drm/i915: add Ironlake clock gating workaround for FDI link training
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob5812fc7c5a0fd9646ce78ec1e24d27e091804025
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
33 #include "drmP.h"
34 #include "intel_drv.h"
35 #include "i915_drm.h"
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
45 static void intel_update_watermarks(struct drm_device *dev);
46 static void intel_increase_pllclock(struct drm_crtc *crtc);
47 static void intel_crtc_update_cursor(struct drm_crtc *crtc, bool on);
49 typedef struct {
50 /* given values */
51 int n;
52 int m1, m2;
53 int p1, p2;
54 /* derived values */
55 int dot;
56 int vco;
57 int m;
58 int p;
59 } intel_clock_t;
61 typedef struct {
62 int min, max;
63 } intel_range_t;
65 typedef struct {
66 int dot_limit;
67 int p2_slow, p2_fast;
68 } intel_p2_t;
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t;
72 struct intel_limit {
73 intel_range_t dot, vco, n, m, m1, m2, p, p1;
74 intel_p2_t p2;
75 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
76 int, int, intel_clock_t *);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
83 #define I8XX_N_MIN 3
84 #define I8XX_N_MAX 16
85 #define I8XX_M_MIN 96
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
89 #define I8XX_M2_MIN 6
90 #define I8XX_M2_MAX 16
91 #define I8XX_P_MIN 4
92 #define I8XX_P_MAX 128
93 #define I8XX_P1_MIN 2
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
109 #define I9XX_N_MIN 1
110 #define I9XX_N_MAX 6
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
315 /* DisplayPort */
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
328 /* FDI */
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
331 static bool
332 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
333 int target, int refclk, intel_clock_t *best_clock);
334 static bool
335 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
336 int target, int refclk, intel_clock_t *best_clock);
338 static bool
339 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
340 int target, int refclk, intel_clock_t *best_clock);
341 static bool
342 intel_find_pll_ironlake_dp(const intel_limit_t *, struct drm_crtc *crtc,
343 int target, int refclk, intel_clock_t *best_clock);
345 static inline u32 /* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device *dev)
348 struct drm_i915_private *dev_priv = dev->dev_private;
349 return (I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK) + 2;
352 static const intel_limit_t intel_limits_i8xx_dvo = {
353 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
354 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
355 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
356 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
357 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
358 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
359 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
360 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
361 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
362 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
363 .find_pll = intel_find_best_PLL,
366 static const intel_limit_t intel_limits_i8xx_lvds = {
367 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
368 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
369 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
370 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
371 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
372 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
373 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
374 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
375 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
376 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
377 .find_pll = intel_find_best_PLL,
380 static const intel_limit_t intel_limits_i9xx_sdvo = {
381 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
382 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
383 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
384 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
385 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
386 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
387 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
388 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
389 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
390 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
391 .find_pll = intel_find_best_PLL,
394 static const intel_limit_t intel_limits_i9xx_lvds = {
395 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
396 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
397 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
398 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
399 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
400 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
401 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
402 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
403 /* The single-channel range is 25-112Mhz, and dual-channel
404 * is 80-224Mhz. Prefer single channel as much as possible.
406 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
407 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
408 .find_pll = intel_find_best_PLL,
411 /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo = {
413 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
414 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
415 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
416 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
417 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
418 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
419 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
420 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
421 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
422 .p2_slow = G4X_P2_SDVO_SLOW,
423 .p2_fast = G4X_P2_SDVO_FAST
425 .find_pll = intel_g4x_find_best_PLL,
428 static const intel_limit_t intel_limits_g4x_hdmi = {
429 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
430 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
431 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
432 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
433 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
434 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
435 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
436 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
437 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
438 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
439 .p2_fast = G4X_P2_HDMI_DAC_FAST
441 .find_pll = intel_g4x_find_best_PLL,
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
445 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
446 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
447 .vco = { .min = G4X_VCO_MIN,
448 .max = G4X_VCO_MAX },
449 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
450 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
451 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
452 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
453 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
454 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
455 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
456 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
457 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
458 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
459 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
460 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
461 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
462 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
463 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
465 .find_pll = intel_g4x_find_best_PLL,
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
469 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
470 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
471 .vco = { .min = G4X_VCO_MIN,
472 .max = G4X_VCO_MAX },
473 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
474 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
475 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
476 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
477 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
478 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
479 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
480 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
481 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
482 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
483 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
484 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
485 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
486 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
487 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
489 .find_pll = intel_g4x_find_best_PLL,
492 static const intel_limit_t intel_limits_g4x_display_port = {
493 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
494 .max = G4X_DOT_DISPLAY_PORT_MAX },
495 .vco = { .min = G4X_VCO_MIN,
496 .max = G4X_VCO_MAX},
497 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
498 .max = G4X_N_DISPLAY_PORT_MAX },
499 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
500 .max = G4X_M_DISPLAY_PORT_MAX },
501 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
502 .max = G4X_M1_DISPLAY_PORT_MAX },
503 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
504 .max = G4X_M2_DISPLAY_PORT_MAX },
505 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
506 .max = G4X_P_DISPLAY_PORT_MAX },
507 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
508 .max = G4X_P1_DISPLAY_PORT_MAX},
509 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
510 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
511 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
512 .find_pll = intel_find_pll_g4x_dp,
515 static const intel_limit_t intel_limits_pineview_sdvo = {
516 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
517 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
518 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
519 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
520 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
521 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
522 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
523 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
524 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
525 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
526 .find_pll = intel_find_best_PLL,
529 static const intel_limit_t intel_limits_pineview_lvds = {
530 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
531 .vco = { .min = PINEVIEW_VCO_MIN, .max = PINEVIEW_VCO_MAX },
532 .n = { .min = PINEVIEW_N_MIN, .max = PINEVIEW_N_MAX },
533 .m = { .min = PINEVIEW_M_MIN, .max = PINEVIEW_M_MAX },
534 .m1 = { .min = PINEVIEW_M1_MIN, .max = PINEVIEW_M1_MAX },
535 .m2 = { .min = PINEVIEW_M2_MIN, .max = PINEVIEW_M2_MAX },
536 .p = { .min = PINEVIEW_P_LVDS_MIN, .max = PINEVIEW_P_LVDS_MAX },
537 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
538 /* Pineview only supports single-channel mode. */
539 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
540 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
541 .find_pll = intel_find_best_PLL,
544 static const intel_limit_t intel_limits_ironlake_dac = {
545 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
546 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
547 .n = { .min = IRONLAKE_DAC_N_MIN, .max = IRONLAKE_DAC_N_MAX },
548 .m = { .min = IRONLAKE_DAC_M_MIN, .max = IRONLAKE_DAC_M_MAX },
549 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
550 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
551 .p = { .min = IRONLAKE_DAC_P_MIN, .max = IRONLAKE_DAC_P_MAX },
552 .p1 = { .min = IRONLAKE_DAC_P1_MIN, .max = IRONLAKE_DAC_P1_MAX },
553 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
554 .p2_slow = IRONLAKE_DAC_P2_SLOW,
555 .p2_fast = IRONLAKE_DAC_P2_FAST },
556 .find_pll = intel_g4x_find_best_PLL,
559 static const intel_limit_t intel_limits_ironlake_single_lvds = {
560 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
561 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
562 .n = { .min = IRONLAKE_LVDS_S_N_MIN, .max = IRONLAKE_LVDS_S_N_MAX },
563 .m = { .min = IRONLAKE_LVDS_S_M_MIN, .max = IRONLAKE_LVDS_S_M_MAX },
564 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
565 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
566 .p = { .min = IRONLAKE_LVDS_S_P_MIN, .max = IRONLAKE_LVDS_S_P_MAX },
567 .p1 = { .min = IRONLAKE_LVDS_S_P1_MIN, .max = IRONLAKE_LVDS_S_P1_MAX },
568 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
569 .p2_slow = IRONLAKE_LVDS_S_P2_SLOW,
570 .p2_fast = IRONLAKE_LVDS_S_P2_FAST },
571 .find_pll = intel_g4x_find_best_PLL,
574 static const intel_limit_t intel_limits_ironlake_dual_lvds = {
575 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
576 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
577 .n = { .min = IRONLAKE_LVDS_D_N_MIN, .max = IRONLAKE_LVDS_D_N_MAX },
578 .m = { .min = IRONLAKE_LVDS_D_M_MIN, .max = IRONLAKE_LVDS_D_M_MAX },
579 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
580 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
581 .p = { .min = IRONLAKE_LVDS_D_P_MIN, .max = IRONLAKE_LVDS_D_P_MAX },
582 .p1 = { .min = IRONLAKE_LVDS_D_P1_MIN, .max = IRONLAKE_LVDS_D_P1_MAX },
583 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
584 .p2_slow = IRONLAKE_LVDS_D_P2_SLOW,
585 .p2_fast = IRONLAKE_LVDS_D_P2_FAST },
586 .find_pll = intel_g4x_find_best_PLL,
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m = {
590 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
591 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
592 .n = { .min = IRONLAKE_LVDS_S_SSC_N_MIN, .max = IRONLAKE_LVDS_S_SSC_N_MAX },
593 .m = { .min = IRONLAKE_LVDS_S_SSC_M_MIN, .max = IRONLAKE_LVDS_S_SSC_M_MAX },
594 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
595 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
596 .p = { .min = IRONLAKE_LVDS_S_SSC_P_MIN, .max = IRONLAKE_LVDS_S_SSC_P_MAX },
597 .p1 = { .min = IRONLAKE_LVDS_S_SSC_P1_MIN,.max = IRONLAKE_LVDS_S_SSC_P1_MAX },
598 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
599 .p2_slow = IRONLAKE_LVDS_S_SSC_P2_SLOW,
600 .p2_fast = IRONLAKE_LVDS_S_SSC_P2_FAST },
601 .find_pll = intel_g4x_find_best_PLL,
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m = {
605 .dot = { .min = IRONLAKE_DOT_MIN, .max = IRONLAKE_DOT_MAX },
606 .vco = { .min = IRONLAKE_VCO_MIN, .max = IRONLAKE_VCO_MAX },
607 .n = { .min = IRONLAKE_LVDS_D_SSC_N_MIN, .max = IRONLAKE_LVDS_D_SSC_N_MAX },
608 .m = { .min = IRONLAKE_LVDS_D_SSC_M_MIN, .max = IRONLAKE_LVDS_D_SSC_M_MAX },
609 .m1 = { .min = IRONLAKE_M1_MIN, .max = IRONLAKE_M1_MAX },
610 .m2 = { .min = IRONLAKE_M2_MIN, .max = IRONLAKE_M2_MAX },
611 .p = { .min = IRONLAKE_LVDS_D_SSC_P_MIN, .max = IRONLAKE_LVDS_D_SSC_P_MAX },
612 .p1 = { .min = IRONLAKE_LVDS_D_SSC_P1_MIN,.max = IRONLAKE_LVDS_D_SSC_P1_MAX },
613 .p2 = { .dot_limit = IRONLAKE_P2_DOT_LIMIT,
614 .p2_slow = IRONLAKE_LVDS_D_SSC_P2_SLOW,
615 .p2_fast = IRONLAKE_LVDS_D_SSC_P2_FAST },
616 .find_pll = intel_g4x_find_best_PLL,
619 static const intel_limit_t intel_limits_ironlake_display_port = {
620 .dot = { .min = IRONLAKE_DOT_MIN,
621 .max = IRONLAKE_DOT_MAX },
622 .vco = { .min = IRONLAKE_VCO_MIN,
623 .max = IRONLAKE_VCO_MAX},
624 .n = { .min = IRONLAKE_DP_N_MIN,
625 .max = IRONLAKE_DP_N_MAX },
626 .m = { .min = IRONLAKE_DP_M_MIN,
627 .max = IRONLAKE_DP_M_MAX },
628 .m1 = { .min = IRONLAKE_M1_MIN,
629 .max = IRONLAKE_M1_MAX },
630 .m2 = { .min = IRONLAKE_M2_MIN,
631 .max = IRONLAKE_M2_MAX },
632 .p = { .min = IRONLAKE_DP_P_MIN,
633 .max = IRONLAKE_DP_P_MAX },
634 .p1 = { .min = IRONLAKE_DP_P1_MIN,
635 .max = IRONLAKE_DP_P1_MAX},
636 .p2 = { .dot_limit = IRONLAKE_DP_P2_LIMIT,
637 .p2_slow = IRONLAKE_DP_P2_SLOW,
638 .p2_fast = IRONLAKE_DP_P2_FAST },
639 .find_pll = intel_find_pll_ironlake_dp,
642 static const intel_limit_t *intel_ironlake_limit(struct drm_crtc *crtc)
644 struct drm_device *dev = crtc->dev;
645 struct drm_i915_private *dev_priv = dev->dev_private;
646 const intel_limit_t *limit;
647 int refclk = 120;
649 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
650 if (dev_priv->lvds_use_ssc && dev_priv->lvds_ssc_freq == 100)
651 refclk = 100;
653 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
654 LVDS_CLKB_POWER_UP) {
655 /* LVDS dual channel */
656 if (refclk == 100)
657 limit = &intel_limits_ironlake_dual_lvds_100m;
658 else
659 limit = &intel_limits_ironlake_dual_lvds;
660 } else {
661 if (refclk == 100)
662 limit = &intel_limits_ironlake_single_lvds_100m;
663 else
664 limit = &intel_limits_ironlake_single_lvds;
666 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT) ||
667 HAS_eDP)
668 limit = &intel_limits_ironlake_display_port;
669 else
670 limit = &intel_limits_ironlake_dac;
672 return limit;
675 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
677 struct drm_device *dev = crtc->dev;
678 struct drm_i915_private *dev_priv = dev->dev_private;
679 const intel_limit_t *limit;
681 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
682 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
683 LVDS_CLKB_POWER_UP)
684 /* LVDS with dual channel */
685 limit = &intel_limits_g4x_dual_channel_lvds;
686 else
687 /* LVDS with dual channel */
688 limit = &intel_limits_g4x_single_channel_lvds;
689 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
690 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
691 limit = &intel_limits_g4x_hdmi;
692 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
693 limit = &intel_limits_g4x_sdvo;
694 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
695 limit = &intel_limits_g4x_display_port;
696 } else /* The option is for other outputs */
697 limit = &intel_limits_i9xx_sdvo;
699 return limit;
702 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
704 struct drm_device *dev = crtc->dev;
705 const intel_limit_t *limit;
707 if (HAS_PCH_SPLIT(dev))
708 limit = intel_ironlake_limit(crtc);
709 else if (IS_G4X(dev)) {
710 limit = intel_g4x_limit(crtc);
711 } else if (IS_PINEVIEW(dev)) {
712 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
713 limit = &intel_limits_pineview_lvds;
714 else
715 limit = &intel_limits_pineview_sdvo;
716 } else if (!IS_GEN2(dev)) {
717 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
718 limit = &intel_limits_i9xx_lvds;
719 else
720 limit = &intel_limits_i9xx_sdvo;
721 } else {
722 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
723 limit = &intel_limits_i8xx_lvds;
724 else
725 limit = &intel_limits_i8xx_dvo;
727 return limit;
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk, intel_clock_t *clock)
733 clock->m = clock->m2 + 2;
734 clock->p = clock->p1 * clock->p2;
735 clock->vco = refclk * clock->m / clock->n;
736 clock->dot = clock->vco / clock->p;
739 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
741 if (IS_PINEVIEW(dev)) {
742 pineview_clock(refclk, clock);
743 return;
745 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
746 clock->p = clock->p1 * clock->p2;
747 clock->vco = refclk * clock->m / (clock->n + 2);
748 clock->dot = clock->vco / clock->p;
752 * Returns whether any output on the specified pipe is of the specified type
754 bool intel_pipe_has_type(struct drm_crtc *crtc, int type)
756 struct drm_device *dev = crtc->dev;
757 struct drm_mode_config *mode_config = &dev->mode_config;
758 struct intel_encoder *encoder;
760 list_for_each_entry(encoder, &mode_config->encoder_list, base.head)
761 if (encoder->base.crtc == crtc && encoder->type == type)
762 return true;
764 return false;
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
773 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
775 const intel_limit_t *limit = intel_limit (crtc);
776 struct drm_device *dev = crtc->dev;
778 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
779 INTELPllInvalid ("p1 out of range\n");
780 if (clock->p < limit->p.min || limit->p.max < clock->p)
781 INTELPllInvalid ("p out of range\n");
782 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
783 INTELPllInvalid ("m2 out of range\n");
784 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
785 INTELPllInvalid ("m1 out of range\n");
786 if (clock->m1 <= clock->m2 && !IS_PINEVIEW(dev))
787 INTELPllInvalid ("m1 <= m2\n");
788 if (clock->m < limit->m.min || limit->m.max < clock->m)
789 INTELPllInvalid ("m out of range\n");
790 if (clock->n < limit->n.min || limit->n.max < clock->n)
791 INTELPllInvalid ("n out of range\n");
792 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
793 INTELPllInvalid ("vco out of range\n");
794 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795 * connector, etc., rather than just a single range.
797 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
798 INTELPllInvalid ("dot out of range\n");
800 return true;
803 static bool
804 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
805 int target, int refclk, intel_clock_t *best_clock)
808 struct drm_device *dev = crtc->dev;
809 struct drm_i915_private *dev_priv = dev->dev_private;
810 intel_clock_t clock;
811 int err = target;
813 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
814 (I915_READ(LVDS)) != 0) {
816 * For LVDS, if the panel is on, just rely on its current
817 * settings for dual-channel. We haven't figured out how to
818 * reliably set up different single/dual channel state, if we
819 * even can.
