NFS: Run COMMIT as an asynchronous RPC call when wbc->for_background is set
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / nfs / write.c
blob704e67d392e5a8bd01c13e0c8b8010dea10691f5
1 /*
2 * linux/fs/nfs/write.c
4 * Write file data over NFS.
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
24 #include <asm/uaccess.h>
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
32 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34 #define MIN_POOL_WRITE (32)
35 #define MIN_POOL_COMMIT (4)
38 * Local function declarations
40 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
41 struct inode *inode, int ioflags);
42 static void nfs_redirty_request(struct nfs_page *req);
43 static const struct rpc_call_ops nfs_write_partial_ops;
44 static const struct rpc_call_ops nfs_write_full_ops;
45 static const struct rpc_call_ops nfs_commit_ops;
47 static struct kmem_cache *nfs_wdata_cachep;
48 static mempool_t *nfs_wdata_mempool;
49 static mempool_t *nfs_commit_mempool;
51 struct nfs_write_data *nfs_commitdata_alloc(void)
53 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 if (p) {
56 memset(p, 0, sizeof(*p));
57 INIT_LIST_HEAD(&p->pages);
58 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
60 return p;
63 void nfs_commit_free(struct nfs_write_data *p)
65 if (p && (p->pagevec != &p->page_array[0]))
66 kfree(p->pagevec);
67 mempool_free(p, nfs_commit_mempool);
70 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
72 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
74 if (p) {
75 memset(p, 0, sizeof(*p));
76 INIT_LIST_HEAD(&p->pages);
77 p->npages = pagecount;
78 p->res.seq_res.sr_slotid = NFS4_MAX_SLOT_TABLE;
79 if (pagecount <= ARRAY_SIZE(p->page_array))
80 p->pagevec = p->page_array;
81 else {
82 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
83 if (!p->pagevec) {
84 mempool_free(p, nfs_wdata_mempool);
85 p = NULL;
89 return p;
92 void nfs_writedata_free(struct nfs_write_data *p)
94 if (p && (p->pagevec != &p->page_array[0]))
95 kfree(p->pagevec);
96 mempool_free(p, nfs_wdata_mempool);
99 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 put_nfs_open_context(wdata->args.context);
102 nfs_writedata_free(wdata);
105 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
107 ctx->error = error;
108 smp_wmb();
109 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
114 struct nfs_page *req = NULL;
116 if (PagePrivate(page)) {
117 req = (struct nfs_page *)page_private(page);
118 if (req != NULL)
119 kref_get(&req->wb_kref);
121 return req;
124 static struct nfs_page *nfs_page_find_request(struct page *page)
126 struct inode *inode = page->mapping->host;
127 struct nfs_page *req = NULL;
129 spin_lock(&inode->i_lock);
130 req = nfs_page_find_request_locked(page);
131 spin_unlock(&inode->i_lock);
132 return req;
135 /* Adjust the file length if we're writing beyond the end */
136 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
138 struct inode *inode = page->mapping->host;
139 loff_t end, i_size;
140 pgoff_t end_index;
142 spin_lock(&inode->i_lock);
143 i_size = i_size_read(inode);
144 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
145 if (i_size > 0 && page->index < end_index)
146 goto out;
147 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
148 if (i_size >= end)
149 goto out;
150 i_size_write(inode, end);
151 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
152 out:
153 spin_unlock(&inode->i_lock);
156 /* A writeback failed: mark the page as bad, and invalidate the page cache */
157 static void nfs_set_pageerror(struct page *page)
159 SetPageError(page);
160 nfs_zap_mapping(page->mapping->host, page->mapping);
163 /* We can set the PG_uptodate flag if we see that a write request
164 * covers the full page.
166 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
168 if (PageUptodate(page))
169 return;
170 if (base != 0)
171 return;
172 if (count != nfs_page_length(page))
173 return;
174 SetPageUptodate(page);
177 static int wb_priority(struct writeback_control *wbc)
179 if (wbc->for_reclaim)
180 return FLUSH_HIGHPRI | FLUSH_STABLE;
181 if (wbc->for_kupdate || wbc->for_background)
182 return FLUSH_LOWPRI;
183 return 0;
187 * NFS congestion control
190 int nfs_congestion_kb;
192 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
193 #define NFS_CONGESTION_OFF_THRESH \
194 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
196 static int nfs_set_page_writeback(struct page *page)
198 int ret = test_set_page_writeback(page);
200 if (!ret) {
201 struct inode *inode = page->mapping->host;
202 struct nfs_server *nfss = NFS_SERVER(inode);
204 if (atomic_long_inc_return(&nfss->writeback) >
205 NFS_CONGESTION_ON_THRESH) {
206 set_bdi_congested(&nfss->backing_dev_info,
207 BLK_RW_ASYNC);
210 return ret;
213 static void nfs_end_page_writeback(struct page *page)
215 struct inode *inode = page->mapping->host;
216 struct nfs_server *nfss = NFS_SERVER(inode);
218 end_page_writeback(page);
219 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
220 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
223 static struct nfs_page *nfs_find_and_lock_request(struct page *page)
225 struct inode *inode = page->mapping->host;
226 struct nfs_page *req;
227 int ret;
229 spin_lock(&inode->i_lock);
230 for (;;) {
231 req = nfs_page_find_request_locked(page);
232 if (req == NULL)
233 break;
234 if (nfs_set_page_tag_locked(req))
235 break;
236 /* Note: If we hold the page lock, as is the case in nfs_writepage,
237 * then the call to nfs_set_page_tag_locked() will always
238 * succeed provided that someone hasn't already marked the
239 * request as dirty (in which case we don't care).
241 spin_unlock(&inode->i_lock);
242 ret = nfs_wait_on_request(req);
243 nfs_release_request(req);
244 if (ret != 0)
245 return ERR_PTR(ret);
246 spin_lock(&inode->i_lock);
248 spin_unlock(&inode->i_lock);
249 return req;
253 * Find an associated nfs write request, and prepare to flush it out
254 * May return an error if the user signalled nfs_wait_on_request().
