2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/latency.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
46 * Include the apic definitions for x86 to have the APIC timer related defines
47 * available also for UP (on SMP it gets magically included via linux/smp.h).
48 * asm/acpi.h is not an option, as it would require more include magic. Also
49 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
56 #include <asm/uaccess.h>
58 #include <acpi/acpi_bus.h>
59 #include <acpi/processor.h>
61 #define ACPI_PROCESSOR_COMPONENT 0x01000000
62 #define ACPI_PROCESSOR_CLASS "processor"
63 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
64 ACPI_MODULE_NAME("processor_idle");
65 #define ACPI_PROCESSOR_FILE_POWER "power"
66 #define US_TO_PM_TIMER_TICKS(t) ((t * (PM_TIMER_FREQUENCY/1000)) / 1000)
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #ifndef CONFIG_CPU_IDLE
69 #define C2_OVERHEAD 4 /* 1us (3.579 ticks per us) */
70 #define C3_OVERHEAD 4 /* 1us (3.579 ticks per us) */
71 static void (*pm_idle_save
) (void) __read_mostly
;
73 #define C2_OVERHEAD 1 /* 1us */
74 #define C3_OVERHEAD 1 /* 1us */
76 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
78 static unsigned int max_cstate __read_mostly
= ACPI_PROCESSOR_MAX_POWER
;
79 #ifdef CONFIG_CPU_IDLE
80 module_param(max_cstate
, uint
, 0000);
82 module_param(max_cstate
, uint
, 0644);
84 static unsigned int nocst __read_mostly
;
85 module_param(nocst
, uint
, 0000);
87 #ifndef CONFIG_CPU_IDLE
89 * bm_history -- bit-mask with a bit per jiffy of bus-master activity
90 * 1000 HZ: 0xFFFFFFFF: 32 jiffies = 32ms
91 * 800 HZ: 0xFFFFFFFF: 32 jiffies = 40ms
92 * 100 HZ: 0x0000000F: 4 jiffies = 40ms
93 * reduce history for more aggressive entry into C3
95 static unsigned int bm_history __read_mostly
=
96 (HZ
>= 800 ? 0xFFFFFFFF : ((1U << (HZ
/ 25)) - 1));
97 module_param(bm_history
, uint
, 0644);
99 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
);
104 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
105 * For now disable this. Probably a bug somewhere else.
107 * To skip this limit, boot/load with a large max_cstate limit.
109 static int set_max_cstate(const struct dmi_system_id
*id
)
111 if (max_cstate
> ACPI_PROCESSOR_MAX_POWER
)
114 printk(KERN_NOTICE PREFIX
"%s detected - limiting to C%ld max_cstate."
115 " Override with \"processor.max_cstate=%d\"\n", id
->ident
,
116 (long)id
->driver_data
, ACPI_PROCESSOR_MAX_POWER
+ 1);
118 max_cstate
= (long)id
->driver_data
;
123 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
124 callers to only run once -AK */
125 static struct dmi_system_id __cpuinitdata processor_power_dmi_table
[] = {
126 { set_max_cstate
, "IBM ThinkPad R40e", {
127 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
128 DMI_MATCH(DMI_BIOS_VERSION
,"1SET70WW")}, (void *)1},
129 { set_max_cstate
, "IBM ThinkPad R40e", {
130 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
131 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW")}, (void *)1},
132 { set_max_cstate
, "IBM ThinkPad R40e", {
133 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
134 DMI_MATCH(DMI_BIOS_VERSION
,"1SET43WW") }, (void*)1},
135 { set_max_cstate
, "IBM ThinkPad R40e", {
136 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
137 DMI_MATCH(DMI_BIOS_VERSION
,"1SET45WW") }, (void*)1},
138 { set_max_cstate
, "IBM ThinkPad R40e", {
139 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
140 DMI_MATCH(DMI_BIOS_VERSION
,"1SET47WW") }, (void*)1},
141 { set_max_cstate
, "IBM ThinkPad R40e", {
142 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
143 DMI_MATCH(DMI_BIOS_VERSION
,"1SET50WW") }, (void*)1},
144 { set_max_cstate
, "IBM ThinkPad R40e", {
145 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
146 DMI_MATCH(DMI_BIOS_VERSION
,"1SET52WW") }, (void*)1},
147 { set_max_cstate
, "IBM ThinkPad R40e", {
148 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
149 DMI_MATCH(DMI_BIOS_VERSION
,"1SET55WW") }, (void*)1},
150 { set_max_cstate
, "IBM ThinkPad R40e", {
151 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
152 DMI_MATCH(DMI_BIOS_VERSION
,"1SET56WW") }, (void*)1},
153 { set_max_cstate
, "IBM ThinkPad R40e", {
154 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
155 DMI_MATCH(DMI_BIOS_VERSION
,"1SET59WW") }, (void*)1},
156 { set_max_cstate
, "IBM ThinkPad R40e", {
157 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
158 DMI_MATCH(DMI_BIOS_VERSION
,"1SET60WW") }, (void*)1},
159 { set_max_cstate
, "IBM ThinkPad R40e", {
160 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
161 DMI_MATCH(DMI_BIOS_VERSION
,"1SET61WW") }, (void*)1},
162 { set_max_cstate
, "IBM ThinkPad R40e", {
163 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
164 DMI_MATCH(DMI_BIOS_VERSION
,"1SET62WW") }, (void*)1},
165 { set_max_cstate
, "IBM ThinkPad R40e", {
166 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
167 DMI_MATCH(DMI_BIOS_VERSION
,"1SET64WW") }, (void*)1},
168 { set_max_cstate
, "IBM ThinkPad R40e", {
169 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
170 DMI_MATCH(DMI_BIOS_VERSION
,"1SET65WW") }, (void*)1},
171 { set_max_cstate
, "IBM ThinkPad R40e", {
172 DMI_MATCH(DMI_BIOS_VENDOR
,"IBM"),
173 DMI_MATCH(DMI_BIOS_VERSION
,"1SET68WW") }, (void*)1},
174 { set_max_cstate
, "Medion 41700", {
175 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
176 DMI_MATCH(DMI_BIOS_VERSION
,"R01-A1J")}, (void *)1},
177 { set_max_cstate
, "Clevo 5600D", {
178 DMI_MATCH(DMI_BIOS_VENDOR
,"Phoenix Technologies LTD"),
179 DMI_MATCH(DMI_BIOS_VERSION
