Input: MAC mouse button emulation - relax dependencies
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / signal.c
blobdf18c167a2a72d67d76cabc1768b741c12ed5e7e
1 /*
2 * linux/kernel/signal.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson
8 * 2003-06-02 Jim Houston - Concurrent Computer Corp.
9 * Changes to use preallocated sigqueue structures
10 * to allow signals to be sent reliably.
13 #include <linux/slab.h>
14 #include <linux/module.h>
15 #include <linux/smp_lock.h>
16 #include <linux/init.h>
17 #include <linux/sched.h>
18 #include <linux/fs.h>
19 #include <linux/tty.h>
20 #include <linux/binfmts.h>
21 #include <linux/security.h>
22 #include <linux/syscalls.h>
23 #include <linux/ptrace.h>
24 #include <linux/signal.h>
25 #include <linux/capability.h>
26 #include <asm/param.h>
27 #include <asm/uaccess.h>
28 #include <asm/unistd.h>
29 #include <asm/siginfo.h>
30 #include "audit.h" /* audit_signal_info() */
33 * SLAB caches for signal bits.
36 static kmem_cache_t *sigqueue_cachep;
39 * In POSIX a signal is sent either to a specific thread (Linux task)
40 * or to the process as a whole (Linux thread group). How the signal
41 * is sent determines whether it's to one thread or the whole group,
42 * which determines which signal mask(s) are involved in blocking it
43 * from being delivered until later. When the signal is delivered,
44 * either it's caught or ignored by a user handler or it has a default
45 * effect that applies to the whole thread group (POSIX process).
47 * The possible effects an unblocked signal set to SIG_DFL can have are:
48 * ignore - Nothing Happens
49 * terminate - kill the process, i.e. all threads in the group,
50 * similar to exit_group. The group leader (only) reports
51 * WIFSIGNALED status to its parent.
52 * coredump - write a core dump file describing all threads using
53 * the same mm and then kill all those threads
54 * stop - stop all the threads in the group, i.e. TASK_STOPPED state
56 * SIGKILL and SIGSTOP cannot be caught, blocked, or ignored.
57 * Other signals when not blocked and set to SIG_DFL behaves as follows.
58 * The job control signals also have other special effects.
60 * +--------------------+------------------+
61 * | POSIX signal | default action |
62 * +--------------------+------------------+
63 * | SIGHUP | terminate |
64 * | SIGINT | terminate |
65 * | SIGQUIT | coredump |
66 * | SIGILL | coredump |
67 * | SIGTRAP | coredump |
68 * | SIGABRT/SIGIOT | coredump |
69 * | SIGBUS | coredump |
70 * | SIGFPE | coredump |
71 * | SIGKILL | terminate(+) |
72 * | SIGUSR1 | terminate |
73 * | SIGSEGV | coredump |
74 * | SIGUSR2 | terminate |
75 * | SIGPIPE | terminate |
76 * | SIGALRM | terminate |
77 * | SIGTERM | terminate |
78 * | SIGCHLD | ignore |
79 * | SIGCONT | ignore(*) |
80 * | SIGSTOP | stop(*)(+) |
81 * | SIGTSTP | stop(*) |
82 * | SIGTTIN | stop(*) |
83 * | SIGTTOU | stop(*) |
84 * | SIGURG | ignore |
85 * | SIGXCPU | coredump |
86 * | SIGXFSZ | coredump |
87 * | SIGVTALRM | terminate |
88 * | SIGPROF | terminate |
89 * | SIGPOLL/SIGIO | terminate |
90 * | SIGSYS/SIGUNUSED | coredump |
91 * | SIGSTKFLT | terminate |
92 * | SIGWINCH | ignore |
93 * | SIGPWR | terminate |
94 * | SIGRTMIN-SIGRTMAX | terminate |
95 * +--------------------+------------------+
96 * | non-POSIX signal | default action |
97 * +--------------------+------------------+
98 * | SIGEMT | coredump |
99 * +--------------------+------------------+
101 * (+) For SIGKILL and SIGSTOP the action is "always", not just "default".
102 * (*) Special job control effects:
103 * When SIGCONT is sent, it resumes the process (all threads in the group)
104 * from TASK_STOPPED state and also clears any pending/queued stop signals
105 * (any of those marked with "stop(*)"). This happens regardless of blocking,
106 * catching, or ignoring SIGCONT. When any stop signal is sent, it clears
107 * any pending/queued SIGCONT signals; this happens regardless of blocking,
108 * catching, or ignored the stop signal, though (except for SIGSTOP) the
109 * default action of stopping the process may happen later or never.
112 #ifdef SIGEMT
113 #define M_SIGEMT M(SIGEMT)
114 #else
115 #define M_SIGEMT 0
116 #endif
118 #if SIGRTMIN > BITS_PER_LONG
119 #define M(sig) (1ULL << ((sig)-1))
120 #else
121 #define M(sig) (1UL << ((sig)-1))
122 #endif
123 #define T(sig, mask) (M(sig) & (mask))
125 #define SIG_KERNEL_ONLY_MASK (\
126 M(SIGKILL) | M(SIGSTOP) )
128 #define SIG_KERNEL_STOP_MASK (\
129 M(SIGSTOP) | M(SIGTSTP) | M(SIGTTIN) | M(SIGTTOU) )
131 #define SIG_KERNEL_COREDUMP_MASK (\
132 M(SIGQUIT) | M(SIGILL) | M(SIGTRAP) | M(SIGABRT) | \
133 M(SIGFPE) | M(SIGSEGV) | M(SIGBUS) | M(SIGSYS) | \
134 M(SIGXCPU) | M(SIGXFSZ) | M_SIGEMT )
136 #define SIG_KERNEL_IGNORE_MASK (\
137 M(SIGCONT) | M(SIGCHLD) | M(SIGWINCH) | M(SIGURG) )
139 #define sig_kernel_only(sig) \
140 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_ONLY_MASK))
141 #define sig_kernel_coredump(sig) \
142 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_COREDUMP_MASK))
143 #define sig_kernel_ignore(sig) \
144 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_IGNORE_MASK))
145 #define sig_kernel_stop(sig) \
146 (((sig) < SIGRTMIN) && T(sig, SIG_KERNEL_STOP_MASK))
148 #define sig_needs_tasklist(sig) ((sig) == SIGCONT)
150 #define sig_user_defined(t, signr) \
151 (((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_DFL) && \
152 ((t)->sighand->action[(signr)-1].sa.sa_handler != SIG_IGN))
154 #define sig_fatal(t, signr) \
155 (!T(signr, SIG_KERNEL_IGNORE_MASK|SIG_KERNEL_STOP_MASK) && \
156 (t)->sighand->action[(signr)-1].sa.sa_handler == SIG_DFL)
158 static int sig_ignored(struct task_struct *t, int sig)
160 void __user * handler;
163 * Tracers always want to know about signals..
165 if (t->ptrace & PT_PTRACED)
166 return 0;
169 * Blocked signals are never ignored, since the
170 * signal handler may change by the time it is
171 * unblocked.
173 if (sigismember(&t->blocked, sig))
174 return 0;
176 /* Is it explicitly or implicitly ignored? */
177 handler = t->sighand->action[sig-1].sa.sa_handler;
178 return handler == SIG_IGN ||
179 (handler == SIG_DFL && sig_kernel_ignore(sig));
183 * Re-calculate pending state from the set of locally pending
184 * signals, globally pending signals, and blocked signals.
186 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
188 unsigned long ready;
189 long i;
191 switch (_NSIG_WORDS) {
192 default:
193 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
194 ready |= signal->sig[i] &~ blocked->sig[i];
195 break;
197 case 4: ready = signal->sig[3] &~ blocked->sig[3];
198 ready |= signal->sig[2] &~ blocked->sig[2];
199 ready |= signal->sig[1] &~ blocked->sig[1];
200 ready |= signal->sig[0] &~ blocked->sig[0];
201 break;
203 case 2: ready = signal->sig[1] &~ blocked->sig[1];
204 ready |= signal->sig[0] &~ blocked->sig[0];
205 break;
207 case 1: ready = signal->sig[0] &~ blocked->sig[0];
209 return ready != 0;
212 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
214 fastcall void recalc_sigpending_tsk(struct task_struct *t)
216 if (t->signal->group_stop_count > 0 ||
217 (freezing(t)) ||
218 PENDING(&t->pending, &t->blocked) ||
219 PENDING(&t->signal->shared_pending, &t->blocked))
220 set_tsk_thread_flag(t, TIF_SIGPENDING);
221 else
222 clear_tsk_thread_flag(t, TIF_SIGPENDING);
225 void recalc_sigpending(void)
227 recalc_sigpending_tsk(current);
230 /* Given the mask, find the first available signal that should be serviced. */
232 static int
233 next_signal(struct sigpending *pending, sigset_t *mask)
235 unsigned long i, *s, *m, x;
236 int sig = 0;
238 s = pending->signal.sig;
239 m = mask->sig;
240 switch (_NSIG_WORDS) {
241 default:
242 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m)
243 if ((x = *s &~ *m) != 0) {
244 sig = ffz(~x) + i*_NSIG_BPW + 1;
245 break;
247 break;
249 case 2: if ((x = s[0] &~ m[0]) != 0)
250 sig = 1;
251 else if ((x = s[1] &~ m[1]) != 0)
252 sig = _NSIG_BPW + 1;
253 else
254 break;
255 sig += ffz(~x);
256 break;
258 case 1: if ((x = *s &~ *m) != 0)
259 sig = ffz(~x) + 1;
260 break;
263 return sig;
266 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags,
267 int override_rlimit)
269 struct sigqueue *q = NULL;
270 struct user_struct *user;
273 * In order to avoid problems with "switch_user()", we want to make
274 * sure that the compiler doesn't re-load "t->user"
276 user = t->user;
277 barrier();
278 atomic_inc(&user->sigpending);
279 if (override_rlimit ||
280 atomic_read(&user->sigpending) <=
281 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur)
282 q = kmem_cache_alloc(sigqueue_cachep, flags);
283 if (unlikely(q == NULL)) {
284 atomic_dec(&user->sigpending);
285 } else {
286 INIT_LIST_HEAD(&q->list);
287 q->flags = 0;
288 q->user = get_uid(user);
290 return(q);
293 static void __sigqueue_free(struct sigqueue *q)
295 if (q->flags & SIGQUEUE_PREALLOC)
296 return;
297 atomic_dec(&q->user->sigpending);
298 free_uid(q->user);
299 kmem_cache_free(sigqueue_cachep, q);
302 void flush_sigqueue(struct sigpending *queue)
304 struct sigqueue *q;
306 sigemptyset(&queue->signal);
307 while (!list_empty(&queue->list)) {
308 q = list_entry(queue->list.next, struct sigqueue , list);
309 list_del_init(&q->list);
310 __sigqueue_free(q);
315 * Flush all pending signals for a task.
