iwlwifi: rename generic iwlagn functions that had a HW specific name
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / via-velocity.c
blob448772f6cb33cbac31a5d076fd3fa11a95ac5f8e
1 /*
2 * This code is derived from the VIA reference driver (copyright message
3 * below) provided to Red Hat by VIA Networking Technologies, Inc. for
4 * addition to the Linux kernel.
6 * The code has been merged into one source file, cleaned up to follow
7 * Linux coding style, ported to the Linux 2.6 kernel tree and cleaned
8 * for 64bit hardware platforms.
10 * TODO
11 * rx_copybreak/alignment
12 * Scatter gather
13 * More testing
15 * The changes are (c) Copyright 2004, Red Hat Inc. <alan@lxorguk.ukuu.org.uk>
16 * Additional fixes and clean up: Francois Romieu
18 * This source has not been verified for use in safety critical systems.
20 * Please direct queries about the revamped driver to the linux-kernel
21 * list not VIA.
23 * Original code:
25 * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
26 * All rights reserved.
28 * This software may be redistributed and/or modified under
29 * the terms of the GNU General Public License as published by the Free
30 * Software Foundation; either version 2 of the License, or
31 * any later version.
33 * This program is distributed in the hope that it will be useful, but
34 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
35 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
36 * for more details.
38 * Author: Chuang Liang-Shing, AJ Jiang
40 * Date: Jan 24, 2003
42 * MODULE_LICENSE("GPL");
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/init.h>
50 #include <linux/mm.h>
51 #include <linux/errno.h>
52 #include <linux/ioport.h>
53 #include <linux/pci.h>
54 #include <linux/kernel.h>
55 #include <linux/netdevice.h>
56 #include <linux/etherdevice.h>
57 #include <linux/skbuff.h>
58 #include <linux/delay.h>
59 #include <linux/timer.h>
60 #include <linux/slab.h>
61 #include <linux/interrupt.h>
62 #include <linux/string.h>
63 #include <linux/wait.h>
64 #include <asm/io.h>
65 #include <linux/if.h>
66 #include <asm/uaccess.h>
67 #include <linux/proc_fs.h>
68 #include <linux/inetdevice.h>
69 #include <linux/reboot.h>
70 #include <linux/ethtool.h>
71 #include <linux/mii.h>
72 #include <linux/in.h>
73 #include <linux/if_arp.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ip.h>
76 #include <linux/tcp.h>
77 #include <linux/udp.h>
78 #include <linux/crc-ccitt.h>
79 #include <linux/crc32.h>
81 #include "via-velocity.h"
84 static int velocity_nics = 0;
85 static int msglevel = MSG_LEVEL_INFO;
87 /**
88 * mac_get_cam_mask - Read a CAM mask
89 * @regs: register block for this velocity
90 * @mask: buffer to store mask
92 * Fetch the mask bits of the selected CAM and store them into the
93 * provided mask buffer.
96 static void mac_get_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
98 int i;
100 /* Select CAM mask */
101 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
103 writeb(0, &regs->CAMADDR);
105 /* read mask */
106 for (i = 0; i < 8; i++)
107 *mask++ = readb(&(regs->MARCAM[i]));
109 /* disable CAMEN */
110 writeb(0, &regs->CAMADDR);
112 /* Select mar */
113 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
119 * mac_set_cam_mask - Set a CAM mask
120 * @regs: register block for this velocity
121 * @mask: CAM mask to load
123 * Store a new mask into a CAM
126 static void mac_set_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
128 int i;
129 /* Select CAM mask */
130 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
132 writeb(CAMADDR_CAMEN, &regs->CAMADDR);
134 for (i = 0; i < 8; i++) {
135 writeb(*mask++, &(regs->MARCAM[i]));
137 /* disable CAMEN */
138 writeb(0, &regs->CAMADDR);
140 /* Select mar */
141 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
144 static void mac_set_vlan_cam_mask(struct mac_regs __iomem * regs, u8 * mask)
146 int i;
147 /* Select CAM mask */
148 BYTE_REG_BITS_SET(CAMCR_PS_CAM_MASK, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
150 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL, &regs->CAMADDR);
152 for (i = 0; i < 8; i++) {
153 writeb(*mask++, &(regs->MARCAM[i]));
155 /* disable CAMEN */
156 writeb(0, &regs->CAMADDR);
158 /* Select mar */
159 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
163 * mac_set_cam - set CAM data
164 * @regs: register block of this velocity
165 * @idx: Cam index
166 * @addr: 2 or 6 bytes of CAM data
168 * Load an address or vlan tag into a CAM
171 static void mac_set_cam(struct mac_regs __iomem * regs, int idx, const u8 *addr)
173 int i;
175 /* Select CAM mask */
176 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
178 idx &= (64 - 1);
180 writeb(CAMADDR_CAMEN | idx, &regs->CAMADDR);
182 for (i = 0; i < 6; i++) {
183 writeb(*addr++, &(regs->MARCAM[i]));
185 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
187 udelay(10);
189 writeb(0, &regs->CAMADDR);
191 /* Select mar */
192 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
195 static void mac_set_vlan_cam(struct mac_regs __iomem * regs, int idx,
196 const u8 *addr)
199 /* Select CAM mask */
200 BYTE_REG_BITS_SET(CAMCR_PS_CAM_DATA, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
202 idx &= (64 - 1);
204 writeb(CAMADDR_CAMEN | CAMADDR_VCAMSL | idx, &regs->CAMADDR);
205 writew(*((u16 *) addr), &regs->MARCAM[0]);
207 BYTE_REG_BITS_ON(CAMCR_CAMWR, &regs->CAMCR);
209 udelay(10);
211 writeb(0, &regs->CAMADDR);
213 /* Select mar */
214 BYTE_REG_BITS_SET(CAMCR_PS_MAR, CAMCR_PS1 | CAMCR_PS0, &regs->CAMCR);
219 * mac_wol_reset - reset WOL after exiting low power
220 * @regs: register block of this velocity
222 * Called after we drop out of wake on lan mode in order to
223 * reset the Wake on lan features. This function doesn't restore
224 * the rest of the logic from the result of sleep/wakeup
227 static void mac_wol_reset(struct mac_regs __iomem * regs)
230 /* Turn off SWPTAG right after leaving power mode */
231 BYTE_REG_BITS_OFF(STICKHW_SWPTAG, &regs->STICKHW);
232 /* clear sticky bits */
233 BYTE_REG_BITS_OFF((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
235 BYTE_REG_BITS_OFF(CHIPGCR_FCGMII, &regs->CHIPGCR);
236 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
237 /* disable force PME-enable */
238 writeb(WOLCFG_PMEOVR, &regs->WOLCFGClr);
239 /* disable power-event config bit */
240 writew(0xFFFF, &regs->WOLCRClr);
241 /* clear power status */
242 writew(0xFFFF, &regs->WOLSRClr);
245 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
246 static const struct ethtool_ops velocity_ethtool_ops;
249 Define module options
252 MODULE_AUTHOR("VIA Networking Technologies, Inc.");
253 MODULE_LICENSE("GPL");
254 MODULE_DESCRIPTION("VIA Networking Velocity Family Gigabit Ethernet Adapter Driver");
256 #define VELOCITY_PARAM(N,D) \
257 static int N[MAX_UNITS]=OPTION_DEFAULT;\
258 module_param_array(N, int, NULL, 0); \
259 MODULE_PARM_DESC(N, D);
261 #define RX_DESC_MIN 64
262 #define RX_DESC_MAX 255
263 #define RX_DESC_DEF 64
264 VELOCITY_PARAM(RxDescriptors, "Number of receive descriptors");
266 #define TX_DESC_MIN 16
267 #define TX_DESC_MAX 256
268 #define TX_DESC_DEF 64
269 VELOCITY_PARAM(TxDescriptors, "Number of transmit descriptors");
271 #define RX_THRESH_MIN 0
272 #define RX_THRESH_MAX 3
273 #define RX_THRESH_DEF 0
274 /* rx_thresh[] is used for controlling the receive fifo threshold.
275 0: indicate the rxfifo threshold is 128 bytes.
276 1: indicate the rxfifo threshold is 512 bytes.
277 2: indicate the rxfifo threshold is 1024 bytes.
278 3: indicate the rxfifo threshold is store & forward.
280 VELOCITY_PARAM(rx_thresh, "Receive fifo threshold");
282 #define DMA_LENGTH_MIN 0
283 #define DMA_LENGTH_MAX 7
284 #define DMA_LENGTH_DEF 0
286 /* DMA_length[] is used for controlling the DMA length
287 0: 8 DWORDs
288 1: 16 DWORDs
289 2: 32 DWORDs
290 3: 64 DWORDs
291 4: 128 DWORDs
292 5: 256 DWORDs
293 6: SF(flush till emply)
294 7: SF(flush till emply)
296 VELOCITY_PARAM(DMA_length, "DMA length");
298 #define IP_ALIG_DEF 0
299 /* IP_byte_align[] is used for IP header DWORD byte aligned
300 0: indicate the IP header won't be DWORD byte aligned.(Default) .
301 1: indicate the IP header will be DWORD byte aligned.
302 In some enviroment, the IP header should be DWORD byte aligned,
303 or the packet will be droped when we receive it. (eg: IPVS)
305 VELOCITY_PARAM(IP_byte_align, "Enable IP header dword aligned");
307 #define TX_CSUM_DEF 1
308 /* txcsum_offload[] is used for setting the checksum offload ability of NIC.
309 (We only support RX checksum offload now)
310 0: disable csum_offload[checksum offload
311 1: enable checksum offload. (Default)
313 VELOCITY_PARAM(txcsum_offload, "Enable transmit packet checksum offload");
315 #define FLOW_CNTL_DEF 1
316 #define FLOW_CNTL_MIN 1
317 #define FLOW_CNTL_MAX 5
319 /* flow_control[] is used for setting the flow control ability of NIC.
320 1: hardware deafult - AUTO (default). Use Hardware default value in ANAR.
321 2: enable TX flow control.
322 3: enable RX flow control.
323 4: enable RX/TX flow control.
324 5: disable
326 VELOCITY_PARAM(flow_control, "Enable flow control ability");
328 #define MED_LNK_DEF 0
329 #define MED_LNK_MIN 0
330 #define MED_LNK_MAX 4
331 /* speed_duplex[] is used for setting the speed and duplex mode of NIC.
332 0: indicate autonegotiation for both speed and duplex mode
333 1: indicate 100Mbps half duplex mode
334 2: indicate 100Mbps full duplex mode
335 3: indicate 10Mbps half duplex mode
336 4: indicate 10Mbps full duplex mode
338 Note:
339 if EEPROM have been set to the force mode, this option is ignored
340 by driver.
342 VELOCITY_PARAM(speed_duplex, "Setting the speed and duplex mode");
344 #define VAL_PKT_LEN_DEF 0
345 /* ValPktLen[] is used for setting the checksum offload ability of NIC.
346 0: Receive frame with invalid layer 2 length (Default)
347 1: Drop frame with invalid layer 2 length
349 VELOCITY_PARAM(ValPktLen, "Receiving or Drop invalid 802.3 frame");
351 #define WOL_OPT_DEF 0
352 #define WOL_OPT_MIN 0
353 #define WOL_OPT_MAX 7
354 /* wol_opts[] is used for controlling wake on lan behavior.
355 0: Wake up if recevied a magic packet. (Default)
356 1: Wake up if link status is on/off.
357 2: Wake up if recevied an arp packet.
358 4: Wake up if recevied any unicast packet.
359 Those value can be sumed up to support more than one option.
361 VELOCITY_PARAM(wol_opts, "Wake On Lan options");
363 #define INT_WORKS_DEF 20
364 #define INT_WORKS_MIN 10
365 #define INT_WORKS_MAX 64
367 VELOCITY_PARAM(int_works, "Number of packets per interrupt services");
369 static int rx_copybreak = 200;
370 module_param(rx_copybreak, int, 0644);
371 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
373 static void velocity_init_info(struct pci_dev *pdev, struct velocity_info *vptr,
374 const struct velocity_info_tbl *info);
375 static int velocity_get_pci_info(struct velocity_info *, struct pci_dev *pdev);
376 static void velocity_print_info(struct velocity_info *vptr);
377 static int velocity_open(struct net_device *dev);
378 static int velocity_change_mtu(struct net_device *dev, int mtu);
379 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev);
380 static int velocity_intr(int irq, void *dev_instance);
381 static void velocity_set_multi(struct net_device *dev);
382 static struct net_device_stats *velocity_get_stats(struct net_device *dev);
383 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
384 static int velocity_close(struct net_device *dev);
385 static int velocity_receive_frame(struct velocity_info *, int idx);
386 static int velocity_alloc_rx_buf(struct velocity_info *, int idx);
387 static void velocity_free_rd_ring(struct velocity_info *vptr);
388 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *);
389 static int velocity_soft_reset(struct velocity_info *vptr);
390 static void mii_init(struct velocity_info *vptr, u32 mii_status);
391 static u32 velocity_get_link(struct net_device *dev);
392 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr);
393 static void velocity_print_link_status(struct velocity_info *vptr);
394 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs);
395 static void velocity_shutdown(struct velocity_info *vptr);
396 static void enable_flow_control_ability(struct velocity_info *vptr);
397 static void enable_mii_autopoll(struct mac_regs __iomem * regs);
398 static int velocity_mii_read(struct mac_regs __iomem *, u8 byIdx, u16 * pdata);
399 static int velocity_mii_write(struct mac_regs __iomem *, u8 byMiiAddr, u16 data);
400 static u32 mii_check_media_mode(struct mac_regs __iomem * regs);
401 static u32 check_connection_type(struct mac_regs __iomem * regs);
402 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status);
404 #ifdef CONFIG_PM
406 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state);
407 static int velocity_resume(struct pci_dev *pdev);
409 static DEFINE_SPINLOCK(velocity_dev_list_lock);
410 static LIST_HEAD(velocity_dev_list);
412 #endif
414 #if defined(CONFIG_PM) && defined(CONFIG_INET)
416 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr);
418 static struct notifier_block velocity_inetaddr_notifier = {
419 .notifier_call = velocity_netdev_event,
422 static void velocity_register_notifier(void)
424 register_inetaddr_notifier(&velocity_inetaddr_notifier);
427 static void velocity_unregister_notifier(void)
429 unregister_inetaddr_notifier(&velocity_inetaddr_notifier);
432 #else
434 #define velocity_register_notifier() do {} while (0)
435 #define velocity_unregister_notifier() do {} while (0)
437 #endif
440 * Internal board variants. At the moment we have only one
443 static struct velocity_info_tbl chip_info_table[] = {
444 {CHIP_TYPE_VT6110, "VIA Networking Velocity Family Gigabit Ethernet Adapter", 1, 0x00FFFFFFUL},
449 * Describe the PCI device identifiers that we support in this
450 * device driver. Used for hotplug autoloading.
