Input: MAC mouse button emulation - relax dependencies
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / migrate.c
blobb4979d423d2be5b7885f4cd7e24f45bdf7aa27ca
1 /*
2 * Memory Migration functionality - linux/mm/migration.c
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
12 * Christoph Lameter <clameter@sgi.com>
15 #include <linux/migrate.h>
16 #include <linux/module.h>
17 #include <linux/swap.h>
18 #include <linux/swapops.h>
19 #include <linux/pagemap.h>
20 #include <linux/buffer_head.h>
21 #include <linux/mm_inline.h>
22 #include <linux/pagevec.h>
23 #include <linux/rmap.h>
24 #include <linux/topology.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/writeback.h>
28 #include <linux/mempolicy.h>
29 #include <linux/vmalloc.h>
30 #include <linux/security.h>
32 #include "internal.h"
34 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
37 * Isolate one page from the LRU lists. If successful put it onto
38 * the indicated list with elevated page count.
40 * Result:
41 * -EBUSY: page not on LRU list
42 * 0: page removed from LRU list and added to the specified list.
44 int isolate_lru_page(struct page *page, struct list_head *pagelist)
46 int ret = -EBUSY;
48 if (PageLRU(page)) {
49 struct zone *zone = page_zone(page);
51 spin_lock_irq(&zone->lru_lock);
52 if (PageLRU(page)) {
53 ret = 0;
54 get_page(page);
55 ClearPageLRU(page);
56 if (PageActive(page))
57 del_page_from_active_list(zone, page);
58 else
59 del_page_from_inactive_list(zone, page);
60 list_add_tail(&page->lru, pagelist);
62 spin_unlock_irq(&zone->lru_lock);
64 return ret;
68 * migrate_prep() needs to be called before we start compiling a list of pages
69 * to be migrated using isolate_lru_page().
71 int migrate_prep(void)
74 * Clear the LRU lists so pages can be isolated.
75 * Note that pages may be moved off the LRU after we have
76 * drained them. Those pages will fail to migrate like other
77 * pages that may be busy.
79 lru_add_drain_all();
81 return 0;
84 static inline void move_to_lru(struct page *page)
86 if (PageActive(page)) {
88 * lru_cache_add_active checks that
89 * the PG_active bit is off.
91 ClearPageActive(page);
92 lru_cache_add_active(page);
93 } else {
94 lru_cache_add(page);
96 put_page(page);
100 * Add isolated pages on the list back to the LRU.
102 * returns the number of pages put back.
104 int putback_lru_pages(struct list_head *l)
106 struct page *page;
107 struct page *page2;
108 int count = 0;
110 list_for_each_entry_safe(page, page2, l, lru) {
111 list_del(&page->lru);
112 move_to_lru(page);
113 count++;
115 return count;
118 static inline int is_swap_pte(pte_t pte)
120 return !pte_none(pte) && !pte_present(pte) && !pte_file(pte);
124 * Restore a potential migration pte to a working pte entry
126 static void remove_migration_pte(struct vm_area_struct *vma,
127 struct page *old, struct page *new)
129 struct mm_struct *mm = vma->vm_mm;
130 swp_entry_t entry;
131 pgd_t *pgd;
132 pud_t *pud;
133 pmd_t *pmd;
134 pte_t *ptep, pte;
135 spinlock_t *ptl;
136 unsigned long addr = page_address_in_vma(new, vma);
138 if (addr == -EFAULT)
139 return;
141 pgd = pgd_offset(mm, addr);
142 if (!pgd_present(*pgd))
143 return;
145 pud = pud_offset(pgd, addr);
146 if (!pud_present(*pud))
147 return;
149 pmd = pmd_offset(pud, addr);
150 if (!pmd_present(*pmd))
151 return;
153 ptep = pte_offset_map(pmd, addr);
155 if (!is_swap_pte(*ptep)) {
156 pte_unmap(ptep);
157 return;
160 ptl = pte_lockptr(mm, pmd);
161 spin_lock(ptl);
162 pte = *ptep;
163 if (!is_swap_pte(pte))
164 goto out;
166 entry = pte_to_swp_entry(pte);
168 if (!is_migration_entry(entry) || migration_entry_to_page(entry) != old)
169 goto out;
171 get_page(new);
172 pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
173 if (is_write_migration_entry(entry))
174 pte = pte_mkwrite(pte);
175 set_pte_at(mm, addr, ptep, pte);
177 if (PageAnon(new))
178 page_add_anon_rmap(new, vma, addr);
179 else
180 page_add_file_rmap(new);
182 /* No need to invalidate - it was non-present before */
183 update_mmu_cache(vma, addr, pte);
184 lazy_mmu_prot_update(pte);
186 out:
187 pte_unmap_unlock(ptep, ptl);
191 * Note that remove_file_migration_ptes will only work on regular mappings,
192 * Nonlinear mappings do not use migration entries.