256 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
257 struct page *page)
259 struct nfs_page *req;
260 int ret = 0;
262 req = nfs_find_and_lock_request(page);
263 if (!req)
264 goto out;
265 ret = PTR_ERR(req);
266 if (IS_ERR(req))
267 goto out;
269 ret = nfs_set_page_writeback(page);
270 BUG_ON(ret != 0);
271 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
273 if (!nfs_pageio_add_request(pgio, req)) {
274 nfs_redirty_request(req);
275 ret = pgio->pg_error;
277 out:
278 return ret;
281 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
283 struct inode *inode = page->mapping->host;
285 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
286 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
288 nfs_pageio_cond_complete(pgio, page->index);
289 return nfs_page_async_flush(pgio, page);
293 * Write an mmapped page to the server.
295 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
297 struct nfs_pageio_descriptor pgio;
298 int err;
300 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
301 err = nfs_do_writepage(page, wbc, &pgio);
302 nfs_pageio_complete(&pgio);
303 if (err < 0)
304 return err;
305 if (pgio.pg_error < 0)
306 return pgio.pg_error;
307 return 0;
310 int nfs_writepage(struct page *page, struct writeback_control *wbc)
312 int ret;
314 ret = nfs_writepage_locked(page, wbc);
315 unlock_page(page);
316 return ret;
319 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
321 int ret;
323 ret = nfs_do_writepage(page, wbc, data);
324 unlock_page(page);
325 return ret;
328 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
330 struct inode *inode = mapping->host;
331 unsigned long *bitlock = &NFS_I(inode)->flags;
332 struct nfs_pageio_descriptor pgio;
333 int err;
335 /* Stop dirtying of new pages while we sync */
336 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
337 nfs_wait_bit_killable, TASK_KILLABLE);
338 if (err)
339 goto out_err;
341 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
343 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
344 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
345 nfs_pageio_complete(&pgio);
347 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
348 smp_mb__after_clear_bit();
349 wake_up_bit(bitlock, NFS_INO_FLUSHING);
351 if (err < 0)
352 goto out_err;
353 err = pgio.pg_error;
354 if (err < 0)
355 goto out_err;
356 return 0;
357 out_err:
358 return err;
362 * Insert a write request into an inode
364 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
366 struct nfs_inode *nfsi = NFS_I(inode);
367 int error;
369 error = radix_tree_preload(GFP_NOFS);
370 if (error != 0)
371 goto out;
373 /* Lock the request! */
374 nfs_lock_request_dontget(req);
376 spin_lock(&inode->i_lock);
377 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
378 BUG_ON(error);
379 if (!nfsi->npages) {
380 igrab(inode);
381 if (nfs_have_delegation(inode, FMODE_WRITE))
382 nfsi->change_attr++;
384 SetPagePrivate(req->wb_page);
385 set_page_private(req->wb_page, (unsigned long)req);
386 nfsi->npages++;
387 kref_get(&req->wb_kref);
388 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
389 NFS_PAGE_TAG_LOCKED);
390 spin_unlock(&inode->i_lock);
391 radix_tree_preload_end();
392 out:
393 return error;
397 * Remove a write request from an inode
399 static void nfs_inode_remove_request(struct nfs_page *req)
401 struct inode *inode = req->wb_context->path.dentry->d_inode;
402 struct nfs_inode *nfsi = NFS_I(inode);
404 BUG_ON (!NFS_WBACK_BUSY(req));
406 spin_lock(&inode->i_lock);
407 set_page_private(req->wb_page, 0);
408 ClearPagePrivate(req->wb_page);
409 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
410 nfsi->npages--;
411 if (!nfsi->npages) {
412 spin_unlock(&inode->i_lock);
413 iput(inode);
414 } else
415 spin_unlock(&inode->i_lock);
416 nfs_clear_request(req);
417 nfs_release_request(req);
420 static void
421 nfs_mark_request_dirty(struct nfs_page *req)
423 __set_page_dirty_nobuffers(req->wb_page);
426 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
428 * Add a request to the inode's commit list.
430 static void
431 nfs_mark_request_commit(struct nfs_page *req)
433 struct inode *inode = req->wb_context->path.dentry->d_inode;
434 struct nfs_inode *nfsi = NFS_I(inode);
436 spin_lock(&inode->i_lock);
437 set_bit(PG_CLEAN, &(req)->wb_flags);
438 radix_tree_tag_set(&nfsi->nfs_page_tree,
439 req->wb_index,
440 NFS_PAGE_TAG_COMMIT);
441 nfsi->ncommit++;
442 spin_unlock(&inode->i_lock);
443 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
444 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
445 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
448 static int
449 nfs_clear_request_commit(struct nfs_page *req)
451 struct page *page = req->wb_page;
453 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
454 dec_zone_page_state(page, NR_UNSTABLE_NFS);
455 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
456 return 1;
458 return 0;
461 static inline
462 int nfs_write_need_commit(struct nfs_write_data *data)
464 return data->verf.committed != NFS_FILE_SYNC;
467 static inline
468 int nfs_reschedule_unstable_write(struct nfs_page *req)
470 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
471 nfs_mark_request_commit(req);
472 return 1;
474 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
475 nfs_mark_request_dirty(req);
476 return 1;
478 return 0;
480 #else
481 static inline void
482 nfs_mark_request_commit(struct nfs_page *req)
486 static inline int
487 nfs_clear_request_commit(struct nfs_page *req)
489 return 0;
492 static inline
493 int nfs_write_need_commit(struct nfs_write_data *data)
495 return 0;
498 static inline
499 int nfs_reschedule_unstable_write(struct nfs_page *req)
501 return 0;
503 #endif
506 * Wait for a request to complete.
508 * Interruptible by fatal signals only.