453 static const struct pci_device_id velocity_id_table[] __devinitdata = {
454 { PCI_DEVICE(PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_612X) },
458 MODULE_DEVICE_TABLE(pci, velocity_id_table);
461 * get_chip_name - identifier to name
462 * @id: chip identifier
464 * Given a chip identifier return a suitable description. Returns
465 * a pointer a static string valid while the driver is loaded.
468 static const char __devinit *get_chip_name(enum chip_type chip_id)
470 int i;
471 for (i = 0; chip_info_table[i].name != NULL; i++)
472 if (chip_info_table[i].chip_id == chip_id)
473 break;
474 return chip_info_table[i].name;
478 * velocity_remove1 - device unplug
479 * @pdev: PCI device being removed
481 * Device unload callback. Called on an unplug or on module
482 * unload for each active device that is present. Disconnects
483 * the device from the network layer and frees all the resources
486 static void __devexit velocity_remove1(struct pci_dev *pdev)
488 struct net_device *dev = pci_get_drvdata(pdev);
489 struct velocity_info *vptr = netdev_priv(dev);
491 #ifdef CONFIG_PM
492 unsigned long flags;
494 spin_lock_irqsave(&velocity_dev_list_lock, flags);
495 if (!list_empty(&velocity_dev_list))
496 list_del(&vptr->list);
497 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
498 #endif
499 unregister_netdev(dev);
500 iounmap(vptr->mac_regs);
501 pci_release_regions(pdev);
502 pci_disable_device(pdev);
503 pci_set_drvdata(pdev, NULL);
504 free_netdev(dev);
506 velocity_nics--;
510 * velocity_set_int_opt - parser for integer options
511 * @opt: pointer to option value
512 * @val: value the user requested (or -1 for default)
513 * @min: lowest value allowed
514 * @max: highest value allowed
515 * @def: default value
516 * @name: property name
517 * @dev: device name
519 * Set an integer property in the module options. This function does
520 * all the verification and checking as well as reporting so that
521 * we don't duplicate code for each option.
524 static void __devinit velocity_set_int_opt(int *opt, int val, int min, int max, int def, char *name, const char *devname)
526 if (val == -1)
527 *opt = def;
528 else if (val < min || val > max) {
529 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (%d-%d)\n",
530 devname, name, min, max);
531 *opt = def;
532 } else {
533 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_INFO "%s: set value of parameter %s to %d\n",
534 devname, name, val);
535 *opt = val;
540 * velocity_set_bool_opt - parser for boolean options
541 * @opt: pointer to option value
542 * @val: value the user requested (or -1 for default)
543 * @def: default value (yes/no)
544 * @flag: numeric value to set for true.
545 * @name: property name
546 * @dev: device name
548 * Set a boolean property in the module options. This function does
549 * all the verification and checking as well as reporting so that
550 * we don't duplicate code for each option.
553 static void __devinit velocity_set_bool_opt(u32 * opt, int val, int def, u32 flag, char *name, const char *devname)
555 (*opt) &= (~flag);
556 if (val == -1)
557 *opt |= (def ? flag : 0);
558 else if (val < 0 || val > 1) {
559 printk(KERN_NOTICE "%s: the value of parameter %s is invalid, the valid range is (0-1)\n",
560 devname, name);
561 *opt |= (def ? flag : 0);
562 } else {
563 printk(KERN_INFO "%s: set parameter %s to %s\n",
564 devname, name, val ? "TRUE" : "FALSE");
565 *opt |= (val ? flag : 0);
570 * velocity_get_options - set options on device
571 * @opts: option structure for the device
572 * @index: index of option to use in module options array
573 * @devname: device name
575 * Turn the module and command options into a single structure
576 * for the current device
579 static void __devinit velocity_get_options(struct velocity_opt *opts, int index, const char *devname)
582 velocity_set_int_opt(&opts->rx_thresh, rx_thresh[index], RX_THRESH_MIN, RX_THRESH_MAX, RX_THRESH_DEF, "rx_thresh", devname);
583 velocity_set_int_opt(&opts->DMA_length, DMA_length[index], DMA_LENGTH_MIN, DMA_LENGTH_MAX, DMA_LENGTH_DEF, "DMA_length", devname);
584 velocity_set_int_opt(&opts->numrx, RxDescriptors[index], RX_DESC_MIN, RX_DESC_MAX, RX_DESC_DEF, "RxDescriptors", devname);
585 velocity_set_int_opt(&opts->numtx, TxDescriptors[index], TX_DESC_MIN, TX_DESC_MAX, TX_DESC_DEF, "TxDescriptors", devname);
587 velocity_set_bool_opt(&opts->flags, txcsum_offload[index], TX_CSUM_DEF, VELOCITY_FLAGS_TX_CSUM, "txcsum_offload", devname);
588 velocity_set_int_opt(&opts->flow_cntl, flow_control[index], FLOW_CNTL_MIN, FLOW_CNTL_MAX, FLOW_CNTL_DEF, "flow_control", devname);
589 velocity_set_bool_opt(&opts->flags, IP_byte_align[index], IP_ALIG_DEF, VELOCITY_FLAGS_IP_ALIGN, "IP_byte_align", devname);
590 velocity_set_bool_opt(&opts->flags, ValPktLen[index], VAL_PKT_LEN_DEF, VELOCITY_FLAGS_VAL_PKT_LEN, "ValPktLen", devname);
591 velocity_set_int_opt((int *) &opts->spd_dpx, speed_duplex[index], MED_LNK_MIN, MED_LNK_MAX, MED_LNK_DEF, "Media link mode", devname);
592 velocity_set_int_opt((int *) &opts->wol_opts, wol_opts[index], WOL_OPT_MIN, WOL_OPT_MAX, WOL_OPT_DEF, "Wake On Lan options", devname);
593 velocity_set_int_opt((int *) &opts->int_works, int_works[index], INT_WORKS_MIN, INT_WORKS_MAX, INT_WORKS_DEF, "Interrupt service works", devname);
594 opts->numrx = (opts->numrx & ~3);
598 * velocity_init_cam_filter - initialise CAM
599 * @vptr: velocity to program
601 * Initialize the content addressable memory used for filters. Load
602 * appropriately according to the presence of VLAN
605 static void velocity_init_cam_filter(struct velocity_info *vptr)
607 struct mac_regs __iomem * regs = vptr->mac_regs;
609 /* Turn on MCFG_PQEN, turn off MCFG_RTGOPT */
610 WORD_REG_BITS_SET(MCFG_PQEN, MCFG_RTGOPT, &regs->MCFG);
611 WORD_REG_BITS_ON(MCFG_VIDFR, &regs->MCFG);
613 /* Disable all CAMs */
614 memset(vptr->vCAMmask, 0, sizeof(u8) * 8);
615 memset(vptr->mCAMmask, 0, sizeof(u8) * 8);
616 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
617 mac_set_cam_mask(regs, vptr->mCAMmask);
619 /* Enable VCAMs */
620 if (vptr->vlgrp) {
621 unsigned int vid, i = 0;
623 if (!vlan_group_get_device(vptr->vlgrp, 0))
624 WORD_REG_BITS_ON(MCFG_RTGOPT, &regs->MCFG);
626 for (vid = 1; (vid < VLAN_VID_MASK); vid++) {
627 if (vlan_group_get_device(vptr->vlgrp, vid)) {
628 mac_set_vlan_cam(regs, i, (u8 *) &vid);
629 vptr->vCAMmask[i / 8] |= 0x1 << (i % 8);
630 if (++i >= VCAM_SIZE)
631 break;
634 mac_set_vlan_cam_mask(regs, vptr->vCAMmask);
638 static void velocity_vlan_rx_register(struct net_device *dev,
639 struct vlan_group *grp)
641 struct velocity_info *vptr = netdev_priv(dev);
643 vptr->vlgrp = grp;
646 static void velocity_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
648 struct velocity_info *vptr = netdev_priv(dev);
650 spin_lock_irq(&vptr->lock);
651 velocity_init_cam_filter(vptr);
652 spin_unlock_irq(&vptr->lock);
655 static void velocity_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
657 struct velocity_info *vptr = netdev_priv(dev);
659 spin_lock_irq(&vptr->lock);
660 vlan_group_set_device(vptr->vlgrp, vid, NULL);
661 velocity_init_cam_filter(vptr);
662 spin_unlock_irq(&vptr->lock);
665 static void velocity_init_rx_ring_indexes(struct velocity_info *vptr)
667 vptr->rx.dirty = vptr->rx.filled = vptr->rx.curr = 0;
671 * velocity_rx_reset - handle a receive reset
672 * @vptr: velocity we are resetting
674 * Reset the ownership and status for the receive ring side.
675 * Hand all the receive queue to the NIC.
678 static void velocity_rx_reset(struct velocity_info *vptr)
681 struct mac_regs __iomem * regs = vptr->mac_regs;
682 int i;
684 velocity_init_rx_ring_indexes(vptr);
687 * Init state, all RD entries belong to the NIC
689 for (i = 0; i < vptr->options.numrx; ++i)
690 vptr->rx.ring[i].rdesc0.len |= OWNED_BY_NIC;
692 writew(vptr->options.numrx, &regs->RBRDU);
693 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
694 writew(0, &regs->RDIdx);
695 writew(vptr->options.numrx - 1, &regs->RDCSize);
699 * velocity_init_registers - initialise MAC registers
700 * @vptr: velocity to init
701 * @type: type of initialisation (hot or cold)
703 * Initialise the MAC on a reset or on first set up on the
704 * hardware.
707 static void velocity_init_registers(struct velocity_info *vptr,
708 enum velocity_init_type type)
710 struct mac_regs __iomem * regs = vptr->mac_regs;
711 int i, mii_status;
713 mac_wol_reset(regs);
715 switch (type) {
716 case VELOCITY_INIT_RESET:
717 case VELOCITY_INIT_WOL:
719 netif_stop_queue(vptr->dev);
722 * Reset RX to prevent RX pointer not on the 4X location
724 velocity_rx_reset(vptr);
725 mac_rx_queue_run(regs);
726 mac_rx_queue_wake(regs);
728 mii_status = velocity_get_opt_media_mode(vptr);
729 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
730 velocity_print_link_status(vptr);
731 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
732 netif_wake_queue(vptr->dev);
735 enable_flow_control_ability(vptr);
737 mac_clear_isr(regs);
738 writel(CR0_STOP, &regs->CR0Clr);
739 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT),
740 &regs->CR0Set);
742 break;
744 case VELOCITY_INIT_COLD:
745 default:
747 * Do reset
749 velocity_soft_reset(vptr);
750 mdelay(5);
752 mac_eeprom_reload(regs);
753 for (i = 0; i < 6; i++) {
754 writeb(vptr->dev->dev_addr[i], &(regs->PAR[i]));
757 * clear Pre_ACPI bit.
759 BYTE_REG_BITS_OFF(CFGA_PACPI, &(regs->CFGA));
760 mac_set_rx_thresh(regs, vptr->options.rx_thresh);
761 mac_set_dma_length(regs, vptr->options.DMA_length);
763 writeb(WOLCFG_SAM | WOLCFG_SAB, &regs->WOLCFGSet);
765 * Back off algorithm use original IEEE standard
767 BYTE_REG_BITS_SET(CFGB_OFSET, (CFGB_CRANDOM | CFGB_CAP | CFGB_MBA | CFGB_BAKOPT), &regs->CFGB);
770 * Init CAM filter
772 velocity_init_cam_filter(vptr);
775 * Set packet filter: Receive directed and broadcast address
777 velocity_set_multi(vptr->dev);
780 * Enable MII auto-polling
782 enable_mii_autopoll(regs);
784 vptr->int_mask = INT_MASK_DEF;
786 writel(vptr->rx.pool_dma, &regs->RDBaseLo);
787 writew(vptr->options.numrx - 1, &regs->RDCSize);
788 mac_rx_queue_run(regs);
789 mac_rx_queue_wake(regs);
791 writew(vptr->options.numtx - 1, &regs->TDCSize);
793 for (i = 0; i < vptr->tx.numq; i++) {
794 writel(vptr->tx.pool_dma[i], &regs->TDBaseLo[i]);
795 mac_tx_queue_run(regs, i);
798 init_flow_control_register(vptr);
800 writel(CR0_STOP, &regs->CR0Clr);
801 writel((CR0_DPOLL | CR0_TXON | CR0_RXON | CR0_STRT), &regs->CR0Set);
803 mii_status = velocity_get_opt_media_mode(vptr);
804 netif_stop_queue(vptr->dev);
806 mii_init(vptr, mii_status);
808 if (velocity_set_media_mode(vptr, mii_status) != VELOCITY_LINK_CHANGE) {
809 velocity_print_link_status(vptr);
810 if (!(vptr->mii_status & VELOCITY_LINK_FAIL))
811 netif_wake_queue(vptr->dev);
814 enable_flow_control_ability(vptr);
815 mac_hw_mibs_init(regs);
816 mac_write_int_mask(vptr->int_mask, regs);
817 mac_clear_isr(regs);
823 * velocity_soft_reset - soft reset
824 * @vptr: velocity to reset
826 * Kick off a soft reset of the velocity adapter and then poll
827 * until the reset sequence has completed before returning.
830 static int velocity_soft_reset(struct velocity_info *vptr)
832 struct mac_regs __iomem * regs = vptr->mac_regs;
833 int i = 0;
835 writel(CR0_SFRST, &regs->CR0Set);
837 for (i = 0; i < W_MAX_TIMEOUT; i++) {
838 udelay(5);
839 if (!DWORD_REG_BITS_IS_ON(CR0_SFRST, &regs->CR0Set))
840 break;
843 if (i == W_MAX_TIMEOUT) {
844 writel(CR0_FORSRST, &regs->CR0Set);
845 /* FIXME: PCI POSTING */
846 /* delay 2ms */
847 mdelay(2);
849 return 0;
853 * velocity_found1 - set up discovered velocity card
854 * @pdev: PCI device
855 * @ent: PCI device table entry that matched
857 * Configure a discovered adapter from scratch. Return a negative
858 * errno error code on failure paths.
