ide-floppy: move all ioctl handling to ide-floppy_ioctl.c (take 2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / blackfin / kernel / kgdb.c
blobb795a207742cd4ff557cc6b06a154a083b62bfd9
1 /*
2 * arch/blackfin/kernel/kgdb.c - Blackfin kgdb pieces
4 * Copyright 2005-2008 Analog Devices Inc.
6 * Licensed under the GPL-2 or later.
7 */
9 #include <linux/string.h>
10 #include <linux/kernel.h>
11 #include <linux/sched.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/delay.h>
15 #include <linux/ptrace.h> /* for linux pt_regs struct */
16 #include <linux/kgdb.h>
17 #include <linux/console.h>
18 #include <linux/init.h>
19 #include <linux/errno.h>
20 #include <linux/irq.h>
21 #include <linux/uaccess.h>
22 #include <asm/system.h>
23 #include <asm/traps.h>
24 #include <asm/blackfin.h>
25 #include <asm/dma.h>
27 /* Put the error code here just in case the user cares. */
28 int gdb_bfin_errcode;
29 /* Likewise, the vector number here (since GDB only gets the signal
30 number through the usual means, and that's not very specific). */
31 int gdb_bfin_vector = -1;
33 #if KGDB_MAX_NO_CPUS != 8
34 #error change the definition of slavecpulocks
35 #endif
37 #ifdef CONFIG_BFIN_WDT
38 # error "Please unselect blackfin watchdog driver before build KGDB."
39 #endif
41 void pt_regs_to_gdb_regs(unsigned long *gdb_regs, struct pt_regs *regs)
43 gdb_regs[BFIN_R0] = regs->r0;
44 gdb_regs[BFIN_R1] = regs->r1;
45 gdb_regs[BFIN_R2] = regs->r2;
46 gdb_regs[BFIN_R3] = regs->r3;
47 gdb_regs[BFIN_R4] = regs->r4;
48 gdb_regs[BFIN_R5] = regs->r5;
49 gdb_regs[BFIN_R6] = regs->r6;
50 gdb_regs[BFIN_R7] = regs->r7;
51 gdb_regs[BFIN_P0] = regs->p0;
52 gdb_regs[BFIN_P1] = regs->p1;
53 gdb_regs[BFIN_P2] = regs->p2;
54 gdb_regs[BFIN_P3] = regs->p3;
55 gdb_regs[BFIN_P4] = regs->p4;
56 gdb_regs[BFIN_P5] = regs->p5;
57 gdb_regs[BFIN_SP] = regs->reserved;
58 gdb_regs[BFIN_FP] = regs->fp;
59 gdb_regs[BFIN_I0] = regs->i0;
60 gdb_regs[BFIN_I1] = regs->i1;
61 gdb_regs[BFIN_I2] = regs->i2;
62 gdb_regs[BFIN_I3] = regs->i3;
63 gdb_regs[BFIN_M0] = regs->m0;
64 gdb_regs[BFIN_M1] = regs->m1;
65 gdb_regs[BFIN_M2] = regs->m2;
66 gdb_regs[BFIN_M3] = regs->m3;
67 gdb_regs[BFIN_B0] = regs->b0;
68 gdb_regs[BFIN_B1] = regs->b1;
69 gdb_regs[BFIN_B2] = regs->b2;
70 gdb_regs[BFIN_B3] = regs->b3;
71 gdb_regs[BFIN_L0] = regs->l0;
