xhci: Properly handle COMP_2ND_BW_ERR
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / ptrace.c
blob78ab24a7b0e440e2b44d75cc08bc353ab6f939c2
1 /*
2 * linux/kernel/ptrace.c
4 * (C) Copyright 1999 Linus Torvalds
6 * Common interfaces for "ptrace()" which we do not want
7 * to continually duplicate across every architecture.
8 */
10 #include <linux/capability.h>
11 #include <linux/export.h>
12 #include <linux/sched.h>
13 #include <linux/errno.h>
14 #include <linux/mm.h>
15 #include <linux/highmem.h>
16 #include <linux/pagemap.h>
17 #include <linux/ptrace.h>
18 #include <linux/security.h>
19 #include <linux/signal.h>
20 #include <linux/audit.h>
21 #include <linux/pid_namespace.h>
22 #include <linux/syscalls.h>
23 #include <linux/uaccess.h>
24 #include <linux/regset.h>
25 #include <linux/hw_breakpoint.h>
26 #include <linux/cn_proc.h>
29 static int ptrace_trapping_sleep_fn(void *flags)
31 schedule();
32 return 0;
36 * ptrace a task: make the debugger its new parent and
37 * move it to the ptrace list.
39 * Must be called with the tasklist lock write-held.
41 void __ptrace_link(struct task_struct *child, struct task_struct *new_parent)
43 BUG_ON(!list_empty(&child->ptrace_entry));
44 list_add(&child->ptrace_entry, &new_parent->ptraced);
45 child->parent = new_parent;
48 /**
49 * __ptrace_unlink - unlink ptracee and restore its execution state
50 * @child: ptracee to be unlinked
52 * Remove @child from the ptrace list, move it back to the original parent,
53 * and restore the execution state so that it conforms to the group stop
54 * state.
56 * Unlinking can happen via two paths - explicit PTRACE_DETACH or ptracer
57 * exiting. For PTRACE_DETACH, unless the ptracee has been killed between
58 * ptrace_check_attach() and here, it's guaranteed to be in TASK_TRACED.
59 * If the ptracer is exiting, the ptracee can be in any state.
61 * After detach, the ptracee should be in a state which conforms to the
62 * group stop. If the group is stopped or in the process of stopping, the
63 * ptracee should be put into TASK_STOPPED; otherwise, it should be woken
64 * up from TASK_TRACED.
66 * If the ptracee is in TASK_TRACED and needs to be moved to TASK_STOPPED,
67 * it goes through TRACED -> RUNNING -> STOPPED transition which is similar
68 * to but in the opposite direction of what happens while attaching to a
69 * stopped task. However, in this direction, the intermediate RUNNING
70 * state is not hidden even from the current ptracer and if it immediately
71 * re-attaches and performs a WNOHANG wait(2), it may fail.
73 * CONTEXT:
74 * write_lock_irq(tasklist_lock)
76 void __ptrace_unlink(struct task_struct *child)
78 BUG_ON(!child->ptrace);
80 child->ptrace = 0;
81 child->parent = child->real_parent;
82 list_del_init(&child->ptrace_entry);
84 spin_lock(&child->sighand->siglock);
87 * Clear all pending traps and TRAPPING. TRAPPING should be
88 * cleared regardless of JOBCTL_STOP_PENDING. Do it explicitly.
90 task_clear_jobctl_pending(child, JOBCTL_TRAP_MASK);
91 task_clear_jobctl_trapping(child);
94 * Reinstate JOBCTL_STOP_PENDING if group stop is in effect and
95 * @child isn't dead.
97 if (!(child->flags & PF_EXITING) &&
98 (child->signal->flags & SIGNAL_STOP_STOPPED ||
99 child->signal->group_stop_count)) {
100 child->jobctl |= JOBCTL_STOP_PENDING;
103 * This is only possible if this thread was cloned by the
104 * traced task running in the stopped group, set the signal
105 * for the future reports.
106 * FIXME: we should change ptrace_init_task() to handle this
107 * case.
109 if (!(child->jobctl & JOBCTL_STOP_SIGMASK))
110 child->jobctl |= SIGSTOP;
114 * If transition to TASK_STOPPED is pending or in TASK_TRACED, kick
115 * @child in the butt. Note that @resume should be used iff @child
116 * is in TASK_TRACED; otherwise, we might unduly disrupt
117 * TASK_KILLABLE sleeps.
