4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 * Key expansion routine taken from crypto/aes.c
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
15 * ---------------------------------------------------------------------------
16 * Copyright (c) 2002, Dr Brian Gladman <brg@gladman.me.uk>, Worcester, UK.
17 * All rights reserved.
21 * The free distribution and use of this software in both source and binary
22 * form is allowed (with or without changes) provided that:
24 * 1. distributions of this source code include the above copyright
25 * notice, this list of conditions and the following disclaimer;
27 * 2. distributions in binary form include the above copyright
28 * notice, this list of conditions and the following disclaimer
29 * in the documentation and/or other associated materials;
31 * 3. the copyright holder's name is not used to endorse products
32 * built using this software without specific written permission.
34 * ALTERNATIVELY, provided that this notice is retained in full, this product
35 * may be distributed under the terms of the GNU General Public License (GPL),
36 * in which case the provisions of the GPL apply INSTEAD OF those given above.
40 * This software is provided 'as is' with no explicit or implied warranties
41 * in respect of its properties, including, but not limited to, correctness
42 * and/or fitness for purpose.
43 * ---------------------------------------------------------------------------
46 #include <linux/module.h>
47 #include <linux/init.h>
48 #include <linux/types.h>
49 #include <linux/errno.h>
50 #include <linux/crypto.h>
51 #include <linux/interrupt.h>
52 #include <linux/kernel.h>
53 #include <asm/byteorder.h>
56 #define AES_MIN_KEY_SIZE 16 /* in uint8_t units */
57 #define AES_MAX_KEY_SIZE 32 /* ditto */
58 #define AES_BLOCK_SIZE 16 /* ditto */
59 #define AES_EXTENDED_KEY_SIZE 64 /* in uint32_t units */
60 #define AES_EXTENDED_KEY_SIZE_B (AES_EXTENDED_KEY_SIZE * sizeof(uint32_t))
63 uint32_t e_data
[AES_EXTENDED_KEY_SIZE
];
64 uint32_t d_data
[AES_EXTENDED_KEY_SIZE
];
74 /* ====== Key management routines ====== */
76 static inline uint32_t
77 generic_rotr32 (const uint32_t x
, const unsigned bits
)
79 const unsigned n
= bits
% 32;
80 return (x
>> n
) | (x
<< (32 - n
));
83 static inline uint32_t
84 generic_rotl32 (const uint32_t x
, const unsigned bits
)
86 const unsigned n
= bits
% 32;
87 return (x
<< n
) | (x
>> (32 - n
));
90 #define rotl generic_rotl32
91 #define rotr generic_rotr32
94 * #define byte(x, nr) ((unsigned char)((x) >> (nr*8)))
97 byte(const uint32_t x
, const unsigned n
)
105 static uint8_t pow_tab
[256];
106 static uint8_t log_tab
[256];
107 static uint8_t sbx_tab
[256];
108 static uint8_t isb_tab
[256];
109 static uint32_t rco_tab
[10];
110 static uint32_t ft_tab
[4][256];
111 static uint32_t it_tab
[4][256];
113 static uint32_t fl_tab
[4][256];
114 static uint32_t il_tab
[4][256];
116 static inline uint8_t
117 f_mult (uint8_t a
, uint8_t b
)
119 uint8_t aa
= log_tab
[a
], cc
= aa
+ log_tab
[b
];
121 return pow_tab
[cc
+ (cc
< aa
? 1 : 0)];
124 #define ff_mult(a,b) (a && b ? f_mult(a, b) : 0)
126 #define f_rn(bo, bi, n, k) \
127 bo[n] = ft_tab[0][byte(bi[n],0)] ^ \
128 ft_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
129 ft_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