72 gdb_regs[BFIN_L1] = regs->l1;
73 gdb_regs[BFIN_L2] = regs->l2;
74 gdb_regs[BFIN_L3] = regs->l3;
75 gdb_regs[BFIN_A0_DOT_X] = regs->a0x;
76 gdb_regs[BFIN_A0_DOT_W] = regs->a0w;
77 gdb_regs[BFIN_A1_DOT_X] = regs->a1x;
78 gdb_regs[BFIN_A1_DOT_W] = regs->a1w;
79 gdb_regs[BFIN_ASTAT] = regs->astat;
80 gdb_regs[BFIN_RETS] = regs->rets;
81 gdb_regs[BFIN_LC0] = regs->lc0;
82 gdb_regs[BFIN_LT0] = regs->lt0;
83 gdb_regs[BFIN_LB0] = regs->lb0;
84 gdb_regs[BFIN_LC1] = regs->lc1;
85 gdb_regs[BFIN_LT1] = regs->lt1;
86 gdb_regs[BFIN_LB1] = regs->lb1;
87 gdb_regs[BFIN_CYCLES] = 0;
88 gdb_regs[BFIN_CYCLES2] = 0;
89 gdb_regs[BFIN_USP] = regs->usp;
90 gdb_regs[BFIN_SEQSTAT] = regs->seqstat;
91 gdb_regs[BFIN_SYSCFG] = regs->syscfg;
92 gdb_regs[BFIN_RETI] = regs->pc;
93 gdb_regs[BFIN_RETX] = regs->retx;
94 gdb_regs[BFIN_RETN] = regs->retn;
95 gdb_regs[BFIN_RETE] = regs->rete;
96 gdb_regs[BFIN_PC] = regs->pc;
97 gdb_regs[BFIN_CC] = 0;
98 gdb_regs[BFIN_EXTRA1] = 0;
99 gdb_regs[BFIN_EXTRA2] = 0;
100 gdb_regs[BFIN_EXTRA3] = 0;
101 gdb_regs[BFIN_IPEND] = regs->ipend;
105 * Extracts ebp, esp and eip values understandable by gdb from the values
106 * saved by switch_to.
107 * thread.esp points to ebp. flags and ebp are pushed in switch_to hence esp
108 * prior to entering switch_to is 8 greater then the value that is saved.
109 * If switch_to changes, change following code appropriately.
111 void sleeping_thread_to_gdb_regs(unsigned long *gdb_regs, struct task_struct *p)
113 gdb_regs[BFIN_SP] = p->thread.ksp;
114 gdb_regs[BFIN_PC] = p->thread.pc;
115 gdb_regs[BFIN_SEQSTAT] = p->thread.seqstat;
118 void gdb_regs_to_pt_regs(unsigned long *gdb_regs, struct pt_regs *regs)
120 regs->r0 = gdb_regs[BFIN_R0];
121 regs->r1 = gdb_regs[BFIN_R1];
122 regs->r2 = gdb_regs[BFIN_R2];
123 regs->r3 = gdb_regs[BFIN_R3];
124 regs->r4 = gdb_regs[BFIN_R4];
125 regs->r5 = gdb_regs[BFIN_R5];
126 regs->r6 = gdb_regs[BFIN_R6];
127 regs->r7 = gdb_regs[BFIN_R7];
128 regs->p0 = gdb_regs[BFIN_P0];
129 regs->p1 = gdb_regs[BFIN_P1];
130 regs->p2 = gdb_regs[BFIN_P2];
131 regs->p3 = gdb_regs[BFIN_P3];
132 regs->p4 = gdb_regs[BFIN_P4];
133 regs->p5 = gdb_regs[BFIN_P5];
134 regs->fp = gdb_regs[BFIN_FP];
135 regs->i0 = gdb_regs[BFIN_I0];
136 regs->i1 = gdb_regs[BFIN_I1];
137 regs->i2 = gdb_regs[BFIN_I2];
138 regs->i3 = gdb_regs[BFIN_I3];
