priv;
286 u16 *p = (u16 *) buf;
287 len >>= 1;
289 for (i = 0; i < len; i++)
290 writew(p[i], chip->IO_ADDR_W);
295 * nand_read_buf16 - [DEFAULT] read chip data into buffer
296 * @mtd: MTD device structure
297 * @buf: buffer to store date
298 * @len: number of bytes to read
300 * Default read function for 16bit buswith
302 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
304 int i;
305 struct nand_chip *chip = mtd->priv;
306 u16 *p = (u16 *) buf;
307 len >>= 1;
309 for (i = 0; i < len; i++)
310 p[i] = readw(chip->IO_ADDR_R);
314 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
315 * @mtd: MTD device structure
316 * @buf: buffer containing the data to compare
317 * @len: number of bytes to compare
319 * Default verify function for 16bit buswith
321 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
323 int i;
324 struct nand_chip *chip = mtd->priv;
325 u16 *p = (u16 *) buf;
326 len >>= 1;
328 for (i = 0; i < len; i++)
329 if (p[i] != readw(chip->IO_ADDR_R))
330 return -EFAULT;
332 return 0;
336 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
337 * @mtd: MTD device structure
338 * @ofs: offset from device start
339 * @getchip: 0, if the chip is already selected
341 * Check, if the block is bad.
343 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
345 int page, chipnr, res = 0;
346 struct nand_chip *chip = mtd->priv;
347 u16 bad;
349 if (chip->options & NAND_BBT_SCANLASTPAGE)
350 ofs += mtd->erasesize - mtd->writesize;
352 page = (int)(ofs >> chip->page_shift) & chip->pagemask;
354 if (getchip) {
355 chipnr = (int)(ofs >> chip->chip_shift);
357 nand_get_device(chip, mtd, FL_READING);
359 /* Select the NAND device */
360 chip->select_chip(mtd, chipnr);
363 if (chip->options & NAND_BUSWIDTH_16) {
364 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
365 page);
366 bad = cpu_to_le16(chip->read_word(mtd));
367 if (chip->badblockpos & 0x1)
368 bad >>= 8;
369 else
370 bad &= 0xFF;
371 } else {
372 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
373 bad = chip->read_byte(mtd);
376 if (likely(chip->badblockbits == 8))
377 res = bad != 0xFF;
378 else
379 res = hweight8(bad) < chip->badblockbits;
381 if (getchip)
382 nand_release_device(mtd);
384 return res;
388 * nand_default_block_markbad - [DEFAULT] mark a block bad
389 * @mtd: MTD device structure
390 * @ofs: offset from device start
392 * This is the default implementation, which can be overridden by
393 * a hardware specific driver.
395 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
397 struct nand_chip *chip = mtd->priv;
398 uint8_t buf[2] = { 0, 0 };
399 int block, ret, i = 0;
401 if (chip->options & NAND_BBT_SCANLASTPAGE)
402 ofs += mtd->erasesize - mtd->writesize;
404 /* Get block number */
405 block = (int)(ofs >> chip->bbt_erase_shift);
406 if (chip->bbt)
407 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
409 /* Do we have a flash based bad block table ? */
410 if (chip->options & NAND_USE_FLASH_BBT)
411 ret = nand_update_bbt(mtd, ofs);
412 else {
413 nand_get_device(chip, mtd, FL_WRITING);
415 /* Write to first two pages and to byte 1 and 6 if necessary.
416 * If we write to more than one location, the first error
417 * encountered quits the procedure. We write two bytes per
418 * location, so we dont have to mess with 16 bit access.
420 do {
421 chip->ops.len = chip->ops.ooblen = 2;
422 chip->ops.datbuf = NULL;
423 chip->ops.oobbuf = buf;
424 chip->ops.ooboffs = chip->badblockpos & ~0x01;
426 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
428 if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
429 chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
430 & ~0x01;
431 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
433 i++;
434 ofs += mtd->writesize;
435 } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
436 i < 2);
438 nand_release_device(mtd);
440 if (!ret)
441 mtd->ecc_stats.badblocks++;
443 return ret;
447 * nand_check_wp - [GENERIC] check if the chip is write protected
448 * @mtd: MTD device structure
449 * Check, if the device is write protected
451 * The function expects, that the device is already selected
453 static int nand_check_wp(struct mtd_info *mtd)
455 struct nand_chip *chip = mtd->priv;
457 /* broken xD cards report WP despite being writable */
458 if (chip->options & NAND_BROKEN_XD)
459 return 0;
461 /* Check the WP bit */
462 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
463 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
467 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
468 * @mtd: MTD device structure
469 * @ofs: offset from device start
470 * @getchip: 0, if the chip is already selected
471 * @allowbbt: 1, if its allowed to access the bbt area
473 * Check, if the block is bad. Either by reading the bad block table or
474 * calling of the scan function.
476 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
477 int allowbbt)
479 struct nand_chip *chip = mtd->priv;
481 if (!chip->bbt)
482 return chip->block_bad(mtd, ofs, getchip);
484 /* Return info from the table */
485 return nand_isbad_bbt(mtd, ofs, allowbbt);
489 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
490 * @mtd: MTD device structure
491 * @timeo: Timeout
493 * Helper function for nand_wait_ready used when needing to wait in interrupt
494 * context.
496 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
498 struct nand_chip *chip = mtd->priv;
499 int i;
501 /* Wait for the device to get ready */
502 for (i = 0; i < timeo; i++) {
503 if (chip->dev_ready(mtd))
504 break;
505 touch_softlockup_watchdog();
506 mdelay(1);
511 * Wait for the ready pin, after a command
512 * The timeout is catched later.
514 void nand_wait_ready(struct mtd_info *mtd)
516 struct nand_chip *chip = mtd->priv;
517 unsigned long timeo = jiffies + 2;
519 /* 400ms timeout */
520 if (in_interrupt() || oops_in_progress)
521 return panic_nand_wait_ready(mtd, 400);
523 led_trigger_event(nand_led_trigger, LED_FULL);
524 /* wait until command is processed or timeout occures */
525 do {
526 if (chip->dev_ready(mtd))
527 break;
528 touch_softlockup_watchdog();
529 } while (time_before(jiffies, timeo));
530 led_trigger_event(nand_led_trigger, LED_OFF);
532 EXPORT_SYMBOL_GPL(nand_wait_ready);
535 * nand_command - [DEFAULT] Send command to NAND device
536 * @mtd: MTD device structure
537 * @command: the command to be sent
538 * @column: the column address for this command, -1 if none
539 * @page_addr: the page address for this command, -1 if none
541 * Send command to NAND device. This function is used for small page
542 * devices (256/512 Bytes per page)
544 static void nand_command(struct mtd_info *mtd, unsigned int command,
545 int column, int page_addr)
547 register struct nand_chip *chip = mtd->priv;
548 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
551 * Write out the command to the device.
553 if (command == NAND_CMD_SEQIN) {
554 int readcmd;
556 if (column >= mtd->writesize) {
557 /* OOB area */
558 column -= mtd->writesize;
559 readcmd = NAND_CMD_READOOB;
560 } else if (column < 256) {
561 /* First 256 bytes --> READ0 */
562 readcmd = NAND_CMD_READ0;
563 } else {
564 column -= 256;
565 readcmd = NAND_CMD_READ1;
567 chip->cmd_ctrl(mtd, readcmd, ctrl);
568 ctrl &= ~NAND_CTRL_CHANGE;
570 chip->cmd_ctrl(mtd, command, ctrl);
573 * Address cycle, when necessary
575 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
576 /* Serially input address */
577 if (column != -1) {
578 /* Adjust columns for 16 bit buswidth */
579 if (chip->options & NAND_BUSWIDTH_16)
580 column >>= 1;
581 chip->cmd_ctrl(mtd, column, ctrl);
582 ctrl &= ~NAND_CTRL_CHANGE;
584 if (page_addr != -1) {
585 chip->cmd_ctrl(mtd, page_addr, ctrl);
586 ctrl &= ~NAND_CTRL_CHANGE;
587 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
588 /* One more address cycle for devices > 32MiB */
589 if (chip->chipsize > (32 << 20))
590 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
592 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
595 * program and erase have their own busy handlers
596 * status and sequential in needs no delay
598 switch (command) {
600 case NAND_CMD_PAGEPROG:
601 case NAND_CMD_ERASE1:
602 case NAND_CMD_ERASE2:
603 case NAND_CMD_SEQIN:
604 case NAND_CMD_STATUS:
605 return;
607 case NAND_CMD_RESET:
608 if (chip->dev_ready)
609 break;
610 udelay(chip->chip_delay);
611 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
612 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
613 chip->cmd_ctrl(mtd,
614 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
615 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
617 return;
619 /* This applies to read commands */
620 default:
622 * If we don't have access to the busy pin, we apply the given
623 * command delay
625 if (!chip->dev_ready) {
626 udelay(chip->chip_delay);
627 return;
630 /* Apply this short delay always to ensure that we do wait tWB in
631 * any case on any machine. */
632 ndelay(100);
634 nand_wait_ready(mtd);
638 * nand_command_lp - [DEFAULT] Send command to NAND large page device
639 * @mtd: MTD device structure
640 * @command: the command to be sent
641 * @column: the column address for this command, -1 if none
642 * @page_addr: the page address for this command, -1 if none
644 * Send command to NAND device. This is the version for the new large page
645 * devices We dont have the separate regions as we have in the small page
646 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
648 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
649 int column, int page_addr)
651 register struct nand_chip *chip = mtd->priv;
653 /* Emulate NAND_CMD_READOOB */
654 if (command == NAND_CMD_READOOB) {
655 column += mtd->writesize;
656 command = NAND_CMD_READ0;
659 /* Command latch cycle */
660 chip->cmd_ctrl(mtd, command & 0xff,
661 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
663 if (column != -1 || page_addr != -1) {
664 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
666 /* Serially input address */
667 if (column != -1) {
668 /* Adjust columns for 16 bit buswidth */
669 if (chip->options & NAND_BUSWIDTH_16)
670 column >>= 1;
671 chip->cmd_ctrl(mtd, column, ctrl);
672 ctrl &= ~NAND_CTRL_CHANGE;
673 chip->cmd_ctrl(mtd, column >> 8, ctrl);
675 if (page_addr != -1) {
676 chip->cmd_ctrl(mtd, page_addr, ctrl);
677 chip->cmd_ctrl(mtd, page_addr >> 8,
678 NAND_NCE | NAND_ALE);
679 /* One more address cycle for devices > 128MiB */
680 if (chip->chipsize > (128 << 20))
681 chip->cmd_ctrl(mtd, page_addr >> 16,
682 NAND_NCE | NAND_ALE);
685 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
688 * program and erase have their own busy handlers
689 * status, sequential in, and deplete1 need no delay
691 switch (command) {
693 case NAND_CMD_CACHEDPROG:
694 case NAND_CMD_PAGEPROG:
695 case NAND_CMD_ERASE1:
696 case NAND_CMD_ERASE2:
697 case NAND_CMD_SEQIN:
698 case NAND_CMD_RNDIN:
699 case NAND_CMD_STATUS:
700 case NAND_CMD_DEPLETE1:
701 return;
704 * read error status commands require only a short delay
706 case NAND_CMD_STATUS_ERROR:
707 case NAND_CMD_STATUS_ERROR0:
708 case NAND_CMD_STATUS_ERROR1:
709 case NAND_CMD_STATUS_ERROR2:
710 case NAND_CMD_STATUS_ERROR3:
711 udelay(chip->chip_delay);
712 return;
714 case NAND_CMD_RESET:
715 if (chip->dev_ready)
716 break;
717 udelay(chip->chip_delay);
718 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
719 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
720 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
721 NAND_NCE | NAND_CTRL_CHANGE);
722 while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
724 return;
726 case NAND_CMD_RNDOUT:
727 /* No ready / busy check necessary */
728 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
729 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
730 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
731 NAND_NCE | NAND_CTRL_CHANGE);
732 return;
734 case NAND_CMD_READ0:
735 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
736 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
737 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
738 NAND_NCE | NAND_CTRL_CHANGE);
740 /* This applies to read commands */
741 default:
743 * If we don't have access to the busy pin, we apply the given
744 * command delay
746 if (!chip->dev_ready) {
747 udelay(chip->chip_delay);
748 return;
752 /* Apply this short delay always to ensure that we do wait tWB in
753 * any case on any machine. */
754 ndelay(100);
756 nand_wait_ready(mtd);
760 * panic_nand_get_device - [GENERIC] Get chip for selected access
761 * @chip: the nand chip descriptor
762 * @mtd: MTD device structure
763 * @new_state: the state which is requested
765 * Used when in panic, no locks are taken.