821 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
822 LVDS_CLKB_POWER_UP)
823 clock.p2 = limit->p2.p2_fast;
824 else
825 clock.p2 = limit->p2.p2_slow;
826 } else {
827 if (target < limit->p2.dot_limit)
828 clock.p2 = limit->p2.p2_slow;
829 else
830 clock.p2 = limit->p2.p2_fast;
833 memset (best_clock, 0, sizeof (*best_clock));
835 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
836 clock.m1++) {
837 for (clock.m2 = limit->m2.min;
838 clock.m2 <= limit->m2.max; clock.m2++) {
839 /* m1 is always 0 in Pineview */
840 if (clock.m2 >= clock.m1 && !IS_PINEVIEW(dev))
841 break;
842 for (clock.n = limit->n.min;
843 clock.n <= limit->n.max; clock.n++) {
844 for (clock.p1 = limit->p1.min;
845 clock.p1 <= limit->p1.max; clock.p1++) {
846 int this_err;
848 intel_clock(dev, refclk, &clock);
850 if (!intel_PLL_is_valid(crtc, &clock))
851 continue;
853 this_err = abs(clock.dot - target);
854 if (this_err < err) {
855 *best_clock = clock;
856 err = this_err;
863 return (err != target);
866 static bool
867 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
868 int target, int refclk, intel_clock_t *best_clock)
870 struct drm_device *dev = crtc->dev;
871 struct drm_i915_private *dev_priv = dev->dev_private;
872 intel_clock_t clock;
873 int max_n;
874 bool found;
875 /* approximately equals target * 0.00585 */
876 int err_most = (target >> 8) + (target >> 9);
877 found = false;
879 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
880 int lvds_reg;
882 if (HAS_PCH_SPLIT(dev))
883 lvds_reg = PCH_LVDS;
884 else
885 lvds_reg = LVDS;
886 if ((I915_READ(lvds_reg) & LVDS_CLKB_POWER_MASK) ==
887 LVDS_CLKB_POWER_UP)
888 clock.p2 = limit->p2.p2_fast;
889 else
890 clock.p2 = limit->p2.p2_slow;
891 } else {
892 if (target < limit->p2.dot_limit)
893 clock.p2 = limit->p2.p2_slow;
894 else
895 clock.p2 = limit->p2.p2_fast;
898 memset(best_clock, 0, sizeof(*best_clock));
899 max_n = limit->n.max;
900 /* based on hardware requirement, prefer smaller n to precision */
901 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
902 /* based on hardware requirement, prefere larger m1,m2 */
903 for (clock.m1 = limit->m1.max;
904 clock.m1 >= limit->m1.min; clock.m1--) {
905 for (clock.m2 = limit->m2.max;
906 clock.m2 >= limit->m2.min; clock.m2--) {
907 for (clock.p1 = limit->p1.max;
908 clock.p1 >= limit->p1.min; clock.p1--) {
909 int this_err;
911 intel_clock(dev, refclk, &clock);
912 if (!intel_PLL_is_valid(crtc, &clock))
913 continue;
914 this_err = abs(clock.dot - target) ;
915 if (this_err < err_most) {
916 *best_clock = clock;
917 err_most = this_err;
918 max_n = clock.n;
919 found = true;
925 return found;
928 static bool
929 intel_find_pll_ironlake_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
930 int target, int refclk, intel_clock_t *best_clock)
932 struct drm_device *dev = crtc->dev;
933 intel_clock_t clock;
935 if (target < 200000) {
936 clock.n = 1;
937 clock.p1 = 2;
938 clock.p2 = 10;
939 clock.m1 = 12;
940 clock.m2 = 9;
941 } else {
942 clock.n = 2;
943 clock.p1 = 1;
944 clock.p2 = 10;
945 clock.m1 = 14;
946 clock.m2 = 8;
948 intel_clock(dev, refclk, &clock);
949 memcpy(best_clock, &clock, sizeof(intel_clock_t));
950 return true;
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
954 static bool
955 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
956 int target, int refclk, intel_clock_t *best_clock)
958 intel_clock_t clock;
959 if (target < 200000) {
960 clock.p1 = 2;
961 clock.p2 = 10;
962 clock.n = 2;
963 clock.m1 = 23;
964 clock.m2 = 8;
965 } else {
966 clock.p1 = 1;
967 clock.p2 = 10;
968 clock.n = 1;
969 clock.m1 = 14;
970 clock.m2 = 2;
972 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
973 clock.p = (clock.p1 * clock.p2);
974 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
975 clock.vco = 0;
976 memcpy(best_clock, &clock, sizeof(intel_clock_t));
977 return true;
981 * intel_wait_for_vblank - wait for vblank on a given pipe
982 * @dev: drm device
983 * @pipe: pipe to wait for
985 * Wait for vblank to occur on a given pipe. Needed for various bits of
986 * mode setting code.
988 void intel_wait_for_vblank(struct drm_device *dev, int pipe)
990 struct drm_i915_private *dev_priv = dev->dev_private;
991 int pipestat_reg = (pipe == 0 ? PIPEASTAT : PIPEBSTAT);
993 /* Clear existing vblank status. Note this will clear any other
994 * sticky status fields as well.
996 * This races with i915_driver_irq_handler() with the result
997 * that either function could miss a vblank event. Here it is not
998 * fatal, as we will either wait upon the next vblank interrupt or
999 * timeout. Generally speaking intel_wait_for_vblank() is only
1000 * called during modeset at which time the GPU should be idle and
1001 * should *not* be performing page flips and thus not waiting on
1002 * vblanks...
1003 * Currently, the result of us stealing a vblank from the irq
1004 * handler is that a single frame will be skipped during swapbuffers.
1006 I915_WRITE(pipestat_reg,
1007 I915_READ(pipestat_reg) | PIPE_VBLANK_INTERRUPT_STATUS);
1009 /* Wait for vblank interrupt bit to set */
1010 if (wait_for(I915_READ(pipestat_reg) &
1011 PIPE_VBLANK_INTERRUPT_STATUS,
1012 50))
1013 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 * intel_wait_for_pipe_off - wait for pipe to turn off
1018 * @dev: drm device
1019 * @pipe: pipe to wait for
1021 * After disabling a pipe, we can't wait for vblank in the usual way,
1022 * spinning on the vblank interrupt status bit, since we won't actually
1023 * see an interrupt when the pipe is disabled.
1025 * On Gen4 and above:
1026 * wait for the pipe register state bit to turn off
1028 * Otherwise:
1029 * wait for the display line value to settle (it usually
1030 * ends up stopping at the start of the next frame).
1033 void intel_wait_for_pipe_off(struct drm_device *dev, int pipe)
1035 struct drm_i915_private *dev_priv = dev->dev_private;
1037 if (INTEL_INFO(dev)->gen >= 4) {
1038 int reg = PIPECONF(pipe);
1040 /* Wait for the Pipe State to go off */
1041 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0,
1042 100))
1043 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1044 } else {
1045 u32 last_line;
1046 int reg = PIPEDSL(pipe);
1047 unsigned long timeout = jiffies + msecs_to_jiffies(100);
1049 /* Wait for the display line to settle */
1050 do {
1051 last_line = I915_READ(reg) & DSL_LINEMASK;
1052 mdelay(5);
1053 } while (((I915_READ(reg) & DSL_LINEMASK) != last_line) &&
1054 time_after(timeout, jiffies));
1055 if (time_after(jiffies, timeout))
1056 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1060 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1062 struct drm_device *dev = crtc->dev;
1063 struct drm_i915_private *dev_priv = dev->dev_private;
1064 struct drm_framebuffer *fb = crtc->fb;
1065 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1066 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1067 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1068 int plane, i;
1069 u32 fbc_ctl, fbc_ctl2;
1071 if (fb->pitch == dev_priv->cfb_pitch &&
1072 obj_priv->fence_reg == dev_priv->cfb_fence &&
1073 intel_crtc->plane == dev_priv->cfb_plane &&
1074 I915_READ(FBC_CONTROL) & FBC_CTL_EN)
1075 return;
1077 i8xx_disable_fbc(dev);
1079 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
1081 if (fb->pitch < dev_priv->cfb_pitch)
1082 dev_priv->cfb_pitch = fb->pitch;
1084 /* FBC_CTL wants 64B units */
1085 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1086 dev_priv->cfb_fence = obj_priv->fence_reg;
1087 dev_priv->cfb_plane = intel_crtc->plane;
1088 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
1090 /* Clear old tags */
1091 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
1092 I915_WRITE(FBC_TAG + (i * 4), 0);
1094 /* Set it up... */
1095 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
1096 if (obj_priv->tiling_mode != I915_TILING_NONE)
1097 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
1098 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
1099 I915_WRITE(FBC_FENCE_OFF, crtc->y);
1101 /* enable it... */
1102 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
1103 if (IS_I945GM(dev))
1104 fbc_ctl |= FBC_CTL_C3_IDLE; /* 945 needs special SR handling */
1105 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
1106 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
1107 if (obj_priv->tiling_mode != I915_TILING_NONE)
1108 fbc_ctl |= dev_priv->cfb_fence;
1109 I915_WRITE(FBC_CONTROL, fbc_ctl);
1111 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1112 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1115 void i8xx_disable_fbc(struct drm_device *dev)
1117 struct drm_i915_private *dev_priv = dev->dev_private;
1118 u32 fbc_ctl;
1120 /* Disable compression */
1121 fbc_ctl = I915_READ(FBC_CONTROL);
1122 if ((fbc_ctl & FBC_CTL_EN) == 0)
1123 return;
1125 fbc_ctl &= ~FBC_CTL_EN;
1126 I915_WRITE(FBC_CONTROL, fbc_ctl);
1128 /* Wait for compressing bit to clear */
1129 if (wait_for((I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING) == 0, 10)) {
1130 DRM_DEBUG_KMS("FBC idle timed out\n");
1131 return;
1134 DRM_DEBUG_KMS("disabled FBC\n");
1137 static bool i8xx_fbc_enabled(struct drm_device *dev)
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1141 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1144 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1146 struct drm_device *dev = crtc->dev;
1147 struct drm_i915_private *dev_priv = dev->dev_private;
1148 struct drm_framebuffer *fb = crtc->fb;
1149 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1150 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1151 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1152 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1153 unsigned long stall_watermark = 200;
1154 u32 dpfc_ctl;
1156 dpfc_ctl = I915_READ(DPFC_CONTROL);
1157 if (dpfc_ctl & DPFC_CTL_EN) {
1158 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1159 dev_priv->cfb_fence == obj_priv->fence_reg &&
1160 dev_priv->cfb_plane == intel_crtc->plane &&
1161 dev_priv->cfb_y == crtc->y)
1162 return;
1164 I915_WRITE(DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1165 POSTING_READ(DPFC_CONTROL);
1166 intel_wait_for_vblank(dev, intel_crtc->pipe);
1169 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1170 dev_priv->cfb_fence = obj_priv->fence_reg;
1171 dev_priv->cfb_plane = intel_crtc->plane;
1172 dev_priv->cfb_y = crtc->y;
1174 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1175 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1176 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1177 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1178 } else {
1179 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1182 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1183 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1184 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1185 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1187 /* enable it... */
1188 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1190 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1193 void g4x_disable_fbc(struct drm_device *dev)
1195 struct drm_i915_private *dev_priv = dev->dev_private;
1196 u32 dpfc_ctl;
1198 /* Disable compression */
1199 dpfc_ctl = I915_READ(DPFC_CONTROL);
1200 if (dpfc_ctl & DPFC_CTL_EN) {
1201 dpfc_ctl &= ~DPFC_CTL_EN;
1202 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1204 DRM_DEBUG_KMS("disabled FBC\n");
1208 static bool g4x_fbc_enabled(struct drm_device *dev)
1210 struct drm_i915_private *dev_priv = dev->dev_private;
1212 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1215 static void ironlake_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1217 struct drm_device *dev = crtc->dev;
1218 struct drm_i915_private *dev_priv = dev->dev_private;
1219 struct drm_framebuffer *fb = crtc->fb;
1220 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1221 struct drm_i915_gem_object *obj_priv = to_intel_bo(intel_fb->obj);
1222 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1223 int plane = intel_crtc->plane == 0 ? DPFC_CTL_PLANEA : DPFC_CTL_PLANEB;
1224 unsigned long stall_watermark = 200;
1225 u32 dpfc_ctl;
1227 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1228 if (dpfc_ctl & DPFC_CTL_EN) {
1229 if (dev_priv->cfb_pitch == dev_priv->cfb_pitch / 64 - 1 &&
1230 dev_priv->cfb_fence == obj_priv->fence_reg &&
1231 dev_priv->cfb_plane == intel_crtc->plane &&
1232 dev_priv->cfb_offset == obj_priv->gtt_offset &&
1233 dev_priv->cfb_y == crtc->y)
1234 return;
1236 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl & ~DPFC_CTL_EN);
1237 POSTING_READ(ILK_DPFC_CONTROL);
1238 intel_wait_for_vblank(dev, intel_crtc->pipe);
1241 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1242 dev_priv->cfb_fence = obj_priv->fence_reg;
1243 dev_priv->cfb_plane = intel_crtc->plane;
1244 dev_priv->cfb_offset = obj_priv->gtt_offset;
1245 dev_priv->cfb_y = crtc->y;
1247 dpfc_ctl &= DPFC_RESERVED;
1248 dpfc_ctl |= (plane | DPFC_CTL_LIMIT_1X);
1249 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1250 dpfc_ctl |= (DPFC_CTL_FENCE_EN | dev_priv->cfb_fence);
1251 I915_WRITE(ILK_DPFC_CHICKEN, DPFC_HT_MODIFY);
1252 } else {
1253 I915_WRITE(ILK_DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1256 I915_WRITE(ILK_DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1257 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1258 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1259 I915_WRITE(ILK_DPFC_FENCE_YOFF, crtc->y);
1260 I915_WRITE(ILK_FBC_RT_BASE, obj_priv->gtt_offset | ILK_FBC_RT_VALID);
1261 /* enable it... */
1262 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl | DPFC_CTL_EN);
1264 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1267 void ironlake_disable_fbc(struct drm_device *dev)
1269 struct drm_i915_private *dev_priv = dev->dev_private;
1270 u32 dpfc_ctl;
1272 /* Disable compression */
1273 dpfc_ctl = I915_READ(ILK_DPFC_CONTROL);
1274 if (dpfc_ctl & DPFC_CTL_EN) {
1275 dpfc_ctl &= ~DPFC_CTL_EN;
1276 I915_WRITE(ILK_DPFC_CONTROL, dpfc_ctl);
1278 DRM_DEBUG_KMS("disabled FBC\n");
1282 static bool ironlake_fbc_enabled(struct drm_device *dev)
1284 struct drm_i915_private *dev_priv = dev->dev_private;
1286 return I915_READ(ILK_DPFC_CONTROL) & DPFC_CTL_EN;
1289 bool intel_fbc_enabled(struct drm_device *dev)
1291 struct drm_i915_private *dev_priv = dev->dev_private;
1293 if (!dev_priv->display.fbc_enabled)
1294 return false;
1296 return dev_priv->display.fbc_enabled(dev);
1299 void intel_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1301 struct drm_i915_private *dev_priv = crtc->dev->dev_private;
1303 if (!dev_priv->display.enable_fbc)
1304 return;
1306 dev_priv->display.enable_fbc(crtc, interval);
1309 void intel_disable_fbc(struct drm_device *dev)
1311 struct drm_i915_private *dev_priv = dev->dev_private;
1313 if (!dev_priv->display.disable_fbc)
1314 return;
1316 dev_priv->display.disable_fbc(dev);
1320 * intel_update_fbc - enable/disable FBC as needed
1321 * @dev: the drm_device
1323 * Set up the framebuffer compression hardware at mode set time. We
1324 * enable it if possible:
1325 * - plane A only (on pre-965)
1326 * - no pixel mulitply/line duplication
1327 * - no alpha buffer discard
1328 * - no dual wide
1329 * - framebuffer <= 2048 in width, 1536 in height
1331 * We can't assume that any compression will take place (worst case),
1332 * so the compressed buffer has to be the same size as the uncompressed
1333 * one. It also must reside (along with the line length buffer) in
1334 * stolen memory.
1336 * We need to enable/disable FBC on a global basis.
1338 static void intel_update_fbc(struct drm_device *dev)
1340 struct drm_i915_private *dev_priv = dev->dev_private;
1341 struct drm_crtc *crtc = NULL, *tmp_crtc;
1342 struct intel_crtc *intel_crtc;
1343 struct drm_framebuffer *fb;
1344 struct intel_framebuffer *intel_fb;
1345 struct drm_i915_gem_object *obj_priv;
1347 DRM_DEBUG_KMS("\n");
1349 if (!i915_powersave)
1350 return;
1352 if (!I915_HAS_FBC(dev))
1353 return;
1356 * If FBC is already on, we just have to verify that we can
1357 * keep it that way...
1358 * Need to disable if:
1359 * - more than one pipe is active
1360 * - changing FBC params (stride, fence, mode)
1361 * - new fb is too large to fit in compressed buffer
1362 * - going to an unsupported config (interlace, pixel multiply, etc.)
1364 list_for_each_entry(tmp_crtc, &dev->mode_config.crtc_list, head) {
1365 if (tmp_crtc->enabled) {
1366 if (crtc) {
1367 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1368 dev_priv->no_fbc_reason = FBC_MULTIPLE_PIPES;
1369 goto out_disable;
1371 crtc = tmp_crtc;
1375 if (!crtc || crtc->fb == NULL) {
1376 DRM_DEBUG_KMS("no output, disabling\n");
1377 dev_priv->no_fbc_reason = FBC_NO_OUTPUT;
1378 goto out_disable;
1381 intel_crtc = to_intel_crtc(crtc);
1382 fb = crtc->fb;
1383 intel_fb = to_intel_framebuffer(fb);
1384 obj_priv = to_intel_bo(intel_fb->obj);
1386 if (intel_fb->obj->size > dev_priv->cfb_size) {
1387 DRM_DEBUG_KMS("framebuffer too large, disabling "
1388 "compression\n");
1389 dev_priv->no_fbc_reason = FBC_STOLEN_TOO_SMALL;
1390 goto out_disable;
1392 if ((crtc->mode.flags & DRM_MODE_FLAG_INTERLACE) ||
1393 (crtc->mode.flags & DRM_MODE_FLAG_DBLSCAN)) {
1394 DRM_DEBUG_KMS("mode incompatible with compression, "
1395 "disabling\n");
1396 dev_priv->no_fbc_reason = FBC_UNSUPPORTED_MODE;
1397 goto out_disable;
1399 if ((crtc->mode.hdisplay > 2048) ||
1400 (crtc->mode.vdisplay > 1536)) {
1401 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1402 dev_priv->no_fbc_reason = FBC_MODE_TOO_LARGE;
1403 goto out_disable;
1405 if ((IS_I915GM(dev) || IS_I945GM(dev)) && intel_crtc->plane != 0) {
1406 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1407 dev_priv->no_fbc_reason = FBC_BAD_PLANE;
1408 goto out_disable;
1410 if (obj_priv->tiling_mode != I915_TILING_X) {
1411 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1412 dev_priv->no_fbc_reason = FBC_NOT_TILED;
1413 goto out_disable;
1416 /* If the kernel debugger is active, always disable compression */
1417 if (in_dbg_master())
1418 goto out_disable;
1420 intel_enable_fbc(crtc, 500);
1421 return;
1423 out_disable:
1424 /* Multiple disables should be harmless */
1425 if (intel_fbc_enabled(dev)) {
1426 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1427 intel_disable_fbc(dev);
1432 intel_pin_and_fence_fb_obj(struct drm_device *dev,
1433 struct drm_gem_object *obj,
1434 bool pipelined)
1436 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1437 u32 alignment;
1438 int ret;
1440 switch (obj_priv->tiling_mode) {
1441 case I915_TILING_NONE:
1442 if (IS_BROADWATER(dev) || IS_CRESTLINE(dev))
1443 alignment = 128 * 1024;
1444 else if (INTEL_INFO(dev)->gen >= 4)
1445 alignment = 4 * 1024;
1446 else
1447 alignment = 64 * 1024;
1448 break;
1449 case I915_TILING_X:
1450 /* pin() will align the object as required by fence */
1451 alignment = 0;
1452 break;
1453 case I915_TILING_Y:
1454 /* FIXME: Is this true? */
1455 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1456 return -EINVAL;
1457 default:
1458 BUG();
1461 ret = i915_gem_object_pin(obj, alignment);
1462 if (ret)
1463 return ret;
1465 ret = i915_gem_object_set_to_display_plane(obj, pipelined);
1466 if (ret)
1467 goto err_unpin;
1469 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1470 * fence, whereas 965+ only requires a fence if using
1471 * framebuffer compression. For simplicity, we always install
1472 * a fence as the cost is not that onerous.