119 if (child->jobctl & JOBCTL_STOP_PENDING || task_is_traced(child))
120 signal_wake_up(child, task_is_traced(child));
122 spin_unlock(&child->sighand->siglock);
126 * ptrace_check_attach - check whether ptracee is ready for ptrace operation
127 * @child: ptracee to check for
128 * @ignore_state: don't check whether @child is currently %TASK_TRACED
130 * Check whether @child is being ptraced by %current and ready for further
131 * ptrace operations. If @ignore_state is %false, @child also should be in
132 * %TASK_TRACED state and on return the child is guaranteed to be traced
133 * and not executing. If @ignore_state is %true, @child can be in any
134 * state.
136 * CONTEXT:
137 * Grabs and releases tasklist_lock and @child->sighand->siglock.
139 * RETURNS:
140 * 0 on success, -ESRCH if %child is not ready.
142 int ptrace_check_attach(struct task_struct *child, bool ignore_state)
144 int ret = -ESRCH;
147 * We take the read lock around doing both checks to close a
148 * possible race where someone else was tracing our child and
149 * detached between these two checks. After this locked check,
150 * we are sure that this is our traced child and that can only
151 * be changed by us so it's not changing right after this.
153 read_lock(&tasklist_lock);
154 if ((child->ptrace & PT_PTRACED) && child->parent == current) {
156 * child->sighand can't be NULL, release_task()
157 * does ptrace_unlink() before __exit_signal().
159 spin_lock_irq(&child->sighand->siglock);
160 WARN_ON_ONCE(task_is_stopped(child));
161 if (ignore_state || (task_is_traced(child) &&
162 !(child->jobctl & JOBCTL_LISTENING)))
163 ret = 0;
164 spin_unlock_irq(&child->sighand->siglock);
166 read_unlock(&tasklist_lock);
168 if (!ret && !ignore_state)
169 ret = wait_task_inactive(child, TASK_TRACED) ? 0 : -ESRCH;
171 /* All systems go.. */
172 return ret;
175 int __ptrace_may_access(struct task_struct *task, unsigned int mode)
177 const struct cred *cred = current_cred(), *tcred;
179 /* May we inspect the given task?
180 * This check is used both for attaching with ptrace
181 * and for allowing access to sensitive information in /proc.
183 * ptrace_attach denies several cases that /proc allows
184 * because setting up the necessary parent/child relationship
185 * or halting the specified task is impossible.
187 int dumpable = 0;
188 /* Don't let security modules deny introspection */
189 if (task == current)
190 return 0;
191 rcu_read_lock();
192 tcred = __task_cred(task);
193 if (cred->user->user_ns == tcred->user->user_ns &&
194 (cred->uid == tcred->euid &&
195 cred->uid == tcred->suid &&
196 cred->uid == tcred->uid &&
197 cred->gid == tcred->egid &&
198 cred->gid == tcred->sgid &&
199 cred->gid == tcred->gid))
200 goto ok;
201 if (ns_capable(tcred->user->user_ns, CAP_SYS_PTRACE))
202 goto ok;
203 rcu_read_unlock();
204 return -EPERM;
206 rcu_read_unlock();
207 smp_rmb();
208 if (task->mm)
209 dumpable = get_dumpable(task->mm);
210 if (!dumpable && !task_ns_capable(task, CAP_SYS_PTRACE))
211 return -EPERM;
213 return security_ptrace_access_check(task, mode);
216 bool ptrace_may_access(struct task_struct *task, unsigned int mode)
218 int err;
219 task_lock(task);
220 err = __ptrace_may_access(task, mode);
221 task_unlock(task);
222 return !err;
225 static int ptrace_attach(struct task_struct *task, long request,
226 unsigned long flags)
228 bool seize = (request == PTRACE_SEIZE);
229 int retval;
232 * SEIZE will enable new ptrace behaviors which will be implemented
233 * gradually. SEIZE_DEVEL is used to prevent applications
234 * expecting full SEIZE behaviors trapping on kernel commits which
235 * are still in the process of implementing them.
237 * Only test programs for new ptrace behaviors being implemented
238 * should set SEIZE_DEVEL. If unset, SEIZE will fail with -EIO.