767 static void panic_nand_get_device(struct nand_chip *chip,
768 struct mtd_info *mtd, int new_state)
770 /* Hardware controller shared among independend devices */
771 chip->controller->active = chip;
772 chip->state = new_state;
776 * nand_get_device - [GENERIC] Get chip for selected access
777 * @chip: the nand chip descriptor
778 * @mtd: MTD device structure
779 * @new_state: the state which is requested
781 * Get the device and lock it for exclusive access
783 static int
784 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
786 spinlock_t *lock = &chip->controller->lock;
787 wait_queue_head_t *wq = &chip->controller->wq;
788 DECLARE_WAITQUEUE(wait, current);
789 retry:
790 spin_lock(lock);
792 /* Hardware controller shared among independent devices */
793 if (!chip->controller->active)
794 chip->controller->active = chip;
796 if (chip->controller->active == chip && chip->state == FL_READY) {
797 chip->state = new_state;
798 spin_unlock(lock);
799 return 0;
801 if (new_state == FL_PM_SUSPENDED) {
802 if (chip->controller->active->state == FL_PM_SUSPENDED) {
803 chip->state = FL_PM_SUSPENDED;
804 spin_unlock(lock);
805 return 0;
808 set_current_state(TASK_UNINTERRUPTIBLE);
809 add_wait_queue(wq, &wait);
810 spin_unlock(lock);
811 schedule();
812 remove_wait_queue(wq, &wait);
813 goto retry;
817 * panic_nand_wait - [GENERIC] wait until the command is done
818 * @mtd: MTD device structure
819 * @chip: NAND chip structure
820 * @timeo: Timeout
822 * Wait for command done. This is a helper function for nand_wait used when
823 * we are in interrupt context. May happen when in panic and trying to write
824 * an oops through mtdoops.
826 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
827 unsigned long timeo)
829 int i;
830 for (i = 0; i < timeo; i++) {
831 if (chip->dev_ready) {
832 if (chip->dev_ready(mtd))
833 break;
834 } else {
835 if (chip->read_byte(mtd) & NAND_STATUS_READY)
836 break;
838 mdelay(1);
843 * nand_wait - [DEFAULT] wait until the command is done
844 * @mtd: MTD device structure
845 * @chip: NAND chip structure
847 * Wait for command done. This applies to erase and program only
848 * Erase can take up to 400ms and program up to 20ms according to
849 * general NAND and SmartMedia specs
851 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
854 unsigned long timeo = jiffies;
855 int status, state = chip->state;
857 if (state == FL_ERASING)
858 timeo += (HZ * 400) / 1000;
859 else
860 timeo += (HZ * 20) / 1000;
862 led_trigger_event(nand_led_trigger, LED_FULL);
864 /* Apply this short delay always to ensure that we do wait tWB in
865 * any case on any machine. */
866 ndelay(100);
868 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
869 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
870 else
871 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
873 if (in_interrupt() || oops_in_progress)
874 panic_nand_wait(mtd, chip, timeo);
875 else {
876 while (time_before(jiffies, timeo)) {
877 if (chip->dev_ready) {
878 if (chip->dev_ready(mtd))
879 break;
880 } else {
881 if (chip->read_byte(mtd) & NAND_STATUS_READY)
882 break;
884 cond_resched();
887 led_trigger_event(nand_led_trigger, LED_OFF);
889 status = (int)chip->read_byte(mtd);
890 return status;
894 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
896 * @mtd: mtd info
897 * @ofs: offset to start unlock from
898 * @len: length to unlock
899 * @invert: when = 0, unlock the range of blocks within the lower and
900 * upper boundary address
901 * when = 1, unlock the range of blocks outside the boundaries
902 * of the lower and upper boundary address
904 * return - unlock status
906 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
907 uint64_t len, int invert)
909 int ret = 0;
910 int status, page;
911 struct nand_chip *chip = mtd->priv;
913 /* Submit address of first page to unlock */
914 page = ofs >> chip->page_shift;
915 chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
917 /* Submit address of last page to unlock */
918 page = (ofs + len) >> chip->page_shift;
919 chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
920 (page | invert) & chip->pagemask);
922 /* Call wait ready function */
923 status = chip->waitfunc(mtd, chip);
924 udelay(1000);
925 /* See if device thinks it succeeded */
926 if (status & 0x01) {
927 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
928 __func__, status);
929 ret = -EIO;
932 return ret;
936 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
938 * @mtd: mtd info
939 * @ofs: offset to start unlock from
940 * @len: length to unlock
942 * return - unlock status
944 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
946 int ret = 0;
947 int chipnr;
948 struct nand_chip *chip = mtd->priv;
950 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
951 __func__, (unsigned long long)ofs, len);
953 if (check_offs_len(mtd, ofs, len))
954 ret = -EINVAL;
956 /* Align to last block address if size addresses end of the device */
957 if (ofs + len == mtd->size)
958 len -= mtd->erasesize;
960 nand_get_device(chip, mtd, FL_UNLOCKING);
962 /* Shift to get chip number */
963 chipnr = ofs >> chip->chip_shift;
965 chip->select_chip(mtd, chipnr);
967 /* Check, if it is write protected */
968 if (nand_check_wp(mtd)) {
969 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
970 __func__);
971 ret = -EIO;
972 goto out;
975 ret = __nand_unlock(mtd, ofs, len, 0);
977 out:
978 /* de-select the NAND device */
979 chip->select_chip(mtd, -1);
981 nand_release_device(mtd);
983 return ret;
985 EXPORT_SYMBOL(nand_unlock);
988 * nand_lock - [REPLACEABLE] locks all blocks present in the device
990 * @mtd: mtd info
991 * @ofs: offset to start unlock from
992 * @len: length to unlock
994 * return - lock status
996 * This feature is not supported in many NAND parts. 'Micron' NAND parts
997 * do have this feature, but it allows only to lock all blocks, not for
998 * specified range for block.
1000 * Implementing 'lock' feature by making use of 'unlock', for now.
1002 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1004 int ret = 0;
1005 int chipnr, status, page;
1006 struct nand_chip *chip = mtd->priv;
1008 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1009 __func__, (unsigned long long)ofs, len);
1011 if (check_offs_len(mtd, ofs, len))
1012 ret = -EINVAL;
1014 nand_get_device(chip, mtd, FL_LOCKING);
1016 /* Shift to get chip number */
1017 chipnr = ofs >> chip->chip_shift;
1019 chip->select_chip(mtd, chipnr);
1021 /* Check, if it is write protected */
1022 if (nand_check_wp(mtd)) {
1023 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1024 __func__);
1025 status = MTD_ERASE_FAILED;
1026 ret = -EIO;
1027 goto out;
1030 /* Submit address of first page to lock */
1031 page = ofs >> chip->page_shift;
1032 chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1034 /* Call wait ready function */
1035 status = chip->waitfunc(mtd, chip);
1036 udelay(1000);
1037 /* See if device thinks it succeeded */
1038 if (status & 0x01) {
1039 DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1040 __func__, status);
1041 ret = -EIO;
1042 goto out;
1045 ret = __nand_unlock(mtd, ofs, len, 0x1);
1047 out:
1048 /* de-select the NAND device */
1049 chip->select_chip(mtd, -1);
1051 nand_release_device(mtd);
1053 return ret;
1055 EXPORT_SYMBOL(nand_lock);
1058 * nand_read_page_raw - [Intern] read raw page data without ecc
1059 * @mtd: mtd info structure
1060 * @chip: nand chip info structure
1061 * @buf: buffer to store read data
1062 * @page: page number to read
1064 * Not for syndrome calculating ecc controllers, which use a special oob layout
1066 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1067 uint8_t *buf, int page)
1069 chip->read_buf(mtd, buf, mtd->writesize);
1070 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1071 return 0;
1075 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1076 * @mtd: mtd info structure
1077 * @chip: nand chip info structure
1078 * @buf: buffer to store read data
1079 * @page: page number to read
1081 * We need a special oob layout and handling even when OOB isn't used.