139 regs->m0 = gdb_regs[BFIN_M0];
140 regs->m1 = gdb_regs[BFIN_M1];
141 regs->m2 = gdb_regs[BFIN_M2];
142 regs->m3 = gdb_regs[BFIN_M3];
143 regs->b0 = gdb_regs[BFIN_B0];
144 regs->b1 = gdb_regs[BFIN_B1];
145 regs->b2 = gdb_regs[BFIN_B2];
146 regs->b3 = gdb_regs[BFIN_B3];
147 regs->l0 = gdb_regs[BFIN_L0];
148 regs->l1 = gdb_regs[BFIN_L1];
149 regs->l2 = gdb_regs[BFIN_L2];
150 regs->l3 = gdb_regs[BFIN_L3];
151 regs->a0x = gdb_regs[BFIN_A0_DOT_X];
152 regs->a0w = gdb_regs[BFIN_A0_DOT_W];
153 regs->a1x = gdb_regs[BFIN_A1_DOT_X];
154 regs->a1w = gdb_regs[BFIN_A1_DOT_W];
155 regs->rets = gdb_regs[BFIN_RETS];
156 regs->lc0 = gdb_regs[BFIN_LC0];
157 regs->lt0 = gdb_regs[BFIN_LT0];
158 regs->lb0 = gdb_regs[BFIN_LB0];
159 regs->lc1 = gdb_regs[BFIN_LC1];
160 regs->lt1 = gdb_regs[BFIN_LT1];
161 regs->lb1 = gdb_regs[BFIN_LB1];
162 regs->usp = gdb_regs[BFIN_USP];
163 regs->syscfg = gdb_regs[BFIN_SYSCFG];
164 regs->retx = gdb_regs[BFIN_PC];
165 regs->retn = gdb_regs[BFIN_RETN];
166 regs->rete = gdb_regs[BFIN_RETE];
167 regs->pc = gdb_regs[BFIN_PC];
169 #if 0 /* can't change these */
170 regs->astat = gdb_regs[BFIN_ASTAT];
171 regs->seqstat = gdb_regs[BFIN_SEQSTAT];
172 regs->ipend = gdb_regs[BFIN_IPEND];
173 #endif
176 struct hw_breakpoint {
177 unsigned int occupied:1;
178 unsigned int skip:1;
179 unsigned int enabled:1;
180 unsigned int type:1;
181 unsigned int dataacc:2;
182 unsigned short count;
183 unsigned int addr;
184 } breakinfo[HW_WATCHPOINT_NUM];
186 int bfin_set_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
188 int breakno;
189 int bfin_type;
190 int dataacc = 0;
192 switch (type) {
193 case BP_HARDWARE_BREAKPOINT:
194 bfin_type = TYPE_INST_WATCHPOINT;
195 break;
196 case BP_WRITE_WATCHPOINT:
197 dataacc = 1;
198 bfin_type = TYPE_DATA_WATCHPOINT;
199 break;
200 case BP_READ_WATCHPOINT:
201 dataacc = 2;
202 bfin_type = TYPE_DATA_WATCHPOINT;
203 break;
204 case BP_ACCESS_WATCHPOINT:
205 dataacc = 3;
206 bfin_type = TYPE_DATA_WATCHPOINT;
207 break;
208 default:
209 return -ENOSPC;
212 /* Becasue hardware data watchpoint impelemented in current
213 * Blackfin can not trigger an exception event as the hardware
214 * instrction watchpoint does, we ignaore all data watch point here.
215 * They can be turned on easily after future blackfin design
216 * supports this feature.