240 * Once SEIZE behaviors are completely implemented, this flag and
241 * the following test will be removed.
243 retval = -EIO;
244 if (seize && !(flags & PTRACE_SEIZE_DEVEL))
245 goto out;
247 audit_ptrace(task);
249 retval = -EPERM;
250 if (unlikely(task->flags & PF_KTHREAD))
251 goto out;
252 if (same_thread_group(task, current))
253 goto out;
256 * Protect exec's credential calculations against our interference;
257 * interference; SUID, SGID and LSM creds get determined differently
258 * under ptrace.
260 retval = -ERESTARTNOINTR;
261 if (mutex_lock_interruptible(&task->signal->cred_guard_mutex))
262 goto out;
264 task_lock(task);
265 retval = __ptrace_may_access(task, PTRACE_MODE_ATTACH);
266 task_unlock(task);
267 if (retval)
268 goto unlock_creds;
270 write_lock_irq(&tasklist_lock);
271 retval = -EPERM;
272 if (unlikely(task->exit_state))
273 goto unlock_tasklist;
274 if (task->ptrace)
275 goto unlock_tasklist;
277 task->ptrace = PT_PTRACED;
278 if (seize)
279 task->ptrace |= PT_SEIZED;
280 if (task_ns_capable(task, CAP_SYS_PTRACE))
281 task->ptrace |= PT_PTRACE_CAP;
283 __ptrace_link(task, current);
285 /* SEIZE doesn't trap tracee on attach */
286 if (!seize)
287 send_sig_info(SIGSTOP, SEND_SIG_FORCED, task);
289 spin_lock(&task->sighand->siglock);
292 * If the task is already STOPPED, set JOBCTL_TRAP_STOP and
293 * TRAPPING, and kick it so that it transits to TRACED. TRAPPING
294 * will be cleared if the child completes the transition or any
295 * event which clears the group stop states happens. We'll wait
296 * for the transition to complete before returning from this
297 * function.
299 * This hides STOPPED -> RUNNING -> TRACED transition from the
300 * attaching thread but a different thread in the same group can
301 * still observe the transient RUNNING state. IOW, if another
302 * thread's WNOHANG wait(2) on the stopped tracee races against
303 * ATTACH, the wait(2) may fail due to the transient RUNNING.
305 * The following task_is_stopped() test is safe as both transitions
306 * in and out of STOPPED are protected by siglock.
308 if (task_is_stopped(task) &&
309 task_set_jobctl_pending(task, JOBCTL_TRAP_STOP | JOBCTL_TRAPPING))
310 signal_wake_up(task, 1);
312 spin_unlock(&task->sighand->siglock);
314 retval = 0;
315 unlock_tasklist:
316 write_unlock_irq(&tasklist_lock);
317 unlock_creds:
318 mutex_unlock(&task->signal->cred_guard_mutex);
319 out:
320 if (!retval) {
321 wait_on_bit(&task->jobctl, JOBCTL_TRAPPING_BIT,
322 ptrace_trapping_sleep_fn, TASK_UNINTERRUPTIBLE);
323 proc_ptrace_connector(task, PTRACE_ATTACH);
326 return retval;
330 * ptrace_traceme -- helper for PTRACE_TRACEME
332 * Performs checks and sets PT_PTRACED.
333 * Should be used by all ptrace implementations for PTRACE_TRACEME.
335 static int ptrace_traceme(void)
337 int ret = -EPERM;
339 write_lock_irq(&tasklist_lock);
340 /* Are we already being traced? */
341 if (!current->ptrace) {
342 ret = security_ptrace_traceme(current->parent);
344 * Check PF_EXITING to ensure ->real_parent has not passed
345 * exit_ptrace(). Otherwise we don't report the error but
346 * pretend ->real_parent untraces us right after return.
348 if (!ret && !(current->real_parent->flags & PF_EXITING)) {
349 current->ptrace = PT_PTRACED;
350 __ptrace_link(current, current->real_parent);
353 write_unlock_irq(&tasklist_lock);
355 return ret;
359 * Called with irqs disabled, returns true if childs should reap themselves.
361 static int ignoring_children(struct sighand_struct *sigh)
363 int ret;
364 spin_lock(&sigh->siglock);
365 ret = (sigh->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) ||
366 (sigh->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT);
367 spin_unlock(&sigh->siglock);
368 return ret;
372 * Called with tasklist_lock held for writing.