1083 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1084 struct nand_chip *chip,
1085 uint8_t *buf, int page)
1087 int eccsize = chip->ecc.size;
1088 int eccbytes = chip->ecc.bytes;
1089 uint8_t *oob = chip->oob_poi;
1090 int steps, size;
1092 for (steps = chip->ecc.steps; steps > 0; steps--) {
1093 chip->read_buf(mtd, buf, eccsize);
1094 buf += eccsize;
1096 if (chip->ecc.prepad) {
1097 chip->read_buf(mtd, oob, chip->ecc.prepad);
1098 oob += chip->ecc.prepad;
1101 chip->read_buf(mtd, oob, eccbytes);
1102 oob += eccbytes;
1104 if (chip->ecc.postpad) {
1105 chip->read_buf(mtd, oob, chip->ecc.postpad);
1106 oob += chip->ecc.postpad;
1110 size = mtd->oobsize - (oob - chip->oob_poi);
1111 if (size)
1112 chip->read_buf(mtd, oob, size);
1114 return 0;
1118 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1119 * @mtd: mtd info structure
1120 * @chip: nand chip info structure
1121 * @buf: buffer to store read data
1122 * @page: page number to read
1124 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1125 uint8_t *buf, int page)
1127 int i, eccsize = chip->ecc.size;
1128 int eccbytes = chip->ecc.bytes;
1129 int eccsteps = chip->ecc.steps;
1130 uint8_t *p = buf;
1131 uint8_t *ecc_calc = chip->buffers->ecccalc;
1132 uint8_t *ecc_code = chip->buffers->ecccode;
1133 uint32_t *eccpos = chip->ecc.layout->eccpos;
1135 chip->ecc.read_page_raw(mtd, chip, buf, page);
1137 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1138 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1140 for (i = 0; i < chip->ecc.total; i++)
1141 ecc_code[i] = chip->oob_poi[eccpos[i]];
1143 eccsteps = chip->ecc.steps;
1144 p = buf;
1146 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1147 int stat;
1149 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1150 if (stat < 0)
1151 mtd->ecc_stats.failed++;
1152 else
1153 mtd->ecc_stats.corrected += stat;
1155 return 0;
1159 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1160 * @mtd: mtd info structure
1161 * @chip: nand chip info structure
1162 * @data_offs: offset of requested data within the page
1163 * @readlen: data length
1164 * @bufpoi: buffer to store read data
1166 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1167 uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1169 int start_step, end_step, num_steps;
1170 uint32_t *eccpos = chip->ecc.layout->eccpos;
1171 uint8_t *p;
1172 int data_col_addr, i, gaps = 0;
1173 int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1174 int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1175 int index = 0;
1177 /* Column address wihin the page aligned to ECC size (256bytes). */
1178 start_step = data_offs / chip->ecc.size;
1179 end_step = (data_offs + readlen - 1) / chip->ecc.size;
1180 num_steps = end_step - start_step + 1;
1182 /* Data size aligned to ECC ecc.size*/
1183 datafrag_len = num_steps * chip->ecc.size;
1184 eccfrag_len = num_steps * chip->ecc.bytes;
1186 data_col_addr = start_step * chip->ecc.size;
1187 /* If we read not a page aligned data */
1188 if (data_col_addr != 0)
1189 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1191 p = bufpoi + data_col_addr;
1192 chip->read_buf(mtd, p, datafrag_len);
1194 /* Calculate ECC */
1195 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1196 chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1198 /* The performance is faster if to position offsets
1199 according to ecc.pos. Let make sure here that
1200 there are no gaps in ecc positions */
1201 for (i = 0; i < eccfrag_len - 1; i++) {
1202 if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1203 eccpos[i + start_step * chip->ecc.bytes + 1]) {
1204 gaps = 1;
1205 break;
1208 if (gaps) {
1209 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1210 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1211 } else {
1212 /* send the command to read the particular ecc bytes */
1213 /* take care about buswidth alignment in read_buf */
1214 index = start_step * chip->ecc.bytes;
1216 aligned_pos = eccpos[index] & ~(busw - 1);
1217 aligned_len = eccfrag_len;
1218 if (eccpos[index] & (busw - 1))
1219 aligned_len++;
1220 if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1221 aligned_len++;
1223 chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1224 mtd->writesize + aligned_pos, -1);
1225 chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1228 for (i = 0; i < eccfrag_len; i++)
1229 chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1231 p = bufpoi + data_col_addr;
1232 for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1233 int stat;
1235 stat = chip->ecc.correct(mtd, p,
1236 &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1237 if (stat < 0)
1238 mtd->ecc_stats.failed++;
1239 else
1240 mtd->ecc_stats.corrected += stat;
1242 return 0;
1246 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1247 * @mtd: mtd info structure
1248 * @chip: nand chip info structure
1249 * @buf: buffer to store read data
1250 * @page: page number to read
1252 * Not for syndrome calculating ecc controllers which need a special oob layout
1254 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1255 uint8_t *buf, int page)
1257 int i, eccsize = chip->ecc.size;
1258 int eccbytes = chip->ecc.bytes;
1259 int eccsteps = chip->ecc.steps;
1260 uint8_t *p = buf;
1261 uint8_t *ecc_calc = chip->buffers->ecccalc;
1262 uint8_t *ecc_code = chip->buffers->ecccode;
1263 uint32_t *eccpos = chip->ecc.layout->eccpos;
1265 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1266 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1267 chip->read_buf(mtd, p, eccsize);
1268 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1270 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1272 for (i = 0; i < chip->ecc.total; i++)
1273 ecc_code[i] = chip->oob_poi[eccpos[i]];
1275 eccsteps = chip->ecc.steps;
1276 p = buf;
1278 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1279 int stat;
1281 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1282 if (stat < 0)
1283 mtd->ecc_stats.failed++;
1284 else
1285 mtd->ecc_stats.corrected += stat;
1287 return 0;
1291 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1292 * @mtd: mtd info structure
1293 * @chip: nand chip info structure
1294 * @buf: buffer to store read data
1295 * @page: page number to read
1297 * Hardware ECC for large page chips, require OOB to be read first.
1298 * For this ECC mode, the write_page method is re-used from ECC_HW.
1299 * These methods read/write ECC from the OOB area, unlike the
1300 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1301 * "infix ECC" scheme and reads/writes ECC from the data area, by
1302 * overwriting the NAND manufacturer bad block markings.
1304 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1305 struct nand_chip *chip, uint8_t *buf, int page)
1307 int i, eccsize = chip->ecc.size;
1308 int eccbytes = chip->ecc.bytes;
1309 int eccsteps = chip->ecc.steps;
1310 uint8_t *p = buf;
1311 uint8_t *ecc_code = chip->buffers->ecccode;
1312 uint32_t *eccpos = chip->ecc.layout->eccpos;
1313 uint8_t *ecc_calc = chip->buffers->ecccalc;
1315 /* Read the OOB area first */
1316 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1317 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1318 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1320 for (i = 0; i < chip->ecc.total; i++)
1321 ecc_code[i] = chip->oob_poi[eccpos[i]];
1323 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1324 int stat;
1326 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1327 chip->read_buf(mtd, p, eccsize);
1328 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1330 stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1331 if (stat < 0)
1332 mtd->ecc_stats.failed++;
1333 else
1334 mtd->ecc_stats.corrected += stat;
1336 return 0;
1340 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1341 * @mtd: mtd info structure
1342 * @chip: nand chip info structure
1343 * @buf: buffer to store read data
1344 * @page: page number to read
1346 * The hw generator calculates the error syndrome automatically. Therefor
1347 * we need a special oob layout and handling.
1349 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1350 uint8_t *buf, int page)
1352 int i, eccsize = chip->ecc.size;
1353 int eccbytes = chip->ecc.bytes;
1354 int eccsteps = chip->ecc.steps;
1355 uint8_t *p = buf;
1356 uint8_t *oob = chip->oob_poi;
1358 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1359 int stat;
1361 chip->ecc.hwctl(mtd, NAND_ECC_READ);
1362 chip->read_buf(mtd, p, eccsize);
1364 if (chip->ecc.prepad) {
1365 chip->read_buf(mtd, oob, chip->ecc.prepad);
1366 oob += chip->ecc.prepad;
1369 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1370 chip->read_buf(mtd, oob, eccbytes);
1371 stat = chip->ecc.correct(mtd, p, oob, NULL);
1373 if (stat < 0)
1374 mtd->ecc_stats.failed++;
1375 else
1376 mtd->ecc_stats.corrected += stat;
1378 oob += eccbytes;
1380 if (chip->ecc.postpad) {
1381 chip->read_buf(mtd, oob, chip->ecc.postpad);
1382 oob += chip->ecc.postpad;
1386 /* Calculate remaining oob bytes */
1387 i = mtd->oobsize - (oob - chip->oob_poi);
1388 if (i)
1389 chip->read_buf(mtd, oob, i);
1391 return 0;
1395 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1396 * @chip: nand chip structure
1397 * @oob: oob destination address
1398 * @ops: oob ops structure
1399 * @len: size of oob to transfer
1401 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1402 struct mtd_oob_ops *ops, size_t len)
1404 switch (ops->mode) {
1406 case MTD_OOB_PLACE:
1407 case MTD_OOB_RAW:
1408 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1409 return oob + len;
1411 case MTD_OOB_AUTO: {
1412 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1413 uint32_t boffs = 0, roffs = ops->ooboffs;
1414 size_t bytes = 0;
1416 for (; free->length && len; free++, len -= bytes) {
1417 /* Read request not from offset 0 ? */
1418 if (unlikely(roffs)) {
1419 if (roffs >= free->length) {
1420 roffs -= free->length;
1421 continue;
1423 boffs = free->offset + roffs;
1424 bytes = min_t(size_t, len,
1425 (free->length - roffs));
1426 roffs = 0;
1427 } else {
1428 bytes = min_t(size_t, len, free->length);
1429 boffs = free->offset;
1431 memcpy(oob, chip->oob_poi + boffs, bytes);
1432 oob += bytes;
1434 return oob;
1436 default:
1437 BUG();
1439 return NULL;
1443 * nand_do_read_ops - [Internal] Read data with ECC
1445 * @mtd: MTD device structure
1446 * @from: offset to read from
1447 * @ops: oob ops structure
1449 * Internal function. Called with chip held.
1451 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1452 struct mtd_oob_ops *ops)
1454 int chipnr, page, realpage, col, bytes, aligned;
1455 struct nand_chip *chip = mtd->priv;
1456 struct mtd_ecc_stats stats;
1457 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1458 int sndcmd = 1;
1459 int ret = 0;
1460 uint32_t readlen = ops->len;
1461 uint32_t oobreadlen = ops->ooblen;
1462 uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1463 mtd->oobavail : mtd->oobsize;
1465 uint8_t *bufpoi, *oob, *buf;
1467 stats = mtd->ecc_stats;
1469 chipnr = (int)(from >> chip->chip_shift);
1470 chip->select_chip(mtd, chipnr);
1472 realpage = (int)(from >> chip->page_shift);
1473 page = realpage & chip->pagemask;
1475 col = (int)(from & (mtd->writesize - 1));
1477 buf = ops->datbuf;
1478 oob = ops->oobbuf;
1480 while (1) {
1481 bytes = min(mtd->writesize - col, readlen);
1482 aligned = (bytes == mtd->writesize);
1484 /* Is the current page in the buffer ? */
1485 if (realpage != chip->pagebuf || oob) {
1486 bufpoi = aligned ? buf : chip->buffers->databuf;
1488 if (likely(sndcmd)) {
1489 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1490 sndcmd = 0;
1493 /* Now read the page into the buffer */
1494 if (unlikely(ops->mode == MTD_OOB_RAW))
1495 ret = chip->ecc.read_page_raw(mtd, chip,
1496 bufpoi, page);
1497 else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1498 ret = chip->ecc.read_subpage(mtd, chip,
1499 col, bytes, bufpoi);
1500 else
1501 ret = chip->ecc.read_page(mtd, chip, bufpoi,
1502 page);
1503 if (ret < 0)
1504 break;
1506 /* Transfer not aligned data */
1507 if (!aligned) {
1508 if (!NAND_SUBPAGE_READ(chip) && !oob &&
1509 !(mtd->ecc_stats.failed - stats.failed))
1510 chip->pagebuf = realpage;
1511 memcpy(buf, chip->buffers->databuf + col, bytes);
1514 buf += bytes;
1516 if (unlikely(oob)) {
1518 int toread = min(oobreadlen, max_oobsize);
1520 if (toread) {
1521 oob = nand_transfer_oob(chip,
1522 oob, ops, toread);
1523 oobreadlen -= toread;
1527 if (!(chip->options & NAND_NO_READRDY)) {
1529 * Apply delay or wait for ready/busy pin. Do
1530 * this before the AUTOINCR check, so no
1531 * problems arise if a chip which does auto
1532 * increment is marked as NOAUTOINCR by the
1533 * board driver.