,"SHE845M0.86C.0013.D.0302131307")},
184 static inline u32
ticks_elapsed(u32 t1
, u32 t2
)
188 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
189 return (((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
191 return ((0xFFFFFFFF - t1
) + t2
);
194 static inline u32
ticks_elapsed_in_us(u32 t1
, u32 t2
)
197 return PM_TIMER_TICKS_TO_US(t2
- t1
);
198 else if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_32BIT_TIMER
))
199 return PM_TIMER_TICKS_TO_US(((0x00FFFFFF - t1
) + t2
) & 0x00FFFFFF);
201 return PM_TIMER_TICKS_TO_US((0xFFFFFFFF - t1
) + t2
);
204 static void acpi_safe_halt(void)
206 current_thread_info()->status
&= ~TS_POLLING
;
208 * TS_POLLING-cleared state must be visible before we
214 current_thread_info()->status
|= TS_POLLING
;
217 #ifndef CONFIG_CPU_IDLE
220 acpi_processor_power_activate(struct acpi_processor
*pr
,
221 struct acpi_processor_cx
*new)
223 struct acpi_processor_cx
*old
;
228 old
= pr
->power
.state
;
231 old
->promotion
.count
= 0;
232 new->demotion
.count
= 0;
234 /* Cleanup from old state. */
238 /* Disable bus master reload */
239 if (new->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
240 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
245 /* Prepare to use new state. */
248 /* Enable bus master reload */
249 if (old
->type
!= ACPI_STATE_C3
&& pr
->flags
.bm_check
)
250 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
254 pr
->power
.state
= new;
259 static atomic_t c3_cpu_count
;
261 /* Common C-state entry for C2, C3, .. */
262 static void acpi_cstate_enter(struct acpi_processor_cx
*cstate
)
264 if (cstate
->space_id
== ACPI_CSTATE_FFH
) {
265 /* Call into architectural FFH based C-state */
266 acpi_processor_ffh_cstate_enter(cstate
);
269 /* IO port based C-state */
270 inb(cstate
->address
);
271 /* Dummy wait op - must do something useless after P_LVL2 read
272 because chipsets cannot guarantee that STPCLK# signal
273 gets asserted in time to freeze execution properly. */
274 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
277 #endif /* !CONFIG_CPU_IDLE */
279 #ifdef ARCH_APICTIMER_STOPS_ON_C3
282 * Some BIOS implementations switch to C3 in the published C2 state.
283 * This seems to be a common problem on AMD boxen, but other vendors
284 * are affected too. We pick the most conservative approach: we assume
285 * that the local APIC stops in both C2 and C3.
287 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
288 struct acpi_processor_cx
*cx
)
290 struct acpi_processor_power
*pwr
= &pr
->power
;
291 u8 type
= local_apic_timer_c2_ok
? ACPI_STATE_C3
: ACPI_STATE_C2
;
294 * Check, if one of the previous states already marked the lapic
297 if (pwr
->timer_broadcast_on_state
< state
)
300 if (cx
->type
>= type
)
301 pr
->power
.timer_broadcast_on_state
= state
;
304 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
)
306 unsigned long reason
;
308 reason
= pr
->power
.timer_broadcast_on_state
< INT_MAX
?
309 CLOCK_EVT_NOTIFY_BROADCAST_ON
: CLOCK_EVT_NOTIFY_BROADCAST_OFF
;
311 clockevents_notify(reason
, &pr
->id
);
314 /* Power(C) State timer broadcast control */
315 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
316 struct acpi_processor_cx
*cx
,
319 int state
= cx
- pr
->power
.states
;
321 if (state
>= pr
->power
.timer_broadcast_on_state
) {
322 unsigned long reason
;
324 reason
= broadcast
? CLOCK_EVT_NOTIFY_BROADCAST_ENTER
:
325 CLOCK_EVT_NOTIFY_BROADCAST_EXIT
;
326 clockevents_notify(reason
, &pr
->id
);
332 static void acpi_timer_check_state(int state
, struct acpi_processor
*pr
,
333 struct acpi_processor_cx
*cstate
) { }
334 static void acpi_propagate_timer_broadcast(struct acpi_processor
*pr
) { }
335 static void acpi_state_timer_broadcast(struct acpi_processor
*pr
,
336 struct acpi_processor_cx
*cx
,
344 * Suspend / resume control
346 static int acpi_idle_suspend
;
348 int acpi_processor_suspend(struct acpi_device
* device
, pm_message_t state
)
350 acpi_idle_suspend
= 1;
354 int acpi_processor_resume(struct acpi_device
* device
)
356 acpi_idle_suspend
= 0;
360 #ifndef CONFIG_CPU_IDLE
361 static void acpi_processor_idle(void)
363 struct acpi_processor
*pr
= NULL
;
364 struct acpi_processor_cx
*cx
= NULL
;
365 struct acpi_processor_cx
*next_state
= NULL
;
370 * Interrupts must be disabled during bus mastering calculations and
371 * for C2/C3 transitions.
375 pr
= processors
[smp_processor_id()];
382 * Check whether we truly need to go idle, or should
385 if (unlikely(need_resched())) {
390 cx
= pr
->power
.state
;
391 if (!cx
|| acpi_idle_suspend
) {
402 * Check for bus mastering activity (if required), record, and check
405 if (pr
->flags
.bm_check
) {
407 unsigned long diff
= jiffies
- pr
->power
.bm_check_timestamp
;
412 pr
->power
.bm_activity
<<= diff
;
414 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
416 pr
->power
.bm_activity
|= 0x1;
417 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
420 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
421 * the true state of bus mastering activity; forcing us to
422 * manually check the BMIDEA bit of each IDE channel.
424 else if (errata
.piix4
.bmisx
) {
425 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
426 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
427 pr
->power
.bm_activity
|= 0x1;
430 pr
->power
.bm_check_timestamp
= jiffies
;
433 * If bus mastering is or was active this jiffy, demote
434 * to avoid a faulty transition. Note that the processor
435 * won't enter a low-power state during this call (to this
436 * function) but should upon the next.