130 ft_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
132 #define i_rn(bo, bi, n, k) \
133 bo[n] = it_tab[0][byte(bi[n],0)] ^ \
134 it_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
135 it_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
136 it_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
139 ( fl_tab[0][byte(x, 0)] ^ \
140 fl_tab[1][byte(x, 1)] ^ \
141 fl_tab[2][byte(x, 2)] ^ \
142 fl_tab[3][byte(x, 3)] )
144 #define f_rl(bo, bi, n, k) \
145 bo[n] = fl_tab[0][byte(bi[n],0)] ^ \
146 fl_tab[1][byte(bi[(n + 1) & 3],1)] ^ \
147 fl_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
148 fl_tab[3][byte(bi[(n + 3) & 3],3)] ^ *(k + n)
150 #define i_rl(bo, bi, n, k) \
151 bo[n] = il_tab[0][byte(bi[n],0)] ^ \
152 il_tab[1][byte(bi[(n + 3) & 3],1)] ^ \
153 il_tab[2][byte(bi[(n + 2) & 3],2)] ^ \
154 il_tab[3][byte(bi[(n + 1) & 3],3)] ^ *(k + n)
162 /* log and power tables for GF(2**8) finite field with
163 0x011b as modular polynomial - the simplest prmitive
164 root is 0x03, used here to generate the tables */
166 for (i
= 0, p
= 1; i
< 256; ++i
) {
167 pow_tab
[i
] = (uint8_t) p
;
168 log_tab
[p
] = (uint8_t) i
;
170 p
^= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
175 for (i
= 0, p
= 1; i
< 10; ++i
) {
178 p
= (p
<< 1) ^ (p
& 0x80 ? 0x01b : 0);
181 for (i
= 0; i
< 256; ++i
) {
182 p
= (i
? pow_tab
[255 - log_tab
[i
]] : 0);
183 q
= ((p
>> 7) | (p
<< 1)) ^ ((p
>> 6) | (p
<< 2));
184 p
^= 0x63 ^ q
^ ((q
>> 6) | (q
<< 2));
186 isb_tab
[p
] = (uint8_t) i
;
189 for (i
= 0; i
< 256; ++i
) {
194 fl_tab
[1][i
] = rotl (t
, 8);
195 fl_tab
[2][i
] = rotl (t
, 16);
196 fl_tab
[3][i
] = rotl (t
, 24);
198 t
= ((uint32_t) ff_mult (2, p
)) |
199 ((uint32_t) p
<< 8) |
200 ((uint32_t) p
<< 16) | ((uint32_t) ff_mult (3, p
) << 24);
203 ft_tab
[1][i
] = rotl (t
, 8);
204 ft_tab
[2][i
] = rotl (t
, 16);
205 ft_tab
[3][i
] = rotl (t
, 24);
211 il_tab
[1][i
] = rotl (t
, 8);
212 il_tab
[2][i
] = rotl (t
, 16);
213 il_tab
[3][i
] = rotl (t
, 24);
215 t
= ((uint32_t) ff_mult (14, p
)) |
216 ((uint32_t) ff_mult (9, p
) << 8) |
217 ((uint32_t) ff_mult (13, p
) << 16) |
218 ((uint32_t) ff_mult (11, p
) << 24);
221 it_tab
[1][i
] = rotl (t
, 8);
222 it_tab
[2][i
] = rotl (t
, 16);
223 it_tab
[3][i
] = rotl (t
, 24);
227 #define star_x(x) (((x) & 0x7f7f7f7f) << 1) ^ ((((x) & 0x80808080) >> 7) * 0x1b)
229 #define imix_col(y,x) \
235 (y) ^= rotr(u ^ t, 8) ^ \
239 /* initialise the key schedule from the user supplied key */
242 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
243 t ^= E_KEY[4 * i]; E_KEY[4 * i + 4] = t; \
244 t ^= E_KEY[4 * i + 1]; E_KEY[4 * i + 5] = t; \
245 t ^= E_KEY[4 * i + 2]; E_KEY[4 * i + 6] = t; \
246 t ^= E_KEY[4 * i + 3]; E_KEY[4 * i + 7] = t; \
250 { t = rotr(t, 8); t = ls_box(t) ^ rco_tab[i]; \
251 t ^= E_KEY[6 * i]; E_KEY[6 * i + 6] = t; \
252 t ^= E_KEY[6 * i + 1]; E_KEY[6 * i + 7] = t; \
253 t ^= E_KEY[6 * i + 2]; E_KEY[6 * i + 8] = t; \
254 t ^= E_KEY[6 * i + 3]; E_KEY[6 * i + 9] = t; \
255 t ^= E_KEY[6 * i + 4]; E_KEY[6 * i + 10] = t; \
256 t ^= E_KEY[6 * i + 5]; E_KEY[6 * i + 11] = t; \
260 { t = rotr(t, 8); ; t = ls_box(t) ^ rco_tab[i]; \
261 t ^= E_KEY[8 * i]; E_KEY[8 * i + 8] = t; \
262 t ^= E_KEY[8 * i + 1]; E_KEY[8 * i + 9] = t; \
263 t ^= E_KEY[8 * i + 2]; E_KEY[8 * i + 10] = t; \