1474 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1475 obj_priv->tiling_mode != I915_TILING_NONE) {
1476 ret = i915_gem_object_get_fence_reg(obj, false);
1477 if (ret)
1478 goto err_unpin;
1481 return 0;
1483 err_unpin:
1484 i915_gem_object_unpin(obj);
1485 return ret;
1488 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1489 static int
1490 intel_pipe_set_base_atomic(struct drm_crtc *crtc, struct drm_framebuffer *fb,
1491 int x, int y, int enter)
1493 struct drm_device *dev = crtc->dev;
1494 struct drm_i915_private *dev_priv = dev->dev_private;
1495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1496 struct intel_framebuffer *intel_fb;
1497 struct drm_i915_gem_object *obj_priv;
1498 struct drm_gem_object *obj;
1499 int plane = intel_crtc->plane;
1500 unsigned long Start, Offset;
1501 u32 dspcntr;
1502 u32 reg;
1504 switch (plane) {
1505 case 0:
1506 case 1:
1507 break;
1508 default:
1509 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1510 return -EINVAL;
1513 intel_fb = to_intel_framebuffer(fb);
1514 obj = intel_fb->obj;
1515 obj_priv = to_intel_bo(obj);
1517 reg = DSPCNTR(plane);
1518 dspcntr = I915_READ(reg);
1519 /* Mask out pixel format bits in case we change it */
1520 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1521 switch (fb->bits_per_pixel) {
1522 case 8:
1523 dspcntr |= DISPPLANE_8BPP;
1524 break;
1525 case 16:
1526 if (fb->depth == 15)
1527 dspcntr |= DISPPLANE_15_16BPP;
1528 else
1529 dspcntr |= DISPPLANE_16BPP;
1530 break;
1531 case 24:
1532 case 32:
1533 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1534 break;
1535 default:
1536 DRM_ERROR("Unknown color depth\n");
1537 return -EINVAL;
1539 if (INTEL_INFO(dev)->gen >= 4) {
1540 if (obj_priv->tiling_mode != I915_TILING_NONE)
1541 dspcntr |= DISPPLANE_TILED;
1542 else
1543 dspcntr &= ~DISPPLANE_TILED;
1546 if (HAS_PCH_SPLIT(dev))
1547 /* must disable */
1548 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1550 I915_WRITE(reg, dspcntr);
1552 Start = obj_priv->gtt_offset;
1553 Offset = y * fb->pitch + x * (fb->bits_per_pixel / 8);
1555 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1556 Start, Offset, x, y, fb->pitch);
1557 I915_WRITE(DSPSTRIDE(plane), fb->pitch);
1558 if (INTEL_INFO(dev)->gen >= 4) {
1559 I915_WRITE(DSPSURF(plane), Start);
1560 I915_WRITE(DSPTILEOFF(plane), (y << 16) | x);
1561 I915_WRITE(DSPADDR(plane), Offset);
1562 } else
1563 I915_WRITE(DSPADDR(plane), Start + Offset);
1564 POSTING_READ(reg);
1566 intel_update_fbc(dev);
1567 intel_increase_pllclock(crtc);
1569 return 0;
1572 static int
1573 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1574 struct drm_framebuffer *old_fb)
1576 struct drm_device *dev = crtc->dev;
1577 struct drm_i915_master_private *master_priv;
1578 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1579 int ret;
1581 /* no fb bound */
1582 if (!crtc->fb) {
1583 DRM_DEBUG_KMS("No FB bound\n");
1584 return 0;
1587 switch (intel_crtc->plane) {
1588 case 0:
1589 case 1:
1590 break;
1591 default:
1592 return -EINVAL;
1595 mutex_lock(&dev->struct_mutex);
1596 ret = intel_pin_and_fence_fb_obj(dev,
1597 to_intel_framebuffer(crtc->fb)->obj,
1598 false);
1599 if (ret != 0) {
1600 mutex_unlock(&dev->struct_mutex);
1601 return ret;
1604 if (old_fb) {
1605 struct drm_i915_private *dev_priv = dev->dev_private;
1606 struct drm_gem_object *obj = to_intel_framebuffer(old_fb)->obj;
1607 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
1609 wait_event(dev_priv->pending_flip_queue,
1610 atomic_read(&obj_priv->pending_flip) == 0);
1613 ret = intel_pipe_set_base_atomic(crtc, crtc->fb, x, y, 0);
1614 if (ret) {
1615 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
1616 mutex_unlock(&dev->struct_mutex);
1617 return ret;
1620 if (old_fb)
1621 i915_gem_object_unpin(to_intel_framebuffer(old_fb)->obj);
1623 mutex_unlock(&dev->struct_mutex);
1625 if (!dev->primary->master)
1626 return 0;
1628 master_priv = dev->primary->master->driver_priv;
1629 if (!master_priv->sarea_priv)
1630 return 0;
1632 if (intel_crtc->pipe) {
1633 master_priv->sarea_priv->pipeB_x = x;
1634 master_priv->sarea_priv->pipeB_y = y;
1635 } else {
1636 master_priv->sarea_priv->pipeA_x = x;
1637 master_priv->sarea_priv->pipeA_y = y;
1640 return 0;
1643 static void ironlake_set_pll_edp(struct drm_crtc *crtc, int clock)
1645 struct drm_device *dev = crtc->dev;
1646 struct drm_i915_private *dev_priv = dev->dev_private;
1647 u32 dpa_ctl;
1649 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1650 dpa_ctl = I915_READ(DP_A);
1651 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1653 if (clock < 200000) {
1654 u32 temp;
1655 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1656 /* workaround for 160Mhz:
1657 1) program 0x4600c bits 15:0 = 0x8124
1658 2) program 0x46010 bit 0 = 1
1659 3) program 0x46034 bit 24 = 1
1660 4) program 0x64000 bit 14 = 1
1662 temp = I915_READ(0x4600c);
1663 temp &= 0xffff0000;
1664 I915_WRITE(0x4600c, temp | 0x8124);
1666 temp = I915_READ(0x46010);
1667 I915_WRITE(0x46010, temp | 1);
1669 temp = I915_READ(0x46034);
1670 I915_WRITE(0x46034, temp | (1 << 24));
1671 } else {
1672 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1674 I915_WRITE(DP_A, dpa_ctl);
1676 POSTING_READ(DP_A);
1677 udelay(500);
1680 /* The FDI link training functions for ILK/Ibexpeak. */
1681 static void ironlake_fdi_link_train(struct drm_crtc *crtc)
1683 struct drm_device *dev = crtc->dev;
1684 struct drm_i915_private *dev_priv = dev->dev_private;
1685 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1686 int pipe = intel_crtc->pipe;
1687 u32 reg, temp, tries;
1689 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1690 for train result */
1691 reg = FDI_RX_IMR(pipe);
1692 temp = I915_READ(reg);
1693 temp &= ~FDI_RX_SYMBOL_LOCK;
1694 temp &= ~FDI_RX_BIT_LOCK;
1695 I915_WRITE(reg, temp);
1696 I915_READ(reg);
1697 udelay(150);
1699 /* enable CPU FDI TX and PCH FDI RX */
1700 reg = FDI_TX_CTL(pipe);
1701 temp = I915_READ(reg);
1702 temp &= ~(7 << 19);
1703 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1704 temp &= ~FDI_LINK_TRAIN_NONE;
1705 temp |= FDI_LINK_TRAIN_PATTERN_1;
1706 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1708 reg = FDI_RX_CTL(pipe);
1709 temp = I915_READ(reg);
1710 temp &= ~FDI_LINK_TRAIN_NONE;
1711 temp |= FDI_LINK_TRAIN_PATTERN_1;
1712 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1714 POSTING_READ(reg);
1715 udelay(150);
1717 /* Ironlake workaround, enable clock pointer after FDI enable*/
1718 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_ENABLE);
1720 reg = FDI_RX_IIR(pipe);
1721 for (tries = 0; tries < 5; tries++) {
1722 temp = I915_READ(reg);
1723 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1725 if ((temp & FDI_RX_BIT_LOCK)) {
1726 DRM_DEBUG_KMS("FDI train 1 done.\n");
1727 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1728 break;
1731 if (tries == 5)
1732 DRM_ERROR("FDI train 1 fail!\n");
1734 /* Train 2 */
1735 reg = FDI_TX_CTL(pipe);
1736 temp = I915_READ(reg);
1737 temp &= ~FDI_LINK_TRAIN_NONE;
1738 temp |= FDI_LINK_TRAIN_PATTERN_2;
1739 I915_WRITE(reg, temp);
1741 reg = FDI_RX_CTL(pipe);
1742 temp = I915_READ(reg);
1743 temp &= ~FDI_LINK_TRAIN_NONE;
1744 temp |= FDI_LINK_TRAIN_PATTERN_2;
1745 I915_WRITE(reg, temp);
1747 POSTING_READ(reg);
1748 udelay(150);
1750 reg = FDI_RX_IIR(pipe);
1751 for (tries = 0; tries < 5; tries++) {
1752 temp = I915_READ(reg);
1753 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1755 if (temp & FDI_RX_SYMBOL_LOCK) {
1756 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1757 DRM_DEBUG_KMS("FDI train 2 done.\n");
1758 break;
1761 if (tries == 5)
1762 DRM_ERROR("FDI train 2 fail!\n");
1764 DRM_DEBUG_KMS("FDI train done\n");
1766 /* enable normal train */
1767 reg = FDI_TX_CTL(pipe);
1768 temp = I915_READ(reg);
1769 temp &= ~FDI_LINK_TRAIN_NONE;
1770 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
1771 I915_WRITE(reg, temp);
1773 reg = FDI_RX_CTL(pipe);
1774 temp = I915_READ(reg);
1775 if (HAS_PCH_CPT(dev)) {
1776 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1777 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
1778 } else {
1779 temp &= ~FDI_LINK_TRAIN_NONE;
1780 temp |= FDI_LINK_TRAIN_NONE;
1782 I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
1784 /* wait one idle pattern time */
1785 POSTING_READ(reg);
1786 udelay(1000);
1789 static const int const snb_b_fdi_train_param [] = {
1790 FDI_LINK_TRAIN_400MV_0DB_SNB_B,
1791 FDI_LINK_TRAIN_400MV_6DB_SNB_B,
1792 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
1793 FDI_LINK_TRAIN_800MV_0DB_SNB_B,
1796 /* The FDI link training functions for SNB/Cougarpoint. */
1797 static void gen6_fdi_link_train(struct drm_crtc *crtc)
1799 struct drm_device *dev = crtc->dev;
1800 struct drm_i915_private *dev_priv = dev->dev_private;
1801 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1802 int pipe = intel_crtc->pipe;
1803 u32 reg, temp, i;
1805 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1806 for train result */
1807 reg = FDI_RX_IMR(pipe);
1808 temp = I915_READ(reg);
1809 temp &= ~FDI_RX_SYMBOL_LOCK;
1810 temp &= ~FDI_RX_BIT_LOCK;
1811 I915_WRITE(reg, temp);
1813 POSTING_READ(reg);
1814 udelay(150);
1816 /* enable CPU FDI TX and PCH FDI RX */
1817 reg = FDI_TX_CTL(pipe);
1818 temp = I915_READ(reg);
1819 temp &= ~(7 << 19);
1820 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1821 temp &= ~FDI_LINK_TRAIN_NONE;
1822 temp |= FDI_LINK_TRAIN_PATTERN_1;
1823 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1824 /* SNB-B */
1825 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1826 I915_WRITE(reg, temp | FDI_TX_ENABLE);
1828 reg = FDI_RX_CTL(pipe);
1829 temp = I915_READ(reg);
1830 if (HAS_PCH_CPT(dev)) {
1831 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1832 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
1833 } else {
1834 temp &= ~FDI_LINK_TRAIN_NONE;
1835 temp |= FDI_LINK_TRAIN_PATTERN_1;
1837 I915_WRITE(reg, temp | FDI_RX_ENABLE);
1839 POSTING_READ(reg);
1840 udelay(150);
1842 for (i = 0; i < 4; i++ ) {
1843 reg = FDI_TX_CTL(pipe);
1844 temp = I915_READ(reg);
1845 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1846 temp |= snb_b_fdi_train_param[i];
1847 I915_WRITE(reg, temp);
1849 POSTING_READ(reg);
1850 udelay(500);
1852 reg = FDI_RX_IIR(pipe);
1853 temp = I915_READ(reg);
1854 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1856 if (temp & FDI_RX_BIT_LOCK) {
1857 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
1858 DRM_DEBUG_KMS("FDI train 1 done.\n");
1859 break;
1862 if (i == 4)
1863 DRM_ERROR("FDI train 1 fail!\n");
1865 /* Train 2 */
1866 reg = FDI_TX_CTL(pipe);
1867 temp = I915_READ(reg);
1868 temp &= ~FDI_LINK_TRAIN_NONE;
1869 temp |= FDI_LINK_TRAIN_PATTERN_2;
1870 if (IS_GEN6(dev)) {
1871 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1872 /* SNB-B */
1873 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
1875 I915_WRITE(reg, temp);
1877 reg = FDI_RX_CTL(pipe);
1878 temp = I915_READ(reg);
1879 if (HAS_PCH_CPT(dev)) {
1880 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
1881 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
1882 } else {
1883 temp &= ~FDI_LINK_TRAIN_NONE;
1884 temp |= FDI_LINK_TRAIN_PATTERN_2;
1886 I915_WRITE(reg, temp);
1888 POSTING_READ(reg);
1889 udelay(150);
1891 for (i = 0; i < 4; i++ ) {
1892 reg = FDI_TX_CTL(pipe);
1893 temp = I915_READ(reg);
1894 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
1895 temp |= snb_b_fdi_train_param[i];
1896 I915_WRITE(reg, temp);
1898 POSTING_READ(reg);
1899 udelay(500);
1901 reg = FDI_RX_IIR(pipe);
1902 temp = I915_READ(reg);
1903 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1905 if (temp & FDI_RX_SYMBOL_LOCK) {
1906 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
1907 DRM_DEBUG_KMS("FDI train 2 done.\n");
1908 break;
1911 if (i == 4)
1912 DRM_ERROR("FDI train 2 fail!\n");
1914 DRM_DEBUG_KMS("FDI train done.\n");
1917 static void ironlake_fdi_enable(struct drm_crtc *crtc)
1919 struct drm_device *dev = crtc->dev;
1920 struct drm_i915_private *dev_priv = dev->dev_private;
1921 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1922 int pipe = intel_crtc->pipe;
1923 u32 reg, temp;
1925 /* Write the TU size bits so error detection works */
1926 I915_WRITE(FDI_RX_TUSIZE1(pipe),
1927 I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
1929 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1930 reg = FDI_RX_CTL(pipe);
1931 temp = I915_READ(reg);
1932 temp &= ~((0x7 << 19) | (0x7 << 16));
1933 temp |= (intel_crtc->fdi_lanes - 1) << 19;
1934 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
1935 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
1937 POSTING_READ(reg);
1938 udelay(200);
1940 /* Switch from Rawclk to PCDclk */
1941 temp = I915_READ(reg);
1942 I915_WRITE(reg, temp | FDI_PCDCLK);
1944 POSTING_READ(reg);
1945 udelay(200);
1947 /* Enable CPU FDI TX PLL, always on for Ironlake */
1948 reg = FDI_TX_CTL(pipe);
1949 temp = I915_READ(reg);
1950 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1951 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
1953 POSTING_READ(reg);
1954 udelay(100);
1958 static void intel_flush_display_plane(struct drm_device *dev,
1959 int plane)
1961 struct drm_i915_private *dev_priv = dev->dev_private;
1962 u32 reg = DSPADDR(plane);
1963 I915_WRITE(reg, I915_READ(reg));
1967 * When we disable a pipe, we need to clear any pending scanline wait events
1968 * to avoid hanging the ring, which we assume we are waiting on.