861 static int __devinit velocity_found1(struct pci_dev *pdev, const struct pci_device_id *ent)
863 static int first = 1;
864 struct net_device *dev;
865 int i;
866 const char *drv_string;
867 const struct velocity_info_tbl *info = &chip_info_table[ent->driver_data];
868 struct velocity_info *vptr;
869 struct mac_regs __iomem * regs;
870 int ret = -ENOMEM;
872 /* FIXME: this driver, like almost all other ethernet drivers,
873 * can support more than MAX_UNITS.
875 if (velocity_nics >= MAX_UNITS) {
876 dev_notice(&pdev->dev, "already found %d NICs.\n",
877 velocity_nics);
878 return -ENODEV;
881 dev = alloc_etherdev(sizeof(struct velocity_info));
882 if (!dev) {
883 dev_err(&pdev->dev, "allocate net device failed.\n");
884 goto out;
887 /* Chain it all together */
889 SET_NETDEV_DEV(dev, &pdev->dev);
890 vptr = netdev_priv(dev);
893 if (first) {
894 printk(KERN_INFO "%s Ver. %s\n",
895 VELOCITY_FULL_DRV_NAM, VELOCITY_VERSION);
896 printk(KERN_INFO "Copyright (c) 2002, 2003 VIA Networking Technologies, Inc.\n");
897 printk(KERN_INFO "Copyright (c) 2004 Red Hat Inc.\n");
898 first = 0;
901 velocity_init_info(pdev, vptr, info);
903 vptr->dev = dev;
905 dev->irq = pdev->irq;
907 ret = pci_enable_device(pdev);
908 if (ret < 0)
909 goto err_free_dev;
911 ret = velocity_get_pci_info(vptr, pdev);
912 if (ret < 0) {
913 /* error message already printed */
914 goto err_disable;
917 ret = pci_request_regions(pdev, VELOCITY_NAME);
918 if (ret < 0) {
919 dev_err(&pdev->dev, "No PCI resources.\n");
920 goto err_disable;
923 regs = ioremap(vptr->memaddr, VELOCITY_IO_SIZE);
924 if (regs == NULL) {
925 ret = -EIO;
926 goto err_release_res;
929 vptr->mac_regs = regs;
931 mac_wol_reset(regs);
933 dev->base_addr = vptr->ioaddr;
935 for (i = 0; i < 6; i++)
936 dev->dev_addr[i] = readb(&regs->PAR[i]);
939 drv_string = dev_driver_string(&pdev->dev);
941 velocity_get_options(&vptr->options, velocity_nics, drv_string);
944 * Mask out the options cannot be set to the chip
947 vptr->options.flags &= info->flags;
950 * Enable the chip specified capbilities
953 vptr->flags = vptr->options.flags | (info->flags & 0xFF000000UL);
955 vptr->wol_opts = vptr->options.wol_opts;
956 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
958 vptr->phy_id = MII_GET_PHY_ID(vptr->mac_regs);
960 dev->irq = pdev->irq;
961 dev->open = velocity_open;
962 dev->hard_start_xmit = velocity_xmit;
963 dev->stop = velocity_close;
964 dev->get_stats = velocity_get_stats;
965 dev->set_multicast_list = velocity_set_multi;
966 dev->do_ioctl = velocity_ioctl;
967 dev->ethtool_ops = &velocity_ethtool_ops;
968 dev->change_mtu = velocity_change_mtu;
970 dev->vlan_rx_add_vid = velocity_vlan_rx_add_vid;
971 dev->vlan_rx_kill_vid = velocity_vlan_rx_kill_vid;
972 dev->vlan_rx_register = velocity_vlan_rx_register;
974 #ifdef VELOCITY_ZERO_COPY_SUPPORT
975 dev->features |= NETIF_F_SG;
976 #endif
977 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_FILTER |
978 NETIF_F_HW_VLAN_RX;
980 if (vptr->flags & VELOCITY_FLAGS_TX_CSUM)
981 dev->features |= NETIF_F_IP_CSUM;
983 ret = register_netdev(dev);
984 if (ret < 0)
985 goto err_iounmap;
987 if (velocity_get_link(dev))
988 netif_carrier_off(dev);
990 velocity_print_info(vptr);
991 pci_set_drvdata(pdev, dev);
993 /* and leave the chip powered down */
995 pci_set_power_state(pdev, PCI_D3hot);
996 #ifdef CONFIG_PM
998 unsigned long flags;
1000 spin_lock_irqsave(&velocity_dev_list_lock, flags);
1001 list_add(&vptr->list, &velocity_dev_list);
1002 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
1004 #endif
1005 velocity_nics++;
1006 out:
1007 return ret;
1009 err_iounmap:
1010 iounmap(regs);
1011 err_release_res:
1012 pci_release_regions(pdev);
1013 err_disable:
1014 pci_disable_device(pdev);
1015 err_free_dev:
1016 free_netdev(dev);
1017 goto out;
1021 * velocity_print_info - per driver data
1022 * @vptr: velocity
1024 * Print per driver data as the kernel driver finds Velocity
1025 * hardware
1028 static void __devinit velocity_print_info(struct velocity_info *vptr)
1030 struct net_device *dev = vptr->dev;
1032 printk(KERN_INFO "%s: %s\n", dev->name, get_chip_name(vptr->chip_id));
1033 printk(KERN_INFO "%s: Ethernet Address: %2.2X:%2.2X:%2.2X:%2.2X:%2.2X:%2.2X\n",
1034 dev->name,
1035 dev->dev_addr[0], dev->dev_addr[1], dev->dev_addr[2],
1036 dev->dev_addr[3], dev->dev_addr[4], dev->dev_addr[5]);
1040 * velocity_init_info - init private data
1041 * @pdev: PCI device
1042 * @vptr: Velocity info
1043 * @info: Board type
1045 * Set up the initial velocity_info struct for the device that has been
1046 * discovered.
1049 static void __devinit velocity_init_info(struct pci_dev *pdev,
1050 struct velocity_info *vptr,
1051 const struct velocity_info_tbl *info)
1053 memset(vptr, 0, sizeof(struct velocity_info));
1055 vptr->pdev = pdev;
1056 vptr->chip_id = info->chip_id;
1057 vptr->tx.numq = info->txqueue;
1058 vptr->multicast_limit = MCAM_SIZE;
1059 spin_lock_init(&vptr->lock);
1060 INIT_LIST_HEAD(&vptr->list);
1064 * velocity_get_pci_info - retrieve PCI info for device
1065 * @vptr: velocity device
1066 * @pdev: PCI device it matches
1068 * Retrieve the PCI configuration space data that interests us from
1069 * the kernel PCI layer
1072 static int __devinit velocity_get_pci_info(struct velocity_info *vptr, struct pci_dev *pdev)
1074 vptr->rev_id = pdev->revision;
1076 pci_set_master(pdev);
1078 vptr->ioaddr = pci_resource_start(pdev, 0);
1079 vptr->memaddr = pci_resource_start(pdev, 1);
1081 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_IO)) {
1082 dev_err(&pdev->dev,
1083 "region #0 is not an I/O resource, aborting.\n");
1084 return -EINVAL;
1087 if ((pci_resource_flags(pdev, 1) & IORESOURCE_IO)) {
1088 dev_err(&pdev->dev,
1089 "region #1 is an I/O resource, aborting.\n");
1090 return -EINVAL;
1093 if (pci_resource_len(pdev, 1) < VELOCITY_IO_SIZE) {
1094 dev_err(&pdev->dev, "region #1 is too small.\n");
1095 return -EINVAL;
1097 vptr->pdev = pdev;
1099 return 0;
1103 * velocity_init_dma_rings - set up DMA rings
1104 * @vptr: Velocity to set up
1106 * Allocate PCI mapped DMA rings for the receive and transmit layer
1107 * to use.
1110 static int velocity_init_dma_rings(struct velocity_info *vptr)
1112 struct velocity_opt *opt = &vptr->options;
1113 const unsigned int rx_ring_size = opt->numrx * sizeof(struct rx_desc);
1114 const unsigned int tx_ring_size = opt->numtx * sizeof(struct tx_desc);
1115 struct pci_dev *pdev = vptr->pdev;
1116 dma_addr_t pool_dma;
1117 void *pool;
1118 unsigned int i;
1121 * Allocate all RD/TD rings a single pool.
1123 * pci_alloc_consistent() fulfills the requirement for 64 bytes
1124 * alignment
1126 pool = pci_alloc_consistent(pdev, tx_ring_size * vptr->tx.numq +
1127 rx_ring_size, &pool_dma);
1128 if (!pool) {
1129 dev_err(&pdev->dev, "%s : DMA memory allocation failed.\n",
1130 vptr->dev->name);
1131 return -ENOMEM;
1134 vptr->rx.ring = pool;
1135 vptr->rx.pool_dma = pool_dma;
1137 pool += rx_ring_size;
1138 pool_dma += rx_ring_size;
1140 for (i = 0; i < vptr->tx.numq; i++) {
1141 vptr->tx.rings[i] = pool;
1142 vptr->tx.pool_dma[i] = pool_dma;
1143 pool += tx_ring_size;
1144 pool_dma += tx_ring_size;
1147 return 0;
1151 * velocity_free_dma_rings - free PCI ring pointers
1152 * @vptr: Velocity to free from
1154 * Clean up the PCI ring buffers allocated to this velocity.
1157 static void velocity_free_dma_rings(struct velocity_info *vptr)
1159 const int size = vptr->options.numrx * sizeof(struct rx_desc) +
1160 vptr->options.numtx * sizeof(struct tx_desc) * vptr->tx.numq;
1162 pci_free_consistent(vptr->pdev, size, vptr->rx.ring, vptr->rx.pool_dma);
1165 static void velocity_give_many_rx_descs(struct velocity_info *vptr)
1167 struct mac_regs __iomem *regs = vptr->mac_regs;
1168 int avail, dirty, unusable;
1171 * RD number must be equal to 4X per hardware spec
1172 * (programming guide rev 1.20, p.13)
1174 if (vptr->rx.filled < 4)
1175 return;
1177 wmb();
1179 unusable = vptr->rx.filled & 0x0003;
1180 dirty = vptr->rx.dirty - unusable;
1181 for (avail = vptr->rx.filled & 0xfffc; avail; avail--) {
1182 dirty = (dirty > 0) ? dirty - 1 : vptr->options.numrx - 1;
1183 vptr->rx.ring[dirty].rdesc0.len |= OWNED_BY_NIC;
1186 writew(vptr->rx.filled & 0xfffc, &regs->RBRDU);
1187 vptr->rx.filled = unusable;
1190 static int velocity_rx_refill(struct velocity_info *vptr)
1192 int dirty = vptr->rx.dirty, done = 0;
1194 do {
1195 struct rx_desc *rd = vptr->rx.ring + dirty;
1197 /* Fine for an all zero Rx desc at init time as well */
1198 if (rd->rdesc0.len & OWNED_BY_NIC)
1199 break;
1201 if (!vptr->rx.info[dirty].skb) {
1202 if (velocity_alloc_rx_buf(vptr, dirty) < 0)
1203 break;
1205 done++;
1206 dirty = (dirty < vptr->options.numrx - 1) ? dirty + 1 : 0;
1207 } while (dirty != vptr->rx.curr);
1209 if (done) {
1210 vptr->rx.dirty = dirty;
1211 vptr->rx.filled += done;
1214 return done;
1217 static void velocity_set_rxbufsize(struct velocity_info *vptr, int mtu)
1219 vptr->rx.buf_sz = (mtu <= ETH_DATA_LEN) ? PKT_BUF_SZ : mtu + 32;
1223 * velocity_init_rd_ring - set up receive ring
1224 * @vptr: velocity to configure
1226 * Allocate and set up the receive buffers for each ring slot and
1227 * assign them to the network adapter.
1230 static int velocity_init_rd_ring(struct velocity_info *vptr)
1232 int ret = -ENOMEM;
1234 vptr->rx.info = kcalloc(vptr->options.numrx,
1235 sizeof(struct velocity_rd_info), GFP_KERNEL);
1236 if (!vptr->rx.info)
1237 goto out;
1239 velocity_init_rx_ring_indexes(vptr);
1241 if (velocity_rx_refill(vptr) != vptr->options.numrx) {
1242 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_ERR
1243 "%s: failed to allocate RX buffer.\n", vptr->dev->name);
1244 velocity_free_rd_ring(vptr);
1245 goto out;
1248 ret = 0;
1249 out:
1250 return ret;
1254 * velocity_free_rd_ring - free receive ring
1255 * @vptr: velocity to clean up
1257 * Free the receive buffers for each ring slot and any
1258 * attached socket buffers that need to go away.
1261 static void velocity_free_rd_ring(struct velocity_info *vptr)
1263 int i;
1265 if (vptr->rx.info == NULL)
1266 return;
1268 for (i = 0; i < vptr->options.numrx; i++) {
1269 struct velocity_rd_info *rd_info = &(vptr->rx.info[i]);
1270 struct rx_desc *rd = vptr->rx.ring + i;
1272 memset(rd, 0, sizeof(*rd));
1274 if (!rd_info->skb)
1275 continue;
1276 pci_unmap_single(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1277 PCI_DMA_FROMDEVICE);
1278 rd_info->skb_dma = 0;
1280 dev_kfree_skb(rd_info->skb);
1281 rd_info->skb = NULL;
1284 kfree(vptr->rx.info);
1285 vptr->rx.info = NULL;
1289 * velocity_init_td_ring - set up transmit ring
1290 * @vptr: velocity
1292 * Set up the transmit ring and chain the ring pointers together.
1293 * Returns zero on success or a negative posix errno code for
1294 * failure.
1297 static int velocity_init_td_ring(struct velocity_info *vptr)
1299 dma_addr_t curr;
1300 unsigned int j;
1302 /* Init the TD ring entries */
1303 for (j = 0; j < vptr->tx.numq; j++) {
1304 curr = vptr->tx.pool_dma[j];
1306 vptr->tx.infos[j] = kcalloc(vptr->options.numtx,
1307 sizeof(struct velocity_td_info),
1308 GFP_KERNEL);
1309 if (!vptr->tx.infos[j]) {
1310 while(--j >= 0)
1311 kfree(vptr->tx.infos[j]);
1312 return -ENOMEM;
1315 vptr->tx.tail[j] = vptr->tx.curr[j] = vptr->tx.used[j] = 0;
1317 return 0;
1321 * FIXME: could we merge this with velocity_free_tx_buf ?