317 void flush_signals(struct task_struct *t)
319 unsigned long flags;
321 spin_lock_irqsave(&t->sighand->siglock, flags);
322 clear_tsk_thread_flag(t,TIF_SIGPENDING);
323 flush_sigqueue(&t->pending);
324 flush_sigqueue(&t->signal->shared_pending);
325 spin_unlock_irqrestore(&t->sighand->siglock, flags);
329 * Flush all handlers for a task.
332 void
333 flush_signal_handlers(struct task_struct *t, int force_default)
335 int i;
336 struct k_sigaction *ka = &t->sighand->action[0];
337 for (i = _NSIG ; i != 0 ; i--) {
338 if (force_default || ka->sa.sa_handler != SIG_IGN)
339 ka->sa.sa_handler = SIG_DFL;
340 ka->sa.sa_flags = 0;
341 sigemptyset(&ka->sa.sa_mask);
342 ka++;
347 /* Notify the system that a driver wants to block all signals for this
348 * process, and wants to be notified if any signals at all were to be
349 * sent/acted upon. If the notifier routine returns non-zero, then the
350 * signal will be acted upon after all. If the notifier routine returns 0,
351 * then then signal will be blocked. Only one block per process is
352 * allowed. priv is a pointer to private data that the notifier routine
353 * can use to determine if the signal should be blocked or not. */
355 void
356 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
358 unsigned long flags;
360 spin_lock_irqsave(&current->sighand->siglock, flags);
361 current->notifier_mask = mask;
362 current->notifier_data = priv;
363 current->notifier = notifier;
364 spin_unlock_irqrestore(&current->sighand->siglock, flags);
367 /* Notify the system that blocking has ended. */
369 void
370 unblock_all_signals(void)
372 unsigned long flags;
374 spin_lock_irqsave(&current->sighand->siglock, flags);
375 current->notifier = NULL;
376 current->notifier_data = NULL;
377 recalc_sigpending();
378 spin_unlock_irqrestore(&current->sighand->siglock, flags);
381 static int collect_signal(int sig, struct sigpending *list, siginfo_t *info)
383 struct sigqueue *q, *first = NULL;
384 int still_pending = 0;
386 if (unlikely(!sigismember(&list->signal, sig)))
387 return 0;
390 * Collect the siginfo appropriate to this signal. Check if
391 * there is another siginfo for the same signal.
393 list_for_each_entry(q, &list->list, list) {
394 if (q->info.si_signo == sig) {
395 if (first) {
396 still_pending = 1;
397 break;
399 first = q;
402 if (first) {
403 list_del_init(&first->list);
404 copy_siginfo(info, &first->info);
405 __sigqueue_free(first);
406 if (!still_pending)
407 sigdelset(&list->signal, sig);
408 } else {
410 /* Ok, it wasn't in the queue. This must be
411 a fast-pathed signal or we must have been
412 out of queue space. So zero out the info.
414 sigdelset(&list->signal, sig);
415 info->si_signo = sig;
416 info->si_errno = 0;
417 info->si_code = 0;
418 info->si_pid = 0;
419 info->si_uid = 0;
421 return 1;
424 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
425 siginfo_t *info)
427 int sig = next_signal(pending, mask);
429 if (sig) {
430 if (current->notifier) {
431 if (sigismember(current->notifier_mask, sig)) {
432 if (!(current->notifier)(current->notifier_data)) {
433 clear_thread_flag(TIF_SIGPENDING);
434 return 0;
439 if (!collect_signal(sig, pending, info))
440 sig = 0;
443 return sig;
447 * Dequeue a signal and return the element to the caller, which is
448 * expected to free it.
450 * All callers have to hold the siglock.
452 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
454 int signr = __dequeue_signal(&tsk->pending, mask, info);
455 if (!signr)
456 signr = __dequeue_signal(&tsk->signal->shared_pending,
457 mask, info);
458 recalc_sigpending_tsk(tsk);
459 if (signr && unlikely(sig_kernel_stop(signr))) {
461 * Set a marker that we have dequeued a stop signal. Our
462 * caller might release the siglock and then the pending
463 * stop signal it is about to process is no longer in the
464 * pending bitmasks, but must still be cleared by a SIGCONT
465 * (and overruled by a SIGKILL). So those cases clear this
466 * shared flag after we've set it. Note that this flag may
467 * remain set after the signal we return is ignored or
468 * handled. That doesn't matter because its only purpose
469 * is to alert stop-signal processing code when another
470 * processor has come along and cleared the flag.
472 if (!(tsk->signal->flags & SIGNAL_GROUP_EXIT))
473 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED;
475 if ( signr &&
476 ((info->si_code & __SI_MASK) == __SI_TIMER) &&
477 info->si_sys_private){
479 * Release the siglock to ensure proper locking order
480 * of timer locks outside of siglocks. Note, we leave
481 * irqs disabled here, since the posix-timers code is
482 * about to disable them again anyway.
484 spin_unlock(&tsk->sighand->siglock);
485 do_schedule_next_timer(info);
486 spin_lock(&tsk->sighand->siglock);
488 return signr;
492 * Tell a process that it has a new active signal..
494 * NOTE! we rely on the previous spin_lock to
495 * lock interrupts for us! We can only be called with
496 * "siglock" held, and the local interrupt must
497 * have been disabled when that got acquired!
499 * No need to set need_resched since signal event passing
500 * goes through ->blocked
502 void signal_wake_up(struct task_struct *t, int resume)
504 unsigned int mask;
506 set_tsk_thread_flag(t, TIF_SIGPENDING);
509 * For SIGKILL, we want to wake it up in the stopped/traced case.
510 * We don't check t->state here because there is a race with it
511 * executing another processor and just now entering stopped state.
512 * By using wake_up_state, we ensure the process will wake up and
513 * handle its death signal.
515 mask = TASK_INTERRUPTIBLE;
516 if (resume)
517 mask |= TASK_STOPPED | TASK_TRACED;
518 if (!wake_up_state(t, mask))
519 kick_process(t);
523 * Remove signals in mask from the pending set and queue.
524 * Returns 1 if any signals were found.
526 * All callers must be holding the siglock.
528 * This version takes a sigset mask and looks at all signals,
529 * not just those in the first mask word.
531 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
533 struct sigqueue *q, *n;
534 sigset_t m;
536 sigandsets(&m, mask, &s->signal);
537 if (sigisemptyset(&m))
538 return 0;
540 signandsets(&s->signal, &s->signal, mask);
541 list_for_each_entry_safe(q, n, &s->list, list) {
542 if (sigismember(mask, q->info.si_signo)) {
543 list_del_init(&q->list);
544 __sigqueue_free(q);
547 return 1;
550 * Remove signals in mask from the pending set and queue.
551 * Returns 1 if any signals were found.
553 * All callers must be holding the siglock.
555 static int rm_from_queue(unsigned long mask, struct sigpending *s)
557 struct sigqueue *q, *n;
559 if (!sigtestsetmask(&s->signal, mask))
560 return 0;
562 sigdelsetmask(&s->signal, mask);
563 list_for_each_entry_safe(q, n, &s->list, list) {
564 if (q->info.si_signo < SIGRTMIN &&
565 (mask & sigmask(q->info.si_signo))) {
566 list_del_init(&q->list);
567 __sigqueue_free(q);
570 return 1;
574 * Bad permissions for sending the signal
576 static int check_kill_permission(int sig, struct siginfo *info,
577 struct task_struct *t)
579 int error = -EINVAL;
580 if (!valid_signal(sig))
581 return error;
582 error = -EPERM;
583 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
584 && ((sig != SIGCONT) ||
585 (current->signal->session != t->signal->session))
586 && (current->euid ^ t->suid) && (current->euid ^ t->uid)
587 && (current->uid ^ t->suid) && (current->uid ^ t->uid)
588 && !capable(CAP_KILL))
589 return error;
591 error = security_task_kill(t, info, sig, 0);
592 if (!error)
593 audit_signal_info(sig, t); /* Let audit system see the signal */
594 return error;
597 /* forward decl */
598 static void do_notify_parent_cldstop(struct task_struct *tsk, int why);
601 * Handle magic process-wide effects of stop/continue signals.
602 * Unlike the signal actions, these happen immediately at signal-generation
603 * time regardless of blocking, ignoring, or handling. This does the
604 * actual continuing for SIGCONT, but not the actual stopping for stop
605 * signals. The process stop is done as a signal action for SIG_DFL.
607 static void handle_stop_signal(int sig, struct task_struct *p)
609 struct task_struct *t;
611 if (p->signal->flags & SIGNAL_GROUP_EXIT)
613 * The process is in the middle of dying already.