438 * TBD: A better policy might be to fallback to the demotion
439 * state (use it for this quantum only) istead of
440 * demoting -- and rely on duration as our sole demotion
441 * qualification. This may, however, introduce DMA
442 * issues (e.g. floppy DMA transfer overrun/underrun).
444 if ((pr
->power
.bm_activity
& 0x1) &&
445 cx
->demotion
.threshold
.bm
) {
447 next_state
= cx
->demotion
.state
;
452 #ifdef CONFIG_HOTPLUG_CPU
454 * Check for P_LVL2_UP flag before entering C2 and above on
455 * an SMP system. We do it here instead of doing it at _CST/P_LVL
456 * detection phase, to work cleanly with logical CPU hotplug.
458 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
459 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
460 cx
= &pr
->power
.states
[ACPI_STATE_C1
];
466 * Invoke the current Cx state to put the processor to sleep.
468 if (cx
->type
== ACPI_STATE_C2
|| cx
->type
== ACPI_STATE_C3
) {
469 current_thread_info()->status
&= ~TS_POLLING
;
471 * TS_POLLING-cleared state must be visible before we
475 if (need_resched()) {
476 current_thread_info()->status
|= TS_POLLING
;
487 * Use the appropriate idle routine, the one that would
488 * be used without acpi C-states.
496 * TBD: Can't get time duration while in C1, as resumes
497 * go to an ISR rather than here. Need to instrument
498 * base interrupt handler.
500 * Note: the TSC better not stop in C1, sched_clock() will
503 sleep_ticks
= 0xFFFFFFFF;
507 /* Get start time (ticks) */
508 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
509 /* Tell the scheduler that we are going deep-idle: */
510 sched_clock_idle_sleep_event();
512 acpi_state_timer_broadcast(pr
, cx
, 1);
513 acpi_cstate_enter(cx
);
514 /* Get end time (ticks) */
515 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
517 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
518 /* TSC halts in C2, so notify users */
519 mark_tsc_unstable("possible TSC halt in C2");
521 /* Compute time (ticks) that we were actually asleep */
522 sleep_ticks
= ticks_elapsed(t1
, t2
);
524 /* Tell the scheduler how much we idled: */
525 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
527 /* Re-enable interrupts */
529 /* Do not account our idle-switching overhead: */
530 sleep_ticks
-= cx
->latency_ticks
+ C2_OVERHEAD
;
532 current_thread_info()->status
|= TS_POLLING
;
533 acpi_state_timer_broadcast(pr
, cx
, 0);
538 * Must be done before busmaster disable as we might
539 * need to access HPET !
541 acpi_state_timer_broadcast(pr
, cx
, 1);
544 * bm_check implies we need ARB_DIS
545 * !bm_check implies we need cache flush
546 * bm_control implies whether we can do ARB_DIS
548 * That leaves a case where bm_check is set and bm_control is
549 * not set. In that case we cannot do much, we enter C3
550 * without doing anything.
552 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
553 if (atomic_inc_return(&c3_cpu_count
) ==
556 * All CPUs are trying to go to C3
557 * Disable bus master arbitration
559 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
561 } else if (!pr
->flags
.bm_check
) {
562 /* SMP with no shared cache... Invalidate cache */
563 ACPI_FLUSH_CPU_CACHE();
566 /* Get start time (ticks) */
567 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
569 /* Tell the scheduler that we are going deep-idle: */
570 sched_clock_idle_sleep_event();
571 acpi_cstate_enter(cx
);
572 /* Get end time (ticks) */
573 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
574 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
575 /* Enable bus master arbitration */
576 atomic_dec(&c3_cpu_count
);
577 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
580 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
581 /* TSC halts in C3, so notify users */
582 mark_tsc_unstable("TSC halts in C3");
584 /* Compute time (ticks) that we were actually asleep */
585 sleep_ticks
= ticks_elapsed(t1
, t2
);
586 /* Tell the scheduler how much we idled: */
587 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
589 /* Re-enable interrupts */
591 /* Do not account our idle-switching overhead: */
592 sleep_ticks
-= cx
->latency_ticks
+ C3_OVERHEAD
;
594 current_thread_info()->status
|= TS_POLLING
;
595 acpi_state_timer_broadcast(pr
, cx
, 0);
603 if ((cx
->type
!= ACPI_STATE_C1
) && (sleep_ticks
> 0))
604 cx
->time
+= sleep_ticks
;
606 next_state
= pr
->power
.state
;
608 #ifdef CONFIG_HOTPLUG_CPU
609 /* Don't do promotion/demotion */
610 if ((cx
->type
== ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
611 !pr
->flags
.has_cst
&& !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
)) {
620 * Track the number of longs (time asleep is greater than threshold)
621 * and promote when the count threshold is reached. Note that bus
622 * mastering activity may prevent promotions.
623 * Do not promote above max_cstate.
625 if (cx
->promotion
.state
&&
626 ((cx
->promotion
.state
- pr
->power
.states
) <= max_cstate
)) {
627 if (sleep_ticks
> cx
->promotion
.threshold
.ticks
&&
628 cx
->promotion
.state
->latency
<= system_latency_constraint()) {
629 cx
->promotion
.count
++;
630 cx
->demotion
.count
= 0;
631 if (cx
->promotion
.count
>=
632 cx
->promotion
.threshold
.count
) {
633 if (pr
->flags
.bm_check
) {
635 (pr
->power
.bm_activity
& cx
->
636 promotion
.threshold
.bm
)) {
642 next_state
= cx
->promotion
.state
;
652 * Track the number of shorts (time asleep is less than time threshold)
653 * and demote when the usage threshold is reached.