1324 static void velocity_free_td_ring_entry(struct velocity_info *vptr,
1325 int q, int n)
1327 struct velocity_td_info * td_info = &(vptr->tx.infos[q][n]);
1328 int i;
1330 if (td_info == NULL)
1331 return;
1333 if (td_info->skb) {
1334 for (i = 0; i < td_info->nskb_dma; i++)
1336 if (td_info->skb_dma[i]) {
1337 pci_unmap_single(vptr->pdev, td_info->skb_dma[i],
1338 td_info->skb->len, PCI_DMA_TODEVICE);
1339 td_info->skb_dma[i] = 0;
1342 dev_kfree_skb(td_info->skb);
1343 td_info->skb = NULL;
1348 * velocity_free_td_ring - free td ring
1349 * @vptr: velocity
1351 * Free up the transmit ring for this particular velocity adapter.
1352 * We free the ring contents but not the ring itself.
1355 static void velocity_free_td_ring(struct velocity_info *vptr)
1357 int i, j;
1359 for (j = 0; j < vptr->tx.numq; j++) {
1360 if (vptr->tx.infos[j] == NULL)
1361 continue;
1362 for (i = 0; i < vptr->options.numtx; i++) {
1363 velocity_free_td_ring_entry(vptr, j, i);
1366 kfree(vptr->tx.infos[j]);
1367 vptr->tx.infos[j] = NULL;
1372 * velocity_rx_srv - service RX interrupt
1373 * @vptr: velocity
1374 * @status: adapter status (unused)
1376 * Walk the receive ring of the velocity adapter and remove
1377 * any received packets from the receive queue. Hand the ring
1378 * slots back to the adapter for reuse.
1381 static int velocity_rx_srv(struct velocity_info *vptr, int status)
1383 struct net_device_stats *stats = &vptr->stats;
1384 int rd_curr = vptr->rx.curr;
1385 int works = 0;
1387 do {
1388 struct rx_desc *rd = vptr->rx.ring + rd_curr;
1390 if (!vptr->rx.info[rd_curr].skb)
1391 break;
1393 if (rd->rdesc0.len & OWNED_BY_NIC)
1394 break;
1396 rmb();
1399 * Don't drop CE or RL error frame although RXOK is off
1401 if (rd->rdesc0.RSR & (RSR_RXOK | RSR_CE | RSR_RL)) {
1402 if (velocity_receive_frame(vptr, rd_curr) < 0)
1403 stats->rx_dropped++;
1404 } else {
1405 if (rd->rdesc0.RSR & RSR_CRC)
1406 stats->rx_crc_errors++;
1407 if (rd->rdesc0.RSR & RSR_FAE)
1408 stats->rx_frame_errors++;
1410 stats->rx_dropped++;
1413 rd->size |= RX_INTEN;
1415 rd_curr++;
1416 if (rd_curr >= vptr->options.numrx)
1417 rd_curr = 0;
1418 } while (++works <= 15);
1420 vptr->rx.curr = rd_curr;
1422 if ((works > 0) && (velocity_rx_refill(vptr) > 0))
1423 velocity_give_many_rx_descs(vptr);
1425 VAR_USED(stats);
1426 return works;
1430 * velocity_rx_csum - checksum process
1431 * @rd: receive packet descriptor
1432 * @skb: network layer packet buffer
1434 * Process the status bits for the received packet and determine
1435 * if the checksum was computed and verified by the hardware
1438 static inline void velocity_rx_csum(struct rx_desc *rd, struct sk_buff *skb)
1440 skb->ip_summed = CHECKSUM_NONE;
1442 if (rd->rdesc1.CSM & CSM_IPKT) {
1443 if (rd->rdesc1.CSM & CSM_IPOK) {
1444 if ((rd->rdesc1.CSM & CSM_TCPKT) ||
1445 (rd->rdesc1.CSM & CSM_UDPKT)) {
1446 if (!(rd->rdesc1.CSM & CSM_TUPOK)) {
1447 return;
1450 skb->ip_summed = CHECKSUM_UNNECESSARY;
1456 * velocity_rx_copy - in place Rx copy for small packets
1457 * @rx_skb: network layer packet buffer candidate
1458 * @pkt_size: received data size
1459 * @rd: receive packet descriptor
1460 * @dev: network device
1462 * Replace the current skb that is scheduled for Rx processing by a
1463 * shorter, immediatly allocated skb, if the received packet is small
1464 * enough. This function returns a negative value if the received
1465 * packet is too big or if memory is exhausted.
1467 static int velocity_rx_copy(struct sk_buff **rx_skb, int pkt_size,
1468 struct velocity_info *vptr)
1470 int ret = -1;
1471 if (pkt_size < rx_copybreak) {
1472 struct sk_buff *new_skb;
1474 new_skb = netdev_alloc_skb(vptr->dev, pkt_size + 2);
1475 if (new_skb) {
1476 new_skb->ip_summed = rx_skb[0]->ip_summed;
1477 skb_reserve(new_skb, 2);
1478 skb_copy_from_linear_data(*rx_skb, new_skb->data, pkt_size);
1479 *rx_skb = new_skb;
1480 ret = 0;
1484 return ret;
1488 * velocity_iph_realign - IP header alignment
1489 * @vptr: velocity we are handling
1490 * @skb: network layer packet buffer
1491 * @pkt_size: received data size
1493 * Align IP header on a 2 bytes boundary. This behavior can be
1494 * configured by the user.
1496 static inline void velocity_iph_realign(struct velocity_info *vptr,
1497 struct sk_buff *skb, int pkt_size)
1499 if (vptr->flags & VELOCITY_FLAGS_IP_ALIGN) {
1500 memmove(skb->data + 2, skb->data, pkt_size);
1501 skb_reserve(skb, 2);
1506 * velocity_receive_frame - received packet processor
1507 * @vptr: velocity we are handling
1508 * @idx: ring index
1510 * A packet has arrived. We process the packet and if appropriate
1511 * pass the frame up the network stack
1514 static int velocity_receive_frame(struct velocity_info *vptr, int idx)
1516 void (*pci_action)(struct pci_dev *, dma_addr_t, size_t, int);
1517 struct net_device_stats *stats = &vptr->stats;
1518 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1519 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1520 int pkt_len = le16_to_cpu(rd->rdesc0.len) & 0x3fff;
1521 struct sk_buff *skb;
1523 if (rd->rdesc0.RSR & (RSR_STP | RSR_EDP)) {
1524 VELOCITY_PRT(MSG_LEVEL_VERBOSE, KERN_ERR " %s : the received frame span multple RDs.\n", vptr->dev->name);
1525 stats->rx_length_errors++;
1526 return -EINVAL;
1529 if (rd->rdesc0.RSR & RSR_MAR)
1530 vptr->stats.multicast++;
1532 skb = rd_info->skb;
1534 pci_dma_sync_single_for_cpu(vptr->pdev, rd_info->skb_dma,
1535 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1538 * Drop frame not meeting IEEE 802.3
1541 if (vptr->flags & VELOCITY_FLAGS_VAL_PKT_LEN) {
1542 if (rd->rdesc0.RSR & RSR_RL) {
1543 stats->rx_length_errors++;
1544 return -EINVAL;
1548 pci_action = pci_dma_sync_single_for_device;
1550 velocity_rx_csum(rd, skb);
1552 if (velocity_rx_copy(&skb, pkt_len, vptr) < 0) {
1553 velocity_iph_realign(vptr, skb, pkt_len);
1554 pci_action = pci_unmap_single;
1555 rd_info->skb = NULL;
1558 pci_action(vptr->pdev, rd_info->skb_dma, vptr->rx.buf_sz,
1559 PCI_DMA_FROMDEVICE);
1561 skb_put(skb, pkt_len - 4);
1562 skb->protocol = eth_type_trans(skb, vptr->dev);
1564 if (vptr->vlgrp && (rd->rdesc0.RSR & RSR_DETAG)) {
1565 vlan_hwaccel_rx(skb, vptr->vlgrp,
1566 swab16(le16_to_cpu(rd->rdesc1.PQTAG)));
1567 } else
1568 netif_rx(skb);
1570 stats->rx_bytes += pkt_len;
1572 return 0;
1576 * velocity_alloc_rx_buf - allocate aligned receive buffer
1577 * @vptr: velocity
1578 * @idx: ring index
1580 * Allocate a new full sized buffer for the reception of a frame and
1581 * map it into PCI space for the hardware to use. The hardware
1582 * requires *64* byte alignment of the buffer which makes life
1583 * less fun than would be ideal.
1586 static int velocity_alloc_rx_buf(struct velocity_info *vptr, int idx)
1588 struct rx_desc *rd = &(vptr->rx.ring[idx]);
1589 struct velocity_rd_info *rd_info = &(vptr->rx.info[idx]);
1591 rd_info->skb = dev_alloc_skb(vptr->rx.buf_sz + 64);
1592 if (rd_info->skb == NULL)
1593 return -ENOMEM;
1596 * Do the gymnastics to get the buffer head for data at
1597 * 64byte alignment.
1599 skb_reserve(rd_info->skb, (unsigned long) rd_info->skb->data & 63);
1600 rd_info->skb_dma = pci_map_single(vptr->pdev, rd_info->skb->data,
1601 vptr->rx.buf_sz, PCI_DMA_FROMDEVICE);
1604 * Fill in the descriptor to match
1607 *((u32 *) & (rd->rdesc0)) = 0;
1608 rd->size = cpu_to_le16(vptr->rx.buf_sz) | RX_INTEN;
1609 rd->pa_low = cpu_to_le32(rd_info->skb_dma);
1610 rd->pa_high = 0;
1611 return 0;
1615 * tx_srv - transmit interrupt service
1616 * @vptr; Velocity
1617 * @status:
1619 * Scan the queues looking for transmitted packets that
1620 * we can complete and clean up. Update any statistics as
1621 * necessary/
1624 static int velocity_tx_srv(struct velocity_info *vptr, u32 status)
1626 struct tx_desc *td;
1627 int qnum;
1628 int full = 0;
1629 int idx;
1630 int works = 0;
1631 struct velocity_td_info *tdinfo;
1632 struct net_device_stats *stats = &vptr->stats;
1634 for (qnum = 0; qnum < vptr->tx.numq; qnum++) {
1635 for (idx = vptr->tx.tail[qnum]; vptr->tx.used[qnum] > 0;
1636 idx = (idx + 1) % vptr->options.numtx) {
1639 * Get Tx Descriptor
1641 td = &(vptr->tx.rings[qnum][idx]);
1642 tdinfo = &(vptr->tx.infos[qnum][idx]);
1644 if (td->tdesc0.len & OWNED_BY_NIC)
1645 break;
1647 if ((works++ > 15))
1648 break;
1650 if (td->tdesc0.TSR & TSR0_TERR) {
1651 stats->tx_errors++;
1652 stats->tx_dropped++;
1653 if (td->tdesc0.TSR & TSR0_CDH)
1654 stats->tx_heartbeat_errors++;
1655 if (td->tdesc0.TSR & TSR0_CRS)
1656 stats->tx_carrier_errors++;
1657 if (td->tdesc0.TSR & TSR0_ABT)
1658 stats->tx_aborted_errors++;
1659 if (td->tdesc0.TSR & TSR0_OWC)
1660 stats->tx_window_errors++;
1661 } else {
1662 stats->tx_packets++;
1663 stats->tx_bytes += tdinfo->skb->len;
1665 velocity_free_tx_buf(vptr, tdinfo);
1666 vptr->tx.used[qnum]--;
1668 vptr->tx.tail[qnum] = idx;
1670 if (AVAIL_TD(vptr, qnum) < 1) {
1671 full = 1;
1675 * Look to see if we should kick the transmit network
1676 * layer for more work.
1678 if (netif_queue_stopped(vptr->dev) && (full == 0)
1679 && (!(vptr->mii_status & VELOCITY_LINK_FAIL))) {
1680 netif_wake_queue(vptr->dev);
1682 return works;
1686 * velocity_print_link_status - link status reporting
1687 * @vptr: velocity to report on
1689 * Turn the link status of the velocity card into a kernel log
1690 * description of the new link state, detailing speed and duplex
1691 * status
1694 static void velocity_print_link_status(struct velocity_info *vptr)
1697 if (vptr->mii_status & VELOCITY_LINK_FAIL) {
1698 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: failed to detect cable link\n", vptr->dev->name);
1699 } else if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1700 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link auto-negotiation", vptr->dev->name);
1702 if (vptr->mii_status & VELOCITY_SPEED_1000)
1703 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 1000M bps");
1704 else if (vptr->mii_status & VELOCITY_SPEED_100)
1705 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps");
1706 else
1707 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps");
1709 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
1710 VELOCITY_PRT(MSG_LEVEL_INFO, " full duplex\n");
1711 else
1712 VELOCITY_PRT(MSG_LEVEL_INFO, " half duplex\n");
1713 } else {
1714 VELOCITY_PRT(MSG_LEVEL_INFO, KERN_NOTICE "%s: Link forced", vptr->dev->name);
1715 switch (vptr->options.spd_dpx) {
1716 case SPD_DPX_100_HALF:
1717 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps half duplex\n");
1718 break;
1719 case SPD_DPX_100_FULL:
1720 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 100M bps full duplex\n");
1721 break;
1722 case SPD_DPX_10_HALF:
1723 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps half duplex\n");
1724 break;
1725 case SPD_DPX_10_FULL:
1726 VELOCITY_PRT(MSG_LEVEL_INFO, " speed 10M bps full duplex\n");
1727 break;
1728 default:
1729 break;
1735 * velocity_error - handle error from controller
1736 * @vptr: velocity
1737 * @status: card status
1739 * Process an error report from the hardware and attempt to recover
1740 * the card itself. At the moment we cannot recover from some
1741 * theoretically impossible errors but this could be fixed using
1742 * the pci_device_failed logic to bounce the hardware
1746 static void velocity_error(struct velocity_info *vptr, int status)
1749 if (status & ISR_TXSTLI) {
1750 struct mac_regs __iomem * regs = vptr->mac_regs;
1752 printk(KERN_ERR "TD structure error TDindex=%hx\n", readw(&regs->TDIdx[0]));
1753 BYTE_REG_BITS_ON(TXESR_TDSTR, &regs->TXESR);
1754 writew(TRDCSR_RUN, &regs->TDCSRClr);
1755 netif_stop_queue(vptr->dev);
1757 /* FIXME: port over the pci_device_failed code and use it
1758 here */
1761 if (status & ISR_SRCI) {
1762 struct mac_regs __iomem * regs = vptr->mac_regs;
1763 int linked;
1765 if (vptr->options.spd_dpx == SPD_DPX_AUTO) {
1766 vptr->mii_status = check_connection_type(regs);
1769 * If it is a 3119, disable frame bursting in
1770 * halfduplex mode and enable it in fullduplex
1771 * mode
1773 if (vptr->rev_id < REV_ID_VT3216_A0) {
1774 if (vptr->mii_status | VELOCITY_DUPLEX_FULL)
1775 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
1776 else
1777 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
1780 * Only enable CD heart beat counter in 10HD mode
1782 if (!(vptr->mii_status & VELOCITY_DUPLEX_FULL) && (vptr->mii_status & VELOCITY_SPEED_10)) {
1783 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
1784 } else {
1785 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
1789 * Get link status from PHYSR0
1791 linked = readb(&regs->PHYSR0) & PHYSR0_LINKGD;
1793 if (linked) {
1794 vptr->mii_status &= ~VELOCITY_LINK_FAIL;
1795 netif_carrier_on(vptr->dev);
1796 } else {
1797 vptr->mii_status |= VELOCITY_LINK_FAIL;
1798 netif_carrier_off(vptr->dev);
1801 velocity_print_link_status(vptr);
1802 enable_flow_control_ability(vptr);
1805 * Re-enable auto-polling because SRCI will disable
1806 * auto-polling
1809 enable_mii_autopoll(regs);
1811 if (vptr->mii_status & VELOCITY_LINK_FAIL)
1812 netif_stop_queue(vptr->dev);
1813 else
1814 netif_wake_queue(vptr->dev);
1817 if (status & ISR_MIBFI)
1818 velocity_update_hw_mibs(vptr);
1819 if (status & ISR_LSTEI)
1820 mac_rx_queue_wake(vptr->mac_regs);
1824 * velocity_free_tx_buf - free transmit buffer
1825 * @vptr: velocity
1826 * @tdinfo: buffer
1828 * Release an transmit buffer. If the buffer was preallocated then
1829 * recycle it, if not then unmap the buffer.