1970 static void intel_clear_scanline_wait(struct drm_device *dev)
1972 struct drm_i915_private *dev_priv = dev->dev_private;
1973 u32 tmp;
1975 if (IS_GEN2(dev))
1976 /* Can't break the hang on i8xx */
1977 return;
1979 tmp = I915_READ(PRB0_CTL);
1980 if (tmp & RING_WAIT) {
1981 I915_WRITE(PRB0_CTL, tmp);
1982 POSTING_READ(PRB0_CTL);
1986 static void intel_crtc_wait_for_pending_flips(struct drm_crtc *crtc)
1988 struct drm_i915_gem_object *obj_priv;
1989 struct drm_i915_private *dev_priv;
1991 if (crtc->fb == NULL)
1992 return;
1994 obj_priv = to_intel_bo(to_intel_framebuffer(crtc->fb)->obj);
1995 dev_priv = crtc->dev->dev_private;
1996 wait_event(dev_priv->pending_flip_queue,
1997 atomic_read(&obj_priv->pending_flip) == 0);
2000 static void ironlake_crtc_enable(struct drm_crtc *crtc)
2002 struct drm_device *dev = crtc->dev;
2003 struct drm_i915_private *dev_priv = dev->dev_private;
2004 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2005 int pipe = intel_crtc->pipe;
2006 int plane = intel_crtc->plane;
2007 u32 reg, temp;
2009 if (intel_crtc->active)
2010 return;
2012 intel_crtc->active = true;
2013 intel_update_watermarks(dev);
2015 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2016 temp = I915_READ(PCH_LVDS);
2017 if ((temp & LVDS_PORT_EN) == 0)
2018 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
2021 ironlake_fdi_enable(crtc);
2023 /* Enable panel fitting for LVDS */
2024 if (dev_priv->pch_pf_size &&
2025 (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) || HAS_eDP)) {
2026 /* Force use of hard-coded filter coefficients
2027 * as some pre-programmed values are broken,
2028 * e.g. x201.
2030 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1,
2031 PF_ENABLE | PF_FILTER_MED_3x3);
2032 I915_WRITE(pipe ? PFB_WIN_POS : PFA_WIN_POS,
2033 dev_priv->pch_pf_pos);
2034 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ,
2035 dev_priv->pch_pf_size);
2038 /* Enable CPU pipe */
2039 reg = PIPECONF(pipe);
2040 temp = I915_READ(reg);
2041 if ((temp & PIPECONF_ENABLE) == 0) {
2042 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2043 POSTING_READ(reg);
2044 udelay(100);
2047 /* configure and enable CPU plane */
2048 reg = DSPCNTR(plane);
2049 temp = I915_READ(reg);
2050 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2051 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2052 intel_flush_display_plane(dev, plane);
2055 /* For PCH output, training FDI link */
2056 if (IS_GEN6(dev))
2057 gen6_fdi_link_train(crtc);
2058 else
2059 ironlake_fdi_link_train(crtc);
2061 /* enable PCH DPLL */
2062 reg = PCH_DPLL(pipe);
2063 temp = I915_READ(reg);
2064 if ((temp & DPLL_VCO_ENABLE) == 0) {
2065 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2066 POSTING_READ(reg);
2067 udelay(200);
2070 if (HAS_PCH_CPT(dev)) {
2071 /* Be sure PCH DPLL SEL is set */
2072 temp = I915_READ(PCH_DPLL_SEL);
2073 if (pipe == 0 && (temp & TRANSA_DPLL_ENABLE) == 0)
2074 temp |= (TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL);
2075 else if (pipe == 1 && (temp & TRANSB_DPLL_ENABLE) == 0)
2076 temp |= (TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2077 I915_WRITE(PCH_DPLL_SEL, temp);
2080 /* set transcoder timing */
2081 I915_WRITE(TRANS_HTOTAL(pipe), I915_READ(HTOTAL(pipe)));
2082 I915_WRITE(TRANS_HBLANK(pipe), I915_READ(HBLANK(pipe)));
2083 I915_WRITE(TRANS_HSYNC(pipe), I915_READ(HSYNC(pipe)));
2085 I915_WRITE(TRANS_VTOTAL(pipe), I915_READ(VTOTAL(pipe)));
2086 I915_WRITE(TRANS_VBLANK(pipe), I915_READ(VBLANK(pipe)));
2087 I915_WRITE(TRANS_VSYNC(pipe), I915_READ(VSYNC(pipe)));
2089 /* For PCH DP, enable TRANS_DP_CTL */
2090 if (HAS_PCH_CPT(dev) &&
2091 intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT)) {
2092 reg = TRANS_DP_CTL(pipe);
2093 temp = I915_READ(reg);
2094 temp &= ~(TRANS_DP_PORT_SEL_MASK |
2095 TRANS_DP_SYNC_MASK);
2096 temp |= (TRANS_DP_OUTPUT_ENABLE |
2097 TRANS_DP_ENH_FRAMING);
2099 if (crtc->mode.flags & DRM_MODE_FLAG_PHSYNC)
2100 temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
2101 if (crtc->mode.flags & DRM_MODE_FLAG_PVSYNC)
2102 temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
2104 switch (intel_trans_dp_port_sel(crtc)) {
2105 case PCH_DP_B:
2106 temp |= TRANS_DP_PORT_SEL_B;
2107 break;
2108 case PCH_DP_C:
2109 temp |= TRANS_DP_PORT_SEL_C;
2110 break;
2111 case PCH_DP_D:
2112 temp |= TRANS_DP_PORT_SEL_D;
2113 break;
2114 default:
2115 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2116 temp |= TRANS_DP_PORT_SEL_B;
2117 break;
2120 I915_WRITE(reg, temp);
2123 /* enable PCH transcoder */
2124 reg = TRANSCONF(pipe);
2125 temp = I915_READ(reg);
2127 * make the BPC in transcoder be consistent with
2128 * that in pipeconf reg.
2130 temp &= ~PIPE_BPC_MASK;
2131 temp |= I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK;
2132 I915_WRITE(reg, temp | TRANS_ENABLE);
2133 if (wait_for(I915_READ(reg) & TRANS_STATE_ENABLE, 100))
2134 DRM_ERROR("failed to enable transcoder\n");
2136 intel_crtc_load_lut(crtc);
2137 intel_update_fbc(dev);
2138 intel_crtc_update_cursor(crtc, true);
2141 static void ironlake_crtc_disable(struct drm_crtc *crtc)
2143 struct drm_device *dev = crtc->dev;
2144 struct drm_i915_private *dev_priv = dev->dev_private;
2145 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2146 int pipe = intel_crtc->pipe;
2147 int plane = intel_crtc->plane;
2148 u32 reg, temp;
2150 if (!intel_crtc->active)
2151 return;
2153 intel_crtc_wait_for_pending_flips(crtc);
2154 drm_vblank_off(dev, pipe);
2155 intel_crtc_update_cursor(crtc, false);
2157 /* Disable display plane */
2158 reg = DSPCNTR(plane);
2159 temp = I915_READ(reg);
2160 if (temp & DISPLAY_PLANE_ENABLE) {
2161 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2162 intel_flush_display_plane(dev, plane);
2165 if (dev_priv->cfb_plane == plane &&
2166 dev_priv->display.disable_fbc)
2167 dev_priv->display.disable_fbc(dev);
2169 /* disable cpu pipe, disable after all planes disabled */
2170 reg = PIPECONF(pipe);
2171 temp = I915_READ(reg);
2172 if (temp & PIPECONF_ENABLE) {
2173 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2174 /* wait for cpu pipe off, pipe state */
2175 if (wait_for((I915_READ(reg) & I965_PIPECONF_ACTIVE) == 0, 50))
2176 DRM_ERROR("failed to turn off cpu pipe\n");
2179 /* Disable PF */
2180 I915_WRITE(pipe ? PFB_CTL_1 : PFA_CTL_1, 0);
2181 I915_WRITE(pipe ? PFB_WIN_SZ : PFA_WIN_SZ, 0);
2183 /* disable CPU FDI tx and PCH FDI rx */
2184 reg = FDI_TX_CTL(pipe);
2185 temp = I915_READ(reg);
2186 I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
2187 POSTING_READ(reg);
2189 reg = FDI_RX_CTL(pipe);
2190 temp = I915_READ(reg);
2191 temp &= ~(0x7 << 16);
2192 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2193 I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
2195 POSTING_READ(reg);
2196 udelay(100);
2198 /* Ironlake workaround, disable clock pointer after downing FDI */
2199 I915_WRITE(FDI_RX_CHICKEN(pipe),
2200 I915_READ(FDI_RX_CHICKEN(pipe) &
2201 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE));
2203 /* still set train pattern 1 */
2204 reg = FDI_TX_CTL(pipe);
2205 temp = I915_READ(reg);
2206 temp &= ~FDI_LINK_TRAIN_NONE;
2207 temp |= FDI_LINK_TRAIN_PATTERN_1;
2208 I915_WRITE(reg, temp);
2210 reg = FDI_RX_CTL(pipe);
2211 temp = I915_READ(reg);
2212 if (HAS_PCH_CPT(dev)) {
2213 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
2214 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
2215 } else {
2216 temp &= ~FDI_LINK_TRAIN_NONE;
2217 temp |= FDI_LINK_TRAIN_PATTERN_1;
2219 /* BPC in FDI rx is consistent with that in PIPECONF */
2220 temp &= ~(0x07 << 16);
2221 temp |= (I915_READ(PIPECONF(pipe)) & PIPE_BPC_MASK) << 11;
2222 I915_WRITE(reg, temp);
2224 POSTING_READ(reg);
2225 udelay(100);
2227 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
2228 temp = I915_READ(PCH_LVDS);
2229 if (temp & LVDS_PORT_EN) {
2230 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
2231 POSTING_READ(PCH_LVDS);
2232 udelay(100);
2236 /* disable PCH transcoder */
2237 reg = TRANSCONF(plane);
2238 temp = I915_READ(reg);
2239 if (temp & TRANS_ENABLE) {
2240 I915_WRITE(reg, temp & ~TRANS_ENABLE);
2241 /* wait for PCH transcoder off, transcoder state */
2242 if (wait_for((I915_READ(reg) & TRANS_STATE_ENABLE) == 0, 50))
2243 DRM_ERROR("failed to disable transcoder\n");
2246 if (HAS_PCH_CPT(dev)) {
2247 /* disable TRANS_DP_CTL */
2248 reg = TRANS_DP_CTL(pipe);
2249 temp = I915_READ(reg);
2250 temp &= ~(TRANS_DP_OUTPUT_ENABLE | TRANS_DP_PORT_SEL_MASK);
2251 I915_WRITE(reg, temp);
2253 /* disable DPLL_SEL */
2254 temp = I915_READ(PCH_DPLL_SEL);
2255 if (pipe == 0)
2256 temp &= ~(TRANSA_DPLL_ENABLE | TRANSA_DPLLB_SEL);
2257 else
2258 temp &= ~(TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL);
2259 I915_WRITE(PCH_DPLL_SEL, temp);
2262 /* disable PCH DPLL */
2263 reg = PCH_DPLL(pipe);
2264 temp = I915_READ(reg);
2265 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2267 /* Switch from PCDclk to Rawclk */
2268 reg = FDI_RX_CTL(pipe);
2269 temp = I915_READ(reg);
2270 I915_WRITE(reg, temp & ~FDI_PCDCLK);
2272 /* Disable CPU FDI TX PLL */
2273 reg = FDI_TX_CTL(pipe);
2274 temp = I915_READ(reg);
2275 I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
2277 POSTING_READ(reg);
2278 udelay(100);
2280 reg = FDI_RX_CTL(pipe);
2281 temp = I915_READ(reg);
2282 I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
2284 /* Wait for the clocks to turn off. */
2285 POSTING_READ(reg);
2286 udelay(100);
2288 intel_crtc->active = false;
2289 intel_update_watermarks(dev);
2290 intel_update_fbc(dev);
2291 intel_clear_scanline_wait(dev);
2294 static void ironlake_crtc_dpms(struct drm_crtc *crtc, int mode)
2296 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2297 int pipe = intel_crtc->pipe;
2298 int plane = intel_crtc->plane;
2300 /* XXX: When our outputs are all unaware of DPMS modes other than off
2301 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2303 switch (mode) {
2304 case DRM_MODE_DPMS_ON:
2305 case DRM_MODE_DPMS_STANDBY:
2306 case DRM_MODE_DPMS_SUSPEND:
2307 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe, plane);
2308 ironlake_crtc_enable(crtc);
2309 break;
2311 case DRM_MODE_DPMS_OFF:
2312 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe, plane);
2313 ironlake_crtc_disable(crtc);
2314 break;
2318 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
2320 if (!enable && intel_crtc->overlay) {
2321 struct drm_device *dev = intel_crtc->base.dev;
2323 mutex_lock(&dev->struct_mutex);
2324 (void) intel_overlay_switch_off(intel_crtc->overlay, false);
2325 mutex_unlock(&dev->struct_mutex);
2328 /* Let userspace switch the overlay on again. In most cases userspace
2329 * has to recompute where to put it anyway.
2333 static void i9xx_crtc_enable(struct drm_crtc *crtc)
2335 struct drm_device *dev = crtc->dev;
2336 struct drm_i915_private *dev_priv = dev->dev_private;
2337 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2338 int pipe = intel_crtc->pipe;
2339 int plane = intel_crtc->plane;
2340 u32 reg, temp;
2342 if (intel_crtc->active)
2343 return;
2345 intel_crtc->active = true;
2346 intel_update_watermarks(dev);
2348 /* Enable the DPLL */
2349 reg = DPLL(pipe);
2350 temp = I915_READ(reg);
2351 if ((temp & DPLL_VCO_ENABLE) == 0) {
2352 I915_WRITE(reg, temp);
2354 /* Wait for the clocks to stabilize. */
2355 POSTING_READ(reg);
2356 udelay(150);
2358 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2360 /* Wait for the clocks to stabilize. */
2361 POSTING_READ(reg);
2362 udelay(150);
2364 I915_WRITE(reg, temp | DPLL_VCO_ENABLE);
2366 /* Wait for the clocks to stabilize. */
2367 POSTING_READ(reg);
2368 udelay(150);
2371 /* Enable the pipe */
2372 reg = PIPECONF(pipe);
2373 temp = I915_READ(reg);
2374 if ((temp & PIPECONF_ENABLE) == 0)
2375 I915_WRITE(reg, temp | PIPECONF_ENABLE);
2377 /* Enable the plane */
2378 reg = DSPCNTR(plane);
2379 temp = I915_READ(reg);
2380 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
2381 I915_WRITE(reg, temp | DISPLAY_PLANE_ENABLE);
2382 intel_flush_display_plane(dev, plane);
2385 intel_crtc_load_lut(crtc);
2386 intel_update_fbc(dev);
2388 /* Give the overlay scaler a chance to enable if it's on this pipe */
2389 intel_crtc_dpms_overlay(intel_crtc, true);
2390 intel_crtc_update_cursor(crtc, true);
2393 static void i9xx_crtc_disable(struct drm_crtc *crtc)
2395 struct drm_device *dev = crtc->dev;
2396 struct drm_i915_private *dev_priv = dev->dev_private;
2397 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2398 int pipe = intel_crtc->pipe;
2399 int plane = intel_crtc->plane;
2400 u32 reg, temp;
2402 if (!intel_crtc->active)
2403 return;
2405 /* Give the overlay scaler a chance to disable if it's on this pipe */
2406 intel_crtc_wait_for_pending_flips(crtc);
2407 drm_vblank_off(dev, pipe);
2408 intel_crtc_dpms_overlay(intel_crtc, false);
2409 intel_crtc_update_cursor(crtc, false);
2411 if (dev_priv->cfb_plane == plane &&
2412 dev_priv->display.disable_fbc)
2413 dev_priv->display.disable_fbc(dev);
2415 /* Disable display plane */
2416 reg = DSPCNTR(plane);
2417 temp = I915_READ(reg);
2418 if (temp & DISPLAY_PLANE_ENABLE) {
2419 I915_WRITE(reg, temp & ~DISPLAY_PLANE_ENABLE);
2420 /* Flush the plane changes */
2421 intel_flush_display_plane(dev, plane);
2423 /* Wait for vblank for the disable to take effect */
2424 if (IS_GEN2(dev))
2425 intel_wait_for_vblank(dev, pipe);
2428 /* Don't disable pipe A or pipe A PLLs if needed */
2429 if (pipe == 0 && (dev_priv->quirks & QUIRK_PIPEA_FORCE))
2430 goto done;
2432 /* Next, disable display pipes */
2433 reg = PIPECONF(pipe);
2434 temp = I915_READ(reg);
2435 if (temp & PIPECONF_ENABLE) {
2436 I915_WRITE(reg, temp & ~PIPECONF_ENABLE);
2438 /* Wait for the pipe to turn off */
2439 POSTING_READ(reg);
2440 intel_wait_for_pipe_off(dev, pipe);
2443 reg = DPLL(pipe);
2444 temp = I915_READ(reg);
2445 if (temp & DPLL_VCO_ENABLE) {
2446 I915_WRITE(reg, temp & ~DPLL_VCO_ENABLE);
2448 /* Wait for the clocks to turn off. */
2449 POSTING_READ(reg);
2450 udelay(150);
2453 done:
2454 intel_crtc->active = false;
2455 intel_update_fbc(dev);
2456 intel_update_watermarks(dev);
2457 intel_clear_scanline_wait(dev);
2460 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
2462 /* XXX: When our outputs are all unaware of DPMS modes other than off
2463 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2465 switch (mode) {
2466 case DRM_MODE_DPMS_ON:
2467 case DRM_MODE_DPMS_STANDBY:
2468 case DRM_MODE_DPMS_SUSPEND:
2469 i9xx_crtc_enable(crtc);
2470 break;
2471 case DRM_MODE_DPMS_OFF:
2472 i9xx_crtc_disable(crtc);
2473 break;
2478 * Sets the power management mode of the pipe and plane.
2480 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
2482 struct drm_device *dev = crtc->dev;
2483 struct drm_i915_private *dev_priv = dev->dev_private;
2484 struct drm_i915_master_private *master_priv;
2485 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2486 int pipe = intel_crtc->pipe;
2487 bool enabled;
2489 if (intel_crtc->dpms_mode == mode)
2490 return;
2492 intel_crtc->dpms_mode = mode;
2494 dev_priv->display.dpms(crtc, mode);
2496 if (!dev->primary->master)
2497 return;
2499 master_priv = dev->primary->master->driver_priv;
2500 if (!master_priv->sarea_priv)
2501 return;
2503 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
2505 switch (pipe) {
2506 case 0:
2507 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2508 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2509 break;
2510 case 1:
2511 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2512 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2513 break;
2514 default:
2515 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2516 break;
2520 static void intel_crtc_disable(struct drm_crtc *crtc)
2522 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2523 struct drm_device *dev = crtc->dev;
2525 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2527 if (crtc->fb) {
2528 mutex_lock(&dev->struct_mutex);
2529 i915_gem_object_unpin(to_intel_framebuffer(crtc->fb)->obj);
2530 mutex_unlock(&dev->struct_mutex);
2534 /* Prepare for a mode set.