615 return;
617 if (sig_kernel_stop(sig)) {
619 * This is a stop signal. Remove SIGCONT from all queues.
621 rm_from_queue(sigmask(SIGCONT), &p->signal->shared_pending);
622 t = p;
623 do {
624 rm_from_queue(sigmask(SIGCONT), &t->pending);
625 t = next_thread(t);
626 } while (t != p);
627 } else if (sig == SIGCONT) {
629 * Remove all stop signals from all queues,
630 * and wake all threads.
632 if (unlikely(p->signal->group_stop_count > 0)) {
634 * There was a group stop in progress. We'll
635 * pretend it finished before we got here. We are
636 * obliged to report it to the parent: if the
637 * SIGSTOP happened "after" this SIGCONT, then it
638 * would have cleared this pending SIGCONT. If it
639 * happened "before" this SIGCONT, then the parent
640 * got the SIGCHLD about the stop finishing before
641 * the continue happened. We do the notification
642 * now, and it's as if the stop had finished and
643 * the SIGCHLD was pending on entry to this kill.
645 p->signal->group_stop_count = 0;
646 p->signal->flags = SIGNAL_STOP_CONTINUED;
647 spin_unlock(&p->sighand->siglock);
648 do_notify_parent_cldstop(p, CLD_STOPPED);
649 spin_lock(&p->sighand->siglock);
651 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
652 t = p;
653 do {
654 unsigned int state;
655 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
658 * If there is a handler for SIGCONT, we must make
659 * sure that no thread returns to user mode before
660 * we post the signal, in case it was the only
661 * thread eligible to run the signal handler--then
662 * it must not do anything between resuming and
663 * running the handler. With the TIF_SIGPENDING
664 * flag set, the thread will pause and acquire the
665 * siglock that we hold now and until we've queued
666 * the pending signal.
668 * Wake up the stopped thread _after_ setting
669 * TIF_SIGPENDING
671 state = TASK_STOPPED;
672 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) {
673 set_tsk_thread_flag(t, TIF_SIGPENDING);
674 state |= TASK_INTERRUPTIBLE;
676 wake_up_state(t, state);
678 t = next_thread(t);
679 } while (t != p);
681 if (p->signal->flags & SIGNAL_STOP_STOPPED) {
683 * We were in fact stopped, and are now continued.
684 * Notify the parent with CLD_CONTINUED.
686 p->signal->flags = SIGNAL_STOP_CONTINUED;
687 p->signal->group_exit_code = 0;
688 spin_unlock(&p->sighand->siglock);
689 do_notify_parent_cldstop(p, CLD_CONTINUED);
690 spin_lock(&p->sighand->siglock);
691 } else {
693 * We are not stopped, but there could be a stop
694 * signal in the middle of being processed after
695 * being removed from the queue. Clear that too.
697 p->signal->flags = 0;
699 } else if (sig == SIGKILL) {
701 * Make sure that any pending stop signal already dequeued
702 * is undone by the wakeup for SIGKILL.
704 p->signal->flags = 0;
708 static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
709 struct sigpending *signals)
711 struct sigqueue * q = NULL;
712 int ret = 0;
715 * fast-pathed signals for kernel-internal things like SIGSTOP
716 * or SIGKILL.
718 if (info == SEND_SIG_FORCED)
719 goto out_set;
721 /* Real-time signals must be queued if sent by sigqueue, or
722 some other real-time mechanism. It is implementation
723 defined whether kill() does so. We attempt to do so, on
724 the principle of least surprise, but since kill is not
725 allowed to fail with EAGAIN when low on memory we just
726 make sure at least one signal gets delivered and don't
727 pass on the info struct. */
729 q = __sigqueue_alloc(t, GFP_ATOMIC, (sig < SIGRTMIN &&
730 (is_si_special(info) ||
731 info->si_code >= 0)));
732 if (q) {
733 list_add_tail(&q->list, &signals->list);
734 switch ((unsigned long) info) {
735 case (unsigned long) SEND_SIG_NOINFO:
736 q->info.si_signo = sig;
737 q->info.si_errno = 0;
738 q->info.si_code = SI_USER;
739 q->info.si_pid = current->pid;
740 q->info.si_uid = current->uid;
741 break;
742 case (unsigned long) SEND_SIG_PRIV:
743 q->info.si_signo = sig;
744 q->info.si_errno = 0;
745 q->info.si_code = SI_KERNEL;
746 q->info.si_pid = 0;
747 q->info.si_uid = 0;
748 break;
749 default:
750 copy_siginfo(&q->info, info);
751 break;
753 } else if (!is_si_special(info)) {
754 if (sig >= SIGRTMIN && info->si_code != SI_USER)
756 * Queue overflow, abort. We may abort if the signal was rt
757 * and sent by user using something other than kill().
759 return -EAGAIN;
762 out_set:
763 sigaddset(&signals->signal, sig);
764 return ret;
767 #define LEGACY_QUEUE(sigptr, sig) \
768 (((sig) < SIGRTMIN) && sigismember(&(sigptr)->signal, (sig)))
771 static int
772 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
774 int ret = 0;
776 BUG_ON(!irqs_disabled());
777 assert_spin_locked(&t->sighand->siglock);
779 /* Short-circuit ignored signals. */
780 if (sig_ignored(t, sig))
781 goto out;
783 /* Support queueing exactly one non-rt signal, so that we
784 can get more detailed information about the cause of
785 the signal. */
786 if (LEGACY_QUEUE(&t->pending, sig))
787 goto out;
789 ret = send_signal(sig, info, t, &t->pending);
790 if (!ret && !sigismember(&t->blocked, sig))
791 signal_wake_up(t, sig == SIGKILL);
792 out:
793 return ret;
797 * Force a signal that the process can't ignore: if necessary
798 * we unblock the signal and change any SIG_IGN to SIG_DFL.
800 * Note: If we unblock the signal, we always reset it to SIG_DFL,
801 * since we do not want to have a signal handler that was blocked
802 * be invoked when user space had explicitly blocked it.
804 * We don't want to have recursive SIGSEGV's etc, for example.
807 force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
809 unsigned long int flags;
810 int ret, blocked, ignored;
811 struct k_sigaction *action;
813 spin_lock_irqsave(&t->sighand->siglock, flags);
814 action = &t->sighand->action[sig-1];
815 ignored = action->sa.sa_handler == SIG_IGN;
816 blocked = sigismember(&t->blocked, sig);
817 if (blocked || ignored) {
818 action->sa.sa_handler = SIG_DFL;
819 if (blocked) {
820 sigdelset(&t->blocked, sig);
821 recalc_sigpending_tsk(t);
824 ret = specific_send_sig_info(sig, info, t);
825 spin_unlock_irqrestore(&t->sighand->siglock, flags);
827 return ret;
830 void
831 force_sig_specific(int sig, struct task_struct *t)
833 force_sig_info(sig, SEND_SIG_FORCED, t);
837 * Test if P wants to take SIG. After we've checked all threads with this,
838 * it's equivalent to finding no threads not blocking SIG. Any threads not
839 * blocking SIG were ruled out because they are not running and already
840 * have pending signals. Such threads will dequeue from the shared queue
841 * as soon as they're available, so putting the signal on the shared queue
842 * will be equivalent to sending it to one such thread.
844 static inline int wants_signal(int sig, struct task_struct *p)
846 if (sigismember(&p->blocked, sig))
847 return 0;
848 if (p->flags & PF_EXITING)
849 return 0;
850 if (sig == SIGKILL)
851 return 1;
852 if (p->state & (TASK_STOPPED | TASK_TRACED))
853 return 0;
854 return task_curr(p) || !signal_pending(p);
857 static void
858 __group_complete_signal(int sig, struct task_struct *p)
860 struct task_struct *t;
863 * Now find a thread we can wake up to take the signal off the queue.
865 * If the main thread wants the signal, it gets first crack.
866 * Probably the least surprising to the average bear.
868 if (wants_signal(sig, p))
869 t = p;
870 else if (thread_group_empty(p))
872 * There is just one thread and it does not need to be woken.
873 * It will dequeue unblocked signals before it runs again.
875 return;
876 else {
878 * Otherwise try to find a suitable thread.
880 t = p->signal->curr_target;
881 if (t == NULL)
882 /* restart balancing at this thread */
883 t = p->signal->curr_target = p;
885 while (!wants_signal(sig, t)) {
886 t = next_thread(t);
887 if (t == p->signal->curr_target)
889 * No thread needs to be woken.
890 * Any eligible threads will see
891 * the signal in the queue soon.
893 return;
895 p->signal->curr_target = t;
899 * Found a killable thread. If the signal will be fatal,
900 * then start taking the whole group down immediately.
902 if (sig_fatal(p, sig) && !(p->signal->flags & SIGNAL_GROUP_EXIT) &&
903 !sigismember(&t->real_blocked, sig) &&
904 (sig == SIGKILL || !(t->ptrace & PT_PTRACED))) {
906 * This signal will be fatal to the whole group.
908 if (!sig_kernel_coredump(sig)) {
910 * Start a group exit and wake everybody up.
911 * This way we don't have other threads
912 * running and doing things after a slower
913 * thread has the fatal signal pending.
915 p->signal->flags = SIGNAL_GROUP_EXIT;
916 p->signal->group_exit_code = sig;
917 p->signal->group_stop_count = 0;
918 t = p;
919 do {
920 sigaddset(&t->pending.signal, SIGKILL);
921 signal_wake_up(t, 1);
922 t = next_thread(t);
923 } while (t != p);
924 return;
928 * There will be a core dump. We make all threads other
929 * than the chosen one go into a group stop so that nothing
930 * happens until it gets scheduled, takes the signal off
931 * the shared queue, and does the core dump. This is a
932 * little more complicated than strictly necessary, but it
933 * keeps the signal state that winds up in the core dump
934 * unchanged from the death state, e.g. which thread had
935 * the core-dump signal unblocked.