1832 static void velocity_free_tx_buf(struct velocity_info *vptr, struct velocity_td_info *tdinfo)
1834 struct sk_buff *skb = tdinfo->skb;
1835 int i;
1838 * Don't unmap the pre-allocated tx_bufs
1840 if (tdinfo->skb_dma) {
1842 for (i = 0; i < tdinfo->nskb_dma; i++) {
1843 #ifdef VELOCITY_ZERO_COPY_SUPPORT
1844 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], le16_to_cpu(td->tdesc1.len), PCI_DMA_TODEVICE);
1845 #else
1846 pci_unmap_single(vptr->pdev, tdinfo->skb_dma[i], skb->len, PCI_DMA_TODEVICE);
1847 #endif
1848 tdinfo->skb_dma[i] = 0;
1851 dev_kfree_skb_irq(skb);
1852 tdinfo->skb = NULL;
1855 static int velocity_init_rings(struct velocity_info *vptr, int mtu)
1857 int ret;
1859 velocity_set_rxbufsize(vptr, mtu);
1861 ret = velocity_init_dma_rings(vptr);
1862 if (ret < 0)
1863 goto out;
1865 ret = velocity_init_rd_ring(vptr);
1866 if (ret < 0)
1867 goto err_free_dma_rings_0;
1869 ret = velocity_init_td_ring(vptr);
1870 if (ret < 0)
1871 goto err_free_rd_ring_1;
1872 out:
1873 return ret;
1875 err_free_rd_ring_1:
1876 velocity_free_rd_ring(vptr);
1877 err_free_dma_rings_0:
1878 velocity_free_dma_rings(vptr);
1879 goto out;
1882 static void velocity_free_rings(struct velocity_info *vptr)
1884 velocity_free_td_ring(vptr);
1885 velocity_free_rd_ring(vptr);
1886 velocity_free_dma_rings(vptr);
1890 * velocity_open - interface activation callback
1891 * @dev: network layer device to open
1893 * Called when the network layer brings the interface up. Returns
1894 * a negative posix error code on failure, or zero on success.
1896 * All the ring allocation and set up is done on open for this
1897 * adapter to minimise memory usage when inactive
1900 static int velocity_open(struct net_device *dev)
1902 struct velocity_info *vptr = netdev_priv(dev);
1903 int ret;
1905 ret = velocity_init_rings(vptr, dev->mtu);
1906 if (ret < 0)
1907 goto out;
1909 /* Ensure chip is running */
1910 pci_set_power_state(vptr->pdev, PCI_D0);
1912 velocity_give_many_rx_descs(vptr);
1914 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
1916 ret = request_irq(vptr->pdev->irq, &velocity_intr, IRQF_SHARED,
1917 dev->name, dev);
1918 if (ret < 0) {
1919 /* Power down the chip */
1920 pci_set_power_state(vptr->pdev, PCI_D3hot);
1921 velocity_free_rings(vptr);
1922 goto out;
1925 mac_enable_int(vptr->mac_regs);
1926 netif_start_queue(dev);
1927 vptr->flags |= VELOCITY_FLAGS_OPENED;
1928 out:
1929 return ret;
1933 * velocity_change_mtu - MTU change callback
1934 * @dev: network device
1935 * @new_mtu: desired MTU
1937 * Handle requests from the networking layer for MTU change on
1938 * this interface. It gets called on a change by the network layer.
1939 * Return zero for success or negative posix error code.
1942 static int velocity_change_mtu(struct net_device *dev, int new_mtu)
1944 struct velocity_info *vptr = netdev_priv(dev);
1945 int ret = 0;
1947 if ((new_mtu < VELOCITY_MIN_MTU) || new_mtu > (VELOCITY_MAX_MTU)) {
1948 VELOCITY_PRT(MSG_LEVEL_ERR, KERN_NOTICE "%s: Invalid MTU.\n",
1949 vptr->dev->name);
1950 ret = -EINVAL;
1951 goto out_0;
1954 if (!netif_running(dev)) {
1955 dev->mtu = new_mtu;
1956 goto out_0;
1959 if (dev->mtu != new_mtu) {
1960 struct velocity_info *tmp_vptr;
1961 unsigned long flags;
1962 struct rx_info rx;
1963 struct tx_info tx;
1965 tmp_vptr = kzalloc(sizeof(*tmp_vptr), GFP_KERNEL);
1966 if (!tmp_vptr) {
1967 ret = -ENOMEM;
1968 goto out_0;
1971 tmp_vptr->dev = dev;
1972 tmp_vptr->pdev = vptr->pdev;
1973 tmp_vptr->options = vptr->options;
1974 tmp_vptr->tx.numq = vptr->tx.numq;
1976 ret = velocity_init_rings(tmp_vptr, new_mtu);
1977 if (ret < 0)
1978 goto out_free_tmp_vptr_1;
1980 spin_lock_irqsave(&vptr->lock, flags);
1982 netif_stop_queue(dev);
1983 velocity_shutdown(vptr);
1985 rx = vptr->rx;
1986 tx = vptr->tx;
1988 vptr->rx = tmp_vptr->rx;
1989 vptr->tx = tmp_vptr->tx;
1991 tmp_vptr->rx = rx;
1992 tmp_vptr->tx = tx;
1994 dev->mtu = new_mtu;
1996 velocity_give_many_rx_descs(vptr);
1998 velocity_init_registers(vptr, VELOCITY_INIT_COLD);
2000 mac_enable_int(vptr->mac_regs);
2001 netif_start_queue(dev);
2003 spin_unlock_irqrestore(&vptr->lock, flags);
2005 velocity_free_rings(tmp_vptr);
2007 out_free_tmp_vptr_1:
2008 kfree(tmp_vptr);
2010 out_0:
2011 return ret;
2015 * velocity_shutdown - shut down the chip
2016 * @vptr: velocity to deactivate
2018 * Shuts down the internal operations of the velocity and
2019 * disables interrupts, autopolling, transmit and receive
2022 static void velocity_shutdown(struct velocity_info *vptr)
2024 struct mac_regs __iomem * regs = vptr->mac_regs;
2025 mac_disable_int(regs);
2026 writel(CR0_STOP, &regs->CR0Set);
2027 writew(0xFFFF, &regs->TDCSRClr);
2028 writeb(0xFF, &regs->RDCSRClr);
2029 safe_disable_mii_autopoll(regs);
2030 mac_clear_isr(regs);
2034 * velocity_close - close adapter callback
2035 * @dev: network device
2037 * Callback from the network layer when the velocity is being
2038 * deactivated by the network layer
2041 static int velocity_close(struct net_device *dev)
2043 struct velocity_info *vptr = netdev_priv(dev);
2045 netif_stop_queue(dev);
2046 velocity_shutdown(vptr);
2048 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED)
2049 velocity_get_ip(vptr);
2050 if (dev->irq != 0)
2051 free_irq(dev->irq, dev);
2053 /* Power down the chip */
2054 pci_set_power_state(vptr->pdev, PCI_D3hot);
2056 velocity_free_rings(vptr);
2058 vptr->flags &= (~VELOCITY_FLAGS_OPENED);
2059 return 0;
2063 * velocity_xmit - transmit packet callback
2064 * @skb: buffer to transmit
2065 * @dev: network device
2067 * Called by the networ layer to request a packet is queued to
2068 * the velocity. Returns zero on success.
2071 static int velocity_xmit(struct sk_buff *skb, struct net_device *dev)
2073 struct velocity_info *vptr = netdev_priv(dev);
2074 int qnum = 0;
2075 struct tx_desc *td_ptr;
2076 struct velocity_td_info *tdinfo;
2077 unsigned long flags;
2078 int pktlen = skb->len;
2079 __le16 len;
2080 int index;
2084 if (skb->len < ETH_ZLEN) {
2085 if (skb_padto(skb, ETH_ZLEN))
2086 goto out;
2087 pktlen = ETH_ZLEN;
2090 len = cpu_to_le16(pktlen);
2092 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2093 if (skb_shinfo(skb)->nr_frags > 6 && __skb_linearize(skb)) {
2094 kfree_skb(skb);
2095 return 0;
2097 #endif
2099 spin_lock_irqsave(&vptr->lock, flags);
2101 index = vptr->tx.curr[qnum];
2102 td_ptr = &(vptr->tx.rings[qnum][index]);
2103 tdinfo = &(vptr->tx.infos[qnum][index]);
2105 td_ptr->tdesc1.TCR = TCR0_TIC;
2106 td_ptr->td_buf[0].size &= ~TD_QUEUE;
2108 #ifdef VELOCITY_ZERO_COPY_SUPPORT
2109 if (skb_shinfo(skb)->nr_frags > 0) {
2110 int nfrags = skb_shinfo(skb)->nr_frags;
2111 tdinfo->skb = skb;
2112 if (nfrags > 6) {
2113 skb_copy_from_linear_data(skb, tdinfo->buf, skb->len);
2114 tdinfo->skb_dma[0] = tdinfo->buf_dma;
2115 td_ptr->tdesc0.len = len;
2116 td_ptr->tx.buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2117 td_ptr->tx.buf[0].pa_high = 0;
2118 td_ptr->tx.buf[0].size = len; /* queue is 0 anyway */
2119 tdinfo->nskb_dma = 1;
2120 } else {
2121 int i = 0;
2122 tdinfo->nskb_dma = 0;
2123 tdinfo->skb_dma[i] = pci_map_single(vptr->pdev, skb->data,
2124 skb_headlen(skb), PCI_DMA_TODEVICE);
2126 td_ptr->tdesc0.len = len;
2128 /* FIXME: support 48bit DMA later */
2129 td_ptr->tx.buf[i].pa_low = cpu_to_le32(tdinfo->skb_dma);
2130 td_ptr->tx.buf[i].pa_high = 0;
2131 td_ptr->tx.buf[i].size = cpu_to_le16(skb_headlen(skb));
2133 for (i = 0; i < nfrags; i++) {
2134 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2135 void *addr = (void *)page_address(frag->page) + frag->page_offset;
2137 tdinfo->skb_dma[i + 1] = pci_map_single(vptr->pdev, addr, frag->size, PCI_DMA_TODEVICE);
2139 td_ptr->tx.buf[i + 1].pa_low = cpu_to_le32(tdinfo->skb_dma[i + 1]);
2140 td_ptr->tx.buf[i + 1].pa_high = 0;
2141 td_ptr->tx.buf[i + 1].size = cpu_to_le16(frag->size);
2143 tdinfo->nskb_dma = i - 1;
2146 } else
2147 #endif
2150 * Map the linear network buffer into PCI space and
2151 * add it to the transmit ring.
2153 tdinfo->skb = skb;
2154 tdinfo->skb_dma[0] = pci_map_single(vptr->pdev, skb->data, pktlen, PCI_DMA_TODEVICE);
2155 td_ptr->tdesc0.len = len;
2156 td_ptr->td_buf[0].pa_low = cpu_to_le32(tdinfo->skb_dma[0]);
2157 td_ptr->td_buf[0].pa_high = 0;
2158 td_ptr->td_buf[0].size = len;
2159 tdinfo->nskb_dma = 1;
2161 td_ptr->tdesc1.cmd = TCPLS_NORMAL + (tdinfo->nskb_dma + 1) * 16;
2163 if (vptr->vlgrp && vlan_tx_tag_present(skb)) {
2164 td_ptr->tdesc1.vlan = cpu_to_le16(vlan_tx_tag_get(skb));
2165 td_ptr->tdesc1.TCR |= TCR0_VETAG;
2169 * Handle hardware checksum
2171 if ((vptr->flags & VELOCITY_FLAGS_TX_CSUM)
2172 && (skb->ip_summed == CHECKSUM_PARTIAL)) {
2173 const struct iphdr *ip = ip_hdr(skb);
2174 if (ip->protocol == IPPROTO_TCP)
2175 td_ptr->tdesc1.TCR |= TCR0_TCPCK;
2176 else if (ip->protocol == IPPROTO_UDP)
2177 td_ptr->tdesc1.TCR |= (TCR0_UDPCK);
2178 td_ptr->tdesc1.TCR |= TCR0_IPCK;
2182 int prev = index - 1;
2184 if (prev < 0)
2185 prev = vptr->options.numtx - 1;
2186 td_ptr->tdesc0.len |= OWNED_BY_NIC;
2187 vptr->tx.used[qnum]++;
2188 vptr->tx.curr[qnum] = (index + 1) % vptr->options.numtx;
2190 if (AVAIL_TD(vptr, qnum) < 1)
2191 netif_stop_queue(dev);
2193 td_ptr = &(vptr->tx.rings[qnum][prev]);
2194 td_ptr->td_buf[0].size |= TD_QUEUE;
2195 mac_tx_queue_wake(vptr->mac_regs, qnum);
2197 dev->trans_start = jiffies;
2198 spin_unlock_irqrestore(&vptr->lock, flags);
2199 out:
2200 return NETDEV_TX_OK;
2204 * velocity_intr - interrupt callback
2205 * @irq: interrupt number
2206 * @dev_instance: interrupting device
2208 * Called whenever an interrupt is generated by the velocity
2209 * adapter IRQ line. We may not be the source of the interrupt
2210 * and need to identify initially if we are, and if not exit as
2211 * efficiently as possible.