218 for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
219 if (bfin_type == breakinfo[breakno].type
220 && !breakinfo[breakno].occupied) {
221 breakinfo[breakno].occupied = 1;
222 breakinfo[breakno].enabled = 1;
223 breakinfo[breakno].addr = addr;
224 breakinfo[breakno].dataacc = dataacc;
225 breakinfo[breakno].count = 0;
226 return 0;
229 return -ENOSPC;
232 int bfin_remove_hw_break(unsigned long addr, int len, enum kgdb_bptype type)
234 int breakno;
235 int bfin_type;
237 switch (type) {
238 case BP_HARDWARE_BREAKPOINT:
239 bfin_type = TYPE_INST_WATCHPOINT;
240 break;
241 case BP_WRITE_WATCHPOINT:
242 case BP_READ_WATCHPOINT:
243 case BP_ACCESS_WATCHPOINT:
244 bfin_type = TYPE_DATA_WATCHPOINT;
245 break;
246 default:
247 return 0;
249 for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
250 if (bfin_type == breakinfo[breakno].type
251 && breakinfo[breakno].occupied
252 && breakinfo[breakno].addr == addr) {
253 breakinfo[breakno].occupied = 0;
254 breakinfo[breakno].enabled = 0;
257 return 0;
260 void bfin_remove_all_hw_break(void)
262 int breakno;
264 memset(breakinfo, 0, sizeof(struct hw_breakpoint)*HW_WATCHPOINT_NUM);
266 for (breakno = 0; breakno < HW_INST_WATCHPOINT_NUM; breakno++)
267 breakinfo[breakno].type = TYPE_INST_WATCHPOINT;
268 for (; breakno < HW_WATCHPOINT_NUM; breakno++)
269 breakinfo[breakno].type = TYPE_DATA_WATCHPOINT;
272 void bfin_correct_hw_break(void)
274 int breakno;
275 unsigned int wpiactl = 0;
276 unsigned int wpdactl = 0;
277 int enable_wp = 0;
279 for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++)
280 if (breakinfo[breakno].enabled) {
281 enable_wp = 1;
283 switch (breakno) {
284 case 0:
285 wpiactl |= WPIAEN0|WPICNTEN0;
286 bfin_write_WPIA0(breakinfo[breakno].addr);
287 bfin_write_WPIACNT0(breakinfo[breakno].count
288 + breakinfo->skip);
289 break;
290 case 1:
291 wpiactl |= WPIAEN1|WPICNTEN1;
292 bfin_write_WPIA1(breakinfo[breakno].addr);
293 bfin_write_WPIACNT1(breakinfo[breakno].count
294 + breakinfo->skip);
295 break;
296 case 2:
297 wpiactl |= WPIAEN2|WPICNTEN2;
298 bfin_write_WPIA2(breakinfo[breakno].addr);
299 bfin_write_WPIACNT2(breakinfo[breakno].count
300 + breakinfo->skip);
301 break;
302 case 3:
303 wpiactl |= WPIAEN3|WPICNTEN3;
304 bfin_write_WPIA3(breakinfo[breakno].addr);
305 bfin_write_WPIACNT3(breakinfo[breakno].count
306 + breakinfo->skip);
307 break;
308 case 4:
309 wpiactl |= WPIAEN4|WPICNTEN4;
310 bfin_write_WPIA4(breakinfo[breakno].addr);
311 bfin_write_WPIACNT4(breakinfo[breakno].count
312 + breakinfo->skip);
313 break;
314 case 5:
315 wpiactl |= WPIAEN5|WPICNTEN5;
316 bfin_write_WPIA5(breakinfo[breakno].addr);
317 bfin_write_WPIACNT5(breakinfo[breakno].count
318 + breakinfo->skip);
319 break;
320 case 6:
321 wpdactl |= WPDAEN0|WPDCNTEN0|WPDSRC0;
322 wpdactl |= breakinfo[breakno].dataacc
323 << WPDACC0_OFFSET;
324 bfin_write_WPDA0(breakinfo[breakno].addr);
325 bfin_write_WPDACNT0(breakinfo[breakno].count
326 + breakinfo->skip);
327 break;
328 case 7:
329 wpdactl |= WPDAEN1|WPDCNTEN1|WPDSRC1;
330 wpdactl |= breakinfo[breakno].dataacc
331 << WPDACC1_OFFSET;
332 bfin_write_WPDA1(breakinfo[breakno].addr);
333 bfin_write_WPDACNT1(breakinfo[breakno].count
334 + breakinfo->skip);
335 break;
339 /* Should enable WPPWR bit first before set any other
340 * WPIACTL and WPDACTL bits */
341 if (enable_wp) {