655 if (cx
->demotion
.state
) {
656 if (sleep_ticks
< cx
->demotion
.threshold
.ticks
) {
657 cx
->demotion
.count
++;
658 cx
->promotion
.count
= 0;
659 if (cx
->demotion
.count
>= cx
->demotion
.threshold
.count
) {
660 next_state
= cx
->demotion
.state
;
668 * Demote if current state exceeds max_cstate
669 * or if the latency of the current state is unacceptable
671 if ((pr
->power
.state
- pr
->power
.states
) > max_cstate
||
672 pr
->power
.state
->latency
> system_latency_constraint()) {
673 if (cx
->demotion
.state
)
674 next_state
= cx
->demotion
.state
;
680 * If we're going to start using a new Cx state we must clean up
681 * from the previous and prepare to use the new.
683 if (next_state
!= pr
->power
.state
)
684 acpi_processor_power_activate(pr
, next_state
);
687 static int acpi_processor_set_power_policy(struct acpi_processor
*pr
)
690 unsigned int state_is_set
= 0;
691 struct acpi_processor_cx
*lower
= NULL
;
692 struct acpi_processor_cx
*higher
= NULL
;
693 struct acpi_processor_cx
*cx
;
700 * This function sets the default Cx state policy (OS idle handler).
701 * Our scheme is to promote quickly to C2 but more conservatively
702 * to C3. We're favoring C2 for its characteristics of low latency
703 * (quick response), good power savings, and ability to allow bus
704 * mastering activity. Note that the Cx state policy is completely
705 * customizable and can be altered dynamically.
709 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
710 cx
= &pr
->power
.states
[i
];
715 pr
->power
.state
= cx
;
724 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
725 cx
= &pr
->power
.states
[i
];
730 cx
->demotion
.state
= lower
;
731 cx
->demotion
.threshold
.ticks
= cx
->latency_ticks
;
732 cx
->demotion
.threshold
.count
= 1;
733 if (cx
->type
== ACPI_STATE_C3
)
734 cx
->demotion
.threshold
.bm
= bm_history
;
741 for (i
= (ACPI_PROCESSOR_MAX_POWER
- 1); i
> 0; i
--) {
742 cx
= &pr
->power
.states
[i
];
747 cx
->promotion
.state
= higher
;
748 cx
->promotion
.threshold
.ticks
= cx
->latency_ticks
;
749 if (cx
->type
>= ACPI_STATE_C2
)
750 cx
->promotion
.threshold
.count
= 4;
752 cx
->promotion
.threshold
.count
= 10;
753 if (higher
->type
== ACPI_STATE_C3
)
754 cx
->promotion
.threshold
.bm
= bm_history
;
762 #endif /* !CONFIG_CPU_IDLE */
764 static int acpi_processor_get_power_info_fadt(struct acpi_processor
*pr
)
773 /* if info is obtained from pblk/fadt, type equals state */
774 pr
->power
.states
[ACPI_STATE_C2
].type
= ACPI_STATE_C2
;
775 pr
->power
.states
[ACPI_STATE_C3
].type
= ACPI_STATE_C3
;
777 #ifndef CONFIG_HOTPLUG_CPU
779 * Check for P_LVL2_UP flag before entering C2 and above on
782 if ((num_online_cpus() > 1) &&
783 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
787 /* determine C2 and C3 address from pblk */
788 pr
->power
.states
[ACPI_STATE_C2
].address
= pr
->pblk
+ 4;
789 pr
->power
.states
[ACPI_STATE_C3
].address
= pr
->pblk
+ 5;
791 /* determine latencies from FADT */
792 pr
->power
.states
[ACPI_STATE_C2
].latency
= acpi_gbl_FADT
.C2latency
;
793 pr
->power
.states
[ACPI_STATE_C3
].latency
= acpi_gbl_FADT
.C3latency
;
795 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
796 "lvl2[0x%08x] lvl3[0x%08x]\n",
797 pr
->power
.states
[ACPI_STATE_C2
].address
,
798 pr
->power
.states
[ACPI_STATE_C3
].address
));
803 static int acpi_processor_get_power_info_default(struct acpi_processor
*pr
)
805 if (!pr
->power
.states
[ACPI_STATE_C1
].valid
) {
806 /* set the first C-State to C1 */
807 /* all processors need to support C1 */
808 pr
->power
.states
[ACPI_STATE_C1
].type
= ACPI_STATE_C1
;
809 pr
->power
.states
[ACPI_STATE_C1
].valid
= 1;
811 /* the C0 state only exists as a filler in our array */
812 pr
->power
.states
[ACPI_STATE_C0
].valid
= 1;
816 static int acpi_processor_get_power_info_cst(struct acpi_processor
*pr
)
818 acpi_status status
= 0;
822 struct acpi_buffer buffer
= { ACPI_ALLOCATE_BUFFER
, NULL
};
823 union acpi_object
*cst
;
831 status
= acpi_evaluate_object(pr
->handle
, "_CST", NULL
, &buffer
);
832 if (ACPI_FAILURE(status
)) {
833 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "No _CST, giving up\n"));
837 cst
= buffer
.pointer
;
839 /* There must be at least 2 elements */
840 if (!cst
|| (cst
->type
!= ACPI_TYPE_PACKAGE
) || cst
->package
.count
< 2) {
841 printk(KERN_ERR PREFIX
"not enough elements in _CST\n");
846 count
= cst
->package
.elements
[0].integer
.value
;
848 /* Validate number of power states. */
849 if (count
< 1 || count
!= cst
->package
.count
- 1) {
850 printk(KERN_ERR PREFIX
"count given by _CST is not valid\n");
855 /* Tell driver that at least _CST is supported. */
856 pr
->flags
.has_cst
= 1;
858 for (i
= 1; i
<= count
; i
++) {
859 union acpi_object
*element
;
860 union acpi_object
*obj
;
861 struct acpi_power_register
*reg
;
862 struct acpi_processor_cx cx
;
864 memset(&cx
, 0, sizeof(cx
));
866 element
= &(cst
->package
.elements
[i
]);
867 if (element
->type
!= ACPI_TYPE_PACKAGE
)
870 if (element
->package
.count
!= 4)
873 obj
= &(element
->package
.elements
[0]);
875 if (obj
->type
!= ACPI_TYPE_BUFFER
)
878 reg
= (struct acpi_power_register
*)obj
->buffer
.pointer
;
880 if (reg
->space_id
!= ACPI_ADR_SPACE_SYSTEM_IO
&&
881 (reg
->space_id
!= ACPI_ADR_SPACE_FIXED_HARDWARE
))
884 /* There should be an easy way to extract an integer... */
885 obj
= &(element
->package
.elements
[1]);
886 if (obj
->type
!= ACPI_TYPE_INTEGER
)
889 cx
.type
= obj
->integer
.value
;
891 * Some buggy BIOSes won't list C1 in _CST -
892 * Let acpi_processor_get_power_info_default() handle them later
894 if (i
== 1 && cx
.type
!= ACPI_STATE_C1
)
897 cx
.address
= reg
->address
;
898 cx
.index
= current_count
+ 1;
900 cx
.space_id
= ACPI_CSTATE_SYSTEMIO
;
901 if (reg
->space_id
== ACPI_ADR_SPACE_FIXED_HARDWARE
) {
902 if (acpi_processor_ffh_cstate_probe
903 (pr
->id
, &cx
, reg
) == 0) {
904 cx
.space_id
= ACPI_CSTATE_FFH
;
905 } else if (cx
.type
!= ACPI_STATE_C1
) {
907 * C1 is a special case where FIXED_HARDWARE
908 * can be handled in non-MWAIT way as well.