264 t ^= E_KEY[8 * i + 3]; E_KEY[8 * i + 11] = t; \
265 t = E_KEY[8 * i + 4] ^ ls_box(t); \
266 E_KEY[8 * i + 12] = t; \
267 t ^= E_KEY[8 * i + 5]; E_KEY[8 * i + 13] = t; \
268 t ^= E_KEY[8 * i + 6]; E_KEY[8 * i + 14] = t; \
269 t ^= E_KEY[8 * i + 7]; E_KEY[8 * i + 15] = t; \
272 /* Tells whether the ACE is capable to generate
273 the extended key for a given key_len. */
275 aes_hw_extkey_available(uint8_t key_len
)
277 /* TODO: We should check the actual CPU model/stepping
278 as it's possible that the capability will be
279 added in the next CPU revisions. */
285 static inline struct aes_ctx
*aes_ctx(void *ctx
)
287 unsigned long align
= PADLOCK_ALIGNMENT
;
289 if (align
<= crypto_tfm_ctx_alignment())
291 return (struct aes_ctx
*)ALIGN((unsigned long)ctx
, align
);
295 aes_set_key(void *ctx_arg
, const uint8_t *in_key
, unsigned int key_len
, uint32_t *flags
)
297 struct aes_ctx
*ctx
= aes_ctx(ctx_arg
);
298 const __le32
*key
= (const __le32
*)in_key
;
299 uint32_t i
, t
, u
, v
, w
;
300 uint32_t P
[AES_EXTENDED_KEY_SIZE
];
303 if (key_len
!= 16 && key_len
!= 24 && key_len
!= 32) {
304 *flags
|= CRYPTO_TFM_RES_BAD_KEY_LEN
;
308 ctx
->key_length
= key_len
;
311 * If the hardware is capable of generating the extended key
312 * itself we must supply the plain key for both encryption
315 ctx
->E
= ctx
->e_data
;
316 ctx
->D
= ctx
->e_data
;
318 E_KEY
[0] = le32_to_cpu(key
[0]);
319 E_KEY
[1] = le32_to_cpu(key
[1]);
320 E_KEY
[2] = le32_to_cpu(key
[2]);
321 E_KEY
[3] = le32_to_cpu(key
[3]);
323 /* Prepare control words. */
324 memset(&ctx
->cword
, 0, sizeof(ctx
->cword
));
326 ctx
->cword
.decrypt
.encdec
= 1;
327 ctx
->cword
.encrypt
.rounds
= 10 + (key_len
- 16) / 4;
328 ctx
->cword
.decrypt
.rounds
= ctx
->cword
.encrypt
.rounds
;
329 ctx
->cword
.encrypt
.ksize
= (key_len
- 16) / 8;
330 ctx
->cword
.decrypt
.ksize
= ctx
->cword
.encrypt
.ksize
;
332 /* Don't generate extended keys if the hardware can do it. */
333 if (aes_hw_extkey_available(key_len
))
336 ctx
->D
= ctx
->d_data
;
337 ctx
->cword
.encrypt
.keygen
= 1;
338 ctx
->cword
.decrypt
.keygen
= 1;
343 for (i
= 0; i
< 10; ++i
)
348 E_KEY
[4] = le32_to_cpu(key
[4]);
349 t
= E_KEY
[5] = le32_to_cpu(key
[5]);
350 for (i
= 0; i
< 8; ++i
)
355 E_KEY
[4] = le32_to_cpu(key
[4]);
356 E_KEY
[5] = le32_to_cpu(key
[5]);
357 E_KEY
[6] = le32_to_cpu(key
[6]);
358 t
= E_KEY
[7] = le32_to_cpu(key
[7]);
359 for (i
= 0; i
< 7; ++i
)
369 for (i
= 4; i
< key_len
+ 24; ++i
) {
370 imix_col (D_KEY
[i
], E_KEY
[i
]);
373 /* PadLock needs a different format of the decryption key. */
374 rounds
= 10 + (key_len
- 16) / 4;
376 for (i
= 0; i
< rounds
; i
++) {
377 P
[((i
+ 1) * 4) + 0] = D_KEY
[((rounds
- i
- 1) * 4) + 0];
378 P
[((i
+ 1) * 4) + 1] = D_KEY
[((rounds
- i
- 1) * 4) + 1];
379 P
[((i
+ 1) * 4) + 2] = D_KEY
[((rounds
- i
- 1) * 4) + 2];
380 P
[((i
+ 1) * 4) + 3] = D_KEY
[((rounds
- i
- 1) * 4) + 3];
383 P
[0] = E_KEY
[(rounds
* 4) + 0];
384 P
[1] = E_KEY
[(rounds
* 4) + 1];
385 P
[2] = E_KEY
[(rounds
* 4) + 2];
386 P
[3] = E_KEY
[(rounds
* 4) + 3];
388 memcpy(D_KEY
, P
, AES_EXTENDED_KEY_SIZE_B
);
393 /* ====== Encryption/decryption routines ====== */
395 /* These are the real call to PadLock. */
396 static inline void padlock_xcrypt_ecb(const u8
*input
, u8
*output