342 bfin_write_WPIACTL(WPPWR);
343 CSYNC();
344 bfin_write_WPIACTL(wpiactl|WPPWR);
345 bfin_write_WPDACTL(wpdactl);
346 CSYNC();
350 void kgdb_disable_hw_debug(struct pt_regs *regs)
352 /* Disable hardware debugging while we are in kgdb */
353 bfin_write_WPIACTL(0);
354 bfin_write_WPDACTL(0);
355 CSYNC();
358 #ifdef CONFIG_SMP
359 void kgdb_passive_cpu_callback(void *info)
361 kgdb_nmicallback(raw_smp_processor_id(), get_irq_regs());
364 void kgdb_roundup_cpus(unsigned long flags)
366 smp_call_function(kgdb_passive_cpu_callback, NULL, 0, 0);
369 void kgdb_roundup_cpu(int cpu, unsigned long flags)
371 smp_call_function_single(cpu, kgdb_passive_cpu_callback, NULL, 0, 0);
373 #endif
375 void kgdb_post_primary_code(struct pt_regs *regs, int eVector, int err_code)
377 /* Master processor is completely in the debugger */
378 gdb_bfin_vector = eVector;
379 gdb_bfin_errcode = err_code;
382 int kgdb_arch_handle_exception(int vector, int signo,
383 int err_code, char *remcom_in_buffer,
384 char *remcom_out_buffer,
385 struct pt_regs *regs)
387 long addr;
388 long breakno;
389 char *ptr;
390 int newPC;
391 int wp_status;
392 int i;
394 switch (remcom_in_buffer[0]) {
395 case 'c':
396 case 's':
397 if (kgdb_contthread && kgdb_contthread != current) {
398 strcpy(remcom_out_buffer, "E00");
399 break;
402 kgdb_contthread = NULL;
404 /* try to read optional parameter, pc unchanged if no parm */
405 ptr = &remcom_in_buffer[1];
406 if (kgdb_hex2long(&ptr, &addr)) {
407 regs->retx = addr;
409 newPC = regs->retx;
411 /* clear the trace bit */
412 regs->syscfg &= 0xfffffffe;
414 /* set the trace bit if we're stepping */
415 if (remcom_in_buffer[0] == 's') {
416 regs->syscfg |= 0x1;
417 kgdb_single_step = regs->ipend;
418 kgdb_single_step >>= 6;
419 for (i = 10; i > 0; i--, kgdb_single_step >>= 1)
420 if (kgdb_single_step & 1)
421 break;
422 /* i indicate event priority of current stopped instruction
423 * user space instruction is 0, IVG15 is 1, IVTMR is 10.
424 * kgdb_single_step > 0 means in single step mode
426 kgdb_single_step = i + 1;
429 if (vector == VEC_WATCH) {
430 wp_status = bfin_read_WPSTAT();
431 for (breakno = 0; breakno < HW_WATCHPOINT_NUM; breakno++) {
432 if (wp_status & (1 << breakno)) {
433 breakinfo->skip = 1;
434 break;
437 bfin_write_WPSTAT(0);
440 bfin_correct_hw_break();
442 return 0;
443 } /* switch */
444 return -1; /* this means that we do not want to exit from the handler */
447 struct kgdb_arch arch_kgdb_ops = {
448 .gdb_bpt_instr = {0xa1},
449 #ifdef CONFIG_SMP
450 .flags = KGDB_HW_BREAKPOINT|KGDB_THR_PROC_SWAP,
451 #else
452 .flags = KGDB_HW_BREAKPOINT,
453 #endif
454 .set_hw_breakpoint = bfin_set_hw_break,
455 .remove_hw_breakpoint = bfin_remove_hw_break,
456 .remove_all_hw_break = bfin_remove_all_hw_break,
457 .correct_hw_break = bfin_correct_hw_break,
460 static int hex(char ch)
462 if ((ch >= 'a') && (ch <= 'f'))
463 return ch - 'a' + 10;
464 if ((ch >= '0') && (ch <= '9'))
465 return ch - '0';
466 if ((ch >= 'A') && (ch <= 'F'))
467 return ch - 'A' + 10;
468 return -1;
471 static int validate_memory_access_address(unsigned long addr, int size)
473 int cpu = raw_smp_processor_id();
475 if (size < 0)
476 return EFAULT;
477 if (addr >= 0x1000 && (addr + size) <= physical_mem_end)
478 return 0;
479 if (addr >= SYSMMR_BASE)
480 return 0;
481 if (addr >= ASYNC_BANK0_BASE