373 * Unlink a traced task, and clean it up if it was a traced zombie.
374 * Return true if it needs to be reaped with release_task().
375 * (We can't call release_task() here because we already hold tasklist_lock.)
377 * If it's a zombie, our attachedness prevented normal parent notification
378 * or self-reaping. Do notification now if it would have happened earlier.
379 * If it should reap itself, return true.
381 * If it's our own child, there is no notification to do. But if our normal
382 * children self-reap, then this child was prevented by ptrace and we must
383 * reap it now, in that case we must also wake up sub-threads sleeping in
384 * do_wait().
386 static bool __ptrace_detach(struct task_struct *tracer, struct task_struct *p)
388 bool dead;
390 __ptrace_unlink(p);
392 if (p->exit_state != EXIT_ZOMBIE)
393 return false;
395 dead = !thread_group_leader(p);
397 if (!dead && thread_group_empty(p)) {
398 if (!same_thread_group(p->real_parent, tracer))
399 dead = do_notify_parent(p, p->exit_signal);
400 else if (ignoring_children(tracer->sighand)) {
401 __wake_up_parent(p, tracer);
402 dead = true;
405 /* Mark it as in the process of being reaped. */
406 if (dead)
407 p->exit_state = EXIT_DEAD;
408 return dead;
411 static int ptrace_detach(struct task_struct *child, unsigned int data)
413 bool dead = false;
415 if (!valid_signal(data))
416 return -EIO;
418 /* Architecture-specific hardware disable .. */
419 ptrace_disable(child);
420 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
422 write_lock_irq(&tasklist_lock);
424 * This child can be already killed. Make sure de_thread() or
425 * our sub-thread doing do_wait() didn't do release_task() yet.
427 if (child->ptrace) {
428 child->exit_code = data;
429 dead = __ptrace_detach(current, child);
431 write_unlock_irq(&tasklist_lock);
433 proc_ptrace_connector(child, PTRACE_DETACH);
434 if (unlikely(dead))
435 release_task(child);
437 return 0;
441 * Detach all tasks we were using ptrace on. Called with tasklist held
442 * for writing, and returns with it held too. But note it can release
443 * and reacquire the lock.
445 void exit_ptrace(struct task_struct *tracer)
446 __releases(&tasklist_lock)
447 __acquires(&tasklist_lock)
449 struct task_struct *p, *n;
450 LIST_HEAD(ptrace_dead);
452 if (likely(list_empty(&tracer->ptraced)))
453 return;
455 list_for_each_entry_safe(p, n, &tracer->ptraced, ptrace_entry) {
456 if (__ptrace_detach(tracer, p))
457 list_add(&p->ptrace_entry, &ptrace_dead);
460 write_unlock_irq(&tasklist_lock);
461 BUG_ON(!list_empty(&tracer->ptraced));
463 list_for_each_entry_safe(p, n, &ptrace_dead, ptrace_entry) {
464 list_del_init(&p->ptrace_entry);
465 release_task(p);
468 write_lock_irq(&tasklist_lock);
471 int ptrace_readdata(struct task_struct *tsk, unsigned long src, char __user *dst, int len)
473 int copied = 0;
475 while (len > 0) {
476 char buf[128];
477 int this_len, retval;
479 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
480 retval = access_process_vm(tsk, src, buf, this_len, 0);
481 if (!retval) {
482 if (copied)
483 break;
484 return -EIO;
486 if (copy_to_user(dst, buf, retval))
487 return -EFAULT;
488 copied += retval;
489 src += retval;
490 dst += retval;
491 len -= retval;
493 return copied;
496 int ptrace_writedata(struct task_struct *tsk, char __user *src, unsigned long dst, int len)
498 int copied = 0;
500 while (len > 0) {
501 char buf[128];
502 int this_len, retval;