2536 * Note we could be a lot smarter here. We need to figure out which outputs
2537 * will be enabled, which disabled (in short, how the config will changes)
2538 * and perform the minimum necessary steps to accomplish that, e.g. updating
2539 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2540 * panel fitting is in the proper state, etc.
2542 static void i9xx_crtc_prepare(struct drm_crtc *crtc)
2544 i9xx_crtc_disable(crtc);
2547 static void i9xx_crtc_commit(struct drm_crtc *crtc)
2549 i9xx_crtc_enable(crtc);
2552 static void ironlake_crtc_prepare(struct drm_crtc *crtc)
2554 ironlake_crtc_disable(crtc);
2557 static void ironlake_crtc_commit(struct drm_crtc *crtc)
2559 ironlake_crtc_enable(crtc);
2562 void intel_encoder_prepare (struct drm_encoder *encoder)
2564 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2565 /* lvds has its own version of prepare see intel_lvds_prepare */
2566 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2569 void intel_encoder_commit (struct drm_encoder *encoder)
2571 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2572 /* lvds has its own version of commit see intel_lvds_commit */
2573 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2576 void intel_encoder_destroy(struct drm_encoder *encoder)
2578 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
2580 drm_encoder_cleanup(encoder);
2581 kfree(intel_encoder);
2584 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2585 struct drm_display_mode *mode,
2586 struct drm_display_mode *adjusted_mode)
2588 struct drm_device *dev = crtc->dev;
2590 if (HAS_PCH_SPLIT(dev)) {
2591 /* FDI link clock is fixed at 2.7G */
2592 if (mode->clock * 3 > IRONLAKE_FDI_FREQ * 4)
2593 return false;
2596 /* XXX some encoders set the crtcinfo, others don't.
2597 * Obviously we need some form of conflict resolution here...
2599 if (adjusted_mode->crtc_htotal == 0)
2600 drm_mode_set_crtcinfo(adjusted_mode, 0);
2602 return true;
2605 static int i945_get_display_clock_speed(struct drm_device *dev)
2607 return 400000;
2610 static int i915_get_display_clock_speed(struct drm_device *dev)
2612 return 333000;
2615 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2617 return 200000;
2620 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2622 u16 gcfgc = 0;
2624 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2626 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2627 return 133000;
2628 else {
2629 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2630 case GC_DISPLAY_CLOCK_333_MHZ:
2631 return 333000;
2632 default:
2633 case GC_DISPLAY_CLOCK_190_200_MHZ:
2634 return 190000;
2639 static int i865_get_display_clock_speed(struct drm_device *dev)
2641 return 266000;
2644 static int i855_get_display_clock_speed(struct drm_device *dev)
2646 u16 hpllcc = 0;
2647 /* Assume that the hardware is in the high speed state. This
2648 * should be the default.
2650 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2651 case GC_CLOCK_133_200:
2652 case GC_CLOCK_100_200:
2653 return 200000;
2654 case GC_CLOCK_166_250:
2655 return 250000;
2656 case GC_CLOCK_100_133:
2657 return 133000;
2660 /* Shouldn't happen */
2661 return 0;
2664 static int i830_get_display_clock_speed(struct drm_device *dev)
2666 return 133000;
2669 struct fdi_m_n {
2670 u32 tu;
2671 u32 gmch_m;
2672 u32 gmch_n;
2673 u32 link_m;
2674 u32 link_n;
2677 static void
2678 fdi_reduce_ratio(u32 *num, u32 *den)
2680 while (*num > 0xffffff || *den > 0xffffff) {
2681 *num >>= 1;
2682 *den >>= 1;
2686 #define DATA_N 0x800000
2687 #define LINK_N 0x80000
2689 static void
2690 ironlake_compute_m_n(int bits_per_pixel, int nlanes, int pixel_clock,
2691 int link_clock, struct fdi_m_n *m_n)
2693 u64 temp;
2695 m_n->tu = 64; /* default size */
2697 temp = (u64) DATA_N * pixel_clock;
2698 temp = div_u64(temp, link_clock);
2699 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2700 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2701 m_n->gmch_n = DATA_N;
2702 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2704 temp = (u64) LINK_N * pixel_clock;
2705 m_n->link_m = div_u64(temp, link_clock);
2706 m_n->link_n = LINK_N;
2707 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2711 struct intel_watermark_params {
2712 unsigned long fifo_size;
2713 unsigned long max_wm;
2714 unsigned long default_wm;
2715 unsigned long guard_size;
2716 unsigned long cacheline_size;
2719 /* Pineview has different values for various configs */
2720 static struct intel_watermark_params pineview_display_wm = {
2721 PINEVIEW_DISPLAY_FIFO,
2722 PINEVIEW_MAX_WM,
2723 PINEVIEW_DFT_WM,
2724 PINEVIEW_GUARD_WM,
2725 PINEVIEW_FIFO_LINE_SIZE
2727 static struct intel_watermark_params pineview_display_hplloff_wm = {
2728 PINEVIEW_DISPLAY_FIFO,
2729 PINEVIEW_MAX_WM,
2730 PINEVIEW_DFT_HPLLOFF_WM,
2731 PINEVIEW_GUARD_WM,
2732 PINEVIEW_FIFO_LINE_SIZE
2734 static struct intel_watermark_params pineview_cursor_wm = {
2735 PINEVIEW_CURSOR_FIFO,
2736 PINEVIEW_CURSOR_MAX_WM,
2737 PINEVIEW_CURSOR_DFT_WM,
2738 PINEVIEW_CURSOR_GUARD_WM,
2739 PINEVIEW_FIFO_LINE_SIZE,
2741 static struct intel_watermark_params pineview_cursor_hplloff_wm = {
2742 PINEVIEW_CURSOR_FIFO,
2743 PINEVIEW_CURSOR_MAX_WM,
2744 PINEVIEW_CURSOR_DFT_WM,
2745 PINEVIEW_CURSOR_GUARD_WM,
2746 PINEVIEW_FIFO_LINE_SIZE
2748 static struct intel_watermark_params g4x_wm_info = {
2749 G4X_FIFO_SIZE,
2750 G4X_MAX_WM,
2751 G4X_MAX_WM,
2753 G4X_FIFO_LINE_SIZE,
2755 static struct intel_watermark_params g4x_cursor_wm_info = {
2756 I965_CURSOR_FIFO,
2757 I965_CURSOR_MAX_WM,
2758 I965_CURSOR_DFT_WM,
2760 G4X_FIFO_LINE_SIZE,
2762 static struct intel_watermark_params i965_cursor_wm_info = {
2763 I965_CURSOR_FIFO,
2764 I965_CURSOR_MAX_WM,
2765 I965_CURSOR_DFT_WM,
2767 I915_FIFO_LINE_SIZE,
2769 static struct intel_watermark_params i945_wm_info = {
2770 I945_FIFO_SIZE,
2771 I915_MAX_WM,
2774 I915_FIFO_LINE_SIZE
2776 static struct intel_watermark_params i915_wm_info = {
2777 I915_FIFO_SIZE,
2778 I915_MAX_WM,
2781 I915_FIFO_LINE_SIZE
2783 static struct intel_watermark_params i855_wm_info = {
2784 I855GM_FIFO_SIZE,
2785 I915_MAX_WM,
2788 I830_FIFO_LINE_SIZE
2790 static struct intel_watermark_params i830_wm_info = {
2791 I830_FIFO_SIZE,
2792 I915_MAX_WM,
2795 I830_FIFO_LINE_SIZE
2798 static struct intel_watermark_params ironlake_display_wm_info = {
2799 ILK_DISPLAY_FIFO,
2800 ILK_DISPLAY_MAXWM,
2801 ILK_DISPLAY_DFTWM,
2803 ILK_FIFO_LINE_SIZE
2806 static struct intel_watermark_params ironlake_cursor_wm_info = {
2807 ILK_CURSOR_FIFO,
2808 ILK_CURSOR_MAXWM,
2809 ILK_CURSOR_DFTWM,
2811 ILK_FIFO_LINE_SIZE
2814 static struct intel_watermark_params ironlake_display_srwm_info = {
2815 ILK_DISPLAY_SR_FIFO,
2816 ILK_DISPLAY_MAX_SRWM,
2817 ILK_DISPLAY_DFT_SRWM,
2819 ILK_FIFO_LINE_SIZE
2822 static struct intel_watermark_params ironlake_cursor_srwm_info = {
2823 ILK_CURSOR_SR_FIFO,
2824 ILK_CURSOR_MAX_SRWM,
2825 ILK_CURSOR_DFT_SRWM,
2827 ILK_FIFO_LINE_SIZE
2831 * intel_calculate_wm - calculate watermark level
2832 * @clock_in_khz: pixel clock
2833 * @wm: chip FIFO params
2834 * @pixel_size: display pixel size
2835 * @latency_ns: memory latency for the platform
2837 * Calculate the watermark level (the level at which the display plane will
2838 * start fetching from memory again). Each chip has a different display
2839 * FIFO size and allocation, so the caller needs to figure that out and pass
2840 * in the correct intel_watermark_params structure.
2842 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2843 * on the pixel size. When it reaches the watermark level, it'll start
2844 * fetching FIFO line sized based chunks from memory until the FIFO fills
2845 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2846 * will occur, and a display engine hang could result.
2848 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2849 struct intel_watermark_params *wm,
2850 int pixel_size,
2851 unsigned long latency_ns)
2853 long entries_required, wm_size;
2856 * Note: we need to make sure we don't overflow for various clock &
2857 * latency values.
2858 * clocks go from a few thousand to several hundred thousand.
2859 * latency is usually a few thousand
2861 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2862 1000;
2863 entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
2865 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2867 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2869 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2871 /* Don't promote wm_size to unsigned... */
2872 if (wm_size > (long)wm->max_wm)
2873 wm_size = wm->max_wm;
2874 if (wm_size <= 0)
2875 wm_size = wm->default_wm;
2876 return wm_size;
2879 struct cxsr_latency {
2880 int is_desktop;
2881 int is_ddr3;
2882 unsigned long fsb_freq;
2883 unsigned long mem_freq;
2884 unsigned long display_sr;
2885 unsigned long display_hpll_disable;
2886 unsigned long cursor_sr;
2887 unsigned long cursor_hpll_disable;
2890 static const struct cxsr_latency cxsr_latency_table[] = {
2891 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2892 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2893 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2894 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2895 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2897 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2898 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2899 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2900 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2901 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2903 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2904 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2905 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2906 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2907 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2909 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2910 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2911 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2912 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2913 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2915 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2916 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2917 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2918 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2919 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2921 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2922 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2923 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2924 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2925 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2928 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
2929 int is_ddr3,
2930 int fsb,
2931 int mem)
2933 const struct cxsr_latency *latency;
2934 int i;
2936 if (fsb == 0 || mem == 0)
2937 return NULL;
2939 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2940 latency = &cxsr_latency_table[i];
2941 if (is_desktop == latency->is_desktop &&
2942 is_ddr3 == latency->is_ddr3 &&
2943 fsb == latency->fsb_freq && mem == latency->mem_freq)
2944 return latency;
2947 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2949 return NULL;
2952 static void pineview_disable_cxsr(struct drm_device *dev)
2954 struct drm_i915_private *dev_priv = dev->dev_private;
2956 /* deactivate cxsr */
2957 I915_WRITE(DSPFW3, I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN);
2961 * Latency for FIFO fetches is dependent on several factors:
2962 * - memory configuration (speed, channels)
2963 * - chipset
2964 * - current MCH state
2965 * It can be fairly high in some situations, so here we assume a fairly
2966 * pessimal value. It's a tradeoff between extra memory fetches (if we
2967 * set this value too high, the FIFO will fetch frequently to stay full)
2968 * and power consumption (set it too low to save power and we might see
2969 * FIFO underruns and display "flicker").
2971 * A value of 5us seems to be a good balance; safe for very low end
2972 * platforms but not overly aggressive on lower latency configs.
2974 static const int latency_ns = 5000;
2976 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2978 struct drm_i915_private *dev_priv = dev->dev_private;
2979 uint32_t dsparb = I915_READ(DSPARB);
2980 int size;
2982 size = dsparb & 0x7f;
2983 if (plane)
2984 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
2986 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2987 plane ? "B" : "A", size);
2989 return size;
2992 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2994 struct drm_i915_private *dev_priv = dev->dev_private;
2995 uint32_t dsparb = I915_READ(DSPARB);
2996 int size;
2998 size = dsparb & 0x1ff;
2999 if (plane)
3000 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
3001 size >>= 1; /* Convert to cachelines */
3003 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3004 plane ? "B" : "A", size);
3006 return size;
3009 static int i845_get_fifo_size(struct drm_device *dev, int plane)
3011 struct drm_i915_private *dev_priv = dev->dev_private;
3012 uint32_t dsparb = I915_READ(DSPARB);
3013 int size;
3015 size = dsparb & 0x7f;
3016 size >>= 2; /* Convert to cachelines */
3018 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3019 plane ? "B" : "A",
3020 size);
3022 return size;
3025 static int i830_get_fifo_size(struct drm_device *dev, int plane)
3027 struct drm_i915_private *dev_priv = dev->dev_private;
3028 uint32_t dsparb = I915_READ(DSPARB);
3029 int size;
3031 size = dsparb & 0x7f;
3032 size >>= 1; /* Convert to cachelines */
3034 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
3035 plane ? "B" : "A", size);
3037 return size;
3040 static void pineview_update_wm(struct drm_device *dev, int planea_clock,
3041 int planeb_clock, int sr_hdisplay, int unused,
3042 int pixel_size)
3044 struct drm_i915_private *dev_priv = dev->dev_private;
3045 const struct cxsr_latency *latency;
3046 u32 reg;
3047 unsigned long wm;
3048 int sr_clock;
3050 latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
3051 dev_priv->fsb_freq, dev_priv->mem_freq);
3052 if (!latency) {
3053 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3054 pineview_disable_cxsr(dev);
3055 return;
3058 if (!planea_clock || !planeb_clock) {
3059 sr_clock = planea_clock ? planea_clock : planeb_clock;
3061 /* Display SR */
3062 wm = intel_calculate_wm(sr_clock, &pineview_display_wm,
3063 pixel_size, latency->display_sr);
3064 reg = I915_READ(DSPFW1);
3065 reg &= ~DSPFW_SR_MASK;
3066 reg |= wm << DSPFW_SR_SHIFT;
3067 I915_WRITE(DSPFW1, reg);
3068 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
3070 /* cursor SR */
3071 wm = intel_calculate_wm(sr_clock, &pineview_cursor_wm,
3072 pixel_size, latency->cursor_sr);
3073 reg = I915_READ(DSPFW3);
3074 reg &= ~DSPFW_CURSOR_SR_MASK;
3075 reg |= (wm & 0x3f) << DSPFW_CURSOR_SR_SHIFT;
3076 I915_WRITE(DSPFW3, reg);
3078 /* Display HPLL off SR */
3079 wm = intel_calculate_wm(sr_clock, &pineview_display_hplloff_wm,
3080 pixel_size, latency->display_hpll_disable);
3081 reg = I915_READ(DSPFW3);
3082 reg &= ~DSPFW_HPLL_SR_MASK;
3083 reg |= wm & DSPFW_HPLL_SR_MASK;
3084 I915_WRITE(DSPFW3, reg);
3086 /* cursor HPLL off SR */
3087 wm = intel_calculate_wm(sr_clock, &pineview_cursor_hplloff_wm,
3088 pixel_size, latency->cursor_hpll_disable);
3089 reg = I915_READ(DSPFW3);
3090 reg &= ~DSPFW_HPLL_CURSOR_MASK;
3091 reg |= (wm & 0x3f) << DSPFW_HPLL_CURSOR_SHIFT;
3092 I915_WRITE(DSPFW3, reg);
3093 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
3095 /* activate cxsr */
3096 I915_WRITE(DSPFW3,
3097 I915_READ(DSPFW3) | PINEVIEW_SELF_REFRESH_EN);
3098 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3099 } else {
3100 pineview_disable_cxsr(dev);
3101 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3105 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
3106 int planeb_clock, int sr_hdisplay, int sr_htotal,
3107 int pixel_size)
3109 struct drm_i915_private *dev_priv = dev->dev_private;
3110 int total_size, cacheline_size;
3111 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
3112 struct intel_watermark_params planea_params, planeb_params;
3113 unsigned long line_time_us;
3114 int sr_clock, sr_entries = 0, entries_required;
3116 /* Create copies of the base settings for each pipe */
3117 planea_params = planeb_params = g4x_wm_info;
3119 /* Grab a couple of global values before we overwrite them */
3120 total_size = planea_params.fifo_size;
3121 cacheline_size = planea_params.cacheline_size;
3124 * Note: we need to make sure we don't overflow for various clock &
3125 * latency values.
3126 * clocks go from a few thousand to several hundred thousand.