510 static int nfs_wait_on_requests_locked(struct inode *inode, pgoff_t idx_start, unsigned int npages)
512 struct nfs_inode *nfsi = NFS_I(inode);
513 struct nfs_page *req;
514 pgoff_t idx_end, next;
515 unsigned int res = 0;
516 int error;
518 if (npages == 0)
519 idx_end = ~0;
520 else
521 idx_end = idx_start + npages - 1;
523 next = idx_start;
524 while (radix_tree_gang_lookup_tag(&nfsi->nfs_page_tree, (void **)&req, next, 1, NFS_PAGE_TAG_LOCKED)) {
525 if (req->wb_index > idx_end)
526 break;
528 next = req->wb_index + 1;
529 BUG_ON(!NFS_WBACK_BUSY(req));
531 kref_get(&req->wb_kref);
532 spin_unlock(&inode->i_lock);
533 error = nfs_wait_on_request(req);
534 nfs_release_request(req);
535 spin_lock(&inode->i_lock);
536 if (error < 0)
537 return error;
538 res++;
540 return res;
543 static void nfs_cancel_commit_list(struct list_head *head)
545 struct nfs_page *req;
547 while(!list_empty(head)) {
548 req = nfs_list_entry(head->next);
549 nfs_list_remove_request(req);
550 nfs_clear_request_commit(req);
551 nfs_inode_remove_request(req);
552 nfs_unlock_request(req);
556 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
557 static int
558 nfs_need_commit(struct nfs_inode *nfsi)
560 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
564 * nfs_scan_commit - Scan an inode for commit requests
565 * @inode: NFS inode to scan
566 * @dst: destination list
567 * @idx_start: lower bound of page->index to scan.
568 * @npages: idx_start + npages sets the upper bound to scan.
570 * Moves requests from the inode's 'commit' request list.
571 * The requests are *not* checked to ensure that they form a contiguous set.
573 static int
574 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
576 struct nfs_inode *nfsi = NFS_I(inode);
577 int ret;
579 if (!nfs_need_commit(nfsi))
580 return 0;
582 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
583 if (ret > 0)
584 nfsi->ncommit -= ret;
585 return ret;
587 #else
588 static inline int nfs_need_commit(struct nfs_inode *nfsi)
590 return 0;
593 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
595 return 0;
597 #endif
600 * Search for an existing write request, and attempt to update
601 * it to reflect a new dirty region on a given page.
603 * If the attempt fails, then the existing request is flushed out
604 * to disk.
606 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
607 struct page *page,
608 unsigned int offset,
609 unsigned int bytes)
611 struct nfs_page *req;
612 unsigned int rqend;
613 unsigned int end;
614 int error;
616 if (!PagePrivate(page))
617 return NULL;
619 end = offset + bytes;
620 spin_lock(&inode->i_lock);
622 for (;;) {
623 req = nfs_page_find_request_locked(page);
624 if (req == NULL)
625 goto out_unlock;
627 rqend = req->wb_offset + req->wb_bytes;
629 * Tell the caller to flush out the request if
630 * the offsets are non-contiguous.
631 * Note: nfs_flush_incompatible() will already
632 * have flushed out requests having wrong owners.
634 if (offset > rqend
635 || end < req->wb_offset)
636 goto out_flushme;
638 if (nfs_set_page_tag_locked(req))
639 break;
641 /* The request is locked, so wait and then retry */
642 spin_unlock(&inode->i_lock);
643 error = nfs_wait_on_request(req);
644 nfs_release_request(req);
645 if (error != 0)
646 goto out_err;
647 spin_lock(&inode->i_lock);
650 if (nfs_clear_request_commit(req) &&
651 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
652 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL)
653 NFS_I(inode)->ncommit--;
655 /* Okay, the request matches. Update the region */
656 if (offset < req->wb_offset) {
657 req->wb_offset = offset;
658 req->wb_pgbase = offset;
660 if (end > rqend)
661 req->wb_bytes = end - req->wb_offset;
662 else
663 req->wb_bytes = rqend - req->wb_offset;
664 out_unlock:
665 spin_unlock(&inode->i_lock);
666 return req;
667 out_flushme:
668 spin_unlock(&inode->i_lock);
669 nfs_release_request(req);
670 error = nfs_wb_page(inode, page);
671 out_err:
672 return ERR_PTR(error);
676 * Try to update an existing write request, or create one if there is none.
678 * Note: Should always be called with the Page Lock held to prevent races
679 * if we have to add a new request. Also assumes that the caller has
680 * already called nfs_flush_incompatible() if necessary.
682 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
683 struct page *page, unsigned int offset, unsigned int bytes)
685 struct inode *inode = page->mapping->host;
686 struct nfs_page *req;
687 int error;
689 req = nfs_try_to_update_request(inode, page, offset, bytes);
690 if (req != NULL)
691 goto out;
692 req = nfs_create_request(ctx, inode, page, offset, bytes);
693 if (IS_ERR(req))
694 goto out;
695 error = nfs_inode_add_request(inode, req);
696 if (error != 0) {
697 nfs_release_request(req);
698 req = ERR_PTR(error);
700 out:
701 return req;
704 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
705 unsigned int offset, unsigned int count)
707 struct nfs_page *req;
709 req = nfs_setup_write_request(ctx, page, offset, count);
710 if (IS_ERR(req))
711 return PTR_ERR(req);
712 /* Update file length */
713 nfs_grow_file(page, offset, count);
714 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
715 nfs_clear_page_tag_locked(req);
716 return 0;
719 int nfs_flush_incompatible(struct file *file, struct page *page)
721 struct nfs_open_context *ctx = nfs_file_open_context(file);
722 struct nfs_page *req;
723 int do_flush, status;
725 * Look for a request corresponding to this page. If there
726 * is one, and it belongs to another file, we flush it out
727 * before we try to copy anything into the page. Do this
728 * due to the lack of an ACCESS-type call in NFSv2.
729 * Also do the same if we find a request from an existing
730 * dropped page.