1535 if (!chip->dev_ready)
1536 udelay(chip->chip_delay);
1537 else
1538 nand_wait_ready(mtd);
1540 } else {
1541 memcpy(buf, chip->buffers->databuf + col, bytes);
1542 buf += bytes;
1545 readlen -= bytes;
1547 if (!readlen)
1548 break;
1550 /* For subsequent reads align to page boundary. */
1551 col = 0;
1552 /* Increment page address */
1553 realpage++;
1555 page = realpage & chip->pagemask;
1556 /* Check, if we cross a chip boundary */
1557 if (!page) {
1558 chipnr++;
1559 chip->select_chip(mtd, -1);
1560 chip->select_chip(mtd, chipnr);
1563 /* Check, if the chip supports auto page increment
1564 * or if we have hit a block boundary.
1566 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1567 sndcmd = 1;
1570 ops->retlen = ops->len - (size_t) readlen;
1571 if (oob)
1572 ops->oobretlen = ops->ooblen - oobreadlen;
1574 if (ret)
1575 return ret;
1577 if (mtd->ecc_stats.failed - stats.failed)
1578 return -EBADMSG;
1580 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1584 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1585 * @mtd: MTD device structure
1586 * @from: offset to read from
1587 * @len: number of bytes to read
1588 * @retlen: pointer to variable to store the number of read bytes
1589 * @buf: the databuffer to put data
1591 * Get hold of the chip and call nand_do_read
1593 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1594 size_t *retlen, uint8_t *buf)
1596 struct nand_chip *chip = mtd->priv;
1597 int ret;
1599 /* Do not allow reads past end of device */
1600 if ((from + len) > mtd->size)
1601 return -EINVAL;
1602 if (!len)
1603 return 0;
1605 nand_get_device(chip, mtd, FL_READING);
1607 chip->ops.len = len;
1608 chip->ops.datbuf = buf;
1609 chip->ops.oobbuf = NULL;
1611 ret = nand_do_read_ops(mtd, from, &chip->ops);
1613 *retlen = chip->ops.retlen;
1615 nand_release_device(mtd);
1617 return ret;
1621 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1622 * @mtd: mtd info structure
1623 * @chip: nand chip info structure
1624 * @page: page number to read
1625 * @sndcmd: flag whether to issue read command or not
1627 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1628 int page, int sndcmd)
1630 if (sndcmd) {
1631 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1632 sndcmd = 0;
1634 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1635 return sndcmd;
1639 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1640 * with syndromes
1641 * @mtd: mtd info structure
1642 * @chip: nand chip info structure
1643 * @page: page number to read
1644 * @sndcmd: flag whether to issue read command or not
1646 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1647 int page, int sndcmd)
1649 uint8_t *buf = chip->oob_poi;
1650 int length = mtd->oobsize;
1651 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1652 int eccsize = chip->ecc.size;
1653 uint8_t *bufpoi = buf;
1654 int i, toread, sndrnd = 0, pos;
1656 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1657 for (i = 0; i < chip->ecc.steps; i++) {
1658 if (sndrnd) {
1659 pos = eccsize + i * (eccsize + chunk);
1660 if (mtd->writesize > 512)
1661 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1662 else
1663 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1664 } else
1665 sndrnd = 1;
1666 toread = min_t(int, length, chunk);
1667 chip->read_buf(mtd, bufpoi, toread);
1668 bufpoi += toread;
1669 length -= toread;
1671 if (length > 0)
1672 chip->read_buf(mtd, bufpoi, length);
1674 return 1;
1678 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1679 * @mtd: mtd info structure
1680 * @chip: nand chip info structure
1681 * @page: page number to write
1683 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1684 int page)
1686 int status = 0;
1687 const uint8_t *buf = chip->oob_poi;
1688 int length = mtd->oobsize;
1690 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1691 chip->write_buf(mtd, buf, length);
1692 /* Send command to program the OOB data */
1693 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1695 status = chip->waitfunc(mtd, chip);
1697 return status & NAND_STATUS_FAIL ? -EIO : 0;
1701 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1702 * with syndrome - only for large page flash !
1703 * @mtd: mtd info structure
1704 * @chip: nand chip info structure
1705 * @page: page number to write
1707 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1708 struct nand_chip *chip, int page)
1710 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1711 int eccsize = chip->ecc.size, length = mtd->oobsize;
1712 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1713 const uint8_t *bufpoi = chip->oob_poi;
1716 * data-ecc-data-ecc ... ecc-oob
1717 * or
1718 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1720 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1721 pos = steps * (eccsize + chunk);
1722 steps = 0;
1723 } else
1724 pos = eccsize;
1726 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1727 for (i = 0; i < steps; i++) {
1728 if (sndcmd) {
1729 if (mtd->writesize <= 512) {
1730 uint32_t fill = 0xFFFFFFFF;
1732 len = eccsize;
1733 while (len > 0) {
1734 int num = min_t(int, len, 4);
1735 chip->write_buf(mtd, (uint8_t *)&fill,
1736 num);
1737 len -= num;
1739 } else {
1740 pos = eccsize + i * (eccsize + chunk);
1741 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1743 } else
1744 sndcmd = 1;
1745 len = min_t(int, length, chunk);
1746 chip->write_buf(mtd, bufpoi, len);
1747 bufpoi += len;
1748 length -= len;
1750 if (length > 0)
1751 chip->write_buf(mtd, bufpoi, length);
1753 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1754 status = chip->waitfunc(mtd, chip);
1756 return status & NAND_STATUS_FAIL ? -EIO : 0;
1760 * nand_do_read_oob - [Intern] NAND read out-of-band
1761 * @mtd: MTD device structure
1762 * @from: offset to read from
1763 * @ops: oob operations description structure
1765 * NAND read out-of-band data from the spare area
1767 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1768 struct mtd_oob_ops *ops)
1770 int page, realpage, chipnr, sndcmd = 1;
1771 struct nand_chip *chip = mtd->priv;
1772 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1773 int readlen = ops->ooblen;
1774 int len;
1775 uint8_t *buf = ops->oobbuf;
1777 DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1778 __func__, (unsigned long long)from, readlen);
1780 if (ops->mode == MTD_OOB_AUTO)
1781 len = chip->ecc.layout->oobavail;
1782 else
1783 len = mtd->oobsize;
1785 if (unlikely(ops->ooboffs >= len)) {
1786 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1787 "outside oob\n", __func__);
1788 return -EINVAL;
1791 /* Do not allow reads past end of device */
1792 if (unlikely(from >= mtd->size ||
1793 ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1794 (from >> chip->page_shift)) * len)) {
1795 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1796 "of device\n", __func__);
1797 return -EINVAL;
1800 chipnr = (int)(from >> chip->chip_shift);
1801 chip->select_chip(mtd, chipnr);
1803 /* Shift to get page */
1804 realpage = (int)(from >> chip->page_shift);
1805 page = realpage & chip->pagemask;
1807 while (1) {
1808 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1810 len = min(len, readlen);
1811 buf = nand_transfer_oob(chip, buf, ops, len);
1813 if (!(chip->options & NAND_NO_READRDY)) {
1815 * Apply delay or wait for ready/busy pin. Do this
1816 * before the AUTOINCR check, so no problems arise if a
1817 * chip which does auto increment is marked as
1818 * NOAUTOINCR by the board driver.
1820 if (!chip->dev_ready)
1821 udelay(chip->chip_delay);
1822 else
1823 nand_wait_ready(mtd);
1826 readlen -= len;
1827 if (!readlen)
1828 break;
1830 /* Increment page address */
1831 realpage++;
1833 page = realpage & chip->pagemask;
1834 /* Check, if we cross a chip boundary */
1835 if (!page) {
1836 chipnr++;
1837 chip->select_chip(mtd, -1);
1838 chip->select_chip(mtd, chipnr);
1841 /* Check, if the chip supports auto page increment
1842 * or if we have hit a block boundary.
1844 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1845 sndcmd = 1;
1848 ops->oobretlen = ops->ooblen;
1849 return 0;
1853 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1854 * @mtd: MTD device structure
1855 * @from: offset to read from
1856 * @ops: oob operation description structure
1858 * NAND read data and/or out-of-band data
1860 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1861 struct mtd_oob_ops *ops)
1863 struct nand_chip *chip = mtd->priv;
1864 int ret = -ENOTSUPP;
1866 ops->retlen = 0;
1868 /* Do not allow reads past end of device */
1869 if (ops->datbuf && (from + ops->len) > mtd->size) {
1870 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1871 "beyond end of device\n", __func__);
1872 return -EINVAL;
1875 nand_get_device(chip, mtd, FL_READING);
1877 switch (ops->mode) {
1878 case MTD_OOB_PLACE:
1879 case MTD_OOB_AUTO:
1880 case MTD_OOB_RAW:
1881 break;
1883 default:
1884 goto out;
1887 if (!ops->datbuf)
1888 ret = nand_do_read_oob(mtd, from, ops);
1889 else
1890 ret = nand_do_read_ops(mtd, from, ops);
1892 out:
1893 nand_release_device(mtd);
1894 return ret;
1899 * nand_write_page_raw - [Intern] raw page write function
1900 * @mtd: mtd info structure
1901 * @chip: nand chip info structure
1902 * @buf: data buffer
1904 * Not for syndrome calculating ecc controllers, which use a special oob layout
1906 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1907 const uint8_t *buf)
1909 chip->write_buf(mtd, buf, mtd->writesize);
1910 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1914 * nand_write_page_raw_syndrome - [Intern] raw page write function
1915 * @mtd: mtd info structure
1916 * @chip: nand chip info structure
1917 * @buf: data buffer
1919 * We need a special oob layout and handling even when ECC isn't checked.
1921 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1922 struct nand_chip *chip,
1923 const uint8_t *buf)
1925 int eccsize = chip->ecc.size;
1926 int eccbytes = chip->ecc.bytes;
1927 uint8_t *oob = chip->oob_poi;
1928 int steps, size;
1930 for (steps = chip->ecc.steps; steps > 0; steps--) {
1931 chip->write_buf(mtd, buf, eccsize);
1932 buf += eccsize;
1934 if (chip->ecc.prepad) {
1935 chip->write_buf(mtd, oob, chip->ecc.prepad);
1936 oob += chip->ecc.prepad;
1939 chip->read_buf(mtd, oob, eccbytes);
1940 oob += eccbytes;
1942 if (chip->ecc.postpad) {
1943 chip->write_buf(mtd, oob, chip->ecc.postpad);
1944 oob += chip->ecc.postpad;
1948 size = mtd->oobsize - (oob - chip->oob_poi);
1949 if (size)
1950 chip->write_buf(mtd, oob, size);
1953 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1954 * @mtd: mtd info structure
1955 * @chip: nand chip info structure
1956 * @buf: data buffer
1958 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1959 const uint8_t *buf)
1961 int i, eccsize = chip->ecc.size;
1962 int eccbytes = chip->ecc.bytes;
1963 int eccsteps = chip->ecc.steps;
1964 uint8_t *ecc_calc = chip->buffers->ecccalc;
1965 const uint8_t *p = buf;
1966 uint32_t *eccpos = chip->ecc.layout->eccpos;
1968 /* Software ecc calculation */
1969 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1970 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1972 for (i = 0; i < chip->ecc.total; i++)
1973 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1975 chip->ecc.write_page_raw(mtd, chip, buf);
1979 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1980 * @mtd: mtd info structure
1981 * @chip: nand chip info structure
1982 * @buf: data buffer
1984 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1985 const uint8_t *buf)
1987 int i, eccsize = chip->ecc.size;
1988 int eccbytes = chip->ecc.bytes;
1989 int eccsteps = chip->ecc.steps;
1990 uint8_t *ecc_calc = chip->buffers->ecccalc;
1991 const uint8_t *p = buf;
1992 uint32_t *eccpos = chip->ecc.layout->eccpos;
1994 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1995 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1996 chip->write_buf(mtd, p, eccsize);
1997 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2000 for (i = 0; i < chip->ecc.total; i++)
2001 chip->oob_poi[eccpos[i]] = ecc_calc[i];
2003 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2007 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2008 * @mtd: mtd info structure
2009 * @chip: nand chip info structure
2010 * @buf: data buffer
2012 * The hw generator calculates the error syndrome automatically. Therefor
2013 * we need a special oob layout and handling.