937 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
938 rm_from_queue(SIG_KERNEL_STOP_MASK, &p->signal->shared_pending);
939 p->signal->group_stop_count = 0;
940 p->signal->group_exit_task = t;
941 t = p;
942 do {
943 p->signal->group_stop_count++;
944 signal_wake_up(t, 0);
945 t = next_thread(t);
946 } while (t != p);
947 wake_up_process(p->signal->group_exit_task);
948 return;
952 * The signal is already in the shared-pending queue.
953 * Tell the chosen thread to wake up and dequeue it.
955 signal_wake_up(t, sig == SIGKILL);
956 return;
960 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
962 int ret = 0;
964 assert_spin_locked(&p->sighand->siglock);
965 handle_stop_signal(sig, p);
967 /* Short-circuit ignored signals. */
968 if (sig_ignored(p, sig))
969 return ret;
971 if (LEGACY_QUEUE(&p->signal->shared_pending, sig))
972 /* This is a non-RT signal and we already have one queued. */
973 return ret;
976 * Put this signal on the shared-pending queue, or fail with EAGAIN.
977 * We always use the shared queue for process-wide signals,
978 * to avoid several races.
980 ret = send_signal(sig, info, p, &p->signal->shared_pending);
981 if (unlikely(ret))
982 return ret;
984 __group_complete_signal(sig, p);
985 return 0;
989 * Nuke all other threads in the group.
991 void zap_other_threads(struct task_struct *p)
993 struct task_struct *t;
995 p->signal->flags = SIGNAL_GROUP_EXIT;
996 p->signal->group_stop_count = 0;
998 if (thread_group_empty(p))
999 return;
1001 for (t = next_thread(p); t != p; t = next_thread(t)) {
1003 * Don't bother with already dead threads
1005 if (t->exit_state)
1006 continue;
1009 * We don't want to notify the parent, since we are
1010 * killed as part of a thread group due to another
1011 * thread doing an execve() or similar. So set the
1012 * exit signal to -1 to allow immediate reaping of
1013 * the process. But don't detach the thread group
1014 * leader.
1016 if (t != p->group_leader)
1017 t->exit_signal = -1;
1019 /* SIGKILL will be handled before any pending SIGSTOP */
1020 sigaddset(&t->pending.signal, SIGKILL);
1021 signal_wake_up(t, 1);
1026 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
1028 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags)
1030 struct sighand_struct *sighand;
1032 for (;;) {
1033 sighand = rcu_dereference(tsk->sighand);
1034 if (unlikely(sighand == NULL))
1035 break;
1037 spin_lock_irqsave(&sighand->siglock, *flags);
1038 if (likely(sighand == tsk->sighand))
1039 break;
1040 spin_unlock_irqrestore(&sighand->siglock, *flags);
1043 return sighand;
1046 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1048 unsigned long flags;
1049 int ret;
1051 ret = check_kill_permission(sig, info, p);
1053 if (!ret && sig) {
1054 ret = -ESRCH;
1055 if (lock_task_sighand(p, &flags)) {
1056 ret = __group_send_sig_info(sig, info, p);
1057 unlock_task_sighand(p, &flags);
1061 return ret;
1065 * kill_pgrp_info() sends a signal to a process group: this is what the tty
1066 * control characters do (^C, ^Z etc)
1069 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1071 struct task_struct *p = NULL;
1072 int retval, success;
1074 success = 0;
1075 retval = -ESRCH;
1076 do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1077 int err = group_send_sig_info(sig, info, p);
1078 success |= !err;
1079 retval = err;
1080 } while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1081 return success ? 0 : retval;
1084 int kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1086 int retval;
1088 read_lock(&tasklist_lock);
1089 retval = __kill_pgrp_info(sig, info, pgrp);
1090 read_unlock(&tasklist_lock);
1092 return retval;
1095 int __kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1097 if (pgrp <= 0)
1098 return -EINVAL;
1100 return __kill_pgrp_info(sig, info, find_pid(pgrp));
1104 kill_pg_info(int sig, struct siginfo *info, pid_t pgrp)
1106 int retval;
1108 read_lock(&tasklist_lock);
1109 retval = __kill_pg_info(sig, info, pgrp);
1110 read_unlock(&tasklist_lock);
1112 return retval;
1115 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1117 int error;
1118 int acquired_tasklist_lock = 0;
1119 struct task_struct *p;
1121 rcu_read_lock();
1122 if (unlikely(sig_needs_tasklist(sig))) {
1123 read_lock(&tasklist_lock);
1124 acquired_tasklist_lock = 1;
1126 p = pid_task(pid, PIDTYPE_PID);
1127 error = -ESRCH;
1128 if (p)
1129 error = group_send_sig_info(sig, info, p);
1130 if (unlikely(acquired_tasklist_lock))
1131 read_unlock(&tasklist_lock);
1132 rcu_read_unlock();
1133 return error;
1137 kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1139 int error;
1140 rcu_read_lock();
1141 error = kill_pid_info(sig, info, find_pid(pid));
1142 rcu_read_unlock();
1143 return error;
1146 /* like kill_pid_info(), but doesn't use uid/euid of "current" */
1147 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid,
1148 uid_t uid, uid_t euid, u32 secid)
1150 int ret = -EINVAL;
1151 struct task_struct *p;
1153 if (!valid_signal(sig))
1154 return ret;
1156 read_lock(&tasklist_lock);
1157 p = pid_task(pid, PIDTYPE_PID);
1158 if (!p) {
1159 ret = -ESRCH;
1160 goto out_unlock;
1162 if ((info == SEND_SIG_NOINFO || (!is_si_special(info) && SI_FROMUSER(info)))
1163 && (euid != p->suid) && (euid != p->uid)
1164 && (uid != p->suid) && (uid != p->uid)) {
1165 ret = -EPERM;
1166 goto out_unlock;
1168 ret = security_task_kill(p, info, sig, secid);
1169 if (ret)
1170 goto out_unlock;
1171 if (sig && p->sighand) {
1172 unsigned long flags;
1173 spin_lock_irqsave(&p->sighand->siglock, flags);
1174 ret = __group_send_sig_info(sig, info, p);
1175 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1177 out_unlock:
1178 read_unlock(&tasklist_lock);
1179 return ret;
1181 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid);
1184 * kill_something_info() interprets pid in interesting ways just like kill(2).
1186 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1187 * is probably wrong. Should make it like BSD or SYSV.
1190 static int kill_something_info(int sig, struct siginfo *info, int pid)
1192 if (!pid) {
1193 return kill_pg_info(sig, info, process_group(current));
1194 } else if (pid == -1) {
1195 int retval = 0, count = 0;
1196 struct task_struct * p;
1198 read_lock(&tasklist_lock);
1199 for_each_process(p) {
1200 if (p->pid > 1 && p->tgid != current->tgid) {
1201 int err = group_send_sig_info(sig, info, p);
1202 ++count;
1203 if (err != -EPERM)
1204 retval = err;
1207 read_unlock(&tasklist_lock);
1208 return count ? retval : -ESRCH;
1209 } else if (pid < 0) {
1210 return kill_pg_info(sig, info, -pid);
1211 } else {
1212 return kill_proc_info(sig, info, pid);
1217 * These are for backward compatibility with the rest of the kernel source.
1221 * These two are the most common entry points. They send a signal
1222 * just to the specific thread.
1225 send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1227 int ret;
1228 unsigned long flags;
1231 * Make sure legacy kernel users don't send in bad values
1232 * (normal paths check this in check_kill_permission).
1234 if (!valid_signal(sig))
1235 return -EINVAL;
1238 * We need the tasklist lock even for the specific
1239 * thread case (when we don't need to follow the group
1240 * lists) in order to avoid races with "p->sighand"
1241 * going away or changing from under us.
1243 read_lock(&tasklist_lock);
1244 spin_lock_irqsave(&p->sighand->siglock, flags);
1245 ret = specific_send_sig_info(sig, info, p);
1246 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1247 read_unlock(&tasklist_lock);
1248 return ret;
1251 #define __si_special(priv) \
1252 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1255 send_sig(int sig, struct task_struct *p, int priv)
1257 return send_sig_info(sig, __si_special(priv), p);
1261 * This is the entry point for "process-wide" signals.
1262 * They will go to an appropriate thread in the thread group.
1265 send_group_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1267 int ret;
1268 read_lock(&tasklist_lock);
1269 ret = group_send_sig_info(sig, info, p);
1270 read_unlock(&tasklist_lock);
1271 return ret;
1274 void
1275 force_sig(int sig, struct task_struct *p)
1277 force_sig_info(sig, SEND_SIG_PRIV, p);
1281 * When things go south during signal handling, we
1282 * will force a SIGSEGV. And if the signal that caused
1283 * the problem was already a SIGSEGV, we'll want to
1284 * make sure we don't even try to deliver the signal..
1287 force_sigsegv(int sig, struct task_struct *p)
1289 if (sig == SIGSEGV) {
1290 unsigned long flags;
1291 spin_lock_irqsave(&p->sighand->siglock, flags);
1292 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1293 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1295 force_sig(SIGSEGV, p);
1296 return 0;
1299 int kill_pgrp(struct pid *pid, int sig, int priv)
1301 return kill_pgrp_info(sig, __si_special(priv), pid);
1303 EXPORT_SYMBOL(kill_pgrp);
1305 int kill_pid(struct pid *pid, int sig, int priv)
1307 return kill_pid_info(sig, __si_special(priv), pid);
1309 EXPORT_SYMBOL(kill_pid);
1312 kill_pg(pid_t pgrp, int sig, int priv)
1314 return kill_pg_info(sig, __si_special(priv), pgrp);
1318 kill_proc(pid_t pid, int sig, int priv)
1320 return kill_proc_info(sig, __si_special(priv), pid);
1324 * These functions support sending signals using preallocated sigqueue
1325 * structures. This is needed "because realtime applications cannot
1326 * afford to lose notifications of asynchronous events, like timer
1327 * expirations or I/O completions". In the case of Posix Timers
1328 * we allocate the sigqueue structure from the timer_create. If this
1329 * allocation fails we are able to report the failure to the application
1330 * with an EAGAIN error.