2214 static int velocity_intr(int irq, void *dev_instance)
2216 struct net_device *dev = dev_instance;
2217 struct velocity_info *vptr = netdev_priv(dev);
2218 u32 isr_status;
2219 int max_count = 0;
2222 spin_lock(&vptr->lock);
2223 isr_status = mac_read_isr(vptr->mac_regs);
2225 /* Not us ? */
2226 if (isr_status == 0) {
2227 spin_unlock(&vptr->lock);
2228 return IRQ_NONE;
2231 mac_disable_int(vptr->mac_regs);
2234 * Keep processing the ISR until we have completed
2235 * processing and the isr_status becomes zero
2238 while (isr_status != 0) {
2239 mac_write_isr(vptr->mac_regs, isr_status);
2240 if (isr_status & (~(ISR_PRXI | ISR_PPRXI | ISR_PTXI | ISR_PPTXI)))
2241 velocity_error(vptr, isr_status);
2242 if (isr_status & (ISR_PRXI | ISR_PPRXI))
2243 max_count += velocity_rx_srv(vptr, isr_status);
2244 if (isr_status & (ISR_PTXI | ISR_PPTXI))
2245 max_count += velocity_tx_srv(vptr, isr_status);
2246 isr_status = mac_read_isr(vptr->mac_regs);
2247 if (max_count > vptr->options.int_works)
2249 printk(KERN_WARNING "%s: excessive work at interrupt.\n",
2250 dev->name);
2251 max_count = 0;
2254 spin_unlock(&vptr->lock);
2255 mac_enable_int(vptr->mac_regs);
2256 return IRQ_HANDLED;
2262 * velocity_set_multi - filter list change callback
2263 * @dev: network device
2265 * Called by the network layer when the filter lists need to change
2266 * for a velocity adapter. Reload the CAMs with the new address
2267 * filter ruleset.
2270 static void velocity_set_multi(struct net_device *dev)
2272 struct velocity_info *vptr = netdev_priv(dev);
2273 struct mac_regs __iomem * regs = vptr->mac_regs;
2274 u8 rx_mode;
2275 int i;
2276 struct dev_mc_list *mclist;
2278 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2279 writel(0xffffffff, &regs->MARCAM[0]);
2280 writel(0xffffffff, &regs->MARCAM[4]);
2281 rx_mode = (RCR_AM | RCR_AB | RCR_PROM);
2282 } else if ((dev->mc_count > vptr->multicast_limit)
2283 || (dev->flags & IFF_ALLMULTI)) {
2284 writel(0xffffffff, &regs->MARCAM[0]);
2285 writel(0xffffffff, &regs->MARCAM[4]);
2286 rx_mode = (RCR_AM | RCR_AB);
2287 } else {
2288 int offset = MCAM_SIZE - vptr->multicast_limit;
2289 mac_get_cam_mask(regs, vptr->mCAMmask);
2291 for (i = 0, mclist = dev->mc_list; mclist && i < dev->mc_count; i++, mclist = mclist->next) {
2292 mac_set_cam(regs, i + offset, mclist->dmi_addr);
2293 vptr->mCAMmask[(offset + i) / 8] |= 1 << ((offset + i) & 7);
2296 mac_set_cam_mask(regs, vptr->mCAMmask);
2297 rx_mode = (RCR_AM | RCR_AB);
2299 if (dev->mtu > 1500)
2300 rx_mode |= RCR_AL;
2302 BYTE_REG_BITS_ON(rx_mode, &regs->RCR);
2307 * velocity_get_status - statistics callback
2308 * @dev: network device
2310 * Callback from the network layer to allow driver statistics
2311 * to be resynchronized with hardware collected state. In the
2312 * case of the velocity we need to pull the MIB counters from
2313 * the hardware into the counters before letting the network
2314 * layer display them.
2317 static struct net_device_stats *velocity_get_stats(struct net_device *dev)
2319 struct velocity_info *vptr = netdev_priv(dev);
2321 /* If the hardware is down, don't touch MII */
2322 if(!netif_running(dev))
2323 return &vptr->stats;
2325 spin_lock_irq(&vptr->lock);
2326 velocity_update_hw_mibs(vptr);
2327 spin_unlock_irq(&vptr->lock);
2329 vptr->stats.rx_packets = vptr->mib_counter[HW_MIB_ifRxAllPkts];
2330 vptr->stats.rx_errors = vptr->mib_counter[HW_MIB_ifRxErrorPkts];
2331 vptr->stats.rx_length_errors = vptr->mib_counter[HW_MIB_ifInRangeLengthErrors];
2333 // unsigned long rx_dropped; /* no space in linux buffers */
2334 vptr->stats.collisions = vptr->mib_counter[HW_MIB_ifTxEtherCollisions];
2335 /* detailed rx_errors: */
2336 // unsigned long rx_length_errors;
2337 // unsigned long rx_over_errors; /* receiver ring buff overflow */
2338 vptr->stats.rx_crc_errors = vptr->mib_counter[HW_MIB_ifRxPktCRCE];
2339 // unsigned long rx_frame_errors; /* recv'd frame alignment error */
2340 // unsigned long rx_fifo_errors; /* recv'r fifo overrun */
2341 // unsigned long rx_missed_errors; /* receiver missed packet */
2343 /* detailed tx_errors */
2344 // unsigned long tx_fifo_errors;
2346 return &vptr->stats;
2351 * velocity_ioctl - ioctl entry point
2352 * @dev: network device
2353 * @rq: interface request ioctl
2354 * @cmd: command code
2356 * Called when the user issues an ioctl request to the network
2357 * device in question. The velocity interface supports MII.
2360 static int velocity_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2362 struct velocity_info *vptr = netdev_priv(dev);
2363 int ret;
2365 /* If we are asked for information and the device is power
2366 saving then we need to bring the device back up to talk to it */
2368 if (!netif_running(dev))
2369 pci_set_power_state(vptr->pdev, PCI_D0);
2371 switch (cmd) {
2372 case SIOCGMIIPHY: /* Get address of MII PHY in use. */
2373 case SIOCGMIIREG: /* Read MII PHY register. */
2374 case SIOCSMIIREG: /* Write to MII PHY register. */
2375 ret = velocity_mii_ioctl(dev, rq, cmd);
2376 break;
2378 default:
2379 ret = -EOPNOTSUPP;
2381 if (!netif_running(dev))
2382 pci_set_power_state(vptr->pdev, PCI_D3hot);
2385 return ret;
2389 * Definition for our device driver. The PCI layer interface
2390 * uses this to handle all our card discover and plugging
2393 static struct pci_driver velocity_driver = {
2394 .name = VELOCITY_NAME,
2395 .id_table = velocity_id_table,
2396 .probe = velocity_found1,
2397 .remove = __devexit_p(velocity_remove1),
2398 #ifdef CONFIG_PM
2399 .suspend = velocity_suspend,
2400 .resume = velocity_resume,
2401 #endif
2405 * velocity_init_module - load time function
2407 * Called when the velocity module is loaded. The PCI driver
2408 * is registered with the PCI layer, and in turn will call
2409 * the probe functions for each velocity adapter installed
2410 * in the system.
2413 static int __init velocity_init_module(void)
2415 int ret;
2417 velocity_register_notifier();
2418 ret = pci_register_driver(&velocity_driver);
2419 if (ret < 0)
2420 velocity_unregister_notifier();
2421 return ret;
2425 * velocity_cleanup - module unload
2427 * When the velocity hardware is unloaded this function is called.
2428 * It will clean up the notifiers and the unregister the PCI
2429 * driver interface for this hardware. This in turn cleans up
2430 * all discovered interfaces before returning from the function
2433 static void __exit velocity_cleanup_module(void)
2435 velocity_unregister_notifier();
2436 pci_unregister_driver(&velocity_driver);
2439 module_init(velocity_init_module);
2440 module_exit(velocity_cleanup_module);
2444 * MII access , media link mode setting functions
2449 * mii_init - set up MII
2450 * @vptr: velocity adapter
2451 * @mii_status: links tatus
2453 * Set up the PHY for the current link state.
2456 static void mii_init(struct velocity_info *vptr, u32 mii_status)
2458 u16 BMCR;
2460 switch (PHYID_GET_PHY_ID(vptr->phy_id)) {
2461 case PHYID_CICADA_CS8201:
2463 * Reset to hardware default
2465 MII_REG_BITS_OFF((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2467 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2468 * off it in NWay-forced half mode for NWay-forced v.s.
2469 * legacy-forced issue.
2471 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2472 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2473 else
2474 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2476 * Turn on Link/Activity LED enable bit for CIS8201
2478 MII_REG_BITS_ON(PLED_LALBE, MII_REG_PLED, vptr->mac_regs);
2479 break;
2480 case PHYID_VT3216_32BIT:
2481 case PHYID_VT3216_64BIT:
2483 * Reset to hardware default
2485 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2487 * Turn on ECHODIS bit in NWay-forced full mode and turn it
2488 * off it in NWay-forced half mode for NWay-forced v.s.
2489 * legacy-forced issue
2491 if (vptr->mii_status & VELOCITY_DUPLEX_FULL)
2492 MII_REG_BITS_ON(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2493 else
2494 MII_REG_BITS_OFF(TCSR_ECHODIS, MII_REG_TCSR, vptr->mac_regs);
2495 break;
2497 case PHYID_MARVELL_1000:
2498 case PHYID_MARVELL_1000S:
2500 * Assert CRS on Transmit
2502 MII_REG_BITS_ON(PSCR_ACRSTX, MII_REG_PSCR, vptr->mac_regs);
2504 * Reset to hardware default
2506 MII_REG_BITS_ON((ANAR_ASMDIR | ANAR_PAUSE), MII_REG_ANAR, vptr->mac_regs);
2507 break;
2508 default:
2511 velocity_mii_read(vptr->mac_regs, MII_REG_BMCR, &BMCR);
2512 if (BMCR & BMCR_ISO) {
2513 BMCR &= ~BMCR_ISO;
2514 velocity_mii_write(vptr->mac_regs, MII_REG_BMCR, BMCR);
2519 * safe_disable_mii_autopoll - autopoll off
2520 * @regs: velocity registers
2522 * Turn off the autopoll and wait for it to disable on the chip
2525 static void safe_disable_mii_autopoll(struct mac_regs __iomem * regs)
2527 u16 ww;
2529 /* turn off MAUTO */
2530 writeb(0, &regs->MIICR);
2531 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2532 udelay(1);
2533 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2534 break;
2539 * enable_mii_autopoll - turn on autopolling
2540 * @regs: velocity registers
2542 * Enable the MII link status autopoll feature on the Velocity
2543 * hardware. Wait for it to enable.
2546 static void enable_mii_autopoll(struct mac_regs __iomem * regs)
2548 int ii;
2550 writeb(0, &(regs->MIICR));
2551 writeb(MIIADR_SWMPL, &regs->MIIADR);
2553 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2554 udelay(1);
2555 if (BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2556 break;
2559 writeb(MIICR_MAUTO, &regs->MIICR);
2561 for (ii = 0; ii < W_MAX_TIMEOUT; ii++) {
2562 udelay(1);
2563 if (!BYTE_REG_BITS_IS_ON(MIISR_MIDLE, &regs->MIISR))
2564 break;
2570 * velocity_mii_read - read MII data
2571 * @regs: velocity registers
2572 * @index: MII register index
2573 * @data: buffer for received data
2575 * Perform a single read of an MII 16bit register. Returns zero
2576 * on success or -ETIMEDOUT if the PHY did not respond.
2579 static int velocity_mii_read(struct mac_regs __iomem *regs, u8 index, u16 *data)
2581 u16 ww;
2584 * Disable MIICR_MAUTO, so that mii addr can be set normally
2586 safe_disable_mii_autopoll(regs);
2588 writeb(index, &regs->MIIADR);
2590 BYTE_REG_BITS_ON(MIICR_RCMD, &regs->MIICR);
2592 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2593 if (!(readb(&regs->MIICR) & MIICR_RCMD))
2594 break;
2597 *data = readw(&regs->MIIDATA);
2599 enable_mii_autopoll(regs);
2600 if (ww == W_MAX_TIMEOUT)
2601 return -ETIMEDOUT;
2602 return 0;
2606 * velocity_mii_write - write MII data
2607 * @regs: velocity registers
2608 * @index: MII register index
2609 * @data: 16bit data for the MII register
2611 * Perform a single write to an MII 16bit register. Returns zero
2612 * on success or -ETIMEDOUT if the PHY did not respond.
2615 static int velocity_mii_write(struct mac_regs __iomem *regs, u8 mii_addr, u16 data)
2617 u16 ww;
2620 * Disable MIICR_MAUTO, so that mii addr can be set normally
2622 safe_disable_mii_autopoll(regs);
2624 /* MII reg offset */
2625 writeb(mii_addr, &regs->MIIADR);
2626 /* set MII data */
2627 writew(data, &regs->MIIDATA);
2629 /* turn on MIICR_WCMD */
2630 BYTE_REG_BITS_ON(MIICR_WCMD, &regs->MIICR);
2632 /* W_MAX_TIMEOUT is the timeout period */
2633 for (ww = 0; ww < W_MAX_TIMEOUT; ww++) {
2634 udelay(5);
2635 if (!(readb(&regs->MIICR) & MIICR_WCMD))
2636 break;
2638 enable_mii_autopoll(regs);
2640 if (ww == W_MAX_TIMEOUT)
2641 return -ETIMEDOUT;
2642 return 0;
2646 * velocity_get_opt_media_mode - get media selection
2647 * @vptr: velocity adapter
2649 * Get the media mode stored in EEPROM or module options and load
2650 * mii_status accordingly. The requested link state information
2651 * is also returned.
2654 static u32 velocity_get_opt_media_mode(struct velocity_info *vptr)
2656 u32 status = 0;
2658 switch (vptr->options.spd_dpx) {
2659 case SPD_DPX_AUTO:
2660 status = VELOCITY_AUTONEG_ENABLE;
2661 break;
2662 case SPD_DPX_100_FULL:
2663 status = VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL;
2664 break;
2665 case SPD_DPX_10_FULL:
2666 status = VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL;
2667 break;
2668 case SPD_DPX_100_HALF:
2669 status = VELOCITY_SPEED_100;
2670 break;
2671 case SPD_DPX_10_HALF:
2672 status = VELOCITY_SPEED_10;
2673 break;
2675 vptr->mii_status = status;
2676 return status;
2680 * mii_set_auto_on - autonegotiate on
2681 * @vptr: velocity
2683 * Enable autonegotation on this interface
2686 static void mii_set_auto_on(struct velocity_info *vptr)
2688 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs))
2689 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
2690 else
2691 MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2696 static void mii_set_auto_off(struct velocity_info * vptr)
2698 MII_REG_BITS_OFF(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs);
2703 * set_mii_flow_control - flow control setup
2704 * @vptr: velocity interface
2706 * Set up the flow control on this interface according to
2707 * the supplied user/eeprom options.