482 && addr + size <= ASYNC_BANK3_BASE + ASYNC_BANK3_SIZE)
483 return 0;
484 if (cpu == 0) {
485 if (addr >= L1_SCRATCH_START
486 && (addr + size <= L1_SCRATCH_START + L1_SCRATCH_LENGTH))
487 return 0;
488 #if L1_CODE_LENGTH != 0
489 if (addr >= L1_CODE_START
490 && (addr + size <= L1_CODE_START + L1_CODE_LENGTH))
491 return 0;
492 #endif
493 #if L1_DATA_A_LENGTH != 0
494 if (addr >= L1_DATA_A_START
495 && (addr + size <= L1_DATA_A_START + L1_DATA_A_LENGTH))
496 return 0;
497 #endif
498 #if L1_DATA_B_LENGTH != 0
499 if (addr >= L1_DATA_B_START
500 && (addr + size <= L1_DATA_B_START + L1_DATA_B_LENGTH))
501 return 0;
502 #endif
503 #ifdef CONFIG_SMP
504 } else if (cpu == 1) {
505 if (addr >= COREB_L1_SCRATCH_START
506 && (addr + size <= COREB_L1_SCRATCH_START
507 + L1_SCRATCH_LENGTH))
508 return 0;
509 # if L1_CODE_LENGTH != 0
510 if (addr >= COREB_L1_CODE_START
511 && (addr + size <= COREB_L1_CODE_START + L1_CODE_LENGTH))
512 return 0;
513 # endif
514 # if L1_DATA_A_LENGTH != 0
515 if (addr >= COREB_L1_DATA_A_START
516 && (addr + size <= COREB_L1_DATA_A_START + L1_DATA_A_LENGTH))
517 return 0;
518 # endif
519 # if L1_DATA_B_LENGTH != 0
520 if (addr >= COREB_L1_DATA_B_START
521 && (addr + size <= COREB_L1_DATA_B_START + L1_DATA_B_LENGTH))
522 return 0;
523 # endif
524 #endif
527 #if L2_LENGTH != 0
528 if (addr >= L2_START
529 && addr + size <= L2_START + L2_LENGTH)
530 return 0;
531 #endif
533 return EFAULT;
537 * Convert the memory pointed to by mem into hex, placing result in buf.
538 * Return a pointer to the last char put in buf (null). May return an error.
540 int kgdb_mem2hex(char *mem, char *buf, int count)
542 char *tmp;
543 int err = 0;
544 unsigned char *pch;
545 unsigned short mmr16;
546 unsigned long mmr32;
547 int cpu = raw_smp_processor_id();
549 if (validate_memory_access_address((unsigned long)mem, count))
550 return EFAULT;
553 * We use the upper half of buf as an intermediate buffer for the
554 * raw memory copy. Hex conversion will work against this one.
556 tmp = buf + count;
558 if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
559 switch (count) {
560 case 2:
561 if ((unsigned int)mem % 2 == 0) {
562 mmr16 = *(unsigned short *)mem;
563 pch = (unsigned char *)&mmr16;
564 *tmp++ = *pch++;
565 *tmp++ = *pch++;
566 tmp -= 2;
567 } else
568 err = EFAULT;
569 break;
570 case 4:
571 if ((unsigned int)mem % 4 == 0) {
572 mmr32 = *(unsigned long *)mem;
573 pch = (unsigned char *)&mmr32;
574 *tmp++ = *pch++;
575 *tmp++ = *pch++;
576 *tmp++ = *pch++;
577 *tmp++ = *pch++;
578 tmp -= 4;
579 } else
580 err = EFAULT;
581 break;
582 default:
583 err = EFAULT;
585 } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
586 (unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
587 #ifdef CONFIG_SMP
588 || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
589 (unsigned int)(mem + count) <=
590 COREB_L1_CODE_START + L1_CODE_LENGTH
591 #endif
593 /* access L1 instruction SRAM*/
594 if (dma_memcpy(tmp, mem, count) == NULL)
595 err = EFAULT;
596 } else
597 err = probe_kernel_read(tmp, mem, count);
599 if (!err) {
600 while (count > 0) {
601 buf = pack_hex_byte(buf, *tmp);
602 tmp++;
603 count--;
606 *buf = 0;
609 return err;
613 * Copy the binary array pointed to by buf into mem. Fix $, #, and
614 * 0x7d escaped with 0x7d. Return a pointer to the character after
615 * the last byte written.