909 * In that case, save this _CST entry info.
910 * That is, we retain space_id of SYSTEM_IO for
912 * Otherwise, ignore this info and continue.
918 obj
= &(element
->package
.elements
[2]);
919 if (obj
->type
!= ACPI_TYPE_INTEGER
)
922 cx
.latency
= obj
->integer
.value
;
924 obj
= &(element
->package
.elements
[3]);
925 if (obj
->type
!= ACPI_TYPE_INTEGER
)
928 cx
.power
= obj
->integer
.value
;
931 memcpy(&(pr
->power
.states
[current_count
]), &cx
, sizeof(cx
));
934 * We support total ACPI_PROCESSOR_MAX_POWER - 1
935 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
937 if (current_count
>= (ACPI_PROCESSOR_MAX_POWER
- 1)) {
939 "Limiting number of power states to max (%d)\n",
940 ACPI_PROCESSOR_MAX_POWER
);
942 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
947 ACPI_DEBUG_PRINT((ACPI_DB_INFO
, "Found %d power states\n",
950 /* Validate number of power states discovered */
951 if (current_count
< 2)
955 kfree(buffer
.pointer
);
960 static void acpi_processor_power_verify_c2(struct acpi_processor_cx
*cx
)
967 * C2 latency must be less than or equal to 100
970 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C2_LATENCY
) {
971 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
972 "latency too large [%d]\n", cx
->latency
));
977 * Otherwise we've met all of our C2 requirements.
978 * Normalize the C2 latency to expidite policy
982 #ifndef CONFIG_CPU_IDLE
983 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
985 cx
->latency_ticks
= cx
->latency
;
991 static void acpi_processor_power_verify_c3(struct acpi_processor
*pr
,
992 struct acpi_processor_cx
*cx
)
994 static int bm_check_flag
;
1001 * C3 latency must be less than or equal to 1000
1004 else if (cx
->latency
> ACPI_PROCESSOR_MAX_C3_LATENCY
) {
1005 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1006 "latency too large [%d]\n", cx
->latency
));
1011 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
1012 * DMA transfers are used by any ISA device to avoid livelock.
1013 * Note that we could disable Type-F DMA (as recommended by
1014 * the erratum), but this is known to disrupt certain ISA
1015 * devices thus we take the conservative approach.
1017 else if (errata
.piix4
.fdma
) {
1018 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1019 "C3 not supported on PIIX4 with Type-F DMA\n"));
1023 /* All the logic here assumes flags.bm_check is same across all CPUs */
1024 if (!bm_check_flag
) {
1025 /* Determine whether bm_check is needed based on CPU */
1026 acpi_processor_power_init_bm_check(&(pr
->flags
), pr
->id
);
1027 bm_check_flag
= pr
->flags
.bm_check
;
1029 pr
->flags
.bm_check
= bm_check_flag
;
1032 if (pr
->flags
.bm_check
) {
1033 if (!pr
->flags
.bm_control
) {
1034 if (pr
->flags
.has_cst
!= 1) {
1035 /* bus mastering control is necessary */
1036 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1037 "C3 support requires BM control\n"));
1040 /* Here we enter C3 without bus mastering */
1041 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1042 "C3 support without BM control\n"));
1047 * WBINVD should be set in fadt, for C3 state to be
1048 * supported on when bm_check is not required.
1050 if (!(acpi_gbl_FADT
.flags
& ACPI_FADT_WBINVD
)) {
1051 ACPI_DEBUG_PRINT((ACPI_DB_INFO
,
1052 "Cache invalidation should work properly"
1053 " for C3 to be enabled on SMP systems\n"));
1056 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1060 * Otherwise we've met all of our C3 requirements.