1333 struct sigqueue *sigqueue_alloc(void)
1335 struct sigqueue *q;
1337 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0)))
1338 q->flags |= SIGQUEUE_PREALLOC;
1339 return(q);
1342 void sigqueue_free(struct sigqueue *q)
1344 unsigned long flags;
1345 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1347 * If the signal is still pending remove it from the
1348 * pending queue.
1350 if (unlikely(!list_empty(&q->list))) {
1351 spinlock_t *lock = &current->sighand->siglock;
1352 read_lock(&tasklist_lock);
1353 spin_lock_irqsave(lock, flags);
1354 if (!list_empty(&q->list))
1355 list_del_init(&q->list);
1356 spin_unlock_irqrestore(lock, flags);
1357 read_unlock(&tasklist_lock);
1359 q->flags &= ~SIGQUEUE_PREALLOC;
1360 __sigqueue_free(q);
1363 int send_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1365 unsigned long flags;
1366 int ret = 0;
1368 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1371 * The rcu based delayed sighand destroy makes it possible to
1372 * run this without tasklist lock held. The task struct itself
1373 * cannot go away as create_timer did get_task_struct().
1375 * We return -1, when the task is marked exiting, so
1376 * posix_timer_event can redirect it to the group leader
1378 rcu_read_lock();
1380 if (!likely(lock_task_sighand(p, &flags))) {
1381 ret = -1;
1382 goto out_err;
1385 if (unlikely(!list_empty(&q->list))) {
1387 * If an SI_TIMER entry is already queue just increment
1388 * the overrun count.
1390 BUG_ON(q->info.si_code != SI_TIMER);
1391 q->info.si_overrun++;
1392 goto out;
1394 /* Short-circuit ignored signals. */
1395 if (sig_ignored(p, sig)) {
1396 ret = 1;
1397 goto out;
1400 list_add_tail(&q->list, &p->pending.list);
1401 sigaddset(&p->pending.signal, sig);
1402 if (!sigismember(&p->blocked, sig))
1403 signal_wake_up(p, sig == SIGKILL);
1405 out:
1406 unlock_task_sighand(p, &flags);
1407 out_err:
1408 rcu_read_unlock();
1410 return ret;
1414 send_group_sigqueue(int sig, struct sigqueue *q, struct task_struct *p)
1416 unsigned long flags;
1417 int ret = 0;
1419 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1421 read_lock(&tasklist_lock);
1422 /* Since it_lock is held, p->sighand cannot be NULL. */
1423 spin_lock_irqsave(&p->sighand->siglock, flags);
1424 handle_stop_signal(sig, p);
1426 /* Short-circuit ignored signals. */
1427 if (sig_ignored(p, sig)) {
1428 ret = 1;
1429 goto out;
1432 if (unlikely(!list_empty(&q->list))) {
1434 * If an SI_TIMER entry is already queue just increment
1435 * the overrun count. Other uses should not try to
1436 * send the signal multiple times.
1438 BUG_ON(q->info.si_code != SI_TIMER);
1439 q->info.si_overrun++;
1440 goto out;
1444 * Put this signal on the shared-pending queue.
1445 * We always use the shared queue for process-wide signals,
1446 * to avoid several races.
1448 list_add_tail(&q->list, &p->signal->shared_pending.list);
1449 sigaddset(&p->signal->shared_pending.signal, sig);
1451 __group_complete_signal(sig, p);
1452 out:
1453 spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454 read_unlock(&tasklist_lock);
1455 return ret;
1459 * Wake up any threads in the parent blocked in wait* syscalls.
1461 static inline void __wake_up_parent(struct task_struct *p,
1462 struct task_struct *parent)
1464 wake_up_interruptible_sync(&parent->signal->wait_chldexit);
1468 * Let a parent know about the death of a child.
1469 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1472 void do_notify_parent(struct task_struct *tsk, int sig)
1474 struct siginfo info;
1475 unsigned long flags;
1476 struct sighand_struct *psig;
1478 BUG_ON(sig == -1);
1480 /* do_notify_parent_cldstop should have been called instead. */
1481 BUG_ON(tsk->state & (TASK_STOPPED|TASK_TRACED));
1483 BUG_ON(!tsk->ptrace &&
1484 (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1486 info.si_signo = sig;
1487 info.si_errno = 0;
1488 info.si_pid = tsk->pid;
1489 info.si_uid = tsk->uid;
1491 /* FIXME: find out whether or not this is supposed to be c*time. */
1492 info.si_utime = cputime_to_jiffies(cputime_add(tsk->utime,
1493 tsk->signal->utime));
1494 info.si_stime = cputime_to_jiffies(cputime_add(tsk->stime,
1495 tsk->signal->stime));
1497 info.si_status = tsk->exit_code & 0x7f;
1498 if (tsk->exit_code & 0x80)
1499 info.si_code = CLD_DUMPED;
1500 else if (tsk->exit_code & 0x7f)
1501 info.si_code = CLD_KILLED;
1502 else {
1503 info.si_code = CLD_EXITED;
1504 info.si_status = tsk->exit_code >> 8;
1507 psig = tsk->parent->sighand;
1508 spin_lock_irqsave(&psig->siglock, flags);
1509 if (!tsk->ptrace && sig == SIGCHLD &&
1510 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1511 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1513 * We are exiting and our parent doesn't care. POSIX.1
1514 * defines special semantics for setting SIGCHLD to SIG_IGN
1515 * or setting the SA_NOCLDWAIT flag: we should be reaped
1516 * automatically and not left for our parent's wait4 call.
1517 * Rather than having the parent do it as a magic kind of
1518 * signal handler, we just set this to tell do_exit that we
1519 * can be cleaned up without becoming a zombie. Note that
1520 * we still call __wake_up_parent in this case, because a
1521 * blocked sys_wait4 might now return -ECHILD.
1523 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1524 * is implementation-defined: we do (if you don't want
1525 * it, just use SIG_IGN instead).
1527 tsk->exit_signal = -1;
1528 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1529 sig = 0;
1531 if (valid_signal(sig) && sig > 0)
1532 __group_send_sig_info(sig, &info, tsk->parent);
1533 __wake_up_parent(tsk, tsk->parent);
1534 spin_unlock_irqrestore(&psig->siglock, flags);
1537 static void do_notify_parent_cldstop(struct task_struct *tsk, int why)
1539 struct siginfo info;
1540 unsigned long flags;
1541 struct task_struct *parent;
1542 struct sighand_struct *sighand;
1544 if (tsk->ptrace & PT_PTRACED)
1545 parent = tsk->parent;
1546 else {
1547 tsk = tsk->group_leader;
1548 parent = tsk->real_parent;
1551 info.si_signo = SIGCHLD;
1552 info.si_errno = 0;
1553 info.si_pid = tsk->pid;
1554 info.si_uid = tsk->uid;
1556 /* FIXME: find out whether or not this is supposed to be c*time. */
1557 info.si_utime = cputime_to_jiffies(tsk->utime);
1558 info.si_stime = cputime_to_jiffies(tsk->stime);
1560 info.si_code = why;
1561 switch (why) {
1562 case CLD_CONTINUED:
1563 info.si_status = SIGCONT;
1564 break;
1565 case CLD_STOPPED:
1566 info.si_status = tsk->signal->group_exit_code & 0x7f;
1567 break;
1568 case CLD_TRAPPED:
1569 info.si_status = tsk->exit_code & 0x7f;
1570 break;
1571 default:
1572 BUG();
1575 sighand = parent->sighand;
1576 spin_lock_irqsave(&sighand->siglock, flags);
1577 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1578 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1579 __group_send_sig_info(SIGCHLD, &info, parent);
1581 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1583 __wake_up_parent(tsk, parent);
1584 spin_unlock_irqrestore(&sighand->siglock, flags);
1587 static inline int may_ptrace_stop(void)
1589 if (!likely(current->ptrace & PT_PTRACED))
1590 return 0;
1592 if (unlikely(current->parent == current->real_parent &&
1593 (current->ptrace & PT_ATTACHED)))
1594 return 0;
1596 if (unlikely(current->signal == current->parent->signal) &&
1597 unlikely(current->signal->flags & SIGNAL_GROUP_EXIT))
1598 return 0;
1601 * Are we in the middle of do_coredump?
1602 * If so and our tracer is also part of the coredump stopping
1603 * is a deadlock situation, and pointless because our tracer
1604 * is dead so don't allow us to stop.
1605 * If SIGKILL was already sent before the caller unlocked
1606 * ->siglock we must see ->core_waiters != 0. Otherwise it
1607 * is safe to enter schedule().
1609 if (unlikely(current->mm->core_waiters) &&
1610 unlikely(current->mm == current->parent->mm))
1611 return 0;
1613 return 1;
1617 * This must be called with current->sighand->siglock held.
1619 * This should be the path for all ptrace stops.
1620 * We always set current->last_siginfo while stopped here.
1621 * That makes it a way to test a stopped process for
1622 * being ptrace-stopped vs being job-control-stopped.
1624 * If we actually decide not to stop at all because the tracer is gone,
1625 * we leave nostop_code in current->exit_code.
1627 static void ptrace_stop(int exit_code, int nostop_code, siginfo_t *info)
1630 * If there is a group stop in progress,
1631 * we must participate in the bookkeeping.