3127 * latency is usually a few thousand
3129 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
3130 1000;
3131 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3132 planea_wm = entries_required + planea_params.guard_size;
3134 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
3135 1000;
3136 entries_required = DIV_ROUND_UP(entries_required, G4X_FIFO_LINE_SIZE);
3137 planeb_wm = entries_required + planeb_params.guard_size;
3139 cursora_wm = cursorb_wm = 16;
3140 cursor_sr = 32;
3142 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3144 /* Calc sr entries for one plane configs */
3145 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3146 /* self-refresh has much higher latency */
3147 static const int sr_latency_ns = 12000;
3149 sr_clock = planea_clock ? planea_clock : planeb_clock;
3150 line_time_us = ((sr_htotal * 1000) / sr_clock);
3152 /* Use ns/us then divide to preserve precision */
3153 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3154 pixel_size * sr_hdisplay;
3155 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3157 entries_required = (((sr_latency_ns / line_time_us) +
3158 1000) / 1000) * pixel_size * 64;
3159 entries_required = DIV_ROUND_UP(entries_required,
3160 g4x_cursor_wm_info.cacheline_size);
3161 cursor_sr = entries_required + g4x_cursor_wm_info.guard_size;
3163 if (cursor_sr > g4x_cursor_wm_info.max_wm)
3164 cursor_sr = g4x_cursor_wm_info.max_wm;
3165 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3166 "cursor %d\n", sr_entries, cursor_sr);
3168 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3169 } else {
3170 /* Turn off self refresh if both pipes are enabled */
3171 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3172 & ~FW_BLC_SELF_EN);
3175 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3176 planea_wm, planeb_wm, sr_entries);
3178 planea_wm &= 0x3f;
3179 planeb_wm &= 0x3f;
3181 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
3182 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
3183 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
3184 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
3185 (cursora_wm << DSPFW_CURSORA_SHIFT));
3186 /* HPLL off in SR has some issues on G4x... disable it */
3187 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
3188 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3191 static void i965_update_wm(struct drm_device *dev, int planea_clock,
3192 int planeb_clock, int sr_hdisplay, int sr_htotal,
3193 int pixel_size)
3195 struct drm_i915_private *dev_priv = dev->dev_private;
3196 unsigned long line_time_us;
3197 int sr_clock, sr_entries, srwm = 1;
3198 int cursor_sr = 16;
3200 /* Calc sr entries for one plane configs */
3201 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
3202 /* self-refresh has much higher latency */
3203 static const int sr_latency_ns = 12000;
3205 sr_clock = planea_clock ? planea_clock : planeb_clock;
3206 line_time_us = ((sr_htotal * 1000) / sr_clock);
3208 /* Use ns/us then divide to preserve precision */
3209 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3210 pixel_size * sr_hdisplay;
3211 sr_entries = DIV_ROUND_UP(sr_entries, I915_FIFO_LINE_SIZE);
3212 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
3213 srwm = I965_FIFO_SIZE - sr_entries;
3214 if (srwm < 0)
3215 srwm = 1;
3216 srwm &= 0x1ff;
3218 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3219 pixel_size * 64;
3220 sr_entries = DIV_ROUND_UP(sr_entries,
3221 i965_cursor_wm_info.cacheline_size);
3222 cursor_sr = i965_cursor_wm_info.fifo_size -
3223 (sr_entries + i965_cursor_wm_info.guard_size);
3225 if (cursor_sr > i965_cursor_wm_info.max_wm)
3226 cursor_sr = i965_cursor_wm_info.max_wm;
3228 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3229 "cursor %d\n", srwm, cursor_sr);
3231 if (IS_CRESTLINE(dev))
3232 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
3233 } else {
3234 /* Turn off self refresh if both pipes are enabled */
3235 if (IS_CRESTLINE(dev))
3236 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3237 & ~FW_BLC_SELF_EN);
3240 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3241 srwm);
3243 /* 965 has limitations... */
3244 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
3245 (8 << 0));
3246 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
3247 /* update cursor SR watermark */
3248 I915_WRITE(DSPFW3, (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
3251 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
3252 int planeb_clock, int sr_hdisplay, int sr_htotal,
3253 int pixel_size)
3255 struct drm_i915_private *dev_priv = dev->dev_private;
3256 uint32_t fwater_lo;
3257 uint32_t fwater_hi;
3258 int total_size, cacheline_size, cwm, srwm = 1;
3259 int planea_wm, planeb_wm;
3260 struct intel_watermark_params planea_params, planeb_params;
3261 unsigned long line_time_us;
3262 int sr_clock, sr_entries = 0;
3264 /* Create copies of the base settings for each pipe */
3265 if (IS_CRESTLINE(dev) || IS_I945GM(dev))
3266 planea_params = planeb_params = i945_wm_info;
3267 else if (!IS_GEN2(dev))
3268 planea_params = planeb_params = i915_wm_info;
3269 else
3270 planea_params = planeb_params = i855_wm_info;
3272 /* Grab a couple of global values before we overwrite them */
3273 total_size = planea_params.fifo_size;
3274 cacheline_size = planea_params.cacheline_size;
3276 /* Update per-plane FIFO sizes */
3277 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3278 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
3280 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
3281 pixel_size, latency_ns);
3282 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
3283 pixel_size, latency_ns);
3284 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
3287 * Overlay gets an aggressive default since video jitter is bad.
3289 cwm = 2;
3291 /* Calc sr entries for one plane configs */
3292 if (HAS_FW_BLC(dev) && sr_hdisplay &&
3293 (!planea_clock || !planeb_clock)) {
3294 /* self-refresh has much higher latency */
3295 static const int sr_latency_ns = 6000;
3297 sr_clock = planea_clock ? planea_clock : planeb_clock;
3298 line_time_us = ((sr_htotal * 1000) / sr_clock);
3300 /* Use ns/us then divide to preserve precision */
3301 sr_entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
3302 pixel_size * sr_hdisplay;
3303 sr_entries = DIV_ROUND_UP(sr_entries, cacheline_size);
3304 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
3305 srwm = total_size - sr_entries;
3306 if (srwm < 0)
3307 srwm = 1;
3309 if (IS_I945G(dev) || IS_I945GM(dev))
3310 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
3311 else if (IS_I915GM(dev)) {
3312 /* 915M has a smaller SRWM field */
3313 I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
3314 I915_WRITE(INSTPM, I915_READ(INSTPM) | INSTPM_SELF_EN);
3316 } else {
3317 /* Turn off self refresh if both pipes are enabled */
3318 if (IS_I945G(dev) || IS_I945GM(dev)) {
3319 I915_WRITE(FW_BLC_SELF, I915_READ(FW_BLC_SELF)
3320 & ~FW_BLC_SELF_EN);
3321 } else if (IS_I915GM(dev)) {
3322 I915_WRITE(INSTPM, I915_READ(INSTPM) & ~INSTPM_SELF_EN);
3326 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3327 planea_wm, planeb_wm, cwm, srwm);
3329 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
3330 fwater_hi = (cwm & 0x1f);
3332 /* Set request length to 8 cachelines per fetch */
3333 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
3334 fwater_hi = fwater_hi | (1 << 8);
3336 I915_WRITE(FW_BLC, fwater_lo);
3337 I915_WRITE(FW_BLC2, fwater_hi);
3340 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
3341 int unused2, int unused3, int pixel_size)
3343 struct drm_i915_private *dev_priv = dev->dev_private;
3344 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
3345 int planea_wm;
3347 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
3349 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
3350 pixel_size, latency_ns);
3351 fwater_lo |= (3<<8) | planea_wm;
3353 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
3355 I915_WRITE(FW_BLC, fwater_lo);
3358 #define ILK_LP0_PLANE_LATENCY 700
3359 #define ILK_LP0_CURSOR_LATENCY 1300
3361 static bool ironlake_compute_wm0(struct drm_device *dev,
3362 int pipe,
3363 int *plane_wm,
3364 int *cursor_wm)
3366 struct drm_crtc *crtc;
3367 int htotal, hdisplay, clock, pixel_size = 0;
3368 int line_time_us, line_count, entries;
3370 crtc = intel_get_crtc_for_pipe(dev, pipe);
3371 if (crtc->fb == NULL || !crtc->enabled)
3372 return false;
3374 htotal = crtc->mode.htotal;
3375 hdisplay = crtc->mode.hdisplay;
3376 clock = crtc->mode.clock;
3377 pixel_size = crtc->fb->bits_per_pixel / 8;
3379 /* Use the small buffer method to calculate plane watermark */
3380 entries = ((clock * pixel_size / 1000) * ILK_LP0_PLANE_LATENCY) / 1000;
3381 entries = DIV_ROUND_UP(entries,
3382 ironlake_display_wm_info.cacheline_size);
3383 *plane_wm = entries + ironlake_display_wm_info.guard_size;
3384 if (*plane_wm > (int)ironlake_display_wm_info.max_wm)
3385 *plane_wm = ironlake_display_wm_info.max_wm;
3387 /* Use the large buffer method to calculate cursor watermark */
3388 line_time_us = ((htotal * 1000) / clock);
3389 line_count = (ILK_LP0_CURSOR_LATENCY / line_time_us + 1000) / 1000;
3390 entries = line_count * 64 * pixel_size;
3391 entries = DIV_ROUND_UP(entries,
3392 ironlake_cursor_wm_info.cacheline_size);
3393 *cursor_wm = entries + ironlake_cursor_wm_info.guard_size;
3394 if (*cursor_wm > ironlake_cursor_wm_info.max_wm)
3395 *cursor_wm = ironlake_cursor_wm_info.max_wm;
3397 return true;
3400 static void ironlake_update_wm(struct drm_device *dev,
3401 int planea_clock, int planeb_clock,
3402 int sr_hdisplay, int sr_htotal,
3403 int pixel_size)
3405 struct drm_i915_private *dev_priv = dev->dev_private;
3406 int plane_wm, cursor_wm, enabled;
3407 int tmp;
3409 enabled = 0;
3410 if (ironlake_compute_wm0(dev, 0, &plane_wm, &cursor_wm)) {
3411 I915_WRITE(WM0_PIPEA_ILK,
3412 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3413 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3414 " plane %d, " "cursor: %d\n",
3415 plane_wm, cursor_wm);
3416 enabled++;
3419 if (ironlake_compute_wm0(dev, 1, &plane_wm, &cursor_wm)) {
3420 I915_WRITE(WM0_PIPEB_ILK,
3421 (plane_wm << WM0_PIPE_PLANE_SHIFT) | cursor_wm);
3422 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3423 " plane %d, cursor: %d\n",
3424 plane_wm, cursor_wm);
3425 enabled++;
3429 * Calculate and update the self-refresh watermark only when one
3430 * display plane is used.
3432 tmp = 0;
3433 if (enabled == 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3434 unsigned long line_time_us;
3435 int small, large, plane_fbc;
3436 int sr_clock, entries;
3437 int line_count, line_size;
3438 /* Read the self-refresh latency. The unit is 0.5us */
3439 int ilk_sr_latency = I915_READ(MLTR_ILK) & ILK_SRLT_MASK;
3441 sr_clock = planea_clock ? planea_clock : planeb_clock;
3442 line_time_us = (sr_htotal * 1000) / sr_clock;
3444 /* Use ns/us then divide to preserve precision */
3445 line_count = ((ilk_sr_latency * 500) / line_time_us + 1000)
3446 / 1000;
3447 line_size = sr_hdisplay * pixel_size;
3449 /* Use the minimum of the small and large buffer method for primary */
3450 small = ((sr_clock * pixel_size / 1000) * (ilk_sr_latency * 500)) / 1000;
3451 large = line_count * line_size;
3453 entries = DIV_ROUND_UP(min(small, large),
3454 ironlake_display_srwm_info.cacheline_size);
3456 plane_fbc = entries * 64;
3457 plane_fbc = DIV_ROUND_UP(plane_fbc, line_size);
3459 plane_wm = entries + ironlake_display_srwm_info.guard_size;
3460 if (plane_wm > (int)ironlake_display_srwm_info.max_wm)
3461 plane_wm = ironlake_display_srwm_info.max_wm;
3463 /* calculate the self-refresh watermark for display cursor */
3464 entries = line_count * pixel_size * 64;
3465 entries = DIV_ROUND_UP(entries,
3466 ironlake_cursor_srwm_info.cacheline_size);
3468 cursor_wm = entries + ironlake_cursor_srwm_info.guard_size;
3469 if (cursor_wm > (int)ironlake_cursor_srwm_info.max_wm)
3470 cursor_wm = ironlake_cursor_srwm_info.max_wm;
3472 /* configure watermark and enable self-refresh */
3473 tmp = (WM1_LP_SR_EN |
3474 (ilk_sr_latency << WM1_LP_LATENCY_SHIFT) |
3475 (plane_fbc << WM1_LP_FBC_SHIFT) |
3476 (plane_wm << WM1_LP_SR_SHIFT) |
3477 cursor_wm);
3478 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3479 " cursor %d\n", plane_wm, plane_fbc, cursor_wm);
3481 I915_WRITE(WM1_LP_ILK, tmp);
3482 /* XXX setup WM2 and WM3 */
3486 * intel_update_watermarks - update FIFO watermark values based on current modes
3488 * Calculate watermark values for the various WM regs based on current mode
3489 * and plane configuration.
3491 * There are several cases to deal with here:
3492 * - normal (i.e. non-self-refresh)
3493 * - self-refresh (SR) mode
3494 * - lines are large relative to FIFO size (buffer can hold up to 2)
3495 * - lines are small relative to FIFO size (buffer can hold more than 2
3496 * lines), so need to account for TLB latency
3498 * The normal calculation is:
3499 * watermark = dotclock * bytes per pixel * latency
3500 * where latency is platform & configuration dependent (we assume pessimal
3501 * values here).
3503 * The SR calculation is:
3504 * watermark = (trunc(latency/line time)+1) * surface width *
3505 * bytes per pixel
3506 * where
3507 * line time = htotal / dotclock
3508 * surface width = hdisplay for normal plane and 64 for cursor
3509 * and latency is assumed to be high, as above.
3511 * The final value programmed to the register should always be rounded up,
3512 * and include an extra 2 entries to account for clock crossings.
3514 * We don't use the sprite, so we can ignore that. And on Crestline we have
3515 * to set the non-SR watermarks to 8.
3517 static void intel_update_watermarks(struct drm_device *dev)
3519 struct drm_i915_private *dev_priv = dev->dev_private;
3520 struct drm_crtc *crtc;
3521 int sr_hdisplay = 0;
3522 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
3523 int enabled = 0, pixel_size = 0;
3524 int sr_htotal = 0;
3526 if (!dev_priv->display.update_wm)
3527 return;
3529 /* Get the clock config from both planes */
3530 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
3531 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3532 if (intel_crtc->active) {
3533 enabled++;
3534 if (intel_crtc->plane == 0) {
3535 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3536 intel_crtc->pipe, crtc->mode.clock);
3537 planea_clock = crtc->mode.clock;
3538 } else {
3539 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3540 intel_crtc->pipe, crtc->mode.clock);
3541 planeb_clock = crtc->mode.clock;
3543 sr_hdisplay = crtc->mode.hdisplay;
3544 sr_clock = crtc->mode.clock;
3545 sr_htotal = crtc->mode.htotal;
3546 if (crtc->fb)
3547 pixel_size = crtc->fb->bits_per_pixel / 8;
3548 else
3549 pixel_size = 4; /* by default */
3553 if (enabled <= 0)
3554 return;
3556 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
3557 sr_hdisplay, sr_htotal, pixel_size);
3560 static int intel_crtc_mode_set(struct drm_crtc *crtc,
3561 struct drm_display_mode *mode,
3562 struct drm_display_mode *adjusted_mode,
3563 int x, int y,
3564 struct drm_framebuffer *old_fb)
3566 struct drm_device *dev = crtc->dev;
3567 struct drm_i915_private *dev_priv = dev->dev_private;
3568 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3569 int pipe = intel_crtc->pipe;
3570 int plane = intel_crtc->plane;
3571 u32 fp_reg, dpll_reg;
3572 int refclk, num_connectors = 0;
3573 intel_clock_t clock, reduced_clock;
3574 u32 dpll, fp = 0, fp2 = 0, dspcntr, pipeconf;
3575 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
3576 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
3577 struct intel_encoder *has_edp_encoder = NULL;
3578 struct drm_mode_config *mode_config = &dev->mode_config;
3579 struct intel_encoder *encoder;
3580 const intel_limit_t *limit;
3581 int ret;
3582 struct fdi_m_n m_n = {0};
3583 u32 reg, temp;
3584 int target_clock;
3586 drm_vblank_pre_modeset(dev, pipe);
3588 list_for_each_entry(encoder, &mode_config->encoder_list, base.head) {
3589 if (encoder->base.crtc != crtc)
3590 continue;
3592 switch (encoder->type) {
3593 case INTEL_OUTPUT_LVDS:
3594 is_lvds = true;
3595 break;
3596 case INTEL_OUTPUT_SDVO:
3597 case INTEL_OUTPUT_HDMI:
3598 is_sdvo = true;
3599 if (encoder->needs_tv_clock)
3600 is_tv = true;
3601 break;
3602 case INTEL_OUTPUT_DVO:
3603 is_dvo = true;
3604 break;
3605 case INTEL_OUTPUT_TVOUT:
3606 is_tv = true;
3607 break;
3608 case INTEL_OUTPUT_ANALOG:
3609 is_crt = true;
3610 break;
3611 case INTEL_OUTPUT_DISPLAYPORT:
3612 is_dp = true;
3613 break;
3614 case INTEL_OUTPUT_EDP:
3615 has_edp_encoder = encoder;
3616 break;
3619 num_connectors++;
3622 if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2) {
3623 refclk = dev_priv->lvds_ssc_freq * 1000;
3624 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3625 refclk / 1000);
3626 } else if (!IS_GEN2(dev)) {
3627 refclk = 96000;
3628 if (HAS_PCH_SPLIT(dev))
3629 refclk = 120000; /* 120Mhz refclk */
3630 } else {
3631 refclk = 48000;
3635 * Returns a set of divisors for the desired target clock with the given
3636 * refclk, or FALSE. The returned values represent the clock equation:
3637 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3639 limit = intel_limit(crtc);
3640 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
3641 if (!ok) {
3642 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3643 drm_vblank_post_modeset(dev, pipe);
3644 return -EINVAL;
3647 /* Ensure that the cursor is valid for the new mode before changing... */
3648 intel_crtc_update_cursor(crtc, true);
3650 if (is_lvds && dev_priv->lvds_downclock_avail) {
3651 has_reduced_clock = limit->find_pll(limit, crtc,
3652 dev_priv->lvds_downclock,
3653 refclk,
3654 &reduced_clock);
3655 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
3657 * If the different P is found, it means that we can't
3658 * switch the display clock by using the FP0/FP1.
3659 * In such case we will disable the LVDS downclock
3660 * feature.
3662 DRM_DEBUG_KMS("Different P is found for "
3663 "LVDS clock/downclock\n");
3664 has_reduced_clock = 0;
3667 /* SDVO TV has fixed PLL values depend on its clock range,
3668 this mirrors vbios setting. */
3669 if (is_sdvo && is_tv) {
3670 if (adjusted_mode->clock >= 100000
3671 && adjusted_mode->clock < 140500) {
3672 clock.p1 = 2;
3673 clock.p2 = 10;
3674 clock.n = 3;
3675 clock.m1 = 16;
3676 clock.m2 = 8;
3677 } else if (adjusted_mode->clock >= 140500
3678 && adjusted_mode->clock <= 200000) {
3679 clock.p1 = 1;
3680 clock.p2 = 10;
3681 clock.n = 6;
3682 clock.m1 = 12;
3683 clock.m2 = 8;
3687 /* FDI link */
3688 if (HAS_PCH_SPLIT(dev)) {
3689 int lane = 0, link_bw, bpp;
3690 /* CPU eDP doesn't require FDI link, so just set DP M/N
3691 according to current link config */
3692 if (has_edp_encoder && !intel_encoder_is_pch_edp(&encoder->base)) {
3693 target_clock = mode->clock;
3694 intel_edp_link_config(has_edp_encoder,
3695 &lane, &link_bw);
3696 } else {
3697 /* [e]DP over FDI requires target mode clock
3698 instead of link clock */
3699 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base))
3700 target_clock = mode->clock;
3701 else
3702 target_clock = adjusted_mode->clock;
3704 /* FDI is a binary signal running at ~2.7GHz, encoding
3705 * each output octet as 10 bits. The actual frequency
3706 * is stored as a divider into a 100MHz clock, and the
3707 * mode pixel clock is stored in units of 1KHz.