194 static void remove_file_migration_ptes(struct page *old, struct page *new)
196 struct vm_area_struct *vma;
197 struct address_space *mapping = page_mapping(new);
198 struct prio_tree_iter iter;
199 pgoff_t pgoff = new->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
201 if (!mapping)
202 return;
204 spin_lock(&mapping->i_mmap_lock);
206 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff)
207 remove_migration_pte(vma, old, new);
209 spin_unlock(&mapping->i_mmap_lock);
213 * Must hold mmap_sem lock on at least one of the vmas containing
214 * the page so that the anon_vma cannot vanish.
216 static void remove_anon_migration_ptes(struct page *old, struct page *new)
218 struct anon_vma *anon_vma;
219 struct vm_area_struct *vma;
220 unsigned long mapping;
222 mapping = (unsigned long)new->mapping;
224 if (!mapping || (mapping & PAGE_MAPPING_ANON) == 0)
225 return;
228 * We hold the mmap_sem lock. So no need to call page_lock_anon_vma.
230 anon_vma = (struct anon_vma *) (mapping - PAGE_MAPPING_ANON);
231 spin_lock(&anon_vma->lock);
233 list_for_each_entry(vma, &anon_vma->head, anon_vma_node)
234 remove_migration_pte(vma, old, new);
236 spin_unlock(&anon_vma->lock);
240 * Get rid of all migration entries and replace them by
241 * references to the indicated page.
243 static void remove_migration_ptes(struct page *old, struct page *new)
245 if (PageAnon(new))
246 remove_anon_migration_ptes(old, new);
247 else
248 remove_file_migration_ptes(old, new);
252 * Something used the pte of a page under migration. We need to
253 * get to the page and wait until migration is finished.
254 * When we return from this function the fault will be retried.
256 * This function is called from do_swap_page().
258 void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
259 unsigned long address)
261 pte_t *ptep, pte;
262 spinlock_t *ptl;
263 swp_entry_t entry;
264 struct page *page;
266 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
267 pte = *ptep;
268 if (!is_swap_pte(pte))
269 goto out;
271 entry = pte_to_swp_entry(pte);
272 if (!is_migration_entry(entry))
273 goto out;
275 page = migration_entry_to_page(entry);
277 get_page(page);
278 pte_unmap_unlock(ptep, ptl);
279 wait_on_page_locked(page);
280 put_page(page);
281 return;
282 out:
283 pte_unmap_unlock(ptep, ptl);
287 * Replace the page in the mapping.
289 * The number of remaining references must be:
290 * 1 for anonymous pages without a mapping
291 * 2 for pages with a mapping
292 * 3 for pages with a mapping and PagePrivate set.
294 static int migrate_page_move_mapping(struct address_space *mapping,
295 struct page *newpage, struct page *page)
297 struct page **radix_pointer;
299 if (!mapping) {
300 /* Anonymous page */
301 if (page_count(page) != 1)
302 return -EAGAIN;
303 return 0;
306 write_lock_irq(&mapping->tree_lock);
308 radix_pointer = (struct page **)radix_tree_lookup_slot(
309 &mapping->page_tree,
310 page_index(page));
312 if (page_count(page) != 2 + !!PagePrivate(page) ||
313 *radix_pointer != page) {
314 write_unlock_irq(&mapping->tree_lock);
315 return -EAGAIN;
319 * Now we know that no one else is looking at the page.