1633 if (current->signal->group_stop_count > 0)
1634 --current->signal->group_stop_count;
1636 current->last_siginfo = info;
1637 current->exit_code = exit_code;
1639 /* Let the debugger run. */
1640 set_current_state(TASK_TRACED);
1641 spin_unlock_irq(&current->sighand->siglock);
1642 try_to_freeze();
1643 read_lock(&tasklist_lock);
1644 if (may_ptrace_stop()) {
1645 do_notify_parent_cldstop(current, CLD_TRAPPED);
1646 read_unlock(&tasklist_lock);
1647 schedule();
1648 } else {
1650 * By the time we got the lock, our tracer went away.
1651 * Don't stop here.
1653 read_unlock(&tasklist_lock);
1654 set_current_state(TASK_RUNNING);
1655 current->exit_code = nostop_code;
1659 * We are back. Now reacquire the siglock before touching
1660 * last_siginfo, so that we are sure to have synchronized with
1661 * any signal-sending on another CPU that wants to examine it.
1663 spin_lock_irq(&current->sighand->siglock);
1664 current->last_siginfo = NULL;
1667 * Queued signals ignored us while we were stopped for tracing.
1668 * So check for any that we should take before resuming user mode.
1670 recalc_sigpending();
1673 void ptrace_notify(int exit_code)
1675 siginfo_t info;
1677 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1679 memset(&info, 0, sizeof info);
1680 info.si_signo = SIGTRAP;
1681 info.si_code = exit_code;
1682 info.si_pid = current->pid;
1683 info.si_uid = current->uid;
1685 /* Let the debugger run. */
1686 spin_lock_irq(&current->sighand->siglock);
1687 ptrace_stop(exit_code, 0, &info);
1688 spin_unlock_irq(&current->sighand->siglock);
1691 static void
1692 finish_stop(int stop_count)
1695 * If there are no other threads in the group, or if there is
1696 * a group stop in progress and we are the last to stop,
1697 * report to the parent. When ptraced, every thread reports itself.
1699 if (stop_count == 0 || (current->ptrace & PT_PTRACED)) {
1700 read_lock(&tasklist_lock);
1701 do_notify_parent_cldstop(current, CLD_STOPPED);
1702 read_unlock(&tasklist_lock);
1705 schedule();
1707 * Now we don't run again until continued.
1709 current->exit_code = 0;
1713 * This performs the stopping for SIGSTOP and other stop signals.
1714 * We have to stop all threads in the thread group.
1715 * Returns nonzero if we've actually stopped and released the siglock.
1716 * Returns zero if we didn't stop and still hold the siglock.
1718 static int do_signal_stop(int signr)
1720 struct signal_struct *sig = current->signal;
1721 int stop_count;
1723 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED))
1724 return 0;
1726 if (sig->group_stop_count > 0) {
1728 * There is a group stop in progress. We don't need to
1729 * start another one.
1731 stop_count = --sig->group_stop_count;
1732 } else {
1734 * There is no group stop already in progress.
1735 * We must initiate one now.
1737 struct task_struct *t;
1739 sig->group_exit_code = signr;
1741 stop_count = 0;
1742 for (t = next_thread(current); t != current; t = next_thread(t))
1744 * Setting state to TASK_STOPPED for a group
1745 * stop is always done with the siglock held,
1746 * so this check has no races.
1748 if (!t->exit_state &&
1749 !(t->state & (TASK_STOPPED|TASK_TRACED))) {
1750 stop_count++;
1751 signal_wake_up(t, 0);
1753 sig->group_stop_count = stop_count;
1756 if (stop_count == 0)
1757 sig->flags = SIGNAL_STOP_STOPPED;
1758 current->exit_code = sig->group_exit_code;
1759 __set_current_state(TASK_STOPPED);
1761 spin_unlock_irq(&current->sighand->siglock);
1762 finish_stop(stop_count);
1763 return 1;
1767 * Do appropriate magic when group_stop_count > 0.
1768 * We return nonzero if we stopped, after releasing the siglock.
1769 * We return zero if we still hold the siglock and should look
1770 * for another signal without checking group_stop_count again.
1772 static int handle_group_stop(void)
1774 int stop_count;
1776 if (current->signal->group_exit_task == current) {
1778 * Group stop is so we can do a core dump,
1779 * We are the initiating thread, so get on with it.
1781 current->signal->group_exit_task = NULL;
1782 return 0;
1785 if (current->signal->flags & SIGNAL_GROUP_EXIT)
1787 * Group stop is so another thread can do a core dump,
1788 * or else we are racing against a death signal.
1789 * Just punt the stop so we can get the next signal.
1791 return 0;
1794 * There is a group stop in progress. We stop
1795 * without any associated signal being in our queue.
1797 stop_count = --current->signal->group_stop_count;
1798 if (stop_count == 0)
1799 current->signal->flags = SIGNAL_STOP_STOPPED;
1800 current->exit_code = current->signal->group_exit_code;
1801 set_current_state(TASK_STOPPED);
1802 spin_unlock_irq(&current->sighand->siglock);
1803 finish_stop(stop_count);
1804 return 1;
1807 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
1808 struct pt_regs *regs, void *cookie)
1810 sigset_t *mask = &current->blocked;
1811 int signr = 0;
1813 try_to_freeze();
1815 relock:
1816 spin_lock_irq(&current->sighand->siglock);
1817 for (;;) {
1818 struct k_sigaction *ka;
1820 if (unlikely(current->signal->group_stop_count > 0) &&
1821 handle_group_stop())
1822 goto relock;
1824 signr = dequeue_signal(current, mask, info);
1826 if (!signr)
1827 break; /* will return 0 */
1829 if ((current->ptrace & PT_PTRACED) && signr != SIGKILL) {
1830 ptrace_signal_deliver(regs, cookie);
1832 /* Let the debugger run. */
1833 ptrace_stop(signr, signr, info);
1835 /* We're back. Did the debugger cancel the sig? */
1836 signr = current->exit_code;
1837 if (signr == 0)
1838 continue;
1840 current->exit_code = 0;
1842 /* Update the siginfo structure if the signal has
1843 changed. If the debugger wanted something
1844 specific in the siginfo structure then it should
1845 have updated *info via PTRACE_SETSIGINFO. */
1846 if (signr != info->si_signo) {
1847 info->si_signo = signr;
1848 info->si_errno = 0;
1849 info->si_code = SI_USER;
1850 info->si_pid = current->parent->pid;
1851 info->si_uid = current->parent->uid;
1854 /* If the (new) signal is now blocked, requeue it. */
1855 if (sigismember(&current->blocked, signr)) {
1856 specific_send_sig_info(signr, info, current);
1857 continue;
1861 ka = &current->sighand->action[signr-1];
1862 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */
1863 continue;
1864 if (ka->sa.sa_handler != SIG_DFL) {
1865 /* Run the handler. */
1866 *return_ka = *ka;
1868 if (ka->sa.sa_flags & SA_ONESHOT)
1869 ka->sa.sa_handler = SIG_DFL;
1871 break; /* will return non-zero "signr" value */
1875 * Now we are doing the default action for this signal.
1877 if (sig_kernel_ignore(signr)) /* Default is nothing. */
1878 continue;
1880 /* Init gets no signals it doesn't want. */
1881 if (current == child_reaper)
1882 continue;
1884 if (sig_kernel_stop(signr)) {
1886 * The default action is to stop all threads in
1887 * the thread group. The job control signals
1888 * do nothing in an orphaned pgrp, but SIGSTOP
1889 * always works. Note that siglock needs to be
1890 * dropped during the call to is_orphaned_pgrp()
1891 * because of lock ordering with tasklist_lock.
1892 * This allows an intervening SIGCONT to be posted.
1893 * We need to check for that and bail out if necessary.
1895 if (signr != SIGSTOP) {
1896 spin_unlock_irq(&current->sighand->siglock);
1898 /* signals can be posted during this window */
1900 if (is_orphaned_pgrp(process_group(current)))
1901 goto relock;
1903 spin_lock_irq(&current->sighand->siglock);
1906 if (likely(do_signal_stop(signr))) {
1907 /* It released the siglock. */
1908 goto relock;
1912 * We didn't actually stop, due to a race
1913 * with SIGCONT or something like that.
1915 continue;
1918 spin_unlock_irq(&current->sighand->siglock);
1921 * Anything else is fatal, maybe with a core dump.
1923 current->flags |= PF_SIGNALED;
1924 if (sig_kernel_coredump(signr)) {
1926 * If it was able to dump core, this kills all
1927 * other threads in the group and synchronizes with
1928 * their demise. If we lost the race with another
1929 * thread getting here, it set group_exit_code
1930 * first and our do_group_exit call below will use
1931 * that value and ignore the one we pass it.
1933 do_coredump((long)signr, signr, regs);
1937 * Death signals, no core dump.
1939 do_group_exit(signr);
1940 /* NOTREACHED */
1942 spin_unlock_irq(&current->sighand->siglock);
1943 return signr;
1946 EXPORT_SYMBOL(recalc_sigpending);
1947 EXPORT_SYMBOL_GPL(dequeue_signal);
1948 EXPORT_SYMBOL(flush_signals);
1949 EXPORT_SYMBOL(force_sig);
1950 EXPORT_SYMBOL(kill_pg);
1951 EXPORT_SYMBOL(kill_proc);
1952 EXPORT_SYMBOL(ptrace_notify);
1953 EXPORT_SYMBOL(send_sig);
1954 EXPORT_SYMBOL(send_sig_info);
1955 EXPORT_SYMBOL(sigprocmask);
1956 EXPORT_SYMBOL(block_all_signals);
1957 EXPORT_SYMBOL(unblock_all_signals);
1961 * System call entry points.