1061 * Normalize the C3 latency to expidite policy. Enable
1062 * checking of bus mastering status (bm_check) so we can
1063 * use this in our C3 policy
1067 #ifndef CONFIG_CPU_IDLE
1068 cx
->latency_ticks
= US_TO_PM_TIMER_TICKS(cx
->latency
);
1070 cx
->latency_ticks
= cx
->latency
;
1076 static int acpi_processor_power_verify(struct acpi_processor
*pr
)
1079 unsigned int working
= 0;
1081 pr
->power
.timer_broadcast_on_state
= INT_MAX
;
1083 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1084 struct acpi_processor_cx
*cx
= &pr
->power
.states
[i
];
1092 acpi_processor_power_verify_c2(cx
);
1094 acpi_timer_check_state(i
, pr
, cx
);
1098 acpi_processor_power_verify_c3(pr
, cx
);
1100 acpi_timer_check_state(i
, pr
, cx
);
1108 acpi_propagate_timer_broadcast(pr
);
1113 static int acpi_processor_get_power_info(struct acpi_processor
*pr
)
1119 /* NOTE: the idle thread may not be running while calling
1122 /* Zero initialize all the C-states info. */
1123 memset(pr
->power
.states
, 0, sizeof(pr
->power
.states
));
1125 result
= acpi_processor_get_power_info_cst(pr
);
1126 if (result
== -ENODEV
)
1127 result
= acpi_processor_get_power_info_fadt(pr
);
1132 acpi_processor_get_power_info_default(pr
);
1134 pr
->power
.count
= acpi_processor_power_verify(pr
);
1136 #ifndef CONFIG_CPU_IDLE
1138 * Set Default Policy
1139 * ------------------
1140 * Now that we know which states are supported, set the default
1141 * policy. Note that this policy can be changed dynamically
1142 * (e.g. encourage deeper sleeps to conserve battery life when
1145 result
= acpi_processor_set_power_policy(pr
);
1151 * if one state of type C2 or C3 is available, mark this
1152 * CPU as being "idle manageable"
1154 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
; i
++) {
1155 if (pr
->power
.states
[i
].valid
) {
1156 pr
->power
.count
= i
;
1157 if (pr
->power
.states
[i
].type
>= ACPI_STATE_C2
)
1158 pr
->flags
.power
= 1;
1165 static int acpi_processor_power_seq_show(struct seq_file
*seq
, void *offset
)
1167 struct acpi_processor
*pr
= seq
->private;
1174 seq_printf(seq
, "active state: C%zd\n"
1176 "bus master activity: %08x\n"
1177 "maximum allowed latency: %d usec\n",
1178 pr
->power
.state
? pr
->power
.state
- pr
->power
.states
: 0,
1179 max_cstate
, (unsigned)pr
->power
.bm_activity
,
1180 system_latency_constraint());
1182 seq_puts(seq
, "states:\n");
1184 for (i
= 1; i
<= pr
->power
.count
; i
++) {
1185 seq_printf(seq
, " %cC%d: ",
1186 (&pr
->power
.states
[i
] ==
1187 pr
->power
.state
? '*' : ' '), i
);
1189 if (!pr
->power
.states
[i
].valid
) {
1190 seq_puts(seq
, "<not supported>\n");
1194 switch (pr
->power
.states
[i
].type
) {
1196 seq_printf(seq
, "type[C1] ");
1199 seq_printf(seq
, "type[C2] ");
1202 seq_printf(seq
, "type[C3] ");
1205 seq_printf(seq
, "type[--] ");
1209 if (pr
->power
.states
[i
].promotion
.state
)
1210 seq_printf(seq
, "promotion[C%zd] ",
1211 (pr
->power
.states
[i
].promotion
.state
-
1214 seq_puts(seq
, "promotion[--] ");
1216 if (pr
->power
.states
[i
].demotion
.state
)
1217 seq_printf(seq
, "demotion[C%zd] ",
1218 (pr
->power
.states
[i
].demotion
.state
-
1221 seq_puts(seq
, "demotion[--] ");
1223 seq_printf(seq
, "latency[%03d] usage[%08d] duration[%020llu]\n",
1224 pr
->power
.states
[i
].latency
,
1225 pr
->power
.states
[i
].usage
,
1226 (unsigned long long)pr
->power
.states
[i
].time
);
1233 static int acpi_processor_power_open_fs(struct inode
*inode
, struct file
*file
)
1235 return single_open(file
, acpi_processor_power_seq_show
,
1239 static const struct file_operations acpi_processor_power_fops
= {
1240 .open
= acpi_processor_power_open_fs
,
1242 .llseek
= seq_lseek
,
1243 .release
= single_release
,
1246 #ifndef CONFIG_CPU_IDLE
1248 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1260 if (!pr
->flags
.power_setup_done
)
1263 /* Fall back to the default idle loop */
1264 pm_idle
= pm_idle_save
;
1265 synchronize_sched(); /* Relies on interrupts forcing exit from idle. */
1267 pr
->flags
.power
= 0;
1268 result
= acpi_processor_get_power_info(pr
);
1269 if ((pr
->flags
.power
== 1) && (pr
->flags
.power_setup_done
))
1270 pm_idle
= acpi_processor_idle
;
1276 static void smp_callback(void *v
)
1278 /* we already woke the CPU up, nothing more to do */
1282 * This function gets called when a part of the kernel has a new latency
1283 * requirement. This means we need to get all processors out of their C-state,
1284 * and then recalculate a new suitable C-state. Just do a cross-cpu IPI; that
1285 * wakes them all right up.
1287 static int acpi_processor_latency_notify(struct notifier_block
*b
,
1288 unsigned long l
, void *v
)
1290 smp_call_function(smp_callback
, NULL
, 0, 1);
1294 static struct notifier_block acpi_processor_latency_notifier
= {
1295 .notifier_call
= acpi_processor_latency_notify
,
1300 #else /* CONFIG_CPU_IDLE */
1303 * acpi_idle_bm_check - checks if bus master activity was detected
1305 static int acpi_idle_bm_check(void)
1309 acpi_get_register(ACPI_BITREG_BUS_MASTER_STATUS
, &bm_status
);
1311 acpi_set_register(ACPI_BITREG_BUS_MASTER_STATUS
, 1);
1313 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
1314 * the true state of bus mastering activity; forcing us to
1315 * manually check the BMIDEA bit of each IDE channel.
1317 else if (errata
.piix4
.bmisx
) {
1318 if ((inb_p(errata
.piix4
.bmisx
+ 0x02) & 0x01)
1319 || (inb_p(errata
.piix4
.bmisx
+ 0x0A) & 0x01))
1326 * acpi_idle_update_bm_rld - updates the BM_RLD bit depending on target state
1327 * @pr: the processor
1328 * @target: the new target state
1330 static inline void acpi_idle_update_bm_rld(struct acpi_processor
*pr
,
1331 struct acpi_processor_cx
*target
)
1333 if (pr
->flags
.bm_rld_set
&& target
->type
!= ACPI_STATE_C3
) {
1334 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 0);
1335 pr
->flags
.bm_rld_set
= 0;
1338 if (!pr
->flags
.bm_rld_set
&& target
->type
== ACPI_STATE_C3
) {
1339 acpi_set_register(ACPI_BITREG_BUS_MASTER_RLD
, 1);
1340 pr
->flags
.bm_rld_set
= 1;
1345 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
1348 static inline void acpi_idle_do_entry(struct acpi_processor_cx
*cx
)
1350 if (cx
->space_id
== ACPI_CSTATE_FFH
) {
1351 /* Call into architectural FFH based C-state */
1352 acpi_processor_ffh_cstate_enter(cx
);
1355 /* IO port based C-state */
1357 /* Dummy wait op - must do something useless after P_LVL2 read
1358 because chipsets cannot guarantee that STPCLK# signal
1359 gets asserted in time to freeze execution properly. */
1360 unused
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1365 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
1366 * @dev: the target CPU
1367 * @state: the state data
1369 * This is equivalent to the HALT instruction.