321 get_page(newpage);
322 #ifdef CONFIG_SWAP
323 if (PageSwapCache(page)) {
324 SetPageSwapCache(newpage);
325 set_page_private(newpage, page_private(page));
327 #endif
329 *radix_pointer = newpage;
330 __put_page(page);
331 write_unlock_irq(&mapping->tree_lock);
333 return 0;
337 * Copy the page to its new location
339 static void migrate_page_copy(struct page *newpage, struct page *page)
341 copy_highpage(newpage, page);
343 if (PageError(page))
344 SetPageError(newpage);
345 if (PageReferenced(page))
346 SetPageReferenced(newpage);
347 if (PageUptodate(page))
348 SetPageUptodate(newpage);
349 if (PageActive(page))
350 SetPageActive(newpage);
351 if (PageChecked(page))
352 SetPageChecked(newpage);
353 if (PageMappedToDisk(page))
354 SetPageMappedToDisk(newpage);
356 if (PageDirty(page)) {
357 clear_page_dirty_for_io(page);
358 set_page_dirty(newpage);
361 #ifdef CONFIG_SWAP
362 ClearPageSwapCache(page);
363 #endif
364 ClearPageActive(page);
365 ClearPagePrivate(page);
366 set_page_private(page, 0);
367 page->mapping = NULL;
370 * If any waiters have accumulated on the new page then
371 * wake them up.
373 if (PageWriteback(newpage))
374 end_page_writeback(newpage);
377 /************************************************************
378 * Migration functions
379 ***********************************************************/
381 /* Always fail migration. Used for mappings that are not movable */
382 int fail_migrate_page(struct address_space *mapping,
383 struct page *newpage, struct page *page)
385 return -EIO;
387 EXPORT_SYMBOL(fail_migrate_page);
390 * Common logic to directly migrate a single page suitable for
391 * pages that do not use PagePrivate.
393 * Pages are locked upon entry and exit.
395 int migrate_page(struct address_space *mapping,
396 struct page *newpage, struct page *page)
398 int rc;
400 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
402 rc = migrate_page_move_mapping(mapping, newpage, page);
404 if (rc)
405 return rc;
407 migrate_page_copy(newpage, page);
408 return 0;
410 EXPORT_SYMBOL(migrate_page);
412 #ifdef CONFIG_BLOCK
414 * Migration function for pages with buffers. This function can only be used
415 * if the underlying filesystem guarantees that no other references to "page"
416 * exist.
418 int buffer_migrate_page(struct address_space *mapping,
419 struct page *newpage, struct page *page)
421 struct buffer_head *bh, *head;
422 int rc;
424 if (!page_has_buffers(page))
425 return migrate_page(mapping, newpage, page);
427 head = page_buffers(page);
429 rc = migrate_page_move_mapping(mapping, newpage, page);
431 if (rc)
432 return rc;
434 bh = head;
435 do {
436 get_bh(bh);
437 lock_buffer(bh);
438 bh = bh->b_this_page;
440 } while (bh != head);
442 ClearPagePrivate(page);
443 set_page_private(newpage, page_private(page));
444 set_page_private(page, 0);
445 put_page(page);
446 get_page(newpage);
448 bh = head;
449 do {
450 set_bh_page(bh, newpage, bh_offset(bh));
451 bh = bh->b_this_page;
453 } while (bh != head);
455 SetPagePrivate(newpage);
457 migrate_page_copy(newpage, page);
459 bh = head;
460 do {
461 unlock_buffer(bh);
462 put_bh(bh);
463 bh = bh->b_this_page;
465 } while (bh != head);
467 return 0;
469 EXPORT_SYMBOL(buffer_migrate_page);
470 #endif
473 * Writeback a page to clean the dirty state
475 static int writeout(struct address_space *mapping, struct page *page)
477 struct writeback_control wbc = {
478 .sync_mode = WB_SYNC_NONE,
479 .nr_to_write = 1,
480 .range_start = 0,
481 .range_end = LLONG_MAX,
482 .nonblocking = 1,
483 .for_reclaim = 1
485 int rc;
487 if (!mapping->a_ops->writepage)
488 /* No write method for the address space */
489 return -EINVAL;
491 if (!clear_page_dirty_for_io(page))
492 /* Someone else already triggered a write */
493 return -EAGAIN;
496 * A dirty page may imply that the underlying filesystem has
497 * the page on some queue. So the page must be clean for
498 * migration. Writeout may mean we loose the lock and the
499 * page state is no longer what we checked for earlier.