504 this_len = (len > sizeof(buf)) ? sizeof(buf) : len;
505 if (copy_from_user(buf, src, this_len))
506 return -EFAULT;
507 retval = access_process_vm(tsk, dst, buf, this_len, 1);
508 if (!retval) {
509 if (copied)
510 break;
511 return -EIO;
513 copied += retval;
514 src += retval;
515 dst += retval;
516 len -= retval;
518 return copied;
521 static int ptrace_setoptions(struct task_struct *child, unsigned long data)
523 child->ptrace &= ~PT_TRACE_MASK;
525 if (data & PTRACE_O_TRACESYSGOOD)
526 child->ptrace |= PT_TRACESYSGOOD;
528 if (data & PTRACE_O_TRACEFORK)
529 child->ptrace |= PT_TRACE_FORK;
531 if (data & PTRACE_O_TRACEVFORK)
532 child->ptrace |= PT_TRACE_VFORK;
534 if (data & PTRACE_O_TRACECLONE)
535 child->ptrace |= PT_TRACE_CLONE;
537 if (data & PTRACE_O_TRACEEXEC)
538 child->ptrace |= PT_TRACE_EXEC;
540 if (data & PTRACE_O_TRACEVFORKDONE)
541 child->ptrace |= PT_TRACE_VFORK_DONE;
543 if (data & PTRACE_O_TRACEEXIT)
544 child->ptrace |= PT_TRACE_EXIT;
546 return (data & ~PTRACE_O_MASK) ? -EINVAL : 0;
549 static int ptrace_getsiginfo(struct task_struct *child, siginfo_t *info)
551 unsigned long flags;
552 int error = -ESRCH;
554 if (lock_task_sighand(child, &flags)) {
555 error = -EINVAL;
556 if (likely(child->last_siginfo != NULL)) {
557 *info = *child->last_siginfo;
558 error = 0;
560 unlock_task_sighand(child, &flags);
562 return error;
565 static int ptrace_setsiginfo(struct task_struct *child, const siginfo_t *info)
567 unsigned long flags;
568 int error = -ESRCH;
570 if (lock_task_sighand(child, &flags)) {
571 error = -EINVAL;
572 if (likely(child->last_siginfo != NULL)) {
573 *child->last_siginfo = *info;
574 error = 0;
576 unlock_task_sighand(child, &flags);
578 return error;
582 #ifdef PTRACE_SINGLESTEP
583 #define is_singlestep(request) ((request) == PTRACE_SINGLESTEP)
584 #else
585 #define is_singlestep(request) 0
586 #endif
588 #ifdef PTRACE_SINGLEBLOCK
589 #define is_singleblock(request) ((request) == PTRACE_SINGLEBLOCK)
590 #else
591 #define is_singleblock(request) 0
592 #endif
594 #ifdef PTRACE_SYSEMU
595 #define is_sysemu_singlestep(request) ((request) == PTRACE_SYSEMU_SINGLESTEP)
596 #else
597 #define is_sysemu_singlestep(request) 0
598 #endif
600 static int ptrace_resume(struct task_struct *child, long request,
601 unsigned long data)
603 if (!valid_signal(data))
604 return -EIO;
606 if (request == PTRACE_SYSCALL)
607 set_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
608 else
609 clear_tsk_thread_flag(child, TIF_SYSCALL_TRACE);
611 #ifdef TIF_SYSCALL_EMU
612 if (request == PTRACE_SYSEMU || request == PTRACE_SYSEMU_SINGLESTEP)
613 set_tsk_thread_flag(child, TIF_SYSCALL_EMU);
614 else
615 clear_tsk_thread_flag(child, TIF_SYSCALL_EMU);
616 #endif
618 if (is_singleblock(request)) {
619 if (unlikely(!arch_has_block_step()))
620 return -EIO;
621 user_enable_block_step(child);
622 } else if (is_singlestep(request) || is_sysemu_singlestep(request)) {
623 if (unlikely(!arch_has_single_step()))
624 return -EIO;
625 user_enable_single_step(child);
626 } else {
627 user_disable_single_step(child);
630 child->exit_code = data;
631 wake_up_state(child, __TASK_TRACED);
633 return 0;
636 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
638 static const struct user_regset *
639 find_regset(const struct user_regset_view *view, unsigned int type)
641 const struct user_regset *regset;
642 int n;
644 for (n = 0; n < view->n; ++n) {
645 regset = view->regsets + n;
646 if (regset->core_note_type == type)