732 do {
733 req = nfs_page_find_request(page);
734 if (req == NULL)
735 return 0;
736 do_flush = req->wb_page != page || req->wb_context != ctx;
737 nfs_release_request(req);
738 if (!do_flush)
739 return 0;
740 status = nfs_wb_page(page->mapping->host, page);
741 } while (status == 0);
742 return status;
746 * If the page cache is marked as unsafe or invalid, then we can't rely on
747 * the PageUptodate() flag. In this case, we will need to turn off
748 * write optimisations that depend on the page contents being correct.
750 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
752 return PageUptodate(page) &&
753 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
757 * Update and possibly write a cached page of an NFS file.
759 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
760 * things with a page scheduled for an RPC call (e.g. invalidate it).
762 int nfs_updatepage(struct file *file, struct page *page,
763 unsigned int offset, unsigned int count)
765 struct nfs_open_context *ctx = nfs_file_open_context(file);
766 struct inode *inode = page->mapping->host;
767 int status = 0;
769 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
771 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
772 file->f_path.dentry->d_parent->d_name.name,
773 file->f_path.dentry->d_name.name, count,
774 (long long)(page_offset(page) + offset));
776 /* If we're not using byte range locks, and we know the page
777 * is up to date, it may be more efficient to extend the write
778 * to cover the entire page in order to avoid fragmentation
779 * inefficiencies.
781 if (nfs_write_pageuptodate(page, inode) &&
782 inode->i_flock == NULL &&
783 !(file->f_flags & O_DSYNC)) {
784 count = max(count + offset, nfs_page_length(page));
785 offset = 0;
788 status = nfs_writepage_setup(ctx, page, offset, count);
789 if (status < 0)
790 nfs_set_pageerror(page);
791 else
792 __set_page_dirty_nobuffers(page);
794 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
795 status, (long long)i_size_read(inode));
796 return status;
799 static void nfs_writepage_release(struct nfs_page *req)
802 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req)) {
803 nfs_end_page_writeback(req->wb_page);
804 nfs_inode_remove_request(req);
805 } else
806 nfs_end_page_writeback(req->wb_page);
807 nfs_clear_page_tag_locked(req);
810 static int flush_task_priority(int how)
812 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
813 case FLUSH_HIGHPRI:
814 return RPC_PRIORITY_HIGH;
815 case FLUSH_LOWPRI:
816 return RPC_PRIORITY_LOW;
818 return RPC_PRIORITY_NORMAL;
822 * Set up the argument/result storage required for the RPC call.
824 static int nfs_write_rpcsetup(struct nfs_page *req,
825 struct nfs_write_data *data,
826 const struct rpc_call_ops *call_ops,
827 unsigned int count, unsigned int offset,
828 int how)
830 struct inode *inode = req->wb_context->path.dentry->d_inode;
831 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
832 int priority = flush_task_priority(how);
833 struct rpc_task *task;
834 struct rpc_message msg = {
835 .rpc_argp = &data->args,
836 .rpc_resp = &data->res,
837 .rpc_cred = req->wb_context->cred,
839 struct rpc_task_setup task_setup_data = {
840 .rpc_client = NFS_CLIENT(inode),
841 .task = &data->task,
842 .rpc_message = &msg,
843 .callback_ops = call_ops,
844 .callback_data = data,
845 .workqueue = nfsiod_workqueue,
846 .flags = flags,
847 .priority = priority,
850 /* Set up the RPC argument and reply structs
851 * NB: take care not to mess about with data->commit et al. */
853 data->req = req;
854 data->inode = inode = req->wb_context->path.dentry->d_inode;
855 data->cred = msg.rpc_cred;
857 data->args.fh = NFS_FH(inode);
858 data->args.offset = req_offset(req) + offset;
859 data->args.pgbase = req->wb_pgbase + offset;
860 data->args.pages = data->pagevec;
861 data->args.count = count;
862 data->args.context = get_nfs_open_context(req->wb_context);
863 data->args.stable = NFS_UNSTABLE;
864 if (how & FLUSH_STABLE) {
865 data->args.stable = NFS_DATA_SYNC;
866 if (!nfs_need_commit(NFS_I(inode)))
867 data->args.stable = NFS_FILE_SYNC;
870 data->res.fattr = &data->fattr;
871 data->res.count = count;
872 data->res.verf = &data->verf;
873 nfs_fattr_init(&data->fattr);
875 /* Set up the initial task struct. */
876 NFS_PROTO(inode)->write_setup(data, &msg);
878 dprintk("NFS: %5u initiated write call "
879 "(req %s/%lld, %u bytes @ offset %llu)\n",
880 data->task.tk_pid,
881 inode->i_sb->s_id,
882 (long long)NFS_FILEID(inode),
883 count,
884 (unsigned long long)data->args.offset);
886 task = rpc_run_task(&task_setup_data);
887 if (IS_ERR(task))
888 return PTR_ERR(task);
889 rpc_put_task(task);
890 return 0;
893 /* If a nfs_flush_* function fails, it should remove reqs from @head and
894 * call this on each, which will prepare them to be retried on next
895 * writeback using standard nfs.
897 static void nfs_redirty_request(struct nfs_page *req)
899 nfs_mark_request_dirty(req);
900 nfs_end_page_writeback(req->wb_page);
901 nfs_clear_page_tag_locked(req);
905 * Generate multiple small requests to write out a single
906 * contiguous dirty area on one page.