500 * At this point we know that the migration attempt cannot
501 * be successful.
503 remove_migration_ptes(page, page);
505 rc = mapping->a_ops->writepage(page, &wbc);
506 if (rc < 0)
507 /* I/O Error writing */
508 return -EIO;
510 if (rc != AOP_WRITEPAGE_ACTIVATE)
511 /* unlocked. Relock */
512 lock_page(page);
514 return -EAGAIN;
518 * Default handling if a filesystem does not provide a migration function.
520 static int fallback_migrate_page(struct address_space *mapping,
521 struct page *newpage, struct page *page)
523 if (PageDirty(page))
524 return writeout(mapping, page);
527 * Buffers may be managed in a filesystem specific way.
528 * We must have no buffers or drop them.
530 if (PagePrivate(page) &&
531 !try_to_release_page(page, GFP_KERNEL))
532 return -EAGAIN;
534 return migrate_page(mapping, newpage, page);
538 * Move a page to a newly allocated page
539 * The page is locked and all ptes have been successfully removed.
541 * The new page will have replaced the old page if this function
542 * is successful.
544 static int move_to_new_page(struct page *newpage, struct page *page)
546 struct address_space *mapping;
547 int rc;
550 * Block others from accessing the page when we get around to
551 * establishing additional references. We are the only one
552 * holding a reference to the new page at this point.
554 if (TestSetPageLocked(newpage))
555 BUG();
557 /* Prepare mapping for the new page.*/
558 newpage->index = page->index;
559 newpage->mapping = page->mapping;
561 mapping = page_mapping(page);
562 if (!mapping)
563 rc = migrate_page(mapping, newpage, page);
564 else if (mapping->a_ops->migratepage)
566 * Most pages have a mapping and most filesystems
567 * should provide a migration function. Anonymous
568 * pages are part of swap space which also has its
569 * own migration function. This is the most common
570 * path for page migration.
572 rc = mapping->a_ops->migratepage(mapping,
573 newpage, page);
574 else
575 rc = fallback_migrate_page(mapping, newpage, page);
577 if (!rc)
578 remove_migration_ptes(page, newpage);
579 else
580 newpage->mapping = NULL;
582 unlock_page(newpage);
584 return rc;
588 * Obtain the lock on page, remove all ptes and migrate the page
589 * to the newly allocated page in newpage.
591 static int unmap_and_move(new_page_t get_new_page, unsigned long private,
592 struct page *page, int force)
594 int rc = 0;
595 int *result = NULL;
596 struct page *newpage = get_new_page(page, private, &result);
598 if (!newpage)
599 return -ENOMEM;
601 if (page_count(page) == 1)
602 /* page was freed from under us. So we are done. */
603 goto move_newpage;
605 rc = -EAGAIN;
606 if (TestSetPageLocked(page)) {
607 if (!force)
608 goto move_newpage;
609 lock_page(page);
612 if (PageWriteback(page)) {
613 if (!force)
614 goto unlock;
615 wait_on_page_writeback(page);
619 * Establish migration ptes or remove ptes
621 try_to_unmap(page, 1);
622 if (!page_mapped(page))
623 rc = move_to_new_page(newpage, page);
625 if (rc)
626 remove_migration_ptes(page, page);
628 unlock:
629 unlock_page(page);
631 if (rc != -EAGAIN) {
633 * A page that has been migrated has all references
634 * removed and will be freed. A page that has not been
635 * migrated will have kepts its references and be
636 * restored.
638 list_del(&page->lru);
639 move_to_lru(page);
642 move_newpage:
644 * Move the new page to the LRU. If migration was not successful
645 * then this will free the page.
647 move_to_lru(newpage);
648 if (result) {
649 if (rc)
650 *result = rc;
651 else
652 *result = page_to_nid(newpage);
654 return rc;
658 * migrate_pages
660 * The function takes one list of pages to migrate and a function
661 * that determines from the page to be migrated and the private data
662 * the target of the move and allocates the page.