3708 * Hence the bw of each lane in terms of the mode signal
3709 * is:
3711 link_bw = intel_fdi_link_freq(dev) * MHz(100)/KHz(1)/10;
3714 /* determine panel color depth */
3715 temp = I915_READ(PIPECONF(pipe));
3716 temp &= ~PIPE_BPC_MASK;
3717 if (is_lvds) {
3718 /* the BPC will be 6 if it is 18-bit LVDS panel */
3719 if ((I915_READ(PCH_LVDS) & LVDS_A3_POWER_MASK) == LVDS_A3_POWER_UP)
3720 temp |= PIPE_8BPC;
3721 else
3722 temp |= PIPE_6BPC;
3723 } else if (has_edp_encoder) {
3724 switch (dev_priv->edp.bpp/3) {
3725 case 8:
3726 temp |= PIPE_8BPC;
3727 break;
3728 case 10:
3729 temp |= PIPE_10BPC;
3730 break;
3731 case 6:
3732 temp |= PIPE_6BPC;
3733 break;
3734 case 12:
3735 temp |= PIPE_12BPC;
3736 break;
3738 } else
3739 temp |= PIPE_8BPC;
3740 I915_WRITE(PIPECONF(pipe), temp);
3742 switch (temp & PIPE_BPC_MASK) {
3743 case PIPE_8BPC:
3744 bpp = 24;
3745 break;
3746 case PIPE_10BPC:
3747 bpp = 30;
3748 break;
3749 case PIPE_6BPC:
3750 bpp = 18;
3751 break;
3752 case PIPE_12BPC:
3753 bpp = 36;
3754 break;
3755 default:
3756 DRM_ERROR("unknown pipe bpc value\n");
3757 bpp = 24;
3760 if (!lane) {
3762 * Account for spread spectrum to avoid
3763 * oversubscribing the link. Max center spread
3764 * is 2.5%; use 5% for safety's sake.
3766 u32 bps = target_clock * bpp * 21 / 20;
3767 lane = bps / (link_bw * 8) + 1;
3770 intel_crtc->fdi_lanes = lane;
3772 ironlake_compute_m_n(bpp, lane, target_clock, link_bw, &m_n);
3775 /* Ironlake: try to setup display ref clock before DPLL
3776 * enabling. This is only under driver's control after
3777 * PCH B stepping, previous chipset stepping should be
3778 * ignoring this setting.
3780 if (HAS_PCH_SPLIT(dev)) {
3781 temp = I915_READ(PCH_DREF_CONTROL);
3782 /* Always enable nonspread source */
3783 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3784 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3785 temp &= ~DREF_SSC_SOURCE_MASK;
3786 temp |= DREF_SSC_SOURCE_ENABLE;
3787 I915_WRITE(PCH_DREF_CONTROL, temp);
3789 POSTING_READ(PCH_DREF_CONTROL);
3790 udelay(200);
3792 if (has_edp_encoder) {
3793 if (dev_priv->lvds_use_ssc) {
3794 temp |= DREF_SSC1_ENABLE;
3795 I915_WRITE(PCH_DREF_CONTROL, temp);
3797 POSTING_READ(PCH_DREF_CONTROL);
3798 udelay(200);
3800 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3801 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3802 } else {
3803 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3805 I915_WRITE(PCH_DREF_CONTROL, temp);
3809 if (IS_PINEVIEW(dev)) {
3810 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3811 if (has_reduced_clock)
3812 fp2 = (1 << reduced_clock.n) << 16 |
3813 reduced_clock.m1 << 8 | reduced_clock.m2;
3814 } else {
3815 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3816 if (has_reduced_clock)
3817 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3818 reduced_clock.m2;
3821 dpll = 0;
3822 if (!HAS_PCH_SPLIT(dev))
3823 dpll = DPLL_VGA_MODE_DIS;
3825 if (!IS_GEN2(dev)) {
3826 if (is_lvds)
3827 dpll |= DPLLB_MODE_LVDS;
3828 else
3829 dpll |= DPLLB_MODE_DAC_SERIAL;
3830 if (is_sdvo) {
3831 int pixel_multiplier = intel_mode_get_pixel_multiplier(adjusted_mode);
3832 if (pixel_multiplier > 1) {
3833 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3834 dpll |= (pixel_multiplier - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3835 else if (HAS_PCH_SPLIT(dev))
3836 dpll |= (pixel_multiplier - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3838 dpll |= DPLL_DVO_HIGH_SPEED;
3840 if (is_dp)
3841 dpll |= DPLL_DVO_HIGH_SPEED;
3843 /* compute bitmask from p1 value */
3844 if (IS_PINEVIEW(dev))
3845 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
3846 else {
3847 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3848 /* also FPA1 */
3849 if (HAS_PCH_SPLIT(dev))
3850 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3851 if (IS_G4X(dev) && has_reduced_clock)
3852 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3854 switch (clock.p2) {
3855 case 5:
3856 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3857 break;
3858 case 7:
3859 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3860 break;
3861 case 10:
3862 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3863 break;
3864 case 14:
3865 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3866 break;
3868 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev))
3869 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3870 } else {
3871 if (is_lvds) {
3872 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3873 } else {
3874 if (clock.p1 == 2)
3875 dpll |= PLL_P1_DIVIDE_BY_TWO;
3876 else
3877 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3878 if (clock.p2 == 4)
3879 dpll |= PLL_P2_DIVIDE_BY_4;
3883 if (is_sdvo && is_tv)
3884 dpll |= PLL_REF_INPUT_TVCLKINBC;
3885 else if (is_tv)
3886 /* XXX: just matching BIOS for now */
3887 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3888 dpll |= 3;
3889 else if (is_lvds && dev_priv->lvds_use_ssc && num_connectors < 2)
3890 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3891 else
3892 dpll |= PLL_REF_INPUT_DREFCLK;
3894 /* setup pipeconf */
3895 pipeconf = I915_READ(PIPECONF(pipe));
3897 /* Set up the display plane register */
3898 dspcntr = DISPPLANE_GAMMA_ENABLE;
3900 /* Ironlake's plane is forced to pipe, bit 24 is to
3901 enable color space conversion */
3902 if (!HAS_PCH_SPLIT(dev)) {
3903 if (pipe == 0)
3904 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3905 else
3906 dspcntr |= DISPPLANE_SEL_PIPE_B;
3909 if (pipe == 0 && INTEL_INFO(dev)->gen < 4) {
3910 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3911 * core speed.
3913 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3914 * pipe == 0 check?
3916 if (mode->clock >
3917 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3918 pipeconf |= PIPECONF_DOUBLE_WIDE;
3919 else
3920 pipeconf &= ~PIPECONF_DOUBLE_WIDE;
3923 dspcntr |= DISPLAY_PLANE_ENABLE;
3924 pipeconf |= PIPECONF_ENABLE;
3925 dpll |= DPLL_VCO_ENABLE;
3927 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3928 drm_mode_debug_printmodeline(mode);
3930 /* assign to Ironlake registers */
3931 if (HAS_PCH_SPLIT(dev)) {
3932 fp_reg = PCH_FP0(pipe);
3933 dpll_reg = PCH_DPLL(pipe);
3934 } else {
3935 fp_reg = FP0(pipe);
3936 dpll_reg = DPLL(pipe);
3939 /* PCH eDP needs FDI, but CPU eDP does not */
3940 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
3941 I915_WRITE(fp_reg, fp);
3942 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3944 POSTING_READ(dpll_reg);
3945 udelay(150);
3948 /* enable transcoder DPLL */
3949 if (HAS_PCH_CPT(dev)) {
3950 temp = I915_READ(PCH_DPLL_SEL);
3951 if (pipe == 0)
3952 temp |= TRANSA_DPLL_ENABLE | TRANSA_DPLLA_SEL;
3953 else
3954 temp |= TRANSB_DPLL_ENABLE | TRANSB_DPLLB_SEL;
3955 I915_WRITE(PCH_DPLL_SEL, temp);
3957 POSTING_READ(PCH_DPLL_SEL);
3958 udelay(150);
3961 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3962 * This is an exception to the general rule that mode_set doesn't turn
3963 * things on.
3965 if (is_lvds) {
3966 reg = LVDS;
3967 if (HAS_PCH_SPLIT(dev))
3968 reg = PCH_LVDS;
3970 temp = I915_READ(reg);
3971 temp |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
3972 if (pipe == 1) {
3973 if (HAS_PCH_CPT(dev))
3974 temp |= PORT_TRANS_B_SEL_CPT;
3975 else
3976 temp |= LVDS_PIPEB_SELECT;
3977 } else {
3978 if (HAS_PCH_CPT(dev))
3979 temp &= ~PORT_TRANS_SEL_MASK;
3980 else
3981 temp &= ~LVDS_PIPEB_SELECT;
3983 /* set the corresponsding LVDS_BORDER bit */
3984 temp |= dev_priv->lvds_border_bits;
3985 /* Set the B0-B3 data pairs corresponding to whether we're going to
3986 * set the DPLLs for dual-channel mode or not.
3988 if (clock.p2 == 7)
3989 temp |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3990 else
3991 temp &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3993 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3994 * appropriately here, but we need to look more thoroughly into how
3995 * panels behave in the two modes.
3997 /* set the dithering flag on non-PCH LVDS as needed */
3998 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
3999 if (dev_priv->lvds_dither)
4000 temp |= LVDS_ENABLE_DITHER;
4001 else
4002 temp &= ~LVDS_ENABLE_DITHER;
4004 I915_WRITE(reg, temp);
4007 /* set the dithering flag and clear for anything other than a panel. */
4008 if (HAS_PCH_SPLIT(dev)) {
4009 pipeconf &= ~PIPECONF_DITHER_EN;
4010 pipeconf &= ~PIPECONF_DITHER_TYPE_MASK;
4011 if (dev_priv->lvds_dither && (is_lvds || has_edp_encoder)) {
4012 pipeconf |= PIPECONF_DITHER_EN;
4013 pipeconf |= PIPECONF_DITHER_TYPE_ST1;
4017 if (is_dp || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4018 intel_dp_set_m_n(crtc, mode, adjusted_mode);
4019 } else if (HAS_PCH_SPLIT(dev)) {
4020 /* For non-DP output, clear any trans DP clock recovery setting.*/
4021 if (pipe == 0) {
4022 I915_WRITE(TRANSA_DATA_M1, 0);
4023 I915_WRITE(TRANSA_DATA_N1, 0);
4024 I915_WRITE(TRANSA_DP_LINK_M1, 0);
4025 I915_WRITE(TRANSA_DP_LINK_N1, 0);
4026 } else {
4027 I915_WRITE(TRANSB_DATA_M1, 0);
4028 I915_WRITE(TRANSB_DATA_N1, 0);
4029 I915_WRITE(TRANSB_DP_LINK_M1, 0);
4030 I915_WRITE(TRANSB_DP_LINK_N1, 0);
4034 if (!has_edp_encoder || intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4035 I915_WRITE(fp_reg, fp);
4036 I915_WRITE(dpll_reg, dpll);
4038 /* Wait for the clocks to stabilize. */
4039 POSTING_READ(dpll_reg);
4040 udelay(150);
4042 if (INTEL_INFO(dev)->gen >= 4 && !HAS_PCH_SPLIT(dev)) {
4043 temp = 0;
4044 if (is_sdvo) {
4045 temp = intel_mode_get_pixel_multiplier(adjusted_mode);
4046 if (temp > 1)
4047 temp = (temp - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
4048 else
4049 temp = 0;
4051 I915_WRITE(DPLL_MD(pipe), temp);
4052 } else {
4053 /* write it again -- the BIOS does, after all */
4054 I915_WRITE(dpll_reg, dpll);
4057 /* Wait for the clocks to stabilize. */
4058 POSTING_READ(dpll_reg);
4059 udelay(150);
4062 intel_crtc->lowfreq_avail = false;
4063 if (is_lvds && has_reduced_clock && i915_powersave) {
4064 I915_WRITE(fp_reg + 4, fp2);
4065 intel_crtc->lowfreq_avail = true;
4066 if (HAS_PIPE_CXSR(dev)) {
4067 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4068 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
4070 } else {
4071 I915_WRITE(fp_reg + 4, fp);
4072 if (HAS_PIPE_CXSR(dev)) {
4073 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4074 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
4078 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
4079 pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
4080 /* the chip adds 2 halflines automatically */
4081 adjusted_mode->crtc_vdisplay -= 1;
4082 adjusted_mode->crtc_vtotal -= 1;
4083 adjusted_mode->crtc_vblank_start -= 1;
4084 adjusted_mode->crtc_vblank_end -= 1;
4085 adjusted_mode->crtc_vsync_end -= 1;
4086 adjusted_mode->crtc_vsync_start -= 1;
4087 } else
4088 pipeconf &= ~PIPECONF_INTERLACE_W_FIELD_INDICATION; /* progressive */
4090 I915_WRITE(HTOTAL(pipe),
4091 (adjusted_mode->crtc_hdisplay - 1) |
4092 ((adjusted_mode->crtc_htotal - 1) << 16));
4093 I915_WRITE(HBLANK(pipe),
4094 (adjusted_mode->crtc_hblank_start - 1) |
4095 ((adjusted_mode->crtc_hblank_end - 1) << 16));
4096 I915_WRITE(HSYNC(pipe),
4097 (adjusted_mode->crtc_hsync_start - 1) |
4098 ((adjusted_mode->crtc_hsync_end - 1) << 16));
4100 I915_WRITE(VTOTAL(pipe),
4101 (adjusted_mode->crtc_vdisplay - 1) |
4102 ((adjusted_mode->crtc_vtotal - 1) << 16));
4103 I915_WRITE(VBLANK(pipe),
4104 (adjusted_mode->crtc_vblank_start - 1) |
4105 ((adjusted_mode->crtc_vblank_end - 1) << 16));
4106 I915_WRITE(VSYNC(pipe),
4107 (adjusted_mode->crtc_vsync_start - 1) |
4108 ((adjusted_mode->crtc_vsync_end - 1) << 16));
4110 /* pipesrc and dspsize control the size that is scaled from,
4111 * which should always be the user's requested size.
4113 if (!HAS_PCH_SPLIT(dev)) {
4114 I915_WRITE(DSPSIZE(plane),
4115 ((mode->vdisplay - 1) << 16) |
4116 (mode->hdisplay - 1));
4117 I915_WRITE(DSPPOS(plane), 0);
4119 I915_WRITE(PIPESRC(pipe),
4120 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
4122 if (HAS_PCH_SPLIT(dev)) {
4123 I915_WRITE(PIPE_DATA_M1(pipe), TU_SIZE(m_n.tu) | m_n.gmch_m);
4124 I915_WRITE(PIPE_DATA_N1(pipe), m_n.gmch_n);
4125 I915_WRITE(PIPE_LINK_M1(pipe), m_n.link_m);
4126 I915_WRITE(PIPE_LINK_N1(pipe), m_n.link_n);
4128 if (has_edp_encoder && !intel_encoder_is_pch_edp(&has_edp_encoder->base)) {
4129 ironlake_set_pll_edp(crtc, adjusted_mode->clock);
4130 } else {
4131 /* enable FDI RX PLL too */
4132 reg = FDI_RX_CTL(pipe);
4133 temp = I915_READ(reg);
4134 I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4136 POSTING_READ(reg);
4137 udelay(200);
4139 /* enable FDI TX PLL too */
4140 reg = FDI_TX_CTL(pipe);
4141 temp = I915_READ(reg);
4142 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4144 /* enable FDI RX PCDCLK */
4145 reg = FDI_RX_CTL(pipe);
4146 temp = I915_READ(reg);
4147 I915_WRITE(reg, temp | FDI_PCDCLK);
4149 POSTING_READ(reg);
4150 udelay(200);
4154 I915_WRITE(PIPECONF(pipe), pipeconf);
4155 POSTING_READ(PIPECONF(pipe));
4157 intel_wait_for_vblank(dev, pipe);
4159 if (IS_IRONLAKE(dev)) {
4160 /* enable address swizzle for tiling buffer */
4161 temp = I915_READ(DISP_ARB_CTL);
4162 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
4165 I915_WRITE(DSPCNTR(plane), dspcntr);
4167 ret = intel_pipe_set_base(crtc, x, y, old_fb);
4169 intel_update_watermarks(dev);
4171 drm_vblank_post_modeset(dev, pipe);
4173 return ret;
4176 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4177 void intel_crtc_load_lut(struct drm_crtc *crtc)
4179 struct drm_device *dev = crtc->dev;
4180 struct drm_i915_private *dev_priv = dev->dev_private;
4181 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4182 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
4183 int i;
4185 /* The clocks have to be on to load the palette. */
4186 if (!crtc->enabled)
4187 return;
4189 /* use legacy palette for Ironlake */
4190 if (HAS_PCH_SPLIT(dev))
4191 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
4192 LGC_PALETTE_B;
4194 for (i = 0; i < 256; i++) {
4195 I915_WRITE(palreg + 4 * i,
4196 (intel_crtc->lut_r[i] << 16) |
4197 (intel_crtc->lut_g[i] << 8) |
4198 intel_crtc->lut_b[i]);
4202 static void i845_update_cursor(struct drm_crtc *crtc, u32 base)
4204 struct drm_device *dev = crtc->dev;
4205 struct drm_i915_private *dev_priv = dev->dev_private;
4206 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4207 bool visible = base != 0;
4208 u32 cntl;
4210 if (intel_crtc->cursor_visible == visible)
4211 return;
4213 cntl = I915_READ(CURACNTR);
4214 if (visible) {
4215 /* On these chipsets we can only modify the base whilst
4216 * the cursor is disabled.