908 static int nfs_flush_multi(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
910 struct nfs_page *req = nfs_list_entry(head->next);
911 struct page *page = req->wb_page;
912 struct nfs_write_data *data;
913 size_t wsize = NFS_SERVER(inode)->wsize, nbytes;
914 unsigned int offset;
915 int requests = 0;
916 int ret = 0;
917 LIST_HEAD(list);
919 nfs_list_remove_request(req);
921 nbytes = count;
922 do {
923 size_t len = min(nbytes, wsize);
925 data = nfs_writedata_alloc(1);
926 if (!data)
927 goto out_bad;
928 list_add(&data->pages, &list);
929 requests++;
930 nbytes -= len;
931 } while (nbytes != 0);
932 atomic_set(&req->wb_complete, requests);
934 ClearPageError(page);
935 offset = 0;
936 nbytes = count;
937 do {
938 int ret2;
940 data = list_entry(list.next, struct nfs_write_data, pages);
941 list_del_init(&data->pages);
943 data->pagevec[0] = page;
945 if (nbytes < wsize)
946 wsize = nbytes;
947 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
948 wsize, offset, how);
949 if (ret == 0)
950 ret = ret2;
951 offset += wsize;
952 nbytes -= wsize;
953 } while (nbytes != 0);
955 return ret;
957 out_bad:
958 while (!list_empty(&list)) {
959 data = list_entry(list.next, struct nfs_write_data, pages);
960 list_del(&data->pages);
961 nfs_writedata_release(data);
963 nfs_redirty_request(req);
964 return -ENOMEM;
968 * Create an RPC task for the given write request and kick it.
969 * The page must have been locked by the caller.
971 * It may happen that the page we're passed is not marked dirty.
972 * This is the case if nfs_updatepage detects a conflicting request
973 * that has been written but not committed.
975 static int nfs_flush_one(struct inode *inode, struct list_head *head, unsigned int npages, size_t count, int how)
977 struct nfs_page *req;
978 struct page **pages;
979 struct nfs_write_data *data;
981 data = nfs_writedata_alloc(npages);
982 if (!data)
983 goto out_bad;
985 pages = data->pagevec;
986 while (!list_empty(head)) {
987 req = nfs_list_entry(head->next);
988 nfs_list_remove_request(req);
989 nfs_list_add_request(req, &data->pages);
990 ClearPageError(req->wb_page);
991 *pages++ = req->wb_page;
993 req = nfs_list_entry(data->pages.next);
995 /* Set up the argument struct */
996 return nfs_write_rpcsetup(req, data, &nfs_write_full_ops, count, 0, how);
997 out_bad:
998 while (!list_empty(head)) {
999 req = nfs_list_entry(head->next);
1000 nfs_list_remove_request(req);
1001 nfs_redirty_request(req);
1003 return -ENOMEM;
1006 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1007 struct inode *inode, int ioflags)
1009 size_t wsize = NFS_SERVER(inode)->wsize;
1011 if (wsize < PAGE_CACHE_SIZE)
1012 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1013 else
1014 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1018 * Handle a write reply that flushed part of a page.
1020 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1022 struct nfs_write_data *data = calldata;
1024 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1025 task->tk_pid,
1026 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1027 (long long)
1028 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1029 data->req->wb_bytes, (long long)req_offset(data->req));
1031 nfs_writeback_done(task, data);
1034 static void nfs_writeback_release_partial(void *calldata)
1036 struct nfs_write_data *data = calldata;
1037 struct nfs_page *req = data->req;
1038 struct page *page = req->wb_page;
1039 int status = data->task.tk_status;
1041 if (status < 0) {
1042 nfs_set_pageerror(page);
1043 nfs_context_set_write_error(req->wb_context, status);
1044 dprintk(", error = %d\n", status);
1045 goto out;
1048 if (nfs_write_need_commit(data)) {
1049 struct inode *inode = page->mapping->host;
1051 spin_lock(&inode->i_lock);
1052 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1053 /* Do nothing we need to resend the writes */
1054 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1055 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1056 dprintk(" defer commit\n");
1057 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1058 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1059 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1060 dprintk(" server reboot detected\n");
1062 spin_unlock(&inode->i_lock);
1063 } else
1064 dprintk(" OK\n");
1066 out:
1067 if (atomic_dec_and_test(&req->wb_complete))
1068 nfs_writepage_release(req);
1069 nfs_writedata_release(calldata);
1072 #if defined(CONFIG_NFS_V4_1)
1073 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1075 struct nfs_write_data *data = calldata;
1076 struct nfs_client *clp = (NFS_SERVER(data->inode))->nfs_client;
1078 if (nfs4_setup_sequence(clp, &data->args.seq_args,
1079 &data->res.seq_res, 1, task))
1080 return;
1081 rpc_call_start(task);
1083 #endif /* CONFIG_NFS_V4_1 */
1085 static const struct rpc_call_ops nfs_write_partial_ops = {
1086 #if defined(CONFIG_NFS_V4_1)
1087 .rpc_call_prepare = nfs_write_prepare,
1088 #endif /* CONFIG_NFS_V4_1 */
1089 .rpc_call_done = nfs_writeback_done_partial,
1090 .rpc_release = nfs_writeback_release_partial,
1094 * Handle a write reply that flushes a whole page.
1096 * FIXME: There is an inherent race with invalidate_inode_pages and
1097 * writebacks since the page->count is kept > 1 for as long
1098 * as the page has a write request pending.
1100 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1102 struct nfs_write_data *data = calldata;
1104 nfs_writeback_done(task, data);
1107 static void nfs_writeback_release_full(void *calldata)
1109 struct nfs_write_data *data = calldata;
1110 int status = data->task.tk_status;
1112 /* Update attributes as result of writeback. */
1113 while (!list_empty(&data->pages)) {
1114 struct nfs_page *req = nfs_list_entry(data->pages.next);
1115 struct page *page = req->wb_page;
1117 nfs_list_remove_request(req);
1119 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1120 data->task.tk_pid,
1121 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1122 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1123 req->wb_bytes,
1124 (long long)req_offset(req));
1126 if (status < 0) {
1127 nfs_set_pageerror(page);
1128 nfs_context_set_write_error(req->wb_context, status);
1129 dprintk(", error = %d\n", status);
1130 goto remove_request;
1133 if (nfs_write_need_commit(data)) {
1134 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1135 nfs_mark_request_commit(req);
1136 nfs_end_page_writeback(page);
1137 dprintk(" marked for commit\n");
1138 goto next;
1140 dprintk(" OK\n");
1141 remove_request:
1142 nfs_end_page_writeback(page);
1143 nfs_inode_remove_request(req);
1144 next:
1145 nfs_clear_page_tag_locked(req);
1147 nfs_writedata_release(calldata);
1150 static const struct rpc_call_ops nfs_write_full_ops = {
1151 #if defined(CONFIG_NFS_V4_1)
1152 .rpc_call_prepare = nfs_write_prepare,
1153 #endif /* CONFIG_NFS_V4_1 */
1154 .rpc_call_done = nfs_writeback_done_full,
1155 .rpc_release = nfs_writeback_release_full,
1160 * This function is called when the WRITE call is complete.