664 * The function returns after 10 attempts or if no pages
665 * are movable anymore because to has become empty
666 * or no retryable pages exist anymore. All pages will be
667 * retruned to the LRU or freed.
669 * Return: Number of pages not migrated or error code.
671 int migrate_pages(struct list_head *from,
672 new_page_t get_new_page, unsigned long private)
674 int retry = 1;
675 int nr_failed = 0;
676 int pass = 0;
677 struct page *page;
678 struct page *page2;
679 int swapwrite = current->flags & PF_SWAPWRITE;
680 int rc;
682 if (!swapwrite)
683 current->flags |= PF_SWAPWRITE;
685 for(pass = 0; pass < 10 && retry; pass++) {
686 retry = 0;
688 list_for_each_entry_safe(page, page2, from, lru) {
689 cond_resched();
691 rc = unmap_and_move(get_new_page, private,
692 page, pass > 2);
694 switch(rc) {
695 case -ENOMEM:
696 goto out;
697 case -EAGAIN:
698 retry++;
699 break;
700 case 0:
701 break;
702 default:
703 /* Permanent failure */
704 nr_failed++;
705 break;
709 rc = 0;
710 out:
711 if (!swapwrite)
712 current->flags &= ~PF_SWAPWRITE;
714 putback_lru_pages(from);
716 if (rc)
717 return rc;
719 return nr_failed + retry;
722 #ifdef CONFIG_NUMA
724 * Move a list of individual pages
726 struct page_to_node {
727 unsigned long addr;
728 struct page *page;
729 int node;
730 int status;
733 static struct page *new_page_node(struct page *p, unsigned long private,
734 int **result)
736 struct page_to_node *pm = (struct page_to_node *)private;
738 while (pm->node != MAX_NUMNODES && pm->page != p)
739 pm++;
741 if (pm->node == MAX_NUMNODES)
742 return NULL;
744 *result = &pm->status;
746 return alloc_pages_node(pm->node, GFP_HIGHUSER | GFP_THISNODE, 0);
750 * Move a set of pages as indicated in the pm array. The addr
751 * field must be set to the virtual address of the page to be moved
752 * and the node number must contain a valid target node.
754 static int do_move_pages(struct mm_struct *mm, struct page_to_node *pm,
755 int migrate_all)
757 int err;
758 struct page_to_node *pp;
759 LIST_HEAD(pagelist);
761 down_read(&mm->mmap_sem);
764 * Build a list of pages to migrate
766 migrate_prep();
767 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
768 struct vm_area_struct *vma;
769 struct page *page;
772 * A valid page pointer that will not match any of the
773 * pages that will be moved.
775 pp->page = ZERO_PAGE(0);
777 err = -EFAULT;
778 vma = find_vma(mm, pp->addr);
779 if (!vma)
780 goto set_status;
782 page = follow_page(vma, pp->addr, FOLL_GET);
783 err = -ENOENT;
784 if (!page)
785 goto set_status;
787 if (PageReserved(page)) /* Check for zero page */
788 goto put_and_set;
790 pp->page = page;
791 err = page_to_nid(page);
793 if (err == pp->node)
795 * Node already in the right place
797 goto put_and_set;
799 err = -EACCES;
800 if (page_mapcount(page) > 1 &&
801 !migrate_all)
802 goto put_and_set;
804 err = isolate_lru_page(page, &pagelist);
805 put_and_set:
807 * Either remove the duplicate refcount from
808 * isolate_lru_page() or drop the page ref if it was
809 * not isolated.
811 put_page(page);
812 set_status:
813 pp->status = err;
816 if (!list_empty(&pagelist))
817 err = migrate_pages(&pagelist, new_page_node,
818 (unsigned long)pm);
819 else
820 err = -ENOENT;
822 up_read(&mm->mmap_sem);
823 return err;
827 * Determine the nodes of a list of pages. The addr in the pm array
828 * must have been set to the virtual address of which we want to determine
829 * the node number.
