irda: Remove BKL instances from af_irda.c
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / mlx4 / alloc.c
blob8f4bf1f07c11e824e8e21785f122c5d0d66775c5
1 /*
2 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
34 #include <linux/errno.h>
35 #include <linux/slab.h>
36 #include <linux/mm.h>
37 #include <linux/bitmap.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/vmalloc.h>
41 #include "mlx4.h"
43 u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap)
45 u32 obj;
47 spin_lock(&bitmap->lock);
49 obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last);
50 if (obj >= bitmap->max) {
51 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
52 & bitmap->mask;
53 obj = find_first_zero_bit(bitmap->table, bitmap->max);
56 if (obj < bitmap->max) {
57 set_bit(obj, bitmap->table);
58 bitmap->last = (obj + 1);
59 if (bitmap->last == bitmap->max)
60 bitmap->last = 0;
61 obj |= bitmap->top;
62 } else
63 obj = -1;
65 spin_unlock(&bitmap->lock);
67 return obj;
70 void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj)
72 mlx4_bitmap_free_range(bitmap, obj, 1);
75 u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt, int align)
77 u32 obj;
79 if (likely(cnt == 1 && align == 1))
80 return mlx4_bitmap_alloc(bitmap);
82 spin_lock(&bitmap->lock);
84 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
85 bitmap->last, cnt, align - 1);
86 if (obj >= bitmap->max) {
87 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
88 & bitmap->mask;
89 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
90 0, cnt, align - 1);
93 if (obj < bitmap->max) {
94 bitmap_set(bitmap->table, obj, cnt);
95 if (obj == bitmap->last) {
96 bitmap->last = (obj + cnt);
97 if (bitmap->last >= bitmap->max)
98 bitmap->last = 0;
100 obj |= bitmap->top;
101 } else
102 obj = -1;
104 spin_unlock(&bitmap->lock);
106 return obj;
109 void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt)
111 obj &= bitmap->max + bitmap->reserved_top - 1;
113 spin_lock(&bitmap->lock);
114 bitmap_clear(bitmap->table, obj, cnt);
115 bitmap->last = min(bitmap->last, obj);
116 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
117 & bitmap->mask;
118 spin_unlock(&bitmap->lock);
121 int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask,
122 u32 reserved_bot, u32 reserved_top)
124 /* num must be a power of 2 */
125 if (num != roundup_pow_of_two(num))
126 return -EINVAL;
128 bitmap->last = 0;
129 bitmap->top = 0;
130 bitmap->max = num - reserved_top;
131 bitmap->mask = mask;
132 bitmap->reserved_top = reserved_top;
133 spin_lock_init(&bitmap->lock);
134 bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) *
135 sizeof (long), GFP_KERNEL);
136 if (!bitmap->table)
137 return -ENOMEM;
139 bitmap_set(bitmap->table, 0, reserved_bot);
141 return 0;
144 void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap)
146 kfree(bitmap->table);
150 * Handling for queue buffers -- we allocate a bunch of memory and
151 * register it in a memory region at HCA virtual address 0. If the
152 * requested size is > max_direct, we split the allocation into
153 * multiple pages, so we don't require too much contiguous memory.
156 int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct,
157 struct mlx4_buf *buf)
159 dma_addr_t t;
161 if (size <= max_direct) {
162 buf->nbufs = 1;
163 buf->npages = 1;
164 buf->page_shift = get_order(size) + PAGE_SHIFT;
165 buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
166 size, &t, GFP_KERNEL);
167 if (!buf->direct.buf)
168 return -ENOMEM;
170 buf->direct.map = t;
172 while (t & ((1 << buf->page_shift) - 1)) {
173 --buf->page_shift;
174 buf->npages *= 2;
177 memset(buf->direct.buf, 0, size);
178 } else {
179 int i;
181 buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
182 buf->npages = buf->nbufs;
183 buf->page_shift = PAGE_SHIFT;
184 buf->page_list = kcalloc(buf->nbufs, sizeof(*buf->page_list),
185 GFP_KERNEL);
186 if (!buf->page_list)
187 return -ENOMEM;
189 for (i = 0; i < buf->nbufs; ++i) {
190 buf->page_list[i].buf =
191 dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
192 &t, GFP_KERNEL);
193 if (!buf->page_list[i].buf)
194 goto err_free;
196 buf->page_list[i].map = t;
198 memset(buf->page_list[i].buf, 0, PAGE_SIZE);
201 if (BITS_PER_LONG == 64) {
202 struct page **pages;
203 pages = kmalloc(sizeof *pages * buf->nbufs, GFP_KERNEL);