617 int kgdb_ebin2mem(char *buf, char *mem, int count)
619 char *tmp_old;
620 char *tmp_new;
621 unsigned short *mmr16;
622 unsigned long *mmr32;
623 int err = 0;
624 int size = 0;
625 int cpu = raw_smp_processor_id();
627 tmp_old = tmp_new = buf;
629 while (count-- > 0) {
630 if (*tmp_old == 0x7d)
631 *tmp_new = *(++tmp_old) ^ 0x20;
632 else
633 *tmp_new = *tmp_old;
634 tmp_new++;
635 tmp_old++;
636 size++;
639 if (validate_memory_access_address((unsigned long)mem, size))
640 return EFAULT;
642 if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
643 switch (size) {
644 case 2:
645 if ((unsigned int)mem % 2 == 0) {
646 mmr16 = (unsigned short *)buf;
647 *(unsigned short *)mem = *mmr16;
648 } else
649 return EFAULT;
650 break;
651 case 4:
652 if ((unsigned int)mem % 4 == 0) {
653 mmr32 = (unsigned long *)buf;
654 *(unsigned long *)mem = *mmr32;
655 } else
656 return EFAULT;
657 break;
658 default:
659 return EFAULT;
661 } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
662 (unsigned int)(mem + count) < L1_CODE_START + L1_CODE_LENGTH
663 #ifdef CONFIG_SMP
664 || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
665 (unsigned int)(mem + count) <=
666 COREB_L1_CODE_START + L1_CODE_LENGTH
667 #endif
669 /* access L1 instruction SRAM */
670 if (dma_memcpy(mem, buf, size) == NULL)
671 err = EFAULT;
672 } else
673 err = probe_kernel_write(mem, buf, size);
675 return err;
679 * Convert the hex array pointed to by buf into binary to be placed in mem.
680 * Return a pointer to the character AFTER the last byte written.
681 * May return an error.
683 int kgdb_hex2mem(char *buf, char *mem, int count)
685 char *tmp_raw;
686 char *tmp_hex;
687 unsigned short *mmr16;
688 unsigned long *mmr32;
689 int cpu = raw_smp_processor_id();
691 if (validate_memory_access_address((unsigned long)mem, count))
692 return EFAULT;
695 * We use the upper half of buf as an intermediate buffer for the
696 * raw memory that is converted from hex.