2710 static void set_mii_flow_control(struct velocity_info *vptr)
2712 /*Enable or Disable PAUSE in ANAR */
2713 switch (vptr->options.flow_cntl) {
2714 case FLOW_CNTL_TX:
2715 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2716 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2717 break;
2719 case FLOW_CNTL_RX:
2720 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2721 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2722 break;
2724 case FLOW_CNTL_TX_RX:
2725 MII_REG_BITS_ON(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2726 MII_REG_BITS_ON(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2727 break;
2729 case FLOW_CNTL_DISABLE:
2730 MII_REG_BITS_OFF(ANAR_PAUSE, MII_REG_ANAR, vptr->mac_regs);
2731 MII_REG_BITS_OFF(ANAR_ASMDIR, MII_REG_ANAR, vptr->mac_regs);
2732 break;
2733 default:
2734 break;
2739 * velocity_set_media_mode - set media mode
2740 * @mii_status: old MII link state
2742 * Check the media link state and configure the flow control
2743 * PHY and also velocity hardware setup accordingly. In particular
2744 * we need to set up CD polling and frame bursting.
2747 static int velocity_set_media_mode(struct velocity_info *vptr, u32 mii_status)
2749 u32 curr_status;
2750 struct mac_regs __iomem * regs = vptr->mac_regs;
2752 vptr->mii_status = mii_check_media_mode(vptr->mac_regs);
2753 curr_status = vptr->mii_status & (~VELOCITY_LINK_FAIL);
2755 /* Set mii link status */
2756 set_mii_flow_control(vptr);
2759 Check if new status is consisent with current status
2760 if (((mii_status & curr_status) & VELOCITY_AUTONEG_ENABLE)
2761 || (mii_status==curr_status)) {
2762 vptr->mii_status=mii_check_media_mode(vptr->mac_regs);
2763 vptr->mii_status=check_connection_type(vptr->mac_regs);
2764 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity link no change\n");
2765 return 0;
2769 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201) {
2770 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
2774 * If connection type is AUTO
2776 if (mii_status & VELOCITY_AUTONEG_ENABLE) {
2777 VELOCITY_PRT(MSG_LEVEL_INFO, "Velocity is AUTO mode\n");
2778 /* clear force MAC mode bit */
2779 BYTE_REG_BITS_OFF(CHIPGCR_FCMODE, &regs->CHIPGCR);
2780 /* set duplex mode of MAC according to duplex mode of MII */
2781 MII_REG_BITS_ON(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10, MII_REG_ANAR, vptr->mac_regs);
2782 MII_REG_BITS_ON(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2783 MII_REG_BITS_ON(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs);
2785 /* enable AUTO-NEGO mode */
2786 mii_set_auto_on(vptr);
2787 } else {
2788 u16 ANAR;
2789 u8 CHIPGCR;
2792 * 1. if it's 3119, disable frame bursting in halfduplex mode
2793 * and enable it in fullduplex mode
2794 * 2. set correct MII/GMII and half/full duplex mode in CHIPGCR
2795 * 3. only enable CD heart beat counter in 10HD mode
2798 /* set force MAC mode bit */
2799 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
2801 CHIPGCR = readb(&regs->CHIPGCR);
2802 CHIPGCR &= ~CHIPGCR_FCGMII;
2804 if (mii_status & VELOCITY_DUPLEX_FULL) {
2805 CHIPGCR |= CHIPGCR_FCFDX;
2806 writeb(CHIPGCR, &regs->CHIPGCR);
2807 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced full mode\n");
2808 if (vptr->rev_id < REV_ID_VT3216_A0)
2809 BYTE_REG_BITS_OFF(TCR_TB2BDIS, &regs->TCR);
2810 } else {
2811 CHIPGCR &= ~CHIPGCR_FCFDX;
2812 VELOCITY_PRT(MSG_LEVEL_INFO, "set Velocity to forced half mode\n");
2813 writeb(CHIPGCR, &regs->CHIPGCR);
2814 if (vptr->rev_id < REV_ID_VT3216_A0)
2815 BYTE_REG_BITS_ON(TCR_TB2BDIS, &regs->TCR);
2818 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
2820 if (!(mii_status & VELOCITY_DUPLEX_FULL) && (mii_status & VELOCITY_SPEED_10)) {
2821 BYTE_REG_BITS_OFF(TESTCFG_HBDIS, &regs->TESTCFG);
2822 } else {
2823 BYTE_REG_BITS_ON(TESTCFG_HBDIS, &regs->TESTCFG);
2825 /* MII_REG_BITS_OFF(BMCR_SPEED1G, MII_REG_BMCR, vptr->mac_regs); */
2826 velocity_mii_read(vptr->mac_regs, MII_REG_ANAR, &ANAR);
2827 ANAR &= (~(ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10));
2828 if (mii_status & VELOCITY_SPEED_100) {
2829 if (mii_status & VELOCITY_DUPLEX_FULL)
2830 ANAR |= ANAR_TXFD;
2831 else
2832 ANAR |= ANAR_TX;
2833 } else {
2834 if (mii_status & VELOCITY_DUPLEX_FULL)
2835 ANAR |= ANAR_10FD;
2836 else
2837 ANAR |= ANAR_10;
2839 velocity_mii_write(vptr->mac_regs, MII_REG_ANAR, ANAR);
2840 /* enable AUTO-NEGO mode */
2841 mii_set_auto_on(vptr);
2842 /* MII_REG_BITS_ON(BMCR_AUTO, MII_REG_BMCR, vptr->mac_regs); */
2844 /* vptr->mii_status=mii_check_media_mode(vptr->mac_regs); */
2845 /* vptr->mii_status=check_connection_type(vptr->mac_regs); */
2846 return VELOCITY_LINK_CHANGE;
2850 * mii_check_media_mode - check media state
2851 * @regs: velocity registers
2853 * Check the current MII status and determine the link status
2854 * accordingly
2857 static u32 mii_check_media_mode(struct mac_regs __iomem * regs)
2859 u32 status = 0;
2860 u16 ANAR;
2862 if (!MII_REG_BITS_IS_ON(BMSR_LNK, MII_REG_BMSR, regs))
2863 status |= VELOCITY_LINK_FAIL;
2865 if (MII_REG_BITS_IS_ON(G1000CR_1000FD, MII_REG_G1000CR, regs))
2866 status |= VELOCITY_SPEED_1000 | VELOCITY_DUPLEX_FULL;
2867 else if (MII_REG_BITS_IS_ON(G1000CR_1000, MII_REG_G1000CR, regs))
2868 status |= (VELOCITY_SPEED_1000);
2869 else {
2870 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2871 if (ANAR & ANAR_TXFD)
2872 status |= (VELOCITY_SPEED_100 | VELOCITY_DUPLEX_FULL);
2873 else if (ANAR & ANAR_TX)
2874 status |= VELOCITY_SPEED_100;
2875 else if (ANAR & ANAR_10FD)
2876 status |= (VELOCITY_SPEED_10 | VELOCITY_DUPLEX_FULL);
2877 else
2878 status |= (VELOCITY_SPEED_10);
2881 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2882 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2883 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2884 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2885 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2886 status |= VELOCITY_AUTONEG_ENABLE;
2890 return status;
2893 static u32 check_connection_type(struct mac_regs __iomem * regs)
2895 u32 status = 0;
2896 u8 PHYSR0;
2897 u16 ANAR;
2898 PHYSR0 = readb(&regs->PHYSR0);
2901 if (!(PHYSR0 & PHYSR0_LINKGD))
2902 status|=VELOCITY_LINK_FAIL;
2905 if (PHYSR0 & PHYSR0_FDPX)
2906 status |= VELOCITY_DUPLEX_FULL;
2908 if (PHYSR0 & PHYSR0_SPDG)
2909 status |= VELOCITY_SPEED_1000;
2910 else if (PHYSR0 & PHYSR0_SPD10)
2911 status |= VELOCITY_SPEED_10;
2912 else
2913 status |= VELOCITY_SPEED_100;
2915 if (MII_REG_BITS_IS_ON(BMCR_AUTO, MII_REG_BMCR, regs)) {
2916 velocity_mii_read(regs, MII_REG_ANAR, &ANAR);
2917 if ((ANAR & (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10))
2918 == (ANAR_TXFD | ANAR_TX | ANAR_10FD | ANAR_10)) {
2919 if (MII_REG_BITS_IS_ON(G1000CR_1000 | G1000CR_1000FD, MII_REG_G1000CR, regs))
2920 status |= VELOCITY_AUTONEG_ENABLE;
2924 return status;
2928 * enable_flow_control_ability - flow control
2929 * @vptr: veloity to configure
2931 * Set up flow control according to the flow control options
2932 * determined by the eeprom/configuration.
2935 static void enable_flow_control_ability(struct velocity_info *vptr)
2938 struct mac_regs __iomem * regs = vptr->mac_regs;
2940 switch (vptr->options.flow_cntl) {
2942 case FLOW_CNTL_DEFAULT:
2943 if (BYTE_REG_BITS_IS_ON(PHYSR0_RXFLC, &regs->PHYSR0))
2944 writel(CR0_FDXRFCEN, &regs->CR0Set);
2945 else
2946 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2948 if (BYTE_REG_BITS_IS_ON(PHYSR0_TXFLC, &regs->PHYSR0))
2949 writel(CR0_FDXTFCEN, &regs->CR0Set);
2950 else
2951 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2952 break;
2954 case FLOW_CNTL_TX:
2955 writel(CR0_FDXTFCEN, &regs->CR0Set);
2956 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2957 break;
2959 case FLOW_CNTL_RX:
2960 writel(CR0_FDXRFCEN, &regs->CR0Set);
2961 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2962 break;
2964 case FLOW_CNTL_TX_RX:
2965 writel(CR0_FDXTFCEN, &regs->CR0Set);
2966 writel(CR0_FDXRFCEN, &regs->CR0Set);
2967 break;
2969 case FLOW_CNTL_DISABLE:
2970 writel(CR0_FDXRFCEN, &regs->CR0Clr);
2971 writel(CR0_FDXTFCEN, &regs->CR0Clr);
2972 break;
2974 default:
2975 break;
2982 * velocity_ethtool_up - pre hook for ethtool
2983 * @dev: network device
2985 * Called before an ethtool operation. We need to make sure the
2986 * chip is out of D3 state before we poke at it.
2989 static int velocity_ethtool_up(struct net_device *dev)
2991 struct velocity_info *vptr = netdev_priv(dev);
2992 if (!netif_running(dev))
2993 pci_set_power_state(vptr->pdev, PCI_D0);
2994 return 0;
2998 * velocity_ethtool_down - post hook for ethtool
2999 * @dev: network device
3001 * Called after an ethtool operation. Restore the chip back to D3
3002 * state if it isn't running.