1964 asmlinkage long sys_restart_syscall(void)
1966 struct restart_block *restart = &current_thread_info()->restart_block;
1967 return restart->fn(restart);
1970 long do_no_restart_syscall(struct restart_block *param)
1972 return -EINTR;
1976 * We don't need to get the kernel lock - this is all local to this
1977 * particular thread.. (and that's good, because this is _heavily_
1978 * used by various programs)
1982 * This is also useful for kernel threads that want to temporarily
1983 * (or permanently) block certain signals.
1985 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
1986 * interface happily blocks "unblockable" signals like SIGKILL
1987 * and friends.
1989 int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
1991 int error;
1993 spin_lock_irq(&current->sighand->siglock);
1994 if (oldset)
1995 *oldset = current->blocked;
1997 error = 0;
1998 switch (how) {
1999 case SIG_BLOCK:
2000 sigorsets(&current->blocked, &current->blocked, set);
2001 break;
2002 case SIG_UNBLOCK:
2003 signandsets(&current->blocked, &current->blocked, set);
2004 break;
2005 case SIG_SETMASK:
2006 current->blocked = *set;
2007 break;
2008 default:
2009 error = -EINVAL;
2011 recalc_sigpending();
2012 spin_unlock_irq(&current->sighand->siglock);
2014 return error;
2017 asmlinkage long
2018 sys_rt_sigprocmask(int how, sigset_t __user *set, sigset_t __user *oset, size_t sigsetsize)
2020 int error = -EINVAL;
2021 sigset_t old_set, new_set;
2023 /* XXX: Don't preclude handling different sized sigset_t's. */
2024 if (sigsetsize != sizeof(sigset_t))
2025 goto out;
2027 if (set) {
2028 error = -EFAULT;
2029 if (copy_from_user(&new_set, set, sizeof(*set)))
2030 goto out;
2031 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2033 error = sigprocmask(how, &new_set, &old_set);
2034 if (error)
2035 goto out;
2036 if (oset)
2037 goto set_old;
2038 } else if (oset) {
2039 spin_lock_irq(&current->sighand->siglock);
2040 old_set = current->blocked;
2041 spin_unlock_irq(&current->sighand->siglock);
2043 set_old:
2044 error = -EFAULT;
2045 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2046 goto out;
2048 error = 0;
2049 out:
2050 return error;
2053 long do_sigpending(void __user *set, unsigned long sigsetsize)
2055 long error = -EINVAL;
2056 sigset_t pending;
2058 if (sigsetsize > sizeof(sigset_t))
2059 goto out;
2061 spin_lock_irq(&current->sighand->siglock);
2062 sigorsets(&pending, &current->pending.signal,
2063 &current->signal->shared_pending.signal);
2064 spin_unlock_irq(&current->sighand->siglock);
2066 /* Outside the lock because only this thread touches it. */
2067 sigandsets(&pending, &current->blocked, &pending);
2069 error = -EFAULT;
2070 if (!copy_to_user(set, &pending, sigsetsize))
2071 error = 0;
2073 out:
2074 return error;
2077 asmlinkage long
2078 sys_rt_sigpending(sigset_t __user *set, size_t sigsetsize)
2080 return do_sigpending(set, sigsetsize);
2083 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2085 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from)
2087 int err;
2089 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2090 return -EFAULT;
2091 if (from->si_code < 0)
2092 return __copy_to_user(to, from, sizeof(siginfo_t))
2093 ? -EFAULT : 0;
2095 * If you change siginfo_t structure, please be sure
2096 * this code is fixed accordingly.
2097 * It should never copy any pad contained in the structure
2098 * to avoid security leaks, but must copy the generic
2099 * 3 ints plus the relevant union member.
2101 err = __put_user(from->si_signo, &to->si_signo);
2102 err |= __put_user(from->si_errno, &to->si_errno);
2103 err |= __put_user((short)from->si_code, &to->si_code);
2104 switch (from->si_code & __SI_MASK) {
2105 case __SI_KILL:
2106 err |= __put_user(from->si_pid, &to->si_pid);
2107 err |= __put_user(from->si_uid, &to->si_uid);
2108 break;
2109 case __SI_TIMER:
2110 err |= __put_user(from->si_tid, &to->si_tid);
2111 err |= __put_user(from->si_overrun, &to->si_overrun);
2112 err |= __put_user(from->si_ptr, &to->si_ptr);
2113 break;
2114 case __SI_POLL:
2115 err |= __put_user(from->si_band, &to->si_band);
2116 err |= __put_user(from->si_fd, &to->si_fd);
2117 break;
2118 case __SI_FAULT:
2119 err |= __put_user(from->si_addr, &to->si_addr);
2120 #ifdef __ARCH_SI_TRAPNO
2121 err |= __put_user(from->si_trapno, &to->si_trapno);
2122 #endif
2123 break;
2124 case __SI_CHLD:
2125 err |= __put_user(from->si_pid, &to->si_pid);
2126 err |= __put_user(from->si_uid, &to->si_uid);
2127 err |= __put_user(from->si_status, &to->si_status);
2128 err |= __put_user(from->si_utime, &to->si_utime);
2129 err |= __put_user(from->si_stime, &to->si_stime);
2130 break;
2131 case __SI_RT: /* This is not generated by the kernel as of now. */
2132 case __SI_MESGQ: /* But this is */
2133 err |= __put_user(from->si_pid, &to->si_pid);
2134 err |= __put_user(from->si_uid, &to->si_uid);
2135 err |= __put_user(from->si_ptr, &to->si_ptr);
2136 break;
2137 default: /* this is just in case for now ... */
2138 err |= __put_user(from->si_pid, &to->si_pid);
2139 err |= __put_user(from->si_uid, &to->si_uid);
2140 break;
2142 return err;
2145 #endif
2147 asmlinkage long
2148 sys_rt_sigtimedwait(const sigset_t __user *uthese,
2149 siginfo_t __user *uinfo,
2150 const struct timespec __user *uts,
2151 size_t sigsetsize)
2153 int ret, sig;
2154 sigset_t these;
2155 struct timespec ts;
2156 siginfo_t info;
2157 long timeout = 0;
2159 /* XXX: Don't preclude handling different sized sigset_t's. */
2160 if (sigsetsize != sizeof(sigset_t))
2161 return -EINVAL;
2163 if (copy_from_user(&these, uthese, sizeof(these)))
2164 return -EFAULT;
2167 * Invert the set of allowed signals to get those we
2168 * want to block.
2170 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP));
2171 signotset(&these);
2173 if (uts) {
2174 if (copy_from_user(&ts, uts, sizeof(ts)))
2175 return -EFAULT;
2176 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0
2177 || ts.tv_sec < 0)
2178 return -EINVAL;
2181 spin_lock_irq(&current->sighand->siglock);
2182 sig = dequeue_signal(current, &these, &info);
2183 if (!sig) {
2184 timeout = MAX_SCHEDULE_TIMEOUT;
2185 if (uts)
2186 timeout = (timespec_to_jiffies(&ts)
2187 + (ts.tv_sec || ts.tv_nsec));
2189 if (timeout) {
2190 /* None ready -- temporarily unblock those we're
2191 * interested while we are sleeping in so that we'll
2192 * be awakened when they arrive. */
2193 current->real_blocked = current->blocked;
2194 sigandsets(&current->blocked, &current->blocked, &these);
2195 recalc_sigpending();
2196 spin_unlock_irq(&current->sighand->siglock);
2198 timeout = schedule_timeout_interruptible(timeout);
2200 spin_lock_irq(&current->sighand->siglock);
2201 sig = dequeue_signal(current, &these, &info);
2202 current->blocked = current->real_blocked;
2203 siginitset(&current->real_blocked, 0);
2204 recalc_sigpending();
2207 spin_unlock_irq(&current->sighand->siglock);
2209 if (sig) {
2210 ret = sig;
2211 if (uinfo) {
2212 if (copy_siginfo_to_user(uinfo, &info))
2213 ret = -EFAULT;
2215 } else {
2216 ret = -EAGAIN;
2217 if (timeout)
2218 ret = -EINTR;
2221 return ret;
2224 asmlinkage long
2225 sys_kill(int pid, int sig)
2227 struct siginfo info;
2229 info.si_signo = sig;
2230 info.si_errno = 0;
2231 info.si_code = SI_USER;
2232 info.si_pid = current->tgid;
2233 info.si_uid = current->uid;
2235 return kill_something_info(sig, &info, pid);
2238 static int do_tkill(int tgid, int pid, int sig)
2240 int error;
2241 struct siginfo info;
2242 struct task_struct *p;
2244 error = -ESRCH;
2245 info.si_signo = sig;
2246 info.si_errno = 0;
2247 info.si_code = SI_TKILL;
2248 info.si_pid = current->tgid;
2249 info.si_uid = current->uid;
2251 read_lock(&tasklist_lock);
2252 p = find_task_by_pid(pid);
2253 if (p && (tgid <= 0 || p->tgid == tgid)) {
2254 error = check_kill_permission(sig, &info, p);
2256 * The null signal is a permissions and process existence
2257 * probe. No signal is actually delivered.
2259 if (!error && sig && p->sighand) {
2260 spin_lock_irq(&p->sighand->siglock);
2261 handle_stop_signal(sig, p);
2262 error = specific_send_sig_info(sig, &info, p);
2263 spin_unlock_irq(&p->sighand->siglock);
2266 read_unlock(&tasklist_lock);
2268 return error;
2272 * sys_tgkill - send signal to one specific thread
2273 * @tgid: the thread group ID of the thread
2274 * @pid: the PID of the thread
2275 * @sig: signal to be sent
2277 * This syscall also checks the tgid and returns -ESRCH even if the PID
2278 * exists but it's not belonging to the target process anymore. This
2279 * method solves the problem of threads exiting and PIDs getting reused.