1371 static int acpi_idle_enter_c1(struct cpuidle_device
*dev
,
1372 struct cpuidle_state
*state
)
1374 struct acpi_processor
*pr
;
1375 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1376 pr
= processors
[smp_processor_id()];
1381 if (pr
->flags
.bm_check
)
1382 acpi_idle_update_bm_rld(pr
, cx
);
1392 * acpi_idle_enter_simple - enters an ACPI state without BM handling
1393 * @dev: the target CPU
1394 * @state: the state data
1396 static int acpi_idle_enter_simple(struct cpuidle_device
*dev
,
1397 struct cpuidle_state
*state
)
1399 struct acpi_processor
*pr
;
1400 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1402 int sleep_ticks
= 0;
1404 pr
= processors
[smp_processor_id()];
1409 if (acpi_idle_suspend
)
1410 return(acpi_idle_enter_c1(dev
, state
));
1412 local_irq_disable();
1413 current_thread_info()->status
&= ~TS_POLLING
;
1415 * TS_POLLING-cleared state must be visible before we test
1420 if (unlikely(need_resched())) {
1421 current_thread_info()->status
|= TS_POLLING
;
1427 * Must be done before busmaster disable as we might need to
1430 acpi_state_timer_broadcast(pr
, cx
, 1);
1432 if (pr
->flags
.bm_check
)
1433 acpi_idle_update_bm_rld(pr
, cx
);
1435 if (cx
->type
== ACPI_STATE_C3
)
1436 ACPI_FLUSH_CPU_CACHE();
1438 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1439 /* Tell the scheduler that we are going deep-idle: */
1440 sched_clock_idle_sleep_event();
1441 acpi_idle_do_entry(cx
);
1442 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1444 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1445 /* TSC could halt in idle, so notify users */
1446 mark_tsc_unstable("TSC halts in idle");;
1448 sleep_ticks
= ticks_elapsed(t1
, t2
);
1450 /* Tell the scheduler how much we idled: */
1451 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1454 current_thread_info()->status
|= TS_POLLING
;
1458 acpi_state_timer_broadcast(pr
, cx
, 0);
1459 cx
->time
+= sleep_ticks
;
1460 return ticks_elapsed_in_us(t1
, t2
);
1463 static int c3_cpu_count
;
1464 static DEFINE_SPINLOCK(c3_lock
);
1467 * acpi_idle_enter_bm - enters C3 with proper BM handling
1468 * @dev: the target CPU
1469 * @state: the state data
1471 * If BM is detected, the deepest non-C3 idle state is entered instead.
1473 static int acpi_idle_enter_bm(struct cpuidle_device
*dev
,
1474 struct cpuidle_state
*state
)
1476 struct acpi_processor
*pr
;
1477 struct acpi_processor_cx
*cx
= cpuidle_get_statedata(state
);
1479 int sleep_ticks
= 0;
1481 pr
= processors
[smp_processor_id()];
1486 if (acpi_idle_suspend
)
1487 return(acpi_idle_enter_c1(dev
, state
));
1489 if (acpi_idle_bm_check()) {
1490 if (dev
->safe_state
) {
1491 return dev
->safe_state
->enter(dev
, dev
->safe_state
);
1498 local_irq_disable();
1499 current_thread_info()->status
&= ~TS_POLLING
;
1501 * TS_POLLING-cleared state must be visible before we test
1506 if (unlikely(need_resched())) {
1507 current_thread_info()->status
|= TS_POLLING
;
1512 /* Tell the scheduler that we are going deep-idle: */
1513 sched_clock_idle_sleep_event();
1515 * Must be done before busmaster disable as we might need to
1518 acpi_state_timer_broadcast(pr
, cx
, 1);
1520 acpi_idle_update_bm_rld(pr
, cx
);
1523 * disable bus master
1524 * bm_check implies we need ARB_DIS
1525 * !bm_check implies we need cache flush
1526 * bm_control implies whether we can do ARB_DIS
1528 * That leaves a case where bm_check is set and bm_control is
1529 * not set. In that case we cannot do much, we enter C3
1530 * without doing anything.