2015 static void nand_write_page_syndrome(struct mtd_info *mtd,
2016 struct nand_chip *chip, const uint8_t *buf)
2018 int i, eccsize = chip->ecc.size;
2019 int eccbytes = chip->ecc.bytes;
2020 int eccsteps = chip->ecc.steps;
2021 const uint8_t *p = buf;
2022 uint8_t *oob = chip->oob_poi;
2024 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2026 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2027 chip->write_buf(mtd, p, eccsize);
2029 if (chip->ecc.prepad) {
2030 chip->write_buf(mtd, oob, chip->ecc.prepad);
2031 oob += chip->ecc.prepad;
2034 chip->ecc.calculate(mtd, p, oob);
2035 chip->write_buf(mtd, oob, eccbytes);
2036 oob += eccbytes;
2038 if (chip->ecc.postpad) {
2039 chip->write_buf(mtd, oob, chip->ecc.postpad);
2040 oob += chip->ecc.postpad;
2044 /* Calculate remaining oob bytes */
2045 i = mtd->oobsize - (oob - chip->oob_poi);
2046 if (i)
2047 chip->write_buf(mtd, oob, i);
2051 * nand_write_page - [REPLACEABLE] write one page
2052 * @mtd: MTD device structure
2053 * @chip: NAND chip descriptor
2054 * @buf: the data to write
2055 * @page: page number to write
2056 * @cached: cached programming
2057 * @raw: use _raw version of write_page
2059 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2060 const uint8_t *buf, int page, int cached, int raw)
2062 int status;
2064 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2066 if (unlikely(raw))
2067 chip->ecc.write_page_raw(mtd, chip, buf);
2068 else
2069 chip->ecc.write_page(mtd, chip, buf);
2072 * Cached progamming disabled for now, Not sure if its worth the
2073 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2075 cached = 0;
2077 if (!cached || !(chip->options & NAND_CACHEPRG)) {
2079 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2080 status = chip->waitfunc(mtd, chip);
2082 * See if operation failed and additional status checks are
2083 * available
2085 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2086 status = chip->errstat(mtd, chip, FL_WRITING, status,
2087 page);
2089 if (status & NAND_STATUS_FAIL)
2090 return -EIO;
2091 } else {
2092 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2093 status = chip->waitfunc(mtd, chip);
2096 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2097 /* Send command to read back the data */
2098 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2100 if (chip->verify_buf(mtd, buf, mtd->writesize))
2101 return -EIO;
2102 #endif
2103 return 0;
2107 * nand_fill_oob - [Internal] Transfer client buffer to oob
2108 * @chip: nand chip structure
2109 * @oob: oob data buffer
2110 * @len: oob data write length
2111 * @ops: oob ops structure
2113 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2114 struct mtd_oob_ops *ops)
2116 switch (ops->mode) {
2118 case MTD_OOB_PLACE:
2119 case MTD_OOB_RAW:
2120 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2121 return oob + len;
2123 case MTD_OOB_AUTO: {
2124 struct nand_oobfree *free = chip->ecc.layout->oobfree;
2125 uint32_t boffs = 0, woffs = ops->ooboffs;
2126 size_t bytes = 0;
2128 for (; free->length && len; free++, len -= bytes) {
2129 /* Write request not from offset 0 ? */
2130 if (unlikely(woffs)) {
2131 if (woffs >= free->length) {
2132 woffs -= free->length;
2133 continue;
2135 boffs = free->offset + woffs;
2136 bytes = min_t(size_t, len,
2137 (free->length - woffs));
2138 woffs = 0;
2139 } else {
2140 bytes = min_t(size_t, len, free->length);
2141 boffs = free->offset;
2143 memcpy(chip->oob_poi + boffs, oob, bytes);
2144 oob += bytes;
2146 return oob;
2148 default:
2149 BUG();
2151 return NULL;
2154 #define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
2157 * nand_do_write_ops - [Internal] NAND write with ECC
2158 * @mtd: MTD device structure
2159 * @to: offset to write to
2160 * @ops: oob operations description structure
2162 * NAND write with ECC
2164 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2165 struct mtd_oob_ops *ops)
2167 int chipnr, realpage, page, blockmask, column;
2168 struct nand_chip *chip = mtd->priv;
2169 uint32_t writelen = ops->len;
2171 uint32_t oobwritelen = ops->ooblen;
2172 uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2173 mtd->oobavail : mtd->oobsize;
2175 uint8_t *oob = ops->oobbuf;
2176 uint8_t *buf = ops->datbuf;
2177 int ret, subpage;
2179 ops->retlen = 0;
2180 if (!writelen)
2181 return 0;
2183 /* reject writes, which are not page aligned */
2184 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2185 printk(KERN_NOTICE "%s: Attempt to write not "
2186 "page aligned data\n", __func__);
2187 return -EINVAL;
2190 column = to & (mtd->writesize - 1);
2191 subpage = column || (writelen & (mtd->writesize - 1));
2193 if (subpage && oob)
2194 return -EINVAL;
2196 chipnr = (int)(to >> chip->chip_shift);
2197 chip->select_chip(mtd, chipnr);
2199 /* Check, if it is write protected */
2200 if (nand_check_wp(mtd))
2201 return -EIO;
2203 realpage = (int)(to >> chip->page_shift);
2204 page = realpage & chip->pagemask;
2205 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2207 /* Invalidate the page cache, when we write to the cached page */
2208 if (to <= (chip->pagebuf << chip->page_shift) &&
2209 (chip->pagebuf << chip->page_shift) < (to + ops->len))
2210 chip->pagebuf = -1;
2212 /* If we're not given explicit OOB data, let it be 0xFF */
2213 if (likely(!oob))
2214 memset(chip->oob_poi, 0xff, mtd->oobsize);
2216 /* Don't allow multipage oob writes with offset */
2217 if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2218 return -EINVAL;
2220 while (1) {
2221 int bytes = mtd->writesize;
2222 int cached = writelen > bytes && page != blockmask;
2223 uint8_t *wbuf = buf;
2225 /* Partial page write ? */
2226 if (unlikely(column || writelen < (mtd->writesize - 1))) {
2227 cached = 0;
2228 bytes = min_t(int, bytes - column, (int) writelen);
2229 chip->pagebuf = -1;
2230 memset(chip->buffers->databuf, 0xff, mtd->writesize);
2231 memcpy(&chip->buffers->databuf[column], buf, bytes);
2232 wbuf = chip->buffers->databuf;
2235 if (unlikely(oob)) {
2236 size_t len = min(oobwritelen, oobmaxlen);
2237 oob = nand_fill_oob(chip, oob, len, ops);
2238 oobwritelen -= len;
2241 ret = chip->write_page(mtd, chip, wbuf, page, cached,
2242 (ops->mode == MTD_OOB_RAW));
2243 if (ret)
2244 break;
2246 writelen -= bytes;
2247 if (!writelen)
2248 break;
2250 column = 0;
2251 buf += bytes;
2252 realpage++;
2254 page = realpage & chip->pagemask;
2255 /* Check, if we cross a chip boundary */
2256 if (!page) {
2257 chipnr++;
2258 chip->select_chip(mtd, -1);
2259 chip->select_chip(mtd, chipnr);
2263 ops->retlen = ops->len - writelen;
2264 if (unlikely(oob))
2265 ops->oobretlen = ops->ooblen;
2266 return ret;
2270 * panic_nand_write - [MTD Interface] NAND write with ECC
2271 * @mtd: MTD device structure
2272 * @to: offset to write to
2273 * @len: number of bytes to write
2274 * @retlen: pointer to variable to store the number of written bytes
2275 * @buf: the data to write
2277 * NAND write with ECC. Used when performing writes in interrupt context, this
2278 * may for example be called by mtdoops when writing an oops while in panic.
2280 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2281 size_t *retlen, const uint8_t *buf)
2283 struct nand_chip *chip = mtd->priv;
2284 int ret;
2286 /* Do not allow reads past end of device */
2287 if ((to + len) > mtd->size)
2288 return -EINVAL;
2289 if (!len)
2290 return 0;
2292 /* Wait for the device to get ready. */
2293 panic_nand_wait(mtd, chip, 400);
2295 /* Grab the device. */
2296 panic_nand_get_device(chip, mtd, FL_WRITING);
2298 chip->ops.len = len;
2299 chip->ops.datbuf = (uint8_t *)buf;
2300 chip->ops.oobbuf = NULL;
2302 ret = nand_do_write_ops(mtd, to, &chip->ops);
2304 *retlen = chip->ops.retlen;
2305 return ret;
2309 * nand_write - [MTD Interface] NAND write with ECC
2310 * @mtd: MTD device structure
2311 * @to: offset to write to
2312 * @len: number of bytes to write
2313 * @retlen: pointer to variable to store the number of written bytes
2314 * @buf: the data to write
2316 * NAND write with ECC
2318 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2319 size_t *retlen, const uint8_t *buf)
2321 struct nand_chip *chip = mtd->priv;
2322 int ret;
2324 /* Do not allow reads past end of device */
2325 if ((to + len) > mtd->size)
2326 return -EINVAL;
2327 if (!len)
2328 return 0;
2330 nand_get_device(chip, mtd, FL_WRITING);
2332 chip->ops.len = len;
2333 chip->ops.datbuf = (uint8_t *)buf;
2334 chip->ops.oobbuf = NULL;
2336 ret = nand_do_write_ops(mtd, to, &chip->ops);
2338 *retlen = chip->ops.retlen;
2340 nand_release_device(mtd);
2342 return ret;
2346 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2347 * @mtd: MTD device structure
2348 * @to: offset to write to
2349 * @ops: oob operation description structure
2351 * NAND write out-of-band
2353 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2354 struct mtd_oob_ops *ops)
2356 int chipnr, page, status, len;
2357 struct nand_chip *chip = mtd->priv;
2359 DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2360 __func__, (unsigned int)to, (int)ops->ooblen);
2362 if (ops->mode == MTD_OOB_AUTO)
2363 len = chip->ecc.layout->oobavail;
2364 else
2365 len = mtd->oobsize;
2367 /* Do not allow write past end of page */
2368 if ((ops->ooboffs + ops->ooblen) > len) {
2369 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2370 "past end of page\n", __func__);
2371 return -EINVAL;
2374 if (unlikely(ops->ooboffs >= len)) {
2375 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2376 "write outside oob\n", __func__);
2377 return -EINVAL;
2380 /* Do not allow reads past end of device */
2381 if (unlikely(to >= mtd->size ||
2382 ops->ooboffs + ops->ooblen >
2383 ((mtd->size >> chip->page_shift) -
2384 (to >> chip->page_shift)) * len)) {
2385 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2386 "end of device\n", __func__);
2387 return -EINVAL;
2390 chipnr = (int)(to >> chip->chip_shift);
2391 chip->select_chip(mtd, chipnr);
2393 /* Shift to get page */
2394 page = (int)(to >> chip->page_shift);
2397 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2398 * of my DiskOnChip 2000 test units) will clear the whole data page too
2399 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2400 * it in the doc2000 driver in August 1999. dwmw2.