1162 int nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1164 struct nfs_writeargs *argp = &data->args;
1165 struct nfs_writeres *resp = &data->res;
1166 struct nfs_server *server = NFS_SERVER(data->inode);
1167 int status;
1169 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1170 task->tk_pid, task->tk_status);
1173 * ->write_done will attempt to use post-op attributes to detect
1174 * conflicting writes by other clients. A strict interpretation
1175 * of close-to-open would allow us to continue caching even if
1176 * another writer had changed the file, but some applications
1177 * depend on tighter cache coherency when writing.
1179 status = NFS_PROTO(data->inode)->write_done(task, data);
1180 if (status != 0)
1181 return status;
1182 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1184 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1185 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1186 /* We tried a write call, but the server did not
1187 * commit data to stable storage even though we
1188 * requested it.
1189 * Note: There is a known bug in Tru64 < 5.0 in which
1190 * the server reports NFS_DATA_SYNC, but performs
1191 * NFS_FILE_SYNC. We therefore implement this checking
1192 * as a dprintk() in order to avoid filling syslog.
1194 static unsigned long complain;
1196 if (time_before(complain, jiffies)) {
1197 dprintk("NFS: faulty NFS server %s:"
1198 " (committed = %d) != (stable = %d)\n",
1199 server->nfs_client->cl_hostname,
1200 resp->verf->committed, argp->stable);
1201 complain = jiffies + 300 * HZ;
1204 #endif
1205 /* Is this a short write? */
1206 if (task->tk_status >= 0 && resp->count < argp->count) {
1207 static unsigned long complain;
1209 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1211 /* Has the server at least made some progress? */
1212 if (resp->count != 0) {
1213 /* Was this an NFSv2 write or an NFSv3 stable write? */
1214 if (resp->verf->committed != NFS_UNSTABLE) {
1215 /* Resend from where the server left off */
1216 argp->offset += resp->count;
1217 argp->pgbase += resp->count;
1218 argp->count -= resp->count;
1219 } else {
1220 /* Resend as a stable write in order to avoid
1221 * headaches in the case of a server crash.
1223 argp->stable = NFS_FILE_SYNC;
1225 nfs_restart_rpc(task, server->nfs_client);
1226 return -EAGAIN;
1228 if (time_before(complain, jiffies)) {
1229 printk(KERN_WARNING
1230 "NFS: Server wrote zero bytes, expected %u.\n",
1231 argp->count);
1232 complain = jiffies + 300 * HZ;
1234 /* Can't do anything about it except throw an error. */
1235 task->tk_status = -EIO;
1237 return 0;
1241 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1242 static void nfs_commitdata_release(void *data)
1244 struct nfs_write_data *wdata = data;
1246 put_nfs_open_context(wdata->args.context);
1247 nfs_commit_free(wdata);
1251 * Set up the argument/result storage required for the RPC call.
1253 static int nfs_commit_rpcsetup(struct list_head *head,
1254 struct nfs_write_data *data,
1255 int how)
1257 struct nfs_page *first = nfs_list_entry(head->next);
1258 struct inode *inode = first->wb_context->path.dentry->d_inode;
1259 int flags = (how & FLUSH_SYNC) ? 0 : RPC_TASK_ASYNC;
1260 int priority = flush_task_priority(how);
1261 struct rpc_task *task;
1262 struct rpc_message msg = {
1263 .rpc_argp = &data->args,
1264 .rpc_resp = &data->res,
1265 .rpc_cred = first->wb_context->cred,
1267 struct rpc_task_setup task_setup_data = {
1268 .task = &data->task,
1269 .rpc_client = NFS_CLIENT(inode),
1270 .rpc_message = &msg,
1271 .callback_ops = &nfs_commit_ops,
1272 .callback_data = data,
1273 .workqueue = nfsiod_workqueue,
1274 .flags = flags,
1275 .priority = priority,
1278 /* Set up the RPC argument and reply structs
1279 * NB: take care not to mess about with data->commit et al. */
1281 list_splice_init(head, &data->pages);
1283 data->inode = inode;
1284 data->cred = msg.rpc_cred;
1286 data->args.fh = NFS_FH(data->inode);
1287 /* Note: we always request a commit of the entire inode */
1288 data->args.offset = 0;
1289 data->args.count = 0;
1290 data->args.context = get_nfs_open_context(first->wb_context);
1291 data->res.count = 0;
1292 data->res.fattr = &data->fattr;
1293 data->res.verf = &data->verf;
1294 nfs_fattr_init(&data->fattr);
1296 /* Set up the initial task struct. */
1297 NFS_PROTO(inode)->commit_setup(data, &msg);
1299 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1301 task = rpc_run_task(&task_setup_data);
1302 if (IS_ERR(task))
1303 return PTR_ERR(task);
1304 rpc_put_task(task);
1305 return 0;
1309 * Commit dirty pages
1311 static int
1312 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1314 struct nfs_write_data *data;
1315 struct nfs_page *req;
1317 data = nfs_commitdata_alloc();
1319 if (!data)
1320 goto out_bad;
1322 /* Set up the argument struct */
1323 return nfs_commit_rpcsetup(head, data, how);
1324 out_bad:
1325 while (!list_empty(head)) {
1326 req = nfs_list_entry(head->next);
1327 nfs_list_remove_request(req);
1328 nfs_mark_request_commit(req);
1329 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1330 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1331 BDI_RECLAIMABLE);
1332 nfs_clear_page_tag_locked(req);
1334 return -ENOMEM;
1338 * COMMIT call returned