2281 asmlinkage long sys_tgkill(int tgid, int pid, int sig)
2283 /* This is only valid for single tasks */
2284 if (pid <= 0 || tgid <= 0)
2285 return -EINVAL;
2287 return do_tkill(tgid, pid, sig);
2291 * Send a signal to only one task, even if it's a CLONE_THREAD task.
2293 asmlinkage long
2294 sys_tkill(int pid, int sig)
2296 /* This is only valid for single tasks */
2297 if (pid <= 0)
2298 return -EINVAL;
2300 return do_tkill(0, pid, sig);
2303 asmlinkage long
2304 sys_rt_sigqueueinfo(int pid, int sig, siginfo_t __user *uinfo)
2306 siginfo_t info;
2308 if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2309 return -EFAULT;
2311 /* Not even root can pretend to send signals from the kernel.
2312 Nor can they impersonate a kill(), which adds source info. */
2313 if (info.si_code >= 0)
2314 return -EPERM;
2315 info.si_signo = sig;
2317 /* POSIX.1b doesn't mention process groups. */
2318 return kill_proc_info(sig, &info, pid);
2321 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
2323 struct k_sigaction *k;
2324 sigset_t mask;
2326 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
2327 return -EINVAL;
2329 k = &current->sighand->action[sig-1];
2331 spin_lock_irq(&current->sighand->siglock);
2332 if (signal_pending(current)) {
2334 * If there might be a fatal signal pending on multiple
2335 * threads, make sure we take it before changing the action.
2337 spin_unlock_irq(&current->sighand->siglock);
2338 return -ERESTARTNOINTR;
2341 if (oact)
2342 *oact = *k;
2344 if (act) {
2345 sigdelsetmask(&act->sa.sa_mask,
2346 sigmask(SIGKILL) | sigmask(SIGSTOP));
2347 *k = *act;
2349 * POSIX 3.3.1.3:
2350 * "Setting a signal action to SIG_IGN for a signal that is
2351 * pending shall cause the pending signal to be discarded,
2352 * whether or not it is blocked."
2354 * "Setting a signal action to SIG_DFL for a signal that is
2355 * pending and whose default action is to ignore the signal
2356 * (for example, SIGCHLD), shall cause the pending signal to
2357 * be discarded, whether or not it is blocked"
2359 if (act->sa.sa_handler == SIG_IGN ||
2360 (act->sa.sa_handler == SIG_DFL && sig_kernel_ignore(sig))) {
2361 struct task_struct *t = current;
2362 sigemptyset(&mask);
2363 sigaddset(&mask, sig);
2364 rm_from_queue_full(&mask, &t->signal->shared_pending);
2365 do {
2366 rm_from_queue_full(&mask, &t->pending);
2367 recalc_sigpending_tsk(t);
2368 t = next_thread(t);
2369 } while (t != current);
2373 spin_unlock_irq(&current->sighand->siglock);
2374 return 0;
2377 int
2378 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
2380 stack_t oss;
2381 int error;
2383 if (uoss) {
2384 oss.ss_sp = (void __user *) current->sas_ss_sp;
2385 oss.ss_size = current->sas_ss_size;
2386 oss.ss_flags = sas_ss_flags(sp);
2389 if (uss) {
2390 void __user *ss_sp;
2391 size_t ss_size;
2392 int ss_flags;
2394 error = -EFAULT;
2395 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))
2396 || __get_user(ss_sp, &uss->ss_sp)
2397 || __get_user(ss_flags, &uss->ss_flags)
2398 || __get_user(ss_size, &uss->ss_size))
2399 goto out;
2401 error = -EPERM;
2402 if (on_sig_stack(sp))
2403 goto out;
2405 error = -EINVAL;
2408 * Note - this code used to test ss_flags incorrectly
2409 * old code may have been written using ss_flags==0
2410 * to mean ss_flags==SS_ONSTACK (as this was the only
2411 * way that worked) - this fix preserves that older
2412 * mechanism
2414 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
2415 goto out;
2417 if (ss_flags == SS_DISABLE) {
2418 ss_size = 0;
2419 ss_sp = NULL;
2420 } else {
2421 error = -ENOMEM;
2422 if (ss_size < MINSIGSTKSZ)
2423 goto out;
2426 current->sas_ss_sp = (unsigned long) ss_sp;
2427 current->sas_ss_size = ss_size;
2430 if (uoss) {
2431 error = -EFAULT;
2432 if (copy_to_user(uoss, &oss, sizeof(oss)))
2433 goto out;
2436 error = 0;
2437 out:
2438 return error;
2441 #ifdef __ARCH_WANT_SYS_SIGPENDING
2443 asmlinkage long
2444 sys_sigpending(old_sigset_t __user *set)
2446 return do_sigpending(set, sizeof(*set));
2449 #endif
2451 #ifdef __ARCH_WANT_SYS_SIGPROCMASK
2452 /* Some platforms have their own version with special arguments others
2453 support only sys_rt_sigprocmask. */
2455 asmlinkage long
2456 sys_sigprocmask(int how, old_sigset_t __user *set, old_sigset_t __user *oset)
2458 int error;
2459 old_sigset_t old_set, new_set;
2461 if (set) {
2462 error = -EFAULT;
2463 if (copy_from_user(&new_set, set, sizeof(*set)))
2464 goto out;
2465 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP));
2467 spin_lock_irq(&current->sighand->siglock);
2468 old_set = current->blocked.sig[0];
2470 error = 0;
2471 switch (how) {
2472 default:
2473 error = -EINVAL;
2474 break;
2475 case SIG_BLOCK:
2476 sigaddsetmask(&current->blocked, new_set);
2477 break;
2478 case SIG_UNBLOCK:
2479 sigdelsetmask(&current->blocked, new_set);
2480 break;
2481 case SIG_SETMASK:
2482 current->blocked.sig[0] = new_set;
2483 break;
2486 recalc_sigpending();
2487 spin_unlock_irq(&current->sighand->siglock);
2488 if (error)
2489 goto out;
2490 if (oset)
2491 goto set_old;
2492 } else if (oset) {
2493 old_set = current->blocked.sig[0];
2494 set_old:
2495 error = -EFAULT;
2496 if (copy_to_user(oset, &old_set, sizeof(*oset)))
2497 goto out;
2499 error = 0;
2500 out:
2501 return error;
2503 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */
2505 #ifdef __ARCH_WANT_SYS_RT_SIGACTION
2506 asmlinkage long
2507 sys_rt_sigaction(int sig,
2508 const struct sigaction __user *act,
2509 struct sigaction __user *oact,
2510 size_t sigsetsize)
2512 struct k_sigaction new_sa, old_sa;
2513 int ret = -EINVAL;
2515 /* XXX: Don't preclude handling different sized sigset_t's. */
2516 if (sigsetsize != sizeof(sigset_t))
2517 goto out;
2519 if (act) {
2520 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
2521 return -EFAULT;
2524 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
2526 if (!ret && oact) {
2527 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
2528 return -EFAULT;
2530 out:
2531 return ret;
2533 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */
2535 #ifdef __ARCH_WANT_SYS_SGETMASK
2538 * For backwards compatibility. Functionality superseded by sigprocmask.
2540 asmlinkage long
2541 sys_sgetmask(void)
2543 /* SMP safe */
2544 return current->blocked.sig[0];
2547 asmlinkage long
2548 sys_ssetmask(int newmask)
2550 int old;
2552 spin_lock_irq(&current->sighand->siglock);
2553 old = current->blocked.sig[0];
2555 siginitset(&current->blocked, newmask & ~(sigmask(SIGKILL)|
2556 sigmask(SIGSTOP)));
2557 recalc_sigpending();
2558 spin_unlock_irq(&current->sighand->siglock);
2560 return old;
2562 #endif /* __ARCH_WANT_SGETMASK */
2564 #ifdef __ARCH_WANT_SYS_SIGNAL
2566 * For backwards compatibility. Functionality superseded by sigaction.
2568 asmlinkage unsigned long
2569 sys_signal(int sig, __sighandler_t handler)
2571 struct k_sigaction new_sa, old_sa;
2572 int ret;
2574 new_sa.sa.sa_handler = handler;
2575 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
2576 sigemptyset(&new_sa.sa.sa_mask);
2578 ret = do_sigaction(sig, &new_sa, &old_sa);
2580 return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
2582 #endif /* __ARCH_WANT_SYS_SIGNAL */
2584 #ifdef __ARCH_WANT_SYS_PAUSE
2586 asmlinkage long
2587 sys_pause(void)
2589 current->state = TASK_INTERRUPTIBLE;
2590 schedule();
2591 return -ERESTARTNOHAND;
2594 #endif
2596 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND
2597 asmlinkage long sys_rt_sigsuspend(sigset_t __user *unewset, size_t sigsetsize)
2599 sigset_t newset;
2601 /* XXX: Don't preclude handling different sized sigset_t's. */
2602 if (sigsetsize != sizeof(sigset_t))
2603 return -EINVAL;
2605 if (copy_from_user(&newset, unewset, sizeof(newset)))
2606 return -EFAULT;
2607 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP));
2609 spin_lock_irq(&current->sighand->siglock);
2610 current->saved_sigmask = current->blocked;
2611 current->blocked = newset;
2612 recalc_sigpending();
2613 spin_unlock_irq(&current->sighand->siglock);
2615 current->state = TASK_INTERRUPTIBLE;
2616 schedule();
2617 set_thread_flag(TIF_RESTORE_SIGMASK);
2618 return -ERESTARTNOHAND;
2620 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */
2622 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma)
2624 return NULL;
2627 void __init signals_init(void)
2629 sigqueue_cachep =
2630 kmem_cache_create("sigqueue",
2631 sizeof(struct sigqueue),
2632 __alignof__(struct sigqueue),
2633 SLAB_PANIC, NULL, NULL);