698 tmp_raw = buf + count * 2;
700 tmp_hex = tmp_raw - 1;
701 while (tmp_hex >= buf) {
702 tmp_raw--;
703 *tmp_raw = hex(*tmp_hex--);
704 *tmp_raw |= hex(*tmp_hex--) << 4;
707 if ((unsigned int)mem >= SYSMMR_BASE) { /*access MMR registers*/
708 switch (count) {
709 case 2:
710 if ((unsigned int)mem % 2 == 0) {
711 mmr16 = (unsigned short *)tmp_raw;
712 *(unsigned short *)mem = *mmr16;
713 } else
714 return EFAULT;
715 break;
716 case 4:
717 if ((unsigned int)mem % 4 == 0) {
718 mmr32 = (unsigned long *)tmp_raw;
719 *(unsigned long *)mem = *mmr32;
720 } else
721 return EFAULT;
722 break;
723 default:
724 return EFAULT;
726 } else if (cpu == 0 && (unsigned int)mem >= L1_CODE_START &&
727 (unsigned int)(mem + count) <= L1_CODE_START + L1_CODE_LENGTH
728 #ifdef CONFIG_SMP
729 || cpu == 1 && (unsigned int)mem >= COREB_L1_CODE_START &&
730 (unsigned int)(mem + count) <=
731 COREB_L1_CODE_START + L1_CODE_LENGTH
732 #endif
734 /* access L1 instruction SRAM */
735 if (dma_memcpy(mem, tmp_raw, count) == NULL)
736 return EFAULT;
737 } else
738 return probe_kernel_write(mem, tmp_raw, count);
739 return 0;
742 int kgdb_validate_break_address(unsigned long addr)
744 int cpu = raw_smp_processor_id();
746 if (addr >= 0x1000 && (addr + BREAK_INSTR_SIZE) <= physical_mem_end)
747 return 0;
748 if (addr >= ASYNC_BANK0_BASE
749 && addr + BREAK_INSTR_SIZE <= ASYNC_BANK3_BASE + ASYNC_BANK3_BASE)
750 return 0;
751 #if L1_CODE_LENGTH != 0
752 if (cpu == 0 && addr >= L1_CODE_START
753 && addr + BREAK_INSTR_SIZE <= L1_CODE_START + L1_CODE_LENGTH)
754 return 0;
755 # ifdef CONFIG_SMP
756 else if (cpu == 1 && addr >= COREB_L1_CODE_START
757 && addr + BREAK_INSTR_SIZE <= COREB_L1_CODE_START + L1_CODE_LENGTH)
758 return 0;
759 # endif
760 #endif
761 #if L2_LENGTH != 0
762 if (addr >= L2_START
763 && addr + BREAK_INSTR_SIZE <= L2_START + L2_LENGTH)
764 return 0;
765 #endif
767 return EFAULT;
770 int kgdb_arch_set_breakpoint(unsigned long addr, char *saved_instr)
772 int err;
773 int cpu = raw_smp_processor_id();
775 if ((cpu == 0 && (unsigned int)addr >= L1_CODE_START
776 && (unsigned int)(addr + BREAK_INSTR_SIZE)
777 < L1_CODE_START + L1_CODE_LENGTH)
778 #ifdef CONFIG_SMP
779 || (cpu == 1 && (unsigned int)addr >= COREB_L1_CODE_START
780 && (unsigned int)(addr + BREAK_INSTR_SIZE)
781 < COREB_L1_CODE_START + L1_CODE_LENGTH)
782 #endif
784 /* access L1 instruction SRAM */
785 if (dma_memcpy(saved_instr, (void *)addr, BREAK_INSTR_SIZE)
786 == NULL)
787 return -EFAULT;
789 if (dma_memcpy((void *)addr, arch_kgdb_ops.gdb_bpt_instr,
790 BREAK_INSTR_SIZE) == NULL)
791 return -EFAULT;
793 return 0;
794 } else {
795 err = probe_kernel_read(saved_instr, (char *)addr,
796 BREAK_INSTR_SIZE);
797 if (err)
798 return err;
800 return probe_kernel_write((char *)addr,
801 arch_kgdb_ops.gdb_bpt_instr, BREAK_INSTR_SIZE);
805 int kgdb_arch_remove_breakpoint(unsigned long addr, char *bundle)
807 if ((unsigned int)addr >= L1_CODE_START &&
808 (unsigned int)(addr + BREAK_INSTR_SIZE) <
809 L1_CODE_START + L1_CODE_LENGTH) {
810 /* access L1 instruction SRAM */
811 if (dma_memcpy((void *)addr, bundle, BREAK_INSTR_SIZE) == NULL)
812 return -EFAULT;
814 return 0;
815 } else
816 return probe_kernel_write((char *)addr,
817 (char *)bundle, BREAK_INSTR_SIZE);
820 int kgdb_arch_init(void)
822 kgdb_single_step = 0;
824 bfin_remove_all_hw_break();
825 return 0;
828 void kgdb_arch_exit(void)