647 return regset;
650 return NULL;
653 static int ptrace_regset(struct task_struct *task, int req, unsigned int type,
654 struct iovec *kiov)
656 const struct user_regset_view *view = task_user_regset_view(task);
657 const struct user_regset *regset = find_regset(view, type);
658 int regset_no;
660 if (!regset || (kiov->iov_len % regset->size) != 0)
661 return -EINVAL;
663 regset_no = regset - view->regsets;
664 kiov->iov_len = min(kiov->iov_len,
665 (__kernel_size_t) (regset->n * regset->size));
667 if (req == PTRACE_GETREGSET)
668 return copy_regset_to_user(task, view, regset_no, 0,
669 kiov->iov_len, kiov->iov_base);
670 else
671 return copy_regset_from_user(task, view, regset_no, 0,
672 kiov->iov_len, kiov->iov_base);
675 #endif
677 int ptrace_request(struct task_struct *child, long request,
678 unsigned long addr, unsigned long data)
680 bool seized = child->ptrace & PT_SEIZED;
681 int ret = -EIO;
682 siginfo_t siginfo, *si;
683 void __user *datavp = (void __user *) data;
684 unsigned long __user *datalp = datavp;
685 unsigned long flags;
687 switch (request) {
688 case PTRACE_PEEKTEXT:
689 case PTRACE_PEEKDATA:
690 return generic_ptrace_peekdata(child, addr, data);
691 case PTRACE_POKETEXT:
692 case PTRACE_POKEDATA:
693 return generic_ptrace_pokedata(child, addr, data);
695 #ifdef PTRACE_OLDSETOPTIONS
696 case PTRACE_OLDSETOPTIONS:
697 #endif
698 case PTRACE_SETOPTIONS:
699 ret = ptrace_setoptions(child, data);
700 break;
701 case PTRACE_GETEVENTMSG:
702 ret = put_user(child->ptrace_message, datalp);
703 break;
705 case PTRACE_GETSIGINFO:
706 ret = ptrace_getsiginfo(child, &siginfo);
707 if (!ret)
708 ret = copy_siginfo_to_user(datavp, &siginfo);
709 break;
711 case PTRACE_SETSIGINFO:
712 if (copy_from_user(&siginfo, datavp, sizeof siginfo))
713 ret = -EFAULT;
714 else
715 ret = ptrace_setsiginfo(child, &siginfo);
716 break;
718 case PTRACE_INTERRUPT:
720 * Stop tracee without any side-effect on signal or job
721 * control. At least one trap is guaranteed to happen
722 * after this request. If @child is already trapped, the
723 * current trap is not disturbed and another trap will
724 * happen after the current trap is ended with PTRACE_CONT.
726 * The actual trap might not be PTRACE_EVENT_STOP trap but
727 * the pending condition is cleared regardless.
729 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
730 break;
733 * INTERRUPT doesn't disturb existing trap sans one
734 * exception. If ptracer issued LISTEN for the current
735 * STOP, this INTERRUPT should clear LISTEN and re-trap
736 * tracee into STOP.
738 if (likely(task_set_jobctl_pending(child, JOBCTL_TRAP_STOP)))
739 signal_wake_up(child, child->jobctl & JOBCTL_LISTENING);
741 unlock_task_sighand(child, &flags);
742 ret = 0;
743 break;
745 case PTRACE_LISTEN:
747 * Listen for events. Tracee must be in STOP. It's not
748 * resumed per-se but is not considered to be in TRACED by
749 * wait(2) or ptrace(2). If an async event (e.g. group
750 * stop state change) happens, tracee will enter STOP trap
751 * again. Alternatively, ptracer can issue INTERRUPT to
752 * finish listening and re-trap tracee into STOP.
754 if (unlikely(!seized || !lock_task_sighand(child, &flags)))
755 break;
757 si = child->last_siginfo;
758 if (likely(si && (si->si_code >> 8) == PTRACE_EVENT_STOP)) {
759 child->jobctl |= JOBCTL_LISTENING;
761 * If NOTIFY is set, it means event happened between
762 * start of this trap and now. Trigger re-trap.