1340 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1342 struct nfs_write_data *data = calldata;
1344 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1345 task->tk_pid, task->tk_status);
1347 /* Call the NFS version-specific code */
1348 if (NFS_PROTO(data->inode)->commit_done(task, data) != 0)
1349 return;
1352 static void nfs_commit_release(void *calldata)
1354 struct nfs_write_data *data = calldata;
1355 struct nfs_page *req;
1356 int status = data->task.tk_status;
1358 while (!list_empty(&data->pages)) {
1359 req = nfs_list_entry(data->pages.next);
1360 nfs_list_remove_request(req);
1361 nfs_clear_request_commit(req);
1363 dprintk("NFS: commit (%s/%lld %d@%lld)",
1364 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1365 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1366 req->wb_bytes,
1367 (long long)req_offset(req));
1368 if (status < 0) {
1369 nfs_context_set_write_error(req->wb_context, status);
1370 nfs_inode_remove_request(req);
1371 dprintk(", error = %d\n", status);
1372 goto next;
1375 /* Okay, COMMIT succeeded, apparently. Check the verifier
1376 * returned by the server against all stored verfs. */
1377 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1378 /* We have a match */
1379 nfs_inode_remove_request(req);
1380 dprintk(" OK\n");
1381 goto next;
1383 /* We have a mismatch. Write the page again */
1384 dprintk(" mismatch\n");
1385 nfs_mark_request_dirty(req);
1386 next:
1387 nfs_clear_page_tag_locked(req);
1389 nfs_commitdata_release(calldata);
1392 static const struct rpc_call_ops nfs_commit_ops = {
1393 #if defined(CONFIG_NFS_V4_1)
1394 .rpc_call_prepare = nfs_write_prepare,
1395 #endif /* CONFIG_NFS_V4_1 */
1396 .rpc_call_done = nfs_commit_done,
1397 .rpc_release = nfs_commit_release,
1400 static int nfs_commit_inode(struct inode *inode, int how)
1402 LIST_HEAD(head);
1403 int res;
1405 spin_lock(&inode->i_lock);
1406 res = nfs_scan_commit(inode, &head, 0, 0);
1407 spin_unlock(&inode->i_lock);
1408 if (res) {
1409 int error = nfs_commit_list(inode, &head, how);
1410 if (error < 0)
1411 return error;
1413 return res;
1416 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1418 struct nfs_inode *nfsi = NFS_I(inode);
1419 int flags = FLUSH_SYNC;
1420 int ret = 0;
1422 /* Don't commit yet if this is a non-blocking flush and there are
1423 * lots of outstanding writes for this mapping.
1425 if (wbc->sync_mode == WB_SYNC_NONE &&
1426 nfsi->ncommit <= (nfsi->npages >> 1))
1427 goto out_mark_dirty;
1429 if (wbc->nonblocking || wbc->for_background)
1430 flags = 0;
1431 ret = nfs_commit_inode(inode, flags);
1432 if (ret >= 0) {
1433 if (wbc->sync_mode == WB_SYNC_NONE) {
1434 if (ret < wbc->nr_to_write)
1435 wbc->nr_to_write -= ret;
1436 else
1437 wbc->nr_to_write = 0;
1439 return 0;
1441 out_mark_dirty:
1442 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1443 return ret;
1445 #else
1446 static inline int nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1448 return 0;
1451 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1453 return 0;
1455 #endif
1457 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1459 return nfs_commit_unstable_pages(inode, wbc);
1462 long nfs_sync_mapping_wait(struct address_space *mapping, struct writeback_control *wbc, int how)
1464 struct inode *inode = mapping->host;
1465 pgoff_t idx_start, idx_end;
1466 unsigned int npages = 0;
1467 LIST_HEAD(head);
1468 int nocommit = how & FLUSH_NOCOMMIT;
1469 long pages, ret;
1471 /* FIXME */
1472 if (wbc->range_cyclic)
1473 idx_start = 0;
1474 else {
1475 idx_start = wbc->range_start >> PAGE_CACHE_SHIFT;
1476 idx_end = wbc->range_end >> PAGE_CACHE_SHIFT;
1477 if (idx_end > idx_start) {
1478 pgoff_t l_npages = 1 + idx_end - idx_start;
1479 npages = l_npages;
1480 if (sizeof(npages) != sizeof(l_npages) &&
1481 (pgoff_t)npages != l_npages)
1482 npages = 0;
1485 how &= ~FLUSH_NOCOMMIT;
1486 spin_lock(&inode->i_lock);
1487 do {
1488 ret = nfs_wait_on_requests_locked(inode, idx_start, npages);
1489 if (ret != 0)
1490 continue;
1491 if (nocommit)
1492 break;
1493 pages = nfs_scan_commit(inode, &head, idx_start, npages);
1494 if (pages == 0)
1495 break;
1496 if (how & FLUSH_INVALIDATE) {
1497 spin_unlock(&inode->i_lock);
1498 nfs_cancel_commit_list(&head);
1499 ret = pages;
1500 spin_lock(&inode->i_lock);
1501 continue;
1503 pages += nfs_scan_commit(inode, &head, 0, 0);
1504 spin_unlock(&inode->i_lock);
1505 ret = nfs_commit_list(inode, &head, how);
1506 spin_lock(&inode->i_lock);
1508 } while (ret >= 0);
1509 spin_unlock(&inode->i_lock);
1510 return ret;
1513 static int __nfs_write_mapping(struct address_space *mapping, struct writeback_control *wbc, int how)
1515 int ret;
1517 ret = nfs_writepages(mapping, wbc);
1518 if (ret < 0)
1519 goto out;
1520 ret = nfs_sync_mapping_wait(mapping, wbc, how);
1521 if (ret < 0)
1522 goto out;
1523 return 0;
1524 out:
1525 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1526 return ret;
1529 /* Two pass sync: first using WB_SYNC_NONE, then WB_SYNC_ALL */
1530 static int nfs_write_mapping(struct address_space *mapping, int how)
1532 struct writeback_control wbc = {
1533 .bdi = mapping->backing_dev_info,
1534 .sync_mode = WB_SYNC_ALL,
1535 .nr_to_write = LONG_MAX,
1536 .range_start = 0,
1537 .range_end = LLONG_MAX,
1540 return __nfs_write_mapping(mapping, &wbc, how);
1544 * flush the inode to disk.