204 if (!pages)
205 goto err_free;
206 for (i = 0; i < buf->nbufs; ++i)
207 pages[i] = virt_to_page(buf->page_list[i].buf);
208 buf->direct.buf = vmap(pages, buf->nbufs, VM_MAP, PAGE_KERNEL);
209 kfree(pages);
210 if (!buf->direct.buf)
211 goto err_free;
215 return 0;
217 err_free:
218 mlx4_buf_free(dev, size, buf);
220 return -ENOMEM;
222 EXPORT_SYMBOL_GPL(mlx4_buf_alloc);
224 void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf)
226 int i;
228 if (buf->nbufs == 1)
229 dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
230 buf->direct.map);
231 else {
232 if (BITS_PER_LONG == 64)
233 vunmap(buf->direct.buf);
235 for (i = 0; i < buf->nbufs; ++i)
236 if (buf->page_list[i].buf)
237 dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
238 buf->page_list[i].buf,
239 buf->page_list[i].map);
240 kfree(buf->page_list);
243 EXPORT_SYMBOL_GPL(mlx4_buf_free);
245 static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device)
247 struct mlx4_db_pgdir *pgdir;
249 pgdir = kzalloc(sizeof *pgdir, GFP_KERNEL);
250 if (!pgdir)
251 return NULL;
253 bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2);
254 pgdir->bits[0] = pgdir->order0;
255 pgdir->bits[1] = pgdir->order1;
256 pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE,
257 &pgdir->db_dma, GFP_KERNEL);
258 if (!pgdir->db_page) {
259 kfree(pgdir);
260 return NULL;
263 return pgdir;
266 static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir,
267 struct mlx4_db *db, int order)
269 int o;
270 int i;
272 for (o = order; o <= 1; ++o) {
273 i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o);
274 if (i < MLX4_DB_PER_PAGE >> o)
275 goto found;
278 return -ENOMEM;
280 found:
281 clear_bit(i, pgdir->bits[o]);
283 i <<= o;
285 if (o > order)
286 set_bit(i ^ 1, pgdir->bits[order]);
288 db->u.pgdir = pgdir;
289 db->index = i;
290 db->db = pgdir->db_page + db->index;
291 db->dma = pgdir->db_dma + db->index * 4;
292 db->order = order;
294 return 0;
297 int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order)
299 struct mlx4_priv *priv = mlx4_priv(dev);
300 struct mlx4_db_pgdir *pgdir;
301 int ret = 0;
303 mutex_lock(&priv->pgdir_mutex);
305 list_for_each_entry(pgdir, &priv->pgdir_list, list)
306 if (!mlx4_alloc_db_from_pgdir(pgdir, db, order))
307 goto out;
309 pgdir = mlx4_alloc_db_pgdir(&(dev->pdev->dev));
310 if (!pgdir) {
311 ret = -ENOMEM;
312 goto out;
315 list_add(&pgdir->list, &priv->pgdir_list);
317 /* This should never fail -- we just allocated an empty page: */
318 WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order));
320 out:
321 mutex_unlock(&priv->pgdir_mutex);
323 return ret;
325 EXPORT_SYMBOL_GPL(mlx4_db_alloc);
327 void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db)
329 struct mlx4_priv *priv = mlx4_priv(dev);
330 int o;
331 int i;
333 mutex_lock(&priv->pgdir_mutex);
335 o = db->order;
336 i = db->index;
338 if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) {
339 clear_bit(i ^ 1, db->u.pgdir->order0);
340 ++o;
342 i >>= o;
343 set_bit(i, db->u.pgdir->bits[o]);
345 if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) {
346 dma_free_coherent(&(dev->pdev->dev), PAGE_SIZE,
347 db->u.pgdir->db_page, db->u.pgdir->db_dma);
348 list_del(&db->u.pgdir->list);
349 kfree(db->u.pgdir);
352 mutex_unlock(&priv->pgdir_mutex);
354 EXPORT_SYMBOL_GPL(mlx4_db_free);
356 int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
357 int size, int max_direct)
359 int err;
361 err = mlx4_db_alloc(dev, &wqres->db, 1);
362 if (err)
363 return err;
365 *wqres->db.db = 0;
367 err = mlx4_buf_alloc(dev, size, max_direct, &wqres->buf);
368 if (err)
369 goto err_db;
371 err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift,
372 &wqres->mtt);
373 if (err)
374 goto err_buf;
376 err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf);
377 if (err)
378 goto err_mtt;
380 return 0;
382 err_mtt:
383 mlx4_mtt_cleanup(dev, &wqres->mtt);
384 err_buf:
385 mlx4_buf_free(dev, size, &wqres->buf);
386 err_db:
387 mlx4_db_free(dev, &wqres->db);
389 return err;
391 EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res);
393 void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
394 int size)
396 mlx4_mtt_cleanup(dev, &wqres->mtt);
397 mlx4_buf_free(dev, size, &wqres->buf);
398 mlx4_db_free(dev, &wqres->db);
400 EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);