2402 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2404 /* Check, if it is write protected */
2405 if (nand_check_wp(mtd))
2406 return -EROFS;
2408 /* Invalidate the page cache, if we write to the cached page */
2409 if (page == chip->pagebuf)
2410 chip->pagebuf = -1;
2412 memset(chip->oob_poi, 0xff, mtd->oobsize);
2413 nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2414 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2415 memset(chip->oob_poi, 0xff, mtd->oobsize);
2417 if (status)
2418 return status;
2420 ops->oobretlen = ops->ooblen;
2422 return 0;
2426 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2427 * @mtd: MTD device structure
2428 * @to: offset to write to
2429 * @ops: oob operation description structure
2431 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2432 struct mtd_oob_ops *ops)
2434 struct nand_chip *chip = mtd->priv;
2435 int ret = -ENOTSUPP;
2437 ops->retlen = 0;
2439 /* Do not allow writes past end of device */
2440 if (ops->datbuf && (to + ops->len) > mtd->size) {
2441 DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2442 "end of device\n", __func__);
2443 return -EINVAL;
2446 nand_get_device(chip, mtd, FL_WRITING);
2448 switch (ops->mode) {
2449 case MTD_OOB_PLACE:
2450 case MTD_OOB_AUTO:
2451 case MTD_OOB_RAW:
2452 break;
2454 default:
2455 goto out;
2458 if (!ops->datbuf)
2459 ret = nand_do_write_oob(mtd, to, ops);
2460 else
2461 ret = nand_do_write_ops(mtd, to, ops);
2463 out:
2464 nand_release_device(mtd);
2465 return ret;
2469 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2470 * @mtd: MTD device structure
2471 * @page: the page address of the block which will be erased
2473 * Standard erase command for NAND chips
2475 static void single_erase_cmd(struct mtd_info *mtd, int page)
2477 struct nand_chip *chip = mtd->priv;
2478 /* Send commands to erase a block */
2479 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2480 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2484 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2485 * @mtd: MTD device structure
2486 * @page: the page address of the block which will be erased
2488 * AND multi block erase command function
2489 * Erase 4 consecutive blocks
2491 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2493 struct nand_chip *chip = mtd->priv;
2494 /* Send commands to erase a block */
2495 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2496 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2497 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2498 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2499 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2503 * nand_erase - [MTD Interface] erase block(s)
2504 * @mtd: MTD device structure
2505 * @instr: erase instruction
2507 * Erase one ore more blocks
2509 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2511 return nand_erase_nand(mtd, instr, 0);
2514 #define BBT_PAGE_MASK 0xffffff3f
2516 * nand_erase_nand - [Internal] erase block(s)
2517 * @mtd: MTD device structure
2518 * @instr: erase instruction
2519 * @allowbbt: allow erasing the bbt area
2521 * Erase one ore more blocks
2523 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2524 int allowbbt)
2526 int page, status, pages_per_block, ret, chipnr;
2527 struct nand_chip *chip = mtd->priv;
2528 loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2529 unsigned int bbt_masked_page = 0xffffffff;
2530 loff_t len;
2532 DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2533 __func__, (unsigned long long)instr->addr,
2534 (unsigned long long)instr->len);
2536 if (check_offs_len(mtd, instr->addr, instr->len))
2537 return -EINVAL;
2539 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2541 /* Grab the lock and see if the device is available */
2542 nand_get_device(chip, mtd, FL_ERASING);
2544 /* Shift to get first page */
2545 page = (int)(instr->addr >> chip->page_shift);
2546 chipnr = (int)(instr->addr >> chip->chip_shift);
2548 /* Calculate pages in each block */
2549 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2551 /* Select the NAND device */
2552 chip->select_chip(mtd, chipnr);
2554 /* Check, if it is write protected */
2555 if (nand_check_wp(mtd)) {
2556 DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2557 __func__);
2558 instr->state = MTD_ERASE_FAILED;
2559 goto erase_exit;
2563 * If BBT requires refresh, set the BBT page mask to see if the BBT
2564 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2565 * can not be matched. This is also done when the bbt is actually
2566 * erased to avoid recusrsive updates
2568 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2569 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2571 /* Loop through the pages */
2572 len = instr->len;
2574 instr->state = MTD_ERASING;
2576 while (len) {
2578 * heck if we have a bad block, we do not erase bad blocks !
2580 if (nand_block_checkbad(mtd, ((loff_t) page) <<
2581 chip->page_shift, 0, allowbbt)) {
2582 printk(KERN_WARNING "%s: attempt to erase a bad block "
2583 "at page 0x%08x\n", __func__, page);
2584 instr->state = MTD_ERASE_FAILED;
2585 goto erase_exit;
2589 * Invalidate the page cache, if we erase the block which
2590 * contains the current cached page
2592 if (page <= chip->pagebuf && chip->pagebuf <
2593 (page + pages_per_block))
2594 chip->pagebuf = -1;
2596 chip->erase_cmd(mtd, page & chip->pagemask);
2598 status = chip->waitfunc(mtd, chip);
2601 * See if operation failed and additional status checks are
2602 * available
2604 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2605 status = chip->errstat(mtd, chip, FL_ERASING,
2606 status, page);
2608 /* See if block erase succeeded */
2609 if (status & NAND_STATUS_FAIL) {
2610 DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2611 "page 0x%08x\n", __func__, page);
2612 instr->state = MTD_ERASE_FAILED;
2613 instr->fail_addr =
2614 ((loff_t)page << chip->page_shift);
2615 goto erase_exit;
2619 * If BBT requires refresh, set the BBT rewrite flag to the
2620 * page being erased
2622 if (bbt_masked_page != 0xffffffff &&
2623 (page & BBT_PAGE_MASK) == bbt_masked_page)
2624 rewrite_bbt[chipnr] =
2625 ((loff_t)page << chip->page_shift);
2627 /* Increment page address and decrement length */
2628 len -= (1 << chip->phys_erase_shift);
2629 page += pages_per_block;
2631 /* Check, if we cross a chip boundary */
2632 if (len && !(page & chip->pagemask)) {
2633 chipnr++;
2634 chip->select_chip(mtd, -1);
2635 chip->select_chip(mtd, chipnr);
2638 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2639 * page mask to see if this BBT should be rewritten
2641 if (bbt_masked_page != 0xffffffff &&
2642 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2643 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2644 BBT_PAGE_MASK;
2647 instr->state = MTD_ERASE_DONE;
2649 erase_exit:
2651 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2653 /* Deselect and wake up anyone waiting on the device */
2654 nand_release_device(mtd);
2656 /* Do call back function */
2657 if (!ret)
2658 mtd_erase_callback(instr);
2661 * If BBT requires refresh and erase was successful, rewrite any
2662 * selected bad block tables
2664 if (bbt_masked_page == 0xffffffff || ret)
2665 return ret;
2667 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2668 if (!rewrite_bbt[chipnr])
2669 continue;
2670 /* update the BBT for chip */
2671 DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2672 "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2673 rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2674 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2677 /* Return more or less happy */
2678 return ret;
2682 * nand_sync - [MTD Interface] sync
2683 * @mtd: MTD device structure
2685 * Sync is actually a wait for chip ready function
2687 static void nand_sync(struct mtd_info *mtd)
2689 struct nand_chip *chip = mtd->priv;
2691 DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2693 /* Grab the lock and see if the device is available */
2694 nand_get_device(chip, mtd, FL_SYNCING);
2695 /* Release it and go back */
2696 nand_release_device(mtd);
2700 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2701 * @mtd: MTD device structure
2702 * @offs: offset relative to mtd start
2704 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2706 /* Check for invalid offset */
2707 if (offs > mtd->size)
2708 return -EINVAL;
2710 return nand_block_checkbad(mtd, offs, 1, 0);
2714 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2715 * @mtd: MTD device structure
2716 * @ofs: offset relative to mtd start
2718 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2720 struct nand_chip *chip = mtd->priv;
2721 int ret;
2723 ret = nand_block_isbad(mtd, ofs);
2724 if (ret) {
2725 /* If it was bad already, return success and do nothing. */
2726 if (ret > 0)
2727 return 0;
2728 return ret;
2731 return chip->block_markbad(mtd, ofs);
2735 * nand_suspend - [MTD Interface] Suspend the NAND flash
2736 * @mtd: MTD device structure
2738 static int nand_suspend(struct mtd_info *mtd)
2740 struct nand_chip *chip = mtd->priv;
2742 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2746 * nand_resume - [MTD Interface] Resume the NAND flash
2747 * @mtd: MTD device structure
2749 static void nand_resume(struct mtd_info *mtd)
2751 struct nand_chip *chip = mtd->priv;
2753 if (chip->state == FL_PM_SUSPENDED)
2754 nand_release_device(mtd);
2755 else
2756 printk(KERN_ERR "%s called for a chip which is not "
2757 "in suspended state\n", __func__);
2761 * Set default functions
2763 static void nand_set_defaults(struct nand_chip *chip, int busw)
2765 /* check for proper chip_delay setup, set 20us if not */
2766 if (!chip->chip_delay)
2767 chip->chip_delay = 20;
2769 /* check, if a user supplied command function given */
2770 if (chip->cmdfunc == NULL)
2771 chip->cmdfunc = nand_command;
2773 /* check, if a user supplied wait function given */
2774 if (chip->waitfunc == NULL)
2775 chip->waitfunc = nand_wait;
2777 if (!chip->select_chip)
2778 chip->select_chip = nand_select_chip;
2779 if (!chip->read_byte)
2780 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2781 if (!chip->read_word)
2782 chip->read_word = nand_read_word;
2783 if (!chip->block_bad)
2784 chip->block_bad = nand_block_bad;
2785 if (!chip->block_markbad)
2786 chip->block_markbad = nand_default_block_markbad;
2787 if (!chip->write_buf)
2788 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2789 if (!chip->read_buf)
2790 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2791 if (!chip->verify_buf)
2792 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2793 if (!chip->scan_bbt)
2794 chip->scan_bbt = nand_default_bbt;
2796 if (!chip->controller) {
2797 chip->controller = &chip->hwcontrol;
2798 spin_lock_init(&chip->controller->lock);
2799 init_waitqueue_head(&chip->controller->wq);
2805 * sanitize ONFI strings so we can safely print them
2807 static void sanitize_string(uint8_t *s, size_t len)
2809 ssize_t i;
2811 /* null terminate */
2812 s[len - 1] = 0;
2814 /* remove non printable chars */
2815 for (i = 0; i < len - 1; i++) {
2816 if (s[i] < ' ' || s[i] > 127)
2817 s[i] = '?';
2820 /* remove trailing spaces */
2821 strim(s);
2824 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2826 int i;
2827 while (len--) {
2828 crc ^= *p++ << 8;
2829 for (i = 0; i < 8; i++)
2830 crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2833 return crc;
2837 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2839 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2840 int busw)
2842 struct nand_onfi_params *p = &chip->onfi_params;
2843 int i;
2844 int val;
2846 /* try ONFI for unknow chip or LP */
2847 chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2848 if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2849 chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2850 return 0;
2852 printk(KERN_INFO "ONFI flash detected\n");
2853 chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2854 for (i = 0; i < 3; i++) {
2855 chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2856 if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2857 le16_to_cpu(p->crc)) {
2858 printk(KERN_INFO "ONFI param page %d valid\n", i);
2859 break;
2863 if (i == 3)
2864 return 0;
2866 /* check version */
2867 val = le16_to_cpu(p->revision);
2868 if (val & (1 << 5))
2869 chip->onfi_version = 23;
2870 else if (val & (1 << 4))
2871 chip->onfi_version = 22;
2872 else if (val & (1 << 3))
2873 chip->onfi_version = 21;
2874 else if (val & (1 << 2))
2875 chip->onfi_version = 20;
2876 else if (val & (1 << 1))
2877 chip->onfi_version = 10;
2878 else
2879 chip->onfi_version = 0;
2881 if (!chip->onfi_version) {
2882 printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2883 __func__, val);
2884 return 0;
2887 sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2888 sanitize_string(p->model, sizeof(p->model));
2889 if (!mtd->name)
2890 mtd->name = p->model;
2891 mtd->writesize = le32_to_cpu(p->byte_per_page);
2892 mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2893 mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2894 chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2895 busw = 0;
2896 if (le16_to_cpu(p->features) & 1)
2897 busw = NAND_BUSWIDTH_16;
2899 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2900 chip->options |= (NAND_NO_READRDY |
2901 NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2903 return 1;
2907 * Get the flash and manufacturer id and lookup if the type is supported
2909 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2910 struct nand_chip *chip,
2911 int busw,
2912 int *maf_id, int *dev_id,
2913 struct nand_flash_dev *type)
2915 int i, maf_idx;
2916 u8 id_data[8];
2917 int ret;
2919 /* Select the device */
2920 chip->select_chip(mtd, 0);
2923 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2924 * after power-up
2926 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2928 /* Send the command for reading device ID */
2929 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2931 /* Read manufacturer and device IDs */
2932 *maf_id = chip->read_byte(mtd);
2933 *dev_id = chip->read_byte(mtd);
2935 /* Try again to make sure, as some systems the bus-hold or other
2936 * interface concerns can cause random data which looks like a
2937 * possibly credible NAND flash to appear. If the two results do
2938 * not match, ignore the device completely.