764 if (child->jobctl & JOBCTL_TRAP_NOTIFY)
765 signal_wake_up(child, true);
766 ret = 0;
768 unlock_task_sighand(child, &flags);
769 break;
771 case PTRACE_DETACH: /* detach a process that was attached. */
772 ret = ptrace_detach(child, data);
773 break;
775 #ifdef CONFIG_BINFMT_ELF_FDPIC
776 case PTRACE_GETFDPIC: {
777 struct mm_struct *mm = get_task_mm(child);
778 unsigned long tmp = 0;
780 ret = -ESRCH;
781 if (!mm)
782 break;
784 switch (addr) {
785 case PTRACE_GETFDPIC_EXEC:
786 tmp = mm->context.exec_fdpic_loadmap;
787 break;
788 case PTRACE_GETFDPIC_INTERP:
789 tmp = mm->context.interp_fdpic_loadmap;
790 break;
791 default:
792 break;
794 mmput(mm);
796 ret = put_user(tmp, datalp);
797 break;
799 #endif
801 #ifdef PTRACE_SINGLESTEP
802 case PTRACE_SINGLESTEP:
803 #endif
804 #ifdef PTRACE_SINGLEBLOCK
805 case PTRACE_SINGLEBLOCK:
806 #endif
807 #ifdef PTRACE_SYSEMU
808 case PTRACE_SYSEMU:
809 case PTRACE_SYSEMU_SINGLESTEP:
810 #endif
811 case PTRACE_SYSCALL:
812 case PTRACE_CONT:
813 return ptrace_resume(child, request, data);
815 case PTRACE_KILL:
816 if (child->exit_state) /* already dead */
817 return 0;
818 return ptrace_resume(child, request, SIGKILL);
820 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
821 case PTRACE_GETREGSET:
822 case PTRACE_SETREGSET:
824 struct iovec kiov;
825 struct iovec __user *uiov = datavp;
827 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
828 return -EFAULT;
830 if (__get_user(kiov.iov_base, &uiov->iov_base) ||
831 __get_user(kiov.iov_len, &uiov->iov_len))
832 return -EFAULT;
834 ret = ptrace_regset(child, request, addr, &kiov);
835 if (!ret)
836 ret = __put_user(kiov.iov_len, &uiov->iov_len);
837 break;
839 #endif
840 default:
841 break;
844 return ret;
847 static struct task_struct *ptrace_get_task_struct(pid_t pid)
849 struct task_struct *child;
851 rcu_read_lock();
852 child = find_task_by_vpid(pid);
853 if (child)
854 get_task_struct(child);
855 rcu_read_unlock();
857 if (!child)
858 return ERR_PTR(-ESRCH);
859 return child;
862 #ifndef arch_ptrace_attach
863 #define arch_ptrace_attach(child) do { } while (0)
864 #endif
866 SYSCALL_DEFINE4(ptrace, long, request, long, pid, unsigned long, addr,
867 unsigned long, data)
869 struct task_struct *child;
870 long ret;
872 if (request == PTRACE_TRACEME) {
873 ret = ptrace_traceme();
874 if (!ret)
875 arch_ptrace_attach(current);
876 goto out;
879 child = ptrace_get_task_struct(pid);
880 if (IS_ERR(child)) {
881 ret = PTR_ERR(child);
882 goto out;
885 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
886 ret = ptrace_attach(child, request, data);
888 * Some architectures need to do book-keeping after
889 * a ptrace attach.