1532 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1533 spin_lock(&c3_lock
);
1535 /* Disable bus master arbitration when all CPUs are in C3 */
1536 if (c3_cpu_count
== num_online_cpus())
1537 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 1);
1538 spin_unlock(&c3_lock
);
1539 } else if (!pr
->flags
.bm_check
) {
1540 ACPI_FLUSH_CPU_CACHE();
1543 t1
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1544 acpi_idle_do_entry(cx
);
1545 t2
= inl(acpi_gbl_FADT
.xpm_timer_block
.address
);
1547 /* Re-enable bus master arbitration */
1548 if (pr
->flags
.bm_check
&& pr
->flags
.bm_control
) {
1549 spin_lock(&c3_lock
);
1550 acpi_set_register(ACPI_BITREG_ARB_DISABLE
, 0);
1552 spin_unlock(&c3_lock
);
1555 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86_TSC)
1556 /* TSC could halt in idle, so notify users */
1557 mark_tsc_unstable("TSC halts in idle");
1559 sleep_ticks
= ticks_elapsed(t1
, t2
);
1560 /* Tell the scheduler how much we idled: */
1561 sched_clock_idle_wakeup_event(sleep_ticks
*PM_TIMER_TICK_NS
);
1564 current_thread_info()->status
|= TS_POLLING
;
1568 acpi_state_timer_broadcast(pr
, cx
, 0);
1569 cx
->time
+= sleep_ticks
;
1570 return ticks_elapsed_in_us(t1
, t2
);
1573 struct cpuidle_driver acpi_idle_driver
= {
1574 .name
= "acpi_idle",
1575 .owner
= THIS_MODULE
,
1579 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1580 * @pr: the ACPI processor
1582 static int acpi_processor_setup_cpuidle(struct acpi_processor
*pr
)
1585 struct acpi_processor_cx
*cx
;
1586 struct cpuidle_state
*state
;
1587 struct cpuidle_device
*dev
= &pr
->power
.dev
;
1589 if (!pr
->flags
.power_setup_done
)
1592 if (pr
->flags
.power
== 0) {
1596 for (i
= 1; i
< ACPI_PROCESSOR_MAX_POWER
&& i
<= max_cstate
; i
++) {
1597 cx
= &pr
->power
.states
[i
];
1598 state
= &dev
->states
[count
];
1603 #ifdef CONFIG_HOTPLUG_CPU
1604 if ((cx
->type
!= ACPI_STATE_C1
) && (num_online_cpus() > 1) &&
1605 !pr
->flags
.has_cst
&&
1606 !(acpi_gbl_FADT
.flags
& ACPI_FADT_C2_MP_SUPPORTED
))
1609 cpuidle_set_statedata(state
, cx
);
1611 snprintf(state
->name
, CPUIDLE_NAME_LEN
, "C%d", i
);
1612 state
->exit_latency
= cx
->latency
;
1613 state
->target_residency
= cx
->latency
* 6;
1614 state
->power_usage
= cx
->power
;
1619 state
->flags
|= CPUIDLE_FLAG_SHALLOW
;
1620 state
->enter
= acpi_idle_enter_c1
;
1621 dev
->safe_state
= state
;
1625 state
->flags
|= CPUIDLE_FLAG_BALANCED
;
1626 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1627 state
->enter
= acpi_idle_enter_simple
;
1628 dev
->safe_state
= state
;
1632 state
->flags
|= CPUIDLE_FLAG_DEEP
;
1633 state
->flags
|= CPUIDLE_FLAG_TIME_VALID
;
1634 state
->flags
|= CPUIDLE_FLAG_CHECK_BM
;
1635 state
->enter
= pr
->flags
.bm_check
?
1636 acpi_idle_enter_bm
:
1637 acpi_idle_enter_simple
;
1644 dev
->state_count
= count
;
1652 int acpi_processor_cst_has_changed(struct acpi_processor
*pr
)
1663 if (!pr
->flags
.power_setup_done
)
1666 cpuidle_pause_and_lock();
1667 cpuidle_disable_device(&pr
->power
.dev
);
1668 acpi_processor_get_power_info(pr
);
1669 acpi_processor_setup_cpuidle(pr
);
1670 ret
= cpuidle_enable_device(&pr
->power
.dev
);
1671 cpuidle_resume_and_unlock();
1676 #endif /* CONFIG_CPU_IDLE */
1678 int __cpuinit
acpi_processor_power_init(struct acpi_processor
*pr
,
1679 struct acpi_device
*device
)
1681 acpi_status status
= 0;
1682 static int first_run
;
1683 struct proc_dir_entry
*entry
= NULL
;
1688 dmi_check_system(processor_power_dmi_table
);
1689 max_cstate
= acpi_processor_cstate_check(max_cstate
);
1690 if (max_cstate
< ACPI_C_STATES_MAX
)
1692 "ACPI: processor limited to max C-state %d\n",
1695 #if !defined (CONFIG_CPU_IDLE) && defined (CONFIG_SMP)
1696 register_latency_notifier(&acpi_processor_latency_notifier
);
1703 if (acpi_gbl_FADT
.cst_control
&& !nocst
) {
1705 acpi_os_write_port(acpi_gbl_FADT
.smi_command
, acpi_gbl_FADT
.cst_control
, 8);
1706 if (ACPI_FAILURE(status
)) {
1707 ACPI_EXCEPTION((AE_INFO
, status
,
1708 "Notifying BIOS of _CST ability failed"));
1712 acpi_processor_get_power_info(pr
);
1713 pr
->flags
.power_setup_done
= 1;
1716 * Install the idle handler if processor power management is supported.
1717 * Note that we use previously set idle handler will be used on
1718 * platforms that only support C1.
1720 if ((pr
->flags
.power
) && (!boot_option_idle_override
)) {
1721 #ifdef CONFIG_CPU_IDLE
1722 acpi_processor_setup_cpuidle(pr
);
1723 pr
->power
.dev
.cpu
= pr
->id
;
1724 if (cpuidle_register_device(&pr
->power
.dev
))
1728 printk(KERN_INFO PREFIX
"CPU%d (power states:", pr
->id
);
1729 for (i
= 1; i
<= pr
->power
.count
; i
++)
1730 if (pr
->power
.states
[i
].valid
)
1731 printk(" C%d[C%d]", i
,
1732 pr
->power
.states
[i
].type
);
1735 #ifndef CONFIG_CPU_IDLE
1737 pm_idle_save
= pm_idle
;
1738 pm_idle
= acpi_processor_idle
;
1744 entry
= create_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1745 S_IRUGO
, acpi_device_dir(device
));
1749 entry
->proc_fops
= &acpi_processor_power_fops
;
1750 entry
->data
= acpi_driver_data(device
);
1751 entry
->owner
= THIS_MODULE
;
1757 int acpi_processor_power_exit(struct acpi_processor
*pr
,
1758 struct acpi_device
*device
)
1760 #ifdef CONFIG_CPU_IDLE
1761 if ((pr
->flags
.power
) && (!boot_option_idle_override
))
1762 cpuidle_unregister_device(&pr
->power
.dev
);
1764 pr
->flags
.power_setup_done
= 0;
1766 if (acpi_device_dir(device
))
1767 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER
,
1768 acpi_device_dir(device
));
1770 #ifndef CONFIG_CPU_IDLE
1772 /* Unregister the idle handler when processor #0 is removed. */
1774 pm_idle
= pm_idle_save
;
1777 * We are about to unload the current idle thread pm callback
1778 * (pm_idle), Wait for all processors to update cached/local
1779 * copies of pm_idle before proceeding.
1783 unregister_latency_notifier(&acpi_processor_latency_notifier
);