4218 I915_WRITE(CURABASE, base);
4220 cntl &= ~(CURSOR_FORMAT_MASK);
4221 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4222 cntl |= CURSOR_ENABLE |
4223 CURSOR_GAMMA_ENABLE |
4224 CURSOR_FORMAT_ARGB;
4225 } else
4226 cntl &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
4227 I915_WRITE(CURACNTR, cntl);
4229 intel_crtc->cursor_visible = visible;
4232 static void i9xx_update_cursor(struct drm_crtc *crtc, u32 base)
4234 struct drm_device *dev = crtc->dev;
4235 struct drm_i915_private *dev_priv = dev->dev_private;
4236 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4237 int pipe = intel_crtc->pipe;
4238 bool visible = base != 0;
4240 if (intel_crtc->cursor_visible != visible) {
4241 uint32_t cntl = I915_READ(pipe == 0 ? CURACNTR : CURBCNTR);
4242 if (base) {
4243 cntl &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
4244 cntl |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
4245 cntl |= pipe << 28; /* Connect to correct pipe */
4246 } else {
4247 cntl &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
4248 cntl |= CURSOR_MODE_DISABLE;
4250 I915_WRITE(pipe == 0 ? CURACNTR : CURBCNTR, cntl);
4252 intel_crtc->cursor_visible = visible;
4254 /* and commit changes on next vblank */
4255 I915_WRITE(pipe == 0 ? CURABASE : CURBBASE, base);
4258 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4259 static void intel_crtc_update_cursor(struct drm_crtc *crtc,
4260 bool on)
4262 struct drm_device *dev = crtc->dev;
4263 struct drm_i915_private *dev_priv = dev->dev_private;
4264 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4265 int pipe = intel_crtc->pipe;
4266 int x = intel_crtc->cursor_x;
4267 int y = intel_crtc->cursor_y;
4268 u32 base, pos;
4269 bool visible;
4271 pos = 0;
4273 if (on && crtc->enabled && crtc->fb) {
4274 base = intel_crtc->cursor_addr;
4275 if (x > (int) crtc->fb->width)
4276 base = 0;
4278 if (y > (int) crtc->fb->height)
4279 base = 0;
4280 } else
4281 base = 0;
4283 if (x < 0) {
4284 if (x + intel_crtc->cursor_width < 0)
4285 base = 0;
4287 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
4288 x = -x;
4290 pos |= x << CURSOR_X_SHIFT;
4292 if (y < 0) {
4293 if (y + intel_crtc->cursor_height < 0)
4294 base = 0;
4296 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
4297 y = -y;
4299 pos |= y << CURSOR_Y_SHIFT;
4301 visible = base != 0;
4302 if (!visible && !intel_crtc->cursor_visible)
4303 return;
4305 I915_WRITE(pipe == 0 ? CURAPOS : CURBPOS, pos);
4306 if (IS_845G(dev) || IS_I865G(dev))
4307 i845_update_cursor(crtc, base);
4308 else
4309 i9xx_update_cursor(crtc, base);
4311 if (visible)
4312 intel_mark_busy(dev, to_intel_framebuffer(crtc->fb)->obj);
4315 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
4316 struct drm_file *file_priv,
4317 uint32_t handle,
4318 uint32_t width, uint32_t height)
4320 struct drm_device *dev = crtc->dev;
4321 struct drm_i915_private *dev_priv = dev->dev_private;
4322 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4323 struct drm_gem_object *bo;
4324 struct drm_i915_gem_object *obj_priv;
4325 uint32_t addr;
4326 int ret;
4328 DRM_DEBUG_KMS("\n");
4330 /* if we want to turn off the cursor ignore width and height */
4331 if (!handle) {
4332 DRM_DEBUG_KMS("cursor off\n");
4333 addr = 0;
4334 bo = NULL;
4335 mutex_lock(&dev->struct_mutex);
4336 goto finish;
4339 /* Currently we only support 64x64 cursors */
4340 if (width != 64 || height != 64) {
4341 DRM_ERROR("we currently only support 64x64 cursors\n");
4342 return -EINVAL;
4345 bo = drm_gem_object_lookup(dev, file_priv, handle);
4346 if (!bo)
4347 return -ENOENT;
4349 obj_priv = to_intel_bo(bo);
4351 if (bo->size < width * height * 4) {
4352 DRM_ERROR("buffer is to small\n");
4353 ret = -ENOMEM;
4354 goto fail;
4357 /* we only need to pin inside GTT if cursor is non-phy */
4358 mutex_lock(&dev->struct_mutex);
4359 if (!dev_priv->info->cursor_needs_physical) {
4360 ret = i915_gem_object_pin(bo, PAGE_SIZE);
4361 if (ret) {
4362 DRM_ERROR("failed to pin cursor bo\n");
4363 goto fail_locked;
4366 ret = i915_gem_object_set_to_gtt_domain(bo, 0);
4367 if (ret) {
4368 DRM_ERROR("failed to move cursor bo into the GTT\n");
4369 goto fail_unpin;
4372 addr = obj_priv->gtt_offset;
4373 } else {
4374 int align = IS_I830(dev) ? 16 * 1024 : 256;
4375 ret = i915_gem_attach_phys_object(dev, bo,
4376 (intel_crtc->pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1,
4377 align);
4378 if (ret) {
4379 DRM_ERROR("failed to attach phys object\n");
4380 goto fail_locked;
4382 addr = obj_priv->phys_obj->handle->busaddr;
4385 if (IS_GEN2(dev))
4386 I915_WRITE(CURSIZE, (height << 12) | width);
4388 finish:
4389 if (intel_crtc->cursor_bo) {
4390 if (dev_priv->info->cursor_needs_physical) {
4391 if (intel_crtc->cursor_bo != bo)
4392 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
4393 } else
4394 i915_gem_object_unpin(intel_crtc->cursor_bo);
4395 drm_gem_object_unreference(intel_crtc->cursor_bo);
4398 mutex_unlock(&dev->struct_mutex);
4400 intel_crtc->cursor_addr = addr;
4401 intel_crtc->cursor_bo = bo;
4402 intel_crtc->cursor_width = width;
4403 intel_crtc->cursor_height = height;
4405 intel_crtc_update_cursor(crtc, true);
4407 return 0;
4408 fail_unpin:
4409 i915_gem_object_unpin(bo);
4410 fail_locked:
4411 mutex_unlock(&dev->struct_mutex);
4412 fail:
4413 drm_gem_object_unreference_unlocked(bo);
4414 return ret;
4417 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
4419 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4421 intel_crtc->cursor_x = x;
4422 intel_crtc->cursor_y = y;
4424 intel_crtc_update_cursor(crtc, true);
4426 return 0;
4429 /** Sets the color ramps on behalf of RandR */
4430 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
4431 u16 blue, int regno)
4433 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4435 intel_crtc->lut_r[regno] = red >> 8;
4436 intel_crtc->lut_g[regno] = green >> 8;
4437 intel_crtc->lut_b[regno] = blue >> 8;
4440 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
4441 u16 *blue, int regno)
4443 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4445 *red = intel_crtc->lut_r[regno] << 8;
4446 *green = intel_crtc->lut_g[regno] << 8;
4447 *blue = intel_crtc->lut_b[regno] << 8;
4450 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
4451 u16 *blue, uint32_t start, uint32_t size)
4453 int end = (start + size > 256) ? 256 : start + size, i;
4454 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4456 for (i = start; i < end; i++) {
4457 intel_crtc->lut_r[i] = red[i] >> 8;
4458 intel_crtc->lut_g[i] = green[i] >> 8;
4459 intel_crtc->lut_b[i] = blue[i] >> 8;
4462 intel_crtc_load_lut(crtc);
4466 * Get a pipe with a simple mode set on it for doing load-based monitor
4467 * detection.
4469 * It will be up to the load-detect code to adjust the pipe as appropriate for
4470 * its requirements. The pipe will be connected to no other encoders.
4472 * Currently this code will only succeed if there is a pipe with no encoders
4473 * configured for it. In the future, it could choose to temporarily disable
4474 * some outputs to free up a pipe for its use.
4476 * \return crtc, or NULL if no pipes are available.
4479 /* VESA 640x480x72Hz mode to set on the pipe */
4480 static struct drm_display_mode load_detect_mode = {
4481 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
4482 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
4485 struct drm_crtc *intel_get_load_detect_pipe(struct intel_encoder *intel_encoder,
4486 struct drm_connector *connector,
4487 struct drm_display_mode *mode,
4488 int *dpms_mode)
4490 struct intel_crtc *intel_crtc;
4491 struct drm_crtc *possible_crtc;
4492 struct drm_crtc *supported_crtc =NULL;
4493 struct drm_encoder *encoder = &intel_encoder->base;
4494 struct drm_crtc *crtc = NULL;
4495 struct drm_device *dev = encoder->dev;
4496 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4497 struct drm_crtc_helper_funcs *crtc_funcs;
4498 int i = -1;
4501 * Algorithm gets a little messy:
4502 * - if the connector already has an assigned crtc, use it (but make
4503 * sure it's on first)
4504 * - try to find the first unused crtc that can drive this connector,
4505 * and use that if we find one
4506 * - if there are no unused crtcs available, try to use the first
4507 * one we found that supports the connector
4510 /* See if we already have a CRTC for this connector */
4511 if (encoder->crtc) {
4512 crtc = encoder->crtc;
4513 /* Make sure the crtc and connector are running */
4514 intel_crtc = to_intel_crtc(crtc);
4515 *dpms_mode = intel_crtc->dpms_mode;
4516 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4517 crtc_funcs = crtc->helper_private;
4518 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4519 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
4521 return crtc;
4524 /* Find an unused one (if possible) */
4525 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
4526 i++;
4527 if (!(encoder->possible_crtcs & (1 << i)))
4528 continue;
4529 if (!possible_crtc->enabled) {
4530 crtc = possible_crtc;
4531 break;
4533 if (!supported_crtc)
4534 supported_crtc = possible_crtc;
4538 * If we didn't find an unused CRTC, don't use any.
4540 if (!crtc) {
4541 return NULL;
4544 encoder->crtc = crtc;
4545 connector->encoder = encoder;
4546 intel_encoder->load_detect_temp = true;
4548 intel_crtc = to_intel_crtc(crtc);
4549 *dpms_mode = intel_crtc->dpms_mode;
4551 if (!crtc->enabled) {
4552 if (!mode)
4553 mode = &load_detect_mode;
4554 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
4555 } else {
4556 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
4557 crtc_funcs = crtc->helper_private;
4558 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
4561 /* Add this connector to the crtc */
4562 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
4563 encoder_funcs->commit(encoder);
4565 /* let the connector get through one full cycle before testing */
4566 intel_wait_for_vblank(dev, intel_crtc->pipe);
4568 return crtc;
4571 void intel_release_load_detect_pipe(struct intel_encoder *intel_encoder,
4572 struct drm_connector *connector, int dpms_mode)
4574 struct drm_encoder *encoder = &intel_encoder->base;
4575 struct drm_device *dev = encoder->dev;
4576 struct drm_crtc *crtc = encoder->crtc;
4577 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
4578 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
4580 if (intel_encoder->load_detect_temp) {
4581 encoder->crtc = NULL;
4582 connector->encoder = NULL;
4583 intel_encoder->load_detect_temp = false;
4584 crtc->enabled = drm_helper_crtc_in_use(crtc);
4585 drm_helper_disable_unused_functions(dev);
4588 /* Switch crtc and encoder back off if necessary */
4589 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
4590 if (encoder->crtc == crtc)
4591 encoder_funcs->dpms(encoder, dpms_mode);
4592 crtc_funcs->dpms(crtc, dpms_mode);
4596 /* Returns the clock of the currently programmed mode of the given pipe. */
4597 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
4599 struct drm_i915_private *dev_priv = dev->dev_private;
4600 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4601 int pipe = intel_crtc->pipe;
4602 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
4603 u32 fp;
4604 intel_clock_t clock;
4606 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
4607 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
4608 else
4609 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
4611 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
4612 if (IS_PINEVIEW(dev)) {
4613 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
4614 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
4615 } else {
4616 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
4617 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
4620 if (!IS_GEN2(dev)) {
4621 if (IS_PINEVIEW(dev))
4622 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
4623 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
4624 else
4625 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
4626 DPLL_FPA01_P1_POST_DIV_SHIFT);
4628 switch (dpll & DPLL_MODE_MASK) {
4629 case DPLLB_MODE_DAC_SERIAL:
4630 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
4631 5 : 10;
4632 break;
4633 case DPLLB_MODE_LVDS:
4634 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
4635 7 : 14;
4636 break;
4637 default:
4638 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4639 "mode\n", (int)(dpll & DPLL_MODE_MASK));
4640 return 0;
4643 /* XXX: Handle the 100Mhz refclk */
4644 intel_clock(dev, 96000, &clock);
4645 } else {
4646 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
4648 if (is_lvds) {
4649 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
4650 DPLL_FPA01_P1_POST_DIV_SHIFT);
4651 clock.p2 = 14;
4653 if ((dpll & PLL_REF_INPUT_MASK) ==
4654 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
4655 /* XXX: might not be 66MHz */
4656 intel_clock(dev, 66000, &clock);
4657 } else
4658 intel_clock(dev, 48000, &clock);
4659 } else {
4660 if (dpll & PLL_P1_DIVIDE_BY_TWO)
4661 clock.p1 = 2;
4662 else {
4663 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
4664 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
4666 if (dpll & PLL_P2_DIVIDE_BY_4)
4667 clock.p2 = 4;
4668 else
4669 clock.p2 = 2;
4671 intel_clock(dev, 48000, &clock);
4675 /* XXX: It would be nice to validate the clocks, but we can't reuse
4676 * i830PllIsValid() because it relies on the xf86_config connector
4677 * configuration being accurate, which it isn't necessarily.
4680 return clock.dot;
4683 /** Returns the currently programmed mode of the given pipe. */
4684 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
4685 struct drm_crtc *crtc)
4687 struct drm_i915_private *dev_priv = dev->dev_private;
4688 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4689 int pipe = intel_crtc->pipe;
4690 struct drm_display_mode *mode;
4691 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
4692 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
4693 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
4694 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
4696 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
4697 if (!mode)
4698 return NULL;
4700 mode->clock = intel_crtc_clock_get(dev, crtc);
4701 mode->hdisplay = (htot & 0xffff) + 1;
4702 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
4703 mode->hsync_start = (hsync & 0xffff) + 1;
4704 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
4705 mode->vdisplay = (vtot & 0xffff) + 1;
4706 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
4707 mode->vsync_start = (vsync & 0xffff) + 1;
4708 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
4710 drm_mode_set_name(mode);
4711 drm_mode_set_crtcinfo(mode, 0);
4713 return mode;
4716 #define GPU_IDLE_TIMEOUT 500 /* ms */
4718 /* When this timer fires, we've been idle for awhile */
4719 static void intel_gpu_idle_timer(unsigned long arg)
4721 struct drm_device *dev = (struct drm_device *)arg;
4722 drm_i915_private_t *dev_priv = dev->dev_private;
4724 dev_priv->busy = false;
4726 queue_work(dev_priv->wq, &dev_priv->idle_work);
4729 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4731 static void intel_crtc_idle_timer(unsigned long arg)
4733 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
4734 struct drm_crtc *crtc = &intel_crtc->base;
4735 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
4737 intel_crtc->busy = false;
4739 queue_work(dev_priv->wq, &dev_priv->idle_work);
4742 static void intel_increase_pllclock(struct drm_crtc *crtc)
4744 struct drm_device *dev = crtc->dev;
4745 drm_i915_private_t *dev_priv = dev->dev_private;
4746 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4747 int pipe = intel_crtc->pipe;
4748 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4749 int dpll = I915_READ(dpll_reg);
4751 if (HAS_PCH_SPLIT(dev))
4752 return;
4754 if (!dev_priv->lvds_downclock_avail)
4755 return;
4757 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
4758 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4760 /* Unlock panel regs */
4761 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4762 PANEL_UNLOCK_REGS);
4764 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
4765 I915_WRITE(dpll_reg, dpll);
4766 dpll = I915_READ(dpll_reg);
4767 intel_wait_for_vblank(dev, pipe);
4768 dpll = I915_READ(dpll_reg);
4769 if (dpll & DISPLAY_RATE_SELECT_FPA1)
4770 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4772 /* ...and lock them again */
4773 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4776 /* Schedule downclock */
4777 mod_timer(&intel_crtc->idle_timer, jiffies +
4778 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4781 static void intel_decrease_pllclock(struct drm_crtc *crtc)
4783 struct drm_device *dev = crtc->dev;
4784 drm_i915_private_t *dev_priv = dev->dev_private;
4785 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4786 int pipe = intel_crtc->pipe;
4787 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
4788 int dpll = I915_READ(dpll_reg);
4790 if (HAS_PCH_SPLIT(dev))
4791 return;
4793 if (!dev_priv->lvds_downclock_avail)
4794 return;
4797 * Since this is called by a timer, we should never get here in
4798 * the manual case.
4800 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
4801 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4803 /* Unlock panel regs */
4804 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) |
4805 PANEL_UNLOCK_REGS);
4807 dpll |= DISPLAY_RATE_SELECT_FPA1;
4808 I915_WRITE(dpll_reg, dpll);
4809 dpll = I915_READ(dpll_reg);
4810 intel_wait_for_vblank(dev, pipe);
4811 dpll = I915_READ(dpll_reg);
4812 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
4813 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4815 /* ...and lock them again */
4816 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
4822 * intel_idle_update - adjust clocks for idleness
4823 * @work: work struct
4825 * Either the GPU or display (or both) went idle. Check the busy status
4826 * here and adjust the CRTC and GPU clocks as necessary.
4828 static void intel_idle_update(struct work_struct *work)
4830 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4831 idle_work);
4832 struct drm_device *dev = dev_priv->dev;
4833 struct drm_crtc *crtc;
4834 struct intel_crtc *intel_crtc;
4835 int enabled = 0;
4837 if (!i915_powersave)
4838 return;
4840 mutex_lock(&dev->struct_mutex);
4842 i915_update_gfx_val(dev_priv);
4844 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4845 /* Skip inactive CRTCs */
4846 if (!crtc->fb)
4847 continue;
4849 enabled++;
4850 intel_crtc = to_intel_crtc(crtc);
4851 if (!intel_crtc->busy)
4852 intel_decrease_pllclock(crtc);
4855 if ((enabled == 1) && (IS_I945G(dev) || IS_I945GM(dev))) {
4856 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4857 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN_MASK | FW_BLC_SELF_EN);
4860 mutex_unlock(&dev->struct_mutex);