, void *key
,
397 void *control_word
, u32 count
)
399 asm volatile ("pushfl; popfl"); /* enforce key reload. */
400 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
401 : "+S"(input
), "+D"(output
)
402 : "d"(control_word
), "b"(key
), "c"(count
));
405 static inline u8
*padlock_xcrypt_cbc(const u8
*input
, u8
*output
, void *key
,
406 u8
*iv
, void *control_word
, u32 count
)
408 /* Enforce key reload. */
409 asm volatile ("pushfl; popfl");
411 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
412 : "+S" (input
), "+D" (output
), "+a" (iv
)
413 : "d" (control_word
), "b" (key
), "c" (count
));
418 aes_encrypt(void *ctx_arg
, uint8_t *out
, const uint8_t *in
)
420 struct aes_ctx
*ctx
= aes_ctx(ctx_arg
);
421 padlock_xcrypt_ecb(in
, out
, ctx
->E
, &ctx
->cword
.encrypt
, 1);
425 aes_decrypt(void *ctx_arg
, uint8_t *out
, const uint8_t *in
)
427 struct aes_ctx
*ctx
= aes_ctx(ctx_arg
);
428 padlock_xcrypt_ecb(in
, out
, ctx
->D
, &ctx
->cword
.decrypt
, 1);
431 static unsigned int aes_encrypt_ecb(const struct cipher_desc
*desc
, u8
*out
,
432 const u8
*in
, unsigned int nbytes
)
434 struct aes_ctx
*ctx
= aes_ctx(crypto_tfm_ctx(desc
->tfm
));
435 padlock_xcrypt_ecb(in
, out
, ctx
->E
, &ctx
->cword
.encrypt
,
436 nbytes
/ AES_BLOCK_SIZE
);
437 return nbytes
& ~(AES_BLOCK_SIZE
- 1);
440 static unsigned int aes_decrypt_ecb(const struct cipher_desc
*desc
, u8
*out
,
441 const u8
*in
, unsigned int nbytes
)
443 struct aes_ctx
*ctx
= aes_ctx(crypto_tfm_ctx(desc
->tfm
));
444 padlock_xcrypt_ecb(in
, out
, ctx
->D
, &ctx
->cword
.decrypt
,
445 nbytes
/ AES_BLOCK_SIZE
);
446 return nbytes
& ~(AES_BLOCK_SIZE
- 1);
449 static unsigned int aes_encrypt_cbc(const struct cipher_desc
*desc
, u8
*out
,
450 const u8
*in
, unsigned int nbytes
)
452 struct aes_ctx
*ctx
= aes_ctx(crypto_tfm_ctx(desc
->tfm
));
455 iv
= padlock_xcrypt_cbc(in
, out
, ctx
->E
, desc
->info
,
456 &ctx
->cword
.encrypt
, nbytes
/ AES_BLOCK_SIZE
);
457 memcpy(desc
->info
, iv
, AES_BLOCK_SIZE
);
459 return nbytes
& ~(AES_BLOCK_SIZE
- 1);
462 static unsigned int aes_decrypt_cbc(const struct cipher_desc
*desc
, u8
*out
,
463 const u8
*in
, unsigned int nbytes
)
465 struct aes_ctx
*ctx
= aes_ctx(crypto_tfm_ctx(desc
->tfm
));
466 padlock_xcrypt_cbc(in
, out
, ctx
->D
, desc
->info
, &ctx
->cword
.decrypt
,
467 nbytes
/ AES_BLOCK_SIZE
);
468 return nbytes
& ~(AES_BLOCK_SIZE
- 1);
471 static struct crypto_alg aes_alg
= {
473 .cra_driver_name
= "aes-padlock",
475 .cra_flags
= CRYPTO_ALG_TYPE_CIPHER
,
476 .cra_blocksize
= AES_BLOCK_SIZE
,
477 .cra_ctxsize
= sizeof(struct aes_ctx
),
478 .cra_alignmask
= PADLOCK_ALIGNMENT
- 1,
479 .cra_module
= THIS_MODULE
,
480 .cra_list
= LIST_HEAD_INIT(aes_alg
.cra_list
),
483 .cia_min_keysize
= AES_MIN_KEY_SIZE
,
484 .cia_max_keysize
= AES_MAX_KEY_SIZE
,
485 .cia_setkey
= aes_set_key
,
486 .cia_encrypt
= aes_encrypt
,
487 .cia_decrypt
= aes_decrypt
,
488 .cia_encrypt_ecb
= aes_encrypt_ecb
,
489 .cia_decrypt_ecb
= aes_decrypt_ecb
,
490 .cia_encrypt_cbc
= aes_encrypt_cbc
,
491 .cia_decrypt_cbc
= aes_decrypt_cbc
,
496 int __init
padlock_init_aes(void)
498 printk(KERN_NOTICE PFX
"Using VIA PadLock ACE for AES algorithm.\n");
501 return crypto_register_alg(&aes_alg
);
504 void __exit
padlock_fini_aes(void)
506 crypto_unregister_alg(&aes_alg
);