831 static int do_pages_stat(struct mm_struct *mm, struct page_to_node *pm)
833 down_read(&mm->mmap_sem);
835 for ( ; pm->node != MAX_NUMNODES; pm++) {
836 struct vm_area_struct *vma;
837 struct page *page;
838 int err;
840 err = -EFAULT;
841 vma = find_vma(mm, pm->addr);
842 if (!vma)
843 goto set_status;
845 page = follow_page(vma, pm->addr, 0);
846 err = -ENOENT;
847 /* Use PageReserved to check for zero page */
848 if (!page || PageReserved(page))
849 goto set_status;
851 err = page_to_nid(page);
852 set_status:
853 pm->status = err;
856 up_read(&mm->mmap_sem);
857 return 0;
861 * Move a list of pages in the address space of the currently executing
862 * process.
864 asmlinkage long sys_move_pages(pid_t pid, unsigned long nr_pages,
865 const void __user * __user *pages,
866 const int __user *nodes,
867 int __user *status, int flags)
869 int err = 0;
870 int i;
871 struct task_struct *task;
872 nodemask_t task_nodes;
873 struct mm_struct *mm;
874 struct page_to_node *pm = NULL;
876 /* Check flags */
877 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
878 return -EINVAL;
880 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
881 return -EPERM;
883 /* Find the mm_struct */
884 read_lock(&tasklist_lock);
885 task = pid ? find_task_by_pid(pid) : current;
886 if (!task) {
887 read_unlock(&tasklist_lock);
888 return -ESRCH;
890 mm = get_task_mm(task);
891 read_unlock(&tasklist_lock);
893 if (!mm)
894 return -EINVAL;
897 * Check if this process has the right to modify the specified
898 * process. The right exists if the process has administrative
899 * capabilities, superuser privileges or the same
900 * userid as the target process.
902 if ((current->euid != task->suid) && (current->euid != task->uid) &&
903 (current->uid != task->suid) && (current->uid != task->uid) &&
904 !capable(CAP_SYS_NICE)) {
905 err = -EPERM;
906 goto out2;
909 err = security_task_movememory(task);
910 if (err)
911 goto out2;
914 task_nodes = cpuset_mems_allowed(task);
916 /* Limit nr_pages so that the multiplication may not overflow */
917 if (nr_pages >= ULONG_MAX / sizeof(struct page_to_node) - 1) {
918 err = -E2BIG;
919 goto out2;
922 pm = vmalloc((nr_pages + 1) * sizeof(struct page_to_node));
923 if (!pm) {
924 err = -ENOMEM;
925 goto out2;
929 * Get parameters from user space and initialize the pm
930 * array. Return various errors if the user did something wrong.
932 for (i = 0; i < nr_pages; i++) {
933 const void *p;
935 err = -EFAULT;
936 if (get_user(p, pages + i))
937 goto out;
939 pm[i].addr = (unsigned long)p;
940 if (nodes) {
941 int node;
943 if (get_user(node, nodes + i))
944 goto out;
946 err = -ENODEV;
947 if (!node_online(node))
948 goto out;
950 err = -EACCES;
951 if (!node_isset(node, task_nodes))
952 goto out;
954 pm[i].node = node;
955 } else
956 pm[i].node = 0; /* anything to not match MAX_NUMNODES */
958 /* End marker */
959 pm[nr_pages].node = MAX_NUMNODES;
961 if (nodes)
962 err = do_move_pages(mm, pm, flags & MPOL_MF_MOVE_ALL);
963 else
964 err = do_pages_stat(mm, pm);
966 if (err >= 0)
967 /* Return status information */
968 for (i = 0; i < nr_pages; i++)
969 if (put_user(pm[i].status, status + i))
970 err = -EFAULT;
972 out:
973 vfree(pm);
974 out2:
975 mmput(mm);
976 return err;
978 #endif
981 * Call migration functions in the vma_ops that may prepare
982 * memory in a vm for migration. migration functions may perform
983 * the migration for vmas that do not have an underlying page struct.
985 int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
986 const nodemask_t *from, unsigned long flags)
988 struct vm_area_struct *vma;
989 int err = 0;
991 for(vma = mm->mmap; vma->vm_next && !err; vma = vma->vm_next) {
992 if (vma->vm_ops && vma->vm_ops->migrate) {
993 err = vma->vm_ops->migrate(vma, to, from, flags);
994 if (err)
995 break;
998 return err;