1546 int nfs_wb_all(struct inode *inode)
1548 return nfs_write_mapping(inode->i_mapping, 0);
1551 int nfs_wb_nocommit(struct inode *inode)
1553 return nfs_write_mapping(inode->i_mapping, FLUSH_NOCOMMIT);
1556 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1558 struct nfs_page *req;
1559 loff_t range_start = page_offset(page);
1560 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1561 struct writeback_control wbc = {
1562 .bdi = page->mapping->backing_dev_info,
1563 .sync_mode = WB_SYNC_ALL,
1564 .nr_to_write = LONG_MAX,
1565 .range_start = range_start,
1566 .range_end = range_end,
1568 int ret = 0;
1570 BUG_ON(!PageLocked(page));
1571 for (;;) {
1572 req = nfs_page_find_request(page);
1573 if (req == NULL)
1574 goto out;
1575 if (test_bit(PG_CLEAN, &req->wb_flags)) {
1576 nfs_release_request(req);
1577 break;
1579 if (nfs_lock_request_dontget(req)) {
1580 nfs_inode_remove_request(req);
1582 * In case nfs_inode_remove_request has marked the
1583 * page as being dirty
1585 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1586 nfs_unlock_request(req);
1587 break;
1589 ret = nfs_wait_on_request(req);
1590 nfs_release_request(req);
1591 if (ret < 0)
1592 goto out;
1594 if (!PagePrivate(page))
1595 return 0;
1596 ret = nfs_sync_mapping_wait(page->mapping, &wbc, FLUSH_INVALIDATE);
1597 out:
1598 return ret;
1601 static int nfs_wb_page_priority(struct inode *inode, struct page *page,
1602 int how)
1604 loff_t range_start = page_offset(page);
1605 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1606 struct writeback_control wbc = {
1607 .bdi = page->mapping->backing_dev_info,
1608 .sync_mode = WB_SYNC_ALL,
1609 .nr_to_write = LONG_MAX,
1610 .range_start = range_start,
1611 .range_end = range_end,
1613 int ret;
1615 do {
1616 if (clear_page_dirty_for_io(page)) {
1617 ret = nfs_writepage_locked(page, &wbc);
1618 if (ret < 0)
1619 goto out_error;
1620 } else if (!PagePrivate(page))
1621 break;
1622 ret = nfs_sync_mapping_wait(page->mapping, &wbc, how);
1623 if (ret < 0)
1624 goto out_error;
1625 } while (PagePrivate(page));
1626 return 0;
1627 out_error:
1628 __mark_inode_dirty(inode, I_DIRTY_PAGES);
1629 return ret;
1633 * Write back all requests on one page - we do this before reading it.
1635 int nfs_wb_page(struct inode *inode, struct page* page)
1637 return nfs_wb_page_priority(inode, page, FLUSH_STABLE);
1640 #ifdef CONFIG_MIGRATION
1641 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1642 struct page *page)
1644 struct nfs_page *req;
1645 int ret;
1647 nfs_fscache_release_page(page, GFP_KERNEL);
1649 req = nfs_find_and_lock_request(page);
1650 ret = PTR_ERR(req);
1651 if (IS_ERR(req))
1652 goto out;
1654 ret = migrate_page(mapping, newpage, page);
1655 if (!req)
1656 goto out;
1657 if (ret)
1658 goto out_unlock;
1659 page_cache_get(newpage);
1660 spin_lock(&mapping->host->i_lock);
1661 req->wb_page = newpage;
1662 SetPagePrivate(newpage);
1663 set_page_private(newpage, (unsigned long)req);
1664 ClearPagePrivate(page);
1665 set_page_private(page, 0);
1666 spin_unlock(&mapping->host->i_lock);
1667 page_cache_release(page);
1668 out_unlock:
1669 nfs_clear_page_tag_locked(req);
1670 out:
1671 return ret;
1673 #endif
1675 int __init nfs_init_writepagecache(void)
1677 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1678 sizeof(struct nfs_write_data),
1679 0, SLAB_HWCACHE_ALIGN,
1680 NULL);
1681 if (nfs_wdata_cachep == NULL)
1682 return -ENOMEM;
1684 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1685 nfs_wdata_cachep);
1686 if (nfs_wdata_mempool == NULL)
1687 return -ENOMEM;
1689 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1690 nfs_wdata_cachep);
1691 if (nfs_commit_mempool == NULL)
1692 return -ENOMEM;
1695 * NFS congestion size, scale with available memory.
1697 * 64MB: 8192k
1698 * 128MB: 11585k
1699 * 256MB: 16384k
1700 * 512MB: 23170k
1701 * 1GB: 32768k
1702 * 2GB: 46340k
1703 * 4GB: 65536k
1704 * 8GB: 92681k
1705 * 16GB: 131072k
1707 * This allows larger machines to have larger/more transfers.
1708 * Limit the default to 256M
1710 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1711 if (nfs_congestion_kb > 256*1024)
1712 nfs_congestion_kb = 256*1024;
1714 return 0;
1717 void nfs_destroy_writepagecache(void)
1719 mempool_destroy(nfs_commit_mempool);
1720 mempool_destroy(nfs_wdata_mempool);
1721 kmem_cache_destroy(nfs_wdata_cachep);