891 if (!ret)
892 arch_ptrace_attach(child);
893 goto out_put_task_struct;
896 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
897 request == PTRACE_INTERRUPT);
898 if (ret < 0)
899 goto out_put_task_struct;
901 ret = arch_ptrace(child, request, addr, data);
903 out_put_task_struct:
904 put_task_struct(child);
905 out:
906 return ret;
909 int generic_ptrace_peekdata(struct task_struct *tsk, unsigned long addr,
910 unsigned long data)
912 unsigned long tmp;
913 int copied;
915 copied = access_process_vm(tsk, addr, &tmp, sizeof(tmp), 0);
916 if (copied != sizeof(tmp))
917 return -EIO;
918 return put_user(tmp, (unsigned long __user *)data);
921 int generic_ptrace_pokedata(struct task_struct *tsk, unsigned long addr,
922 unsigned long data)
924 int copied;
926 copied = access_process_vm(tsk, addr, &data, sizeof(data), 1);
927 return (copied == sizeof(data)) ? 0 : -EIO;
930 #if defined CONFIG_COMPAT
931 #include <linux/compat.h>
933 int compat_ptrace_request(struct task_struct *child, compat_long_t request,
934 compat_ulong_t addr, compat_ulong_t data)
936 compat_ulong_t __user *datap = compat_ptr(data);
937 compat_ulong_t word;
938 siginfo_t siginfo;
939 int ret;
941 switch (request) {
942 case PTRACE_PEEKTEXT:
943 case PTRACE_PEEKDATA:
944 ret = access_process_vm(child, addr, &word, sizeof(word), 0);
945 if (ret != sizeof(word))
946 ret = -EIO;
947 else
948 ret = put_user(word, datap);
949 break;
951 case PTRACE_POKETEXT:
952 case PTRACE_POKEDATA:
953 ret = access_process_vm(child, addr, &data, sizeof(data), 1);
954 ret = (ret != sizeof(data) ? -EIO : 0);
955 break;
957 case PTRACE_GETEVENTMSG:
958 ret = put_user((compat_ulong_t) child->ptrace_message, datap);
959 break;
961 case PTRACE_GETSIGINFO:
962 ret = ptrace_getsiginfo(child, &siginfo);
963 if (!ret)
964 ret = copy_siginfo_to_user32(
965 (struct compat_siginfo __user *) datap,
966 &siginfo);
967 break;
969 case PTRACE_SETSIGINFO:
970 memset(&siginfo, 0, sizeof siginfo);
971 if (copy_siginfo_from_user32(
972 &siginfo, (struct compat_siginfo __user *) datap))
973 ret = -EFAULT;
974 else
975 ret = ptrace_setsiginfo(child, &siginfo);
976 break;
977 #ifdef CONFIG_HAVE_ARCH_TRACEHOOK
978 case PTRACE_GETREGSET:
979 case PTRACE_SETREGSET:
981 struct iovec kiov;
982 struct compat_iovec __user *uiov =
983 (struct compat_iovec __user *) datap;
984 compat_uptr_t ptr;
985 compat_size_t len;
987 if (!access_ok(VERIFY_WRITE, uiov, sizeof(*uiov)))
988 return -EFAULT;
990 if (__get_user(ptr, &uiov->iov_base) ||
991 __get_user(len, &uiov->iov_len))
992 return -EFAULT;
994 kiov.iov_base = compat_ptr(ptr);
995 kiov.iov_len = len;
997 ret = ptrace_regset(child, request, addr, &kiov);
998 if (!ret)
999 ret = __put_user(kiov.iov_len, &uiov->iov_len);
1000 break;
1002 #endif
1004 default:
1005 ret = ptrace_request(child, request, addr, data);
1008 return ret;
1011 asmlinkage long compat_sys_ptrace(compat_long_t request, compat_long_t pid,
1012 compat_long_t addr, compat_long_t data)
1014 struct task_struct *child;
1015 long ret;
1017 if (request == PTRACE_TRACEME) {
1018 ret = ptrace_traceme();
1019 goto out;
1022 child = ptrace_get_task_struct(pid);
1023 if (IS_ERR(child)) {
1024 ret = PTR_ERR(child);
1025 goto out;
1028 if (request == PTRACE_ATTACH || request == PTRACE_SEIZE) {
1029 ret = ptrace_attach(child, request, data);
1031 * Some architectures need to do book-keeping after
1032 * a ptrace attach.
1034 if (!ret)
1035 arch_ptrace_attach(child);
1036 goto out_put_task_struct;
1039 ret = ptrace_check_attach(child, request == PTRACE_KILL ||
1040 request == PTRACE_INTERRUPT);
1041 if (!ret)
1042 ret = compat_arch_ptrace(child, request, addr, data);
1044 out_put_task_struct:
1045 put_task_struct(child);
1046 out:
1047 return ret;
1049 #endif /* CONFIG_COMPAT */
1051 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1052 int ptrace_get_breakpoints(struct task_struct *tsk)
1054 if (atomic_inc_not_zero(&tsk->ptrace_bp_refcnt))
1055 return 0;
1057 return -1;
1060 void ptrace_put_breakpoints(struct task_struct *tsk)
1062 if (atomic_dec_and_test(&tsk->ptrace_bp_refcnt))
1063 flush_ptrace_hw_breakpoint(tsk);
1065 #endif /* CONFIG_HAVE_HW_BREAKPOINT */