2941 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2943 for (i = 0; i < 2; i++)
2944 id_data[i] = chip->read_byte(mtd);
2946 if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2947 printk(KERN_INFO "%s: second ID read did not match "
2948 "%02x,%02x against %02x,%02x\n", __func__,
2949 *maf_id, *dev_id, id_data[0], id_data[1]);
2950 return ERR_PTR(-ENODEV);
2953 if (!type)
2954 type = nand_flash_ids;
2956 for (; type->name != NULL; type++)
2957 if (*dev_id == type->id)
2958 break;
2960 chip->onfi_version = 0;
2961 if (!type->name || !type->pagesize) {
2962 /* Check is chip is ONFI compliant */
2963 ret = nand_flash_detect_onfi(mtd, chip, busw);
2964 if (ret)
2965 goto ident_done;
2968 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2970 /* Read entire ID string */
2972 for (i = 0; i < 8; i++)
2973 id_data[i] = chip->read_byte(mtd);
2975 if (!type->name)
2976 return ERR_PTR(-ENODEV);
2978 if (!mtd->name)
2979 mtd->name = type->name;
2981 chip->chipsize = (uint64_t)type->chipsize << 20;
2983 if (!type->pagesize && chip->init_size) {
2984 /* set the pagesize, oobsize, erasesize by the driver*/
2985 busw = chip->init_size(mtd, chip, id_data);
2986 } else if (!type->pagesize) {
2987 int extid;
2988 /* The 3rd id byte holds MLC / multichip data */
2989 chip->cellinfo = id_data[2];
2990 /* The 4th id byte is the important one */
2991 extid = id_data[3];
2994 * Field definitions are in the following datasheets:
2995 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2996 * New style (6 byte ID): Samsung K9GBG08U0M (p.40)
2998 * Check for wraparound + Samsung ID + nonzero 6th byte
2999 * to decide what to do.
3001 if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3002 id_data[0] == NAND_MFR_SAMSUNG &&
3003 (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3004 id_data[5] != 0x00) {
3005 /* Calc pagesize */
3006 mtd->writesize = 2048 << (extid & 0x03);
3007 extid >>= 2;
3008 /* Calc oobsize */
3009 switch (extid & 0x03) {
3010 case 1:
3011 mtd->oobsize = 128;
3012 break;
3013 case 2:
3014 mtd->oobsize = 218;
3015 break;
3016 case 3:
3017 mtd->oobsize = 400;
3018 break;
3019 default:
3020 mtd->oobsize = 436;
3021 break;
3023 extid >>= 2;
3024 /* Calc blocksize */
3025 mtd->erasesize = (128 * 1024) <<
3026 (((extid >> 1) & 0x04) | (extid & 0x03));
3027 busw = 0;
3028 } else {
3029 /* Calc pagesize */
3030 mtd->writesize = 1024 << (extid & 0x03);
3031 extid >>= 2;
3032 /* Calc oobsize */
3033 mtd->oobsize = (8 << (extid & 0x01)) *
3034 (mtd->writesize >> 9);
3035 extid >>= 2;
3036 /* Calc blocksize. Blocksize is multiples of 64KiB */
3037 mtd->erasesize = (64 * 1024) << (extid & 0x03);
3038 extid >>= 2;
3039 /* Get buswidth information */
3040 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3042 } else {
3044 * Old devices have chip data hardcoded in the device id table
3046 mtd->erasesize = type->erasesize;
3047 mtd->writesize = type->pagesize;
3048 mtd->oobsize = mtd->writesize / 32;
3049 busw = type->options & NAND_BUSWIDTH_16;
3052 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3053 * some Spansion chips have erasesize that conflicts with size
3054 * listed in nand_ids table
3055 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3057 if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3058 id_data[5] == 0x00 && id_data[6] == 0x00 &&
3059 id_data[7] == 0x00 && mtd->writesize == 512) {
3060 mtd->erasesize = 128 * 1024;
3061 mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3064 /* Get chip options, preserve non chip based options */
3065 chip->options &= ~NAND_CHIPOPTIONS_MSK;
3066 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3068 /* Check if chip is a not a samsung device. Do not clear the
3069 * options for chips which are not having an extended id.
3071 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3072 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3073 ident_done:
3076 * Set chip as a default. Board drivers can override it, if necessary
3078 chip->options |= NAND_NO_AUTOINCR;
3080 /* Try to identify manufacturer */
3081 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3082 if (nand_manuf_ids[maf_idx].id == *maf_id)
3083 break;
3087 * Check, if buswidth is correct. Hardware drivers should set
3088 * chip correct !
3090 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3091 printk(KERN_INFO "NAND device: Manufacturer ID:"
3092 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3093 *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3094 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3095 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3096 busw ? 16 : 8);
3097 return ERR_PTR(-EINVAL);
3100 /* Calculate the address shift from the page size */
3101 chip->page_shift = ffs(mtd->writesize) - 1;
3102 /* Convert chipsize to number of pages per chip -1. */
3103 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3105 chip->bbt_erase_shift = chip->phys_erase_shift =
3106 ffs(mtd->erasesize) - 1;
3107 if (chip->chipsize & 0xffffffff)
3108 chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3109 else {
3110 chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3111 chip->chip_shift += 32 - 1;
3114 chip->badblockbits = 8;
3116 /* Set the bad block position */
3117 if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3118 chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3119 else
3120 chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3123 * Bad block marker is stored in the last page of each block
3124 * on Samsung and Hynix MLC devices; stored in first two pages
3125 * of each block on Micron devices with 2KiB pages and on
3126 * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3127 * only the first page.
3129 if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3130 (*maf_id == NAND_MFR_SAMSUNG ||
3131 *maf_id == NAND_MFR_HYNIX))
3132 chip->options |= NAND_BBT_SCANLASTPAGE;
3133 else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3134 (*maf_id == NAND_MFR_SAMSUNG ||
3135 *maf_id == NAND_MFR_HYNIX ||
3136 *maf_id == NAND_MFR_TOSHIBA ||
3137 *maf_id == NAND_MFR_AMD)) ||
3138 (mtd->writesize == 2048 &&
3139 *maf_id == NAND_MFR_MICRON))
3140 chip->options |= NAND_BBT_SCAN2NDPAGE;
3143 * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3145 if (!(busw & NAND_BUSWIDTH_16) &&
3146 *maf_id == NAND_MFR_STMICRO &&
3147 mtd->writesize == 2048) {
3148 chip->options |= NAND_BBT_SCANBYTE1AND6;
3149 chip->badblockpos = 0;
3152 /* Check for AND chips with 4 page planes */
3153 if (chip->options & NAND_4PAGE_ARRAY)
3154 chip->erase_cmd = multi_erase_cmd;
3155 else
3156 chip->erase_cmd = single_erase_cmd;
3158 /* Do not replace user supplied command function ! */
3159 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3160 chip->cmdfunc = nand_command_lp;
3162 /* TODO onfi flash name */
3163 printk(KERN_INFO "NAND device: Manufacturer ID:"
3164 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3165 nand_manuf_ids[maf_idx].name,
3166 chip->onfi_version ? chip->onfi_params.model : type->name);
3168 return type;
3172 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3173 * @mtd: MTD device structure
3174 * @maxchips: Number of chips to scan for
3175 * @table: Alternative NAND ID table
3177 * This is the first phase of the normal nand_scan() function. It
3178 * reads the flash ID and sets up MTD fields accordingly.
3180 * The mtd->owner field must be set to the module of the caller.
3182 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3183 struct nand_flash_dev *table)
3185 int i, busw, nand_maf_id, nand_dev_id;
3186 struct nand_chip *chip = mtd->priv;
3187 struct nand_flash_dev *type;
3189 /* Get buswidth to select the correct functions */
3190 busw = chip->options & NAND_BUSWIDTH_16;
3191 /* Set the default functions */
3192 nand_set_defaults(chip, busw);
3194 /* Read the flash type */
3195 type = nand_get_flash_type(mtd, chip, busw,
3196 &nand_maf_id, &nand_dev_id, table);
3198 if (IS_ERR(type)) {
3199 if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3200 printk(KERN_WARNING "No NAND device found.\n");
3201 chip->select_chip(mtd, -1);
3202 return PTR_ERR(type);
3205 /* Check for a chip array */
3206 for (i = 1; i < maxchips; i++) {
3207 chip->select_chip(mtd, i);
3208 /* See comment in nand_get_flash_type for reset */
3209 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3210 /* Send the command for reading device ID */
3211 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3212 /* Read manufacturer and device IDs */
3213 if (nand_maf_id != chip->read_byte(mtd) ||
3214 nand_dev_id != chip->read_byte(mtd))
3215 break;
3217 if (i > 1)
3218 printk(KERN_INFO "%d NAND chips detected\n", i);
3220 /* Store the number of chips and calc total size for mtd */
3221 chip->numchips = i;
3222 mtd->size = i * chip->chipsize;
3224 return 0;
3226 EXPORT_SYMBOL(nand_scan_ident);
3230 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3231 * @mtd: MTD device structure
3233 * This is the second phase of the normal nand_scan() function. It
3234 * fills out all the uninitialized function pointers with the defaults
3235 * and scans for a bad block table if appropriate.