3005 static void velocity_ethtool_down(struct net_device *dev)
3007 struct velocity_info *vptr = netdev_priv(dev);
3008 if (!netif_running(dev))
3009 pci_set_power_state(vptr->pdev, PCI_D3hot);
3012 static int velocity_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3014 struct velocity_info *vptr = netdev_priv(dev);
3015 struct mac_regs __iomem * regs = vptr->mac_regs;
3016 u32 status;
3017 status = check_connection_type(vptr->mac_regs);
3019 cmd->supported = SUPPORTED_TP |
3020 SUPPORTED_Autoneg |
3021 SUPPORTED_10baseT_Half |
3022 SUPPORTED_10baseT_Full |
3023 SUPPORTED_100baseT_Half |
3024 SUPPORTED_100baseT_Full |
3025 SUPPORTED_1000baseT_Half |
3026 SUPPORTED_1000baseT_Full;
3027 if (status & VELOCITY_SPEED_1000)
3028 cmd->speed = SPEED_1000;
3029 else if (status & VELOCITY_SPEED_100)
3030 cmd->speed = SPEED_100;
3031 else
3032 cmd->speed = SPEED_10;
3033 cmd->autoneg = (status & VELOCITY_AUTONEG_ENABLE) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
3034 cmd->port = PORT_TP;
3035 cmd->transceiver = XCVR_INTERNAL;
3036 cmd->phy_address = readb(&regs->MIIADR) & 0x1F;
3038 if (status & VELOCITY_DUPLEX_FULL)
3039 cmd->duplex = DUPLEX_FULL;
3040 else
3041 cmd->duplex = DUPLEX_HALF;
3043 return 0;
3046 static int velocity_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
3048 struct velocity_info *vptr = netdev_priv(dev);
3049 u32 curr_status;
3050 u32 new_status = 0;
3051 int ret = 0;
3053 curr_status = check_connection_type(vptr->mac_regs);
3054 curr_status &= (~VELOCITY_LINK_FAIL);
3056 new_status |= ((cmd->autoneg) ? VELOCITY_AUTONEG_ENABLE : 0);
3057 new_status |= ((cmd->speed == SPEED_100) ? VELOCITY_SPEED_100 : 0);
3058 new_status |= ((cmd->speed == SPEED_10) ? VELOCITY_SPEED_10 : 0);
3059 new_status |= ((cmd->duplex == DUPLEX_FULL) ? VELOCITY_DUPLEX_FULL : 0);
3061 if ((new_status & VELOCITY_AUTONEG_ENABLE) && (new_status != (curr_status | VELOCITY_AUTONEG_ENABLE)))
3062 ret = -EINVAL;
3063 else
3064 velocity_set_media_mode(vptr, new_status);
3066 return ret;
3069 static u32 velocity_get_link(struct net_device *dev)
3071 struct velocity_info *vptr = netdev_priv(dev);
3072 struct mac_regs __iomem * regs = vptr->mac_regs;
3073 return BYTE_REG_BITS_IS_ON(PHYSR0_LINKGD, &regs->PHYSR0) ? 1 : 0;
3076 static void velocity_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
3078 struct velocity_info *vptr = netdev_priv(dev);
3079 strcpy(info->driver, VELOCITY_NAME);
3080 strcpy(info->version, VELOCITY_VERSION);
3081 strcpy(info->bus_info, pci_name(vptr->pdev));
3084 static void velocity_ethtool_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3086 struct velocity_info *vptr = netdev_priv(dev);
3087 wol->supported = WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP;
3088 wol->wolopts |= WAKE_MAGIC;
3090 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3091 wol.wolopts|=WAKE_PHY;
3093 if (vptr->wol_opts & VELOCITY_WOL_UCAST)
3094 wol->wolopts |= WAKE_UCAST;
3095 if (vptr->wol_opts & VELOCITY_WOL_ARP)
3096 wol->wolopts |= WAKE_ARP;
3097 memcpy(&wol->sopass, vptr->wol_passwd, 6);
3100 static int velocity_ethtool_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3102 struct velocity_info *vptr = netdev_priv(dev);
3104 if (!(wol->wolopts & (WAKE_PHY | WAKE_MAGIC | WAKE_UCAST | WAKE_ARP)))
3105 return -EFAULT;
3106 vptr->wol_opts = VELOCITY_WOL_MAGIC;
3109 if (wol.wolopts & WAKE_PHY) {
3110 vptr->wol_opts|=VELOCITY_WOL_PHY;
3111 vptr->flags |=VELOCITY_FLAGS_WOL_ENABLED;
3115 if (wol->wolopts & WAKE_MAGIC) {
3116 vptr->wol_opts |= VELOCITY_WOL_MAGIC;
3117 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3119 if (wol->wolopts & WAKE_UCAST) {
3120 vptr->wol_opts |= VELOCITY_WOL_UCAST;
3121 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3123 if (wol->wolopts & WAKE_ARP) {
3124 vptr->wol_opts |= VELOCITY_WOL_ARP;
3125 vptr->flags |= VELOCITY_FLAGS_WOL_ENABLED;
3127 memcpy(vptr->wol_passwd, wol->sopass, 6);
3128 return 0;
3131 static u32 velocity_get_msglevel(struct net_device *dev)
3133 return msglevel;
3136 static void velocity_set_msglevel(struct net_device *dev, u32 value)
3138 msglevel = value;
3141 static const struct ethtool_ops velocity_ethtool_ops = {
3142 .get_settings = velocity_get_settings,
3143 .set_settings = velocity_set_settings,
3144 .get_drvinfo = velocity_get_drvinfo,
3145 .get_wol = velocity_ethtool_get_wol,
3146 .set_wol = velocity_ethtool_set_wol,
3147 .get_msglevel = velocity_get_msglevel,
3148 .set_msglevel = velocity_set_msglevel,
3149 .get_link = velocity_get_link,
3150 .begin = velocity_ethtool_up,
3151 .complete = velocity_ethtool_down
3155 * velocity_mii_ioctl - MII ioctl handler
3156 * @dev: network device
3157 * @ifr: the ifreq block for the ioctl
3158 * @cmd: the command
3160 * Process MII requests made via ioctl from the network layer. These
3161 * are used by tools like kudzu to interrogate the link state of the
3162 * hardware
3165 static int velocity_mii_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3167 struct velocity_info *vptr = netdev_priv(dev);
3168 struct mac_regs __iomem * regs = vptr->mac_regs;
3169 unsigned long flags;
3170 struct mii_ioctl_data *miidata = if_mii(ifr);
3171 int err;
3173 switch (cmd) {
3174 case SIOCGMIIPHY:
3175 miidata->phy_id = readb(&regs->MIIADR) & 0x1f;
3176 break;
3177 case SIOCGMIIREG:
3178 if (!capable(CAP_NET_ADMIN))
3179 return -EPERM;
3180 if(velocity_mii_read(vptr->mac_regs, miidata->reg_num & 0x1f, &(miidata->val_out)) < 0)
3181 return -ETIMEDOUT;
3182 break;
3183 case SIOCSMIIREG:
3184 if (!capable(CAP_NET_ADMIN))
3185 return -EPERM;
3186 spin_lock_irqsave(&vptr->lock, flags);
3187 err = velocity_mii_write(vptr->mac_regs, miidata->reg_num & 0x1f, miidata->val_in);
3188 spin_unlock_irqrestore(&vptr->lock, flags);
3189 check_connection_type(vptr->mac_regs);
3190 if(err)
3191 return err;
3192 break;
3193 default:
3194 return -EOPNOTSUPP;
3196 return 0;
3199 #ifdef CONFIG_PM
3202 * velocity_save_context - save registers
3203 * @vptr: velocity
3204 * @context: buffer for stored context
3206 * Retrieve the current configuration from the velocity hardware
3207 * and stash it in the context structure, for use by the context
3208 * restore functions. This allows us to save things we need across
3209 * power down states
3212 static void velocity_save_context(struct velocity_info *vptr, struct velocity_context * context)
3214 struct mac_regs __iomem * regs = vptr->mac_regs;
3215 u16 i;
3216 u8 __iomem *ptr = (u8 __iomem *)regs;
3218 for (i = MAC_REG_PAR; i < MAC_REG_CR0_CLR; i += 4)
3219 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3221 for (i = MAC_REG_MAR; i < MAC_REG_TDCSR_CLR; i += 4)
3222 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3224 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4)
3225 *((u32 *) (context->mac_reg + i)) = readl(ptr + i);
3230 * velocity_restore_context - restore registers
3231 * @vptr: velocity
3232 * @context: buffer for stored context
3234 * Reload the register configuration from the velocity context
3235 * created by velocity_save_context.
3238 static void velocity_restore_context(struct velocity_info *vptr, struct velocity_context *context)
3240 struct mac_regs __iomem * regs = vptr->mac_regs;
3241 int i;
3242 u8 __iomem *ptr = (u8 __iomem *)regs;
3244 for (i = MAC_REG_PAR; i < MAC_REG_CR0_SET; i += 4) {
3245 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3248 /* Just skip cr0 */
3249 for (i = MAC_REG_CR1_SET; i < MAC_REG_CR0_CLR; i++) {
3250 /* Clear */
3251 writeb(~(*((u8 *) (context->mac_reg + i))), ptr + i + 4);
3252 /* Set */
3253 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3256 for (i = MAC_REG_MAR; i < MAC_REG_IMR; i += 4) {
3257 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3260 for (i = MAC_REG_RDBASE_LO; i < MAC_REG_FIFO_TEST0; i += 4) {
3261 writel(*((u32 *) (context->mac_reg + i)), ptr + i);
3264 for (i = MAC_REG_TDCSR_SET; i <= MAC_REG_RDCSR_SET; i++) {
3265 writeb(*((u8 *) (context->mac_reg + i)), ptr + i);
3271 * wol_calc_crc - WOL CRC
3272 * @pattern: data pattern
3273 * @mask_pattern: mask
3275 * Compute the wake on lan crc hashes for the packet header
3276 * we are interested in.
3279 static u16 wol_calc_crc(int size, u8 * pattern, u8 *mask_pattern)
3281 u16 crc = 0xFFFF;
3282 u8 mask;
3283 int i, j;
3285 for (i = 0; i < size; i++) {
3286 mask = mask_pattern[i];
3288 /* Skip this loop if the mask equals to zero */
3289 if (mask == 0x00)
3290 continue;
3292 for (j = 0; j < 8; j++) {
3293 if ((mask & 0x01) == 0) {
3294 mask >>= 1;
3295 continue;
3297 mask >>= 1;
3298 crc = crc_ccitt(crc, &(pattern[i * 8 + j]), 1);
3301 /* Finally, invert the result once to get the correct data */
3302 crc = ~crc;
3303 return bitrev32(crc) >> 16;
3307 * velocity_set_wol - set up for wake on lan
3308 * @vptr: velocity to set WOL status on
3310 * Set a card up for wake on lan either by unicast or by
3311 * ARP packet.
3313 * FIXME: check static buffer is safe here
3316 static int velocity_set_wol(struct velocity_info *vptr)
3318 struct mac_regs __iomem * regs = vptr->mac_regs;
3319 static u8 buf[256];
3320 int i;
3322 static u32 mask_pattern[2][4] = {
3323 {0x00203000, 0x000003C0, 0x00000000, 0x0000000}, /* ARP */
3324 {0xfffff000, 0xffffffff, 0xffffffff, 0x000ffff} /* Magic Packet */
3327 writew(0xFFFF, &regs->WOLCRClr);
3328 writeb(WOLCFG_SAB | WOLCFG_SAM, &regs->WOLCFGSet);
3329 writew(WOLCR_MAGIC_EN, &regs->WOLCRSet);
3332 if (vptr->wol_opts & VELOCITY_WOL_PHY)
3333 writew((WOLCR_LINKON_EN|WOLCR_LINKOFF_EN), &regs->WOLCRSet);
3336 if (vptr->wol_opts & VELOCITY_WOL_UCAST) {
3337 writew(WOLCR_UNICAST_EN, &regs->WOLCRSet);
3340 if (vptr->wol_opts & VELOCITY_WOL_ARP) {
3341 struct arp_packet *arp = (struct arp_packet *) buf;
3342 u16 crc;
3343 memset(buf, 0, sizeof(struct arp_packet) + 7);
3345 for (i = 0; i < 4; i++)
3346 writel(mask_pattern[0][i], &regs->ByteMask[0][i]);
3348 arp->type = htons(ETH_P_ARP);
3349 arp->ar_op = htons(1);
3351 memcpy(arp->ar_tip, vptr->ip_addr, 4);
3353 crc = wol_calc_crc((sizeof(struct arp_packet) + 7) / 8, buf,
3354 (u8 *) & mask_pattern[0][0]);
3356 writew(crc, &regs->PatternCRC[0]);
3357 writew(WOLCR_ARP_EN, &regs->WOLCRSet);
3360 BYTE_REG_BITS_ON(PWCFG_WOLTYPE, &regs->PWCFGSet);
3361 BYTE_REG_BITS_ON(PWCFG_LEGACY_WOLEN, &regs->PWCFGSet);
3363 writew(0x0FFF, &regs->WOLSRClr);
3365 if (vptr->mii_status & VELOCITY_AUTONEG_ENABLE) {
3366 if (PHYID_GET_PHY_ID(vptr->phy_id) == PHYID_CICADA_CS8201)
3367 MII_REG_BITS_ON(AUXCR_MDPPS, MII_REG_AUXCR, vptr->mac_regs);
3369 MII_REG_BITS_OFF(G1000CR_1000FD | G1000CR_1000, MII_REG_G1000CR, vptr->mac_regs);
3372 if (vptr->mii_status & VELOCITY_SPEED_1000)
3373 MII_REG_BITS_ON(BMCR_REAUTO, MII_REG_BMCR, vptr->mac_regs);
3375 BYTE_REG_BITS_ON(CHIPGCR_FCMODE, &regs->CHIPGCR);
3378 u8 GCR;
3379 GCR = readb(&regs->CHIPGCR);
3380 GCR = (GCR & ~CHIPGCR_FCGMII) | CHIPGCR_FCFDX;
3381 writeb(GCR, &regs->CHIPGCR);
3384 BYTE_REG_BITS_OFF(ISR_PWEI, &regs->ISR);
3385 /* Turn on SWPTAG just before entering power mode */
3386 BYTE_REG_BITS_ON(STICKHW_SWPTAG, &regs->STICKHW);
3387 /* Go to bed ..... */
3388 BYTE_REG_BITS_ON((STICKHW_DS1 | STICKHW_DS0), &regs->STICKHW);
3390 return 0;
3393 static int velocity_suspend(struct pci_dev *pdev, pm_message_t state)
3395 struct net_device *dev = pci_get_drvdata(pdev);
3396 struct velocity_info *vptr = netdev_priv(dev);
3397 unsigned long flags;
3399 if(!netif_running(vptr->dev))
3400 return 0;
3402 netif_device_detach(vptr->dev);
3404 spin_lock_irqsave(&vptr->lock, flags);
3405 pci_save_state(pdev);
3406 #ifdef ETHTOOL_GWOL
3407 if (vptr->flags & VELOCITY_FLAGS_WOL_ENABLED) {
3408 velocity_get_ip(vptr);
3409 velocity_save_context(vptr, &vptr->context);
3410 velocity_shutdown(vptr);
3411 velocity_set_wol(vptr);
3412 pci_enable_wake(pdev, PCI_D3hot, 1);
3413 pci_set_power_state(pdev, PCI_D3hot);
3414 } else {
3415 velocity_save_context(vptr, &vptr->context);
3416 velocity_shutdown(vptr);
3417 pci_disable_device(pdev);
3418 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3420 #else
3421 pci_set_power_state(pdev, pci_choose_state(pdev, state));
3422 #endif
3423 spin_unlock_irqrestore(&vptr->lock, flags);
3424 return 0;
3427 static int velocity_resume(struct pci_dev *pdev)
3429 struct net_device *dev = pci_get_drvdata(pdev);
3430 struct velocity_info *vptr = netdev_priv(dev);
3431 unsigned long flags;
3432 int i;
3434 if(!netif_running(vptr->dev))
3435 return 0;
3437 pci_set_power_state(pdev, PCI_D0);
3438 pci_enable_wake(pdev, 0, 0);
3439 pci_restore_state(pdev);
3441 mac_wol_reset(vptr->mac_regs);
3443 spin_lock_irqsave(&vptr->lock, flags);
3444 velocity_restore_context(vptr, &vptr->context);
3445 velocity_init_registers(vptr, VELOCITY_INIT_WOL);
3446 mac_disable_int(vptr->mac_regs);
3448 velocity_tx_srv(vptr, 0);
3450 for (i = 0; i < vptr->tx.numq; i++) {
3451 if (vptr->tx.used[i]) {
3452 mac_tx_queue_wake(vptr->mac_regs, i);
3456 mac_enable_int(vptr->mac_regs);
3457 spin_unlock_irqrestore(&vptr->lock, flags);
3458 netif_device_attach(vptr->dev);
3460 return 0;
3463 #ifdef CONFIG_INET
3465 static int velocity_netdev_event(struct notifier_block *nb, unsigned long notification, void *ptr)
3467 struct in_ifaddr *ifa = (struct in_ifaddr *) ptr;
3468 struct net_device *dev = ifa->ifa_dev->dev;
3469 struct velocity_info *vptr;
3470 unsigned long flags;
3472 if (dev_net(dev) != &init_net)
3473 return NOTIFY_DONE;
3475 spin_lock_irqsave(&velocity_dev_list_lock, flags);
3476 list_for_each_entry(vptr, &velocity_dev_list, list) {
3477 if (vptr->dev == dev) {
3478 velocity_get_ip(vptr);
3479 break;
3482 spin_unlock_irqrestore(&velocity_dev_list_lock, flags);
3484 return NOTIFY_DONE;
3487 #endif
3488 #endif