3237 int nand_scan_tail(struct mtd_info *mtd)
3239 int i;
3240 struct nand_chip *chip = mtd->priv;
3242 if (!(chip->options & NAND_OWN_BUFFERS))
3243 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3244 if (!chip->buffers)
3245 return -ENOMEM;
3247 /* Set the internal oob buffer location, just after the page data */
3248 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3251 * If no default placement scheme is given, select an appropriate one
3253 if (!chip->ecc.layout) {
3254 switch (mtd->oobsize) {
3255 case 8:
3256 chip->ecc.layout = &nand_oob_8;
3257 break;
3258 case 16:
3259 chip->ecc.layout = &nand_oob_16;
3260 break;
3261 case 64:
3262 chip->ecc.layout = &nand_oob_64;
3263 break;
3264 case 128:
3265 chip->ecc.layout = &nand_oob_128;
3266 break;
3267 default:
3268 printk(KERN_WARNING "No oob scheme defined for "
3269 "oobsize %d\n", mtd->oobsize);
3270 BUG();
3274 if (!chip->write_page)
3275 chip->write_page = nand_write_page;
3278 * check ECC mode, default to software if 3byte/512byte hardware ECC is
3279 * selected and we have 256 byte pagesize fallback to software ECC
3282 switch (chip->ecc.mode) {
3283 case NAND_ECC_HW_OOB_FIRST:
3284 /* Similar to NAND_ECC_HW, but a separate read_page handle */
3285 if (!chip->ecc.calculate || !chip->ecc.correct ||
3286 !chip->ecc.hwctl) {
3287 printk(KERN_WARNING "No ECC functions supplied; "
3288 "Hardware ECC not possible\n");
3289 BUG();
3291 if (!chip->ecc.read_page)
3292 chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3294 case NAND_ECC_HW:
3295 /* Use standard hwecc read page function ? */
3296 if (!chip->ecc.read_page)
3297 chip->ecc.read_page = nand_read_page_hwecc;
3298 if (!chip->ecc.write_page)
3299 chip->ecc.write_page = nand_write_page_hwecc;
3300 if (!chip->ecc.read_page_raw)
3301 chip->ecc.read_page_raw = nand_read_page_raw;
3302 if (!chip->ecc.write_page_raw)
3303 chip->ecc.write_page_raw = nand_write_page_raw;
3304 if (!chip->ecc.read_oob)
3305 chip->ecc.read_oob = nand_read_oob_std;
3306 if (!chip->ecc.write_oob)
3307 chip->ecc.write_oob = nand_write_oob_std;
3309 case NAND_ECC_HW_SYNDROME:
3310 if ((!chip->ecc.calculate || !chip->ecc.correct ||
3311 !chip->ecc.hwctl) &&
3312 (!chip->ecc.read_page ||
3313 chip->ecc.read_page == nand_read_page_hwecc ||
3314 !chip->ecc.write_page ||
3315 chip->ecc.write_page == nand_write_page_hwecc)) {
3316 printk(KERN_WARNING "No ECC functions supplied; "
3317 "Hardware ECC not possible\n");
3318 BUG();
3320 /* Use standard syndrome read/write page function ? */
3321 if (!chip->ecc.read_page)
3322 chip->ecc.read_page = nand_read_page_syndrome;
3323 if (!chip->ecc.write_page)
3324 chip->ecc.write_page = nand_write_page_syndrome;
3325 if (!chip->ecc.read_page_raw)
3326 chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3327 if (!chip->ecc.write_page_raw)
3328 chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3329 if (!chip->ecc.read_oob)
3330 chip->ecc.read_oob = nand_read_oob_syndrome;
3331 if (!chip->ecc.write_oob)
3332 chip->ecc.write_oob = nand_write_oob_syndrome;
3334 if (mtd->writesize >= chip->ecc.size)
3335 break;
3336 printk(KERN_WARNING "%d byte HW ECC not possible on "
3337 "%d byte page size, fallback to SW ECC\n",
3338 chip->ecc.size, mtd->writesize);
3339 chip->ecc.mode = NAND_ECC_SOFT;
3341 case NAND_ECC_SOFT:
3342 chip->ecc.calculate = nand_calculate_ecc;
3343 chip->ecc.correct = nand_correct_data;
3344 chip->ecc.read_page = nand_read_page_swecc;
3345 chip->ecc.read_subpage = nand_read_subpage;
3346 chip->ecc.write_page = nand_write_page_swecc;
3347 chip->ecc.read_page_raw = nand_read_page_raw;
3348 chip->ecc.write_page_raw = nand_write_page_raw;
3349 chip->ecc.read_oob = nand_read_oob_std;
3350 chip->ecc.write_oob = nand_write_oob_std;
3351 if (!chip->ecc.size)
3352 chip->ecc.size = 256;
3353 chip->ecc.bytes = 3;
3354 break;
3356 case NAND_ECC_NONE:
3357 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3358 "This is not recommended !!\n");
3359 chip->ecc.read_page = nand_read_page_raw;
3360 chip->ecc.write_page = nand_write_page_raw;
3361 chip->ecc.read_oob = nand_read_oob_std;
3362 chip->ecc.read_page_raw = nand_read_page_raw;
3363 chip->ecc.write_page_raw = nand_write_page_raw;
3364 chip->ecc.write_oob = nand_write_oob_std;
3365 chip->ecc.size = mtd->writesize;
3366 chip->ecc.bytes = 0;
3367 break;
3369 default:
3370 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3371 chip->ecc.mode);
3372 BUG();
3376 * The number of bytes available for a client to place data into
3377 * the out of band area
3379 chip->ecc.layout->oobavail = 0;
3380 for (i = 0; chip->ecc.layout->oobfree[i].length
3381 && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3382 chip->ecc.layout->oobavail +=
3383 chip->ecc.layout->oobfree[i].length;
3384 mtd->oobavail = chip->ecc.layout->oobavail;
3387 * Set the number of read / write steps for one page depending on ECC
3388 * mode
3390 chip->ecc.steps = mtd->writesize / chip->ecc.size;
3391 if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3392 printk(KERN_WARNING "Invalid ecc parameters\n");
3393 BUG();
3395 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3398 * Allow subpage writes up to ecc.steps. Not possible for MLC
3399 * FLASH.
3401 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3402 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3403 switch (chip->ecc.steps) {
3404 case 2:
3405 mtd->subpage_sft = 1;
3406 break;
3407 case 4:
3408 case 8:
3409 case 16:
3410 mtd->subpage_sft = 2;
3411 break;
3414 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3416 /* Initialize state */
3417 chip->state = FL_READY;
3419 /* De-select the device */
3420 chip->select_chip(mtd, -1);
3422 /* Invalidate the pagebuffer reference */
3423 chip->pagebuf = -1;
3425 /* Fill in remaining MTD driver data */
3426 mtd->type = MTD_NANDFLASH;
3427 mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3428 MTD_CAP_NANDFLASH;
3429 mtd->erase = nand_erase;
3430 mtd->point = NULL;
3431 mtd->unpoint = NULL;
3432 mtd->read = nand_read;
3433 mtd->write = nand_write;
3434 mtd->panic_write = panic_nand_write;
3435 mtd->read_oob = nand_read_oob;
3436 mtd->write_oob = nand_write_oob;
3437 mtd->sync = nand_sync;
3438 mtd->lock = NULL;
3439 mtd->unlock = NULL;
3440 mtd->suspend = nand_suspend;
3441 mtd->resume = nand_resume;
3442 mtd->block_isbad = nand_block_isbad;
3443 mtd->block_markbad = nand_block_markbad;
3444 mtd->writebufsize = mtd->writesize;
3446 /* propagate ecc.layout to mtd_info */
3447 mtd->ecclayout = chip->ecc.layout;
3449 /* Check, if we should skip the bad block table scan */
3450 if (chip->options & NAND_SKIP_BBTSCAN)
3451 return 0;
3453 /* Build bad block table */
3454 return chip->scan_bbt(mtd);
3456 EXPORT_SYMBOL(nand_scan_tail);
3458 /* is_module_text_address() isn't exported, and it's mostly a pointless
3459 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3460 * to call us from in-kernel code if the core NAND support is modular. */
3461 #ifdef MODULE
3462 #define caller_is_module() (1)
3463 #else
3464 #define caller_is_module() \
3465 is_module_text_address((unsigned long)__builtin_return_address(0))
3466 #endif
3469 * nand_scan - [NAND Interface] Scan for the NAND device
3470 * @mtd: MTD device structure
3471 * @maxchips: Number of chips to scan for
3473 * This fills out all the uninitialized function pointers
3474 * with the defaults.
3475 * The flash ID is read and the mtd/chip structures are
3476 * filled with the appropriate values.
3477 * The mtd->owner field must be set to the module of the caller
3480 int nand_scan(struct mtd_info *mtd, int maxchips)
3482 int ret;
3484 /* Many callers got this wrong, so check for it for a while... */
3485 if (!mtd->owner && caller_is_module()) {
3486 printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3487 __func__);
3488 BUG();
3491 ret = nand_scan_ident(mtd, maxchips, NULL);
3492 if (!ret)
3493 ret = nand_scan_tail(mtd);
3494 return ret;
3496 EXPORT_SYMBOL(nand_scan);
3499 * nand_release - [NAND Interface] Free resources held by the NAND device
3500 * @mtd: MTD device structure
3502 void nand_release(struct mtd_info *mtd)
3504 struct nand_chip *chip = mtd->priv;
3506 #ifdef CONFIG_MTD_PARTITIONS
3507 /* Deregister partitions */
3508 del_mtd_partitions(mtd);
3509 #endif
3510 /* Deregister the device */
3511 del_mtd_device(mtd);
3513 /* Free bad block table memory */
3514 kfree(chip->bbt);
3515 if (!(chip->options & NAND_OWN_BUFFERS))
3516 kfree(chip->buffers);
3518 /* Free bad block descriptor memory */
3519 if (chip->badblock_pattern && chip->badblock_pattern->options
3520 & NAND_BBT_DYNAMICSTRUCT)
3521 kfree(chip->badblock_pattern);
3523 EXPORT_SYMBOL_GPL(nand_release);
3525 static int __init nand_base_init(void)
3527 led_trigger_register_simple("nand-disk", &nand_led_trigger);
3528 return 0;
3531 static void __exit nand_base_exit(void)
3533 led_trigger_unregister_simple(nand_led_trigger);
3536 module_init(nand_base_init);
3537 module_exit(nand_base_exit);
3539 MODULE_LICENSE("GPL");
3540 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3541 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3542 MODULE_DESCRIPTION("Generic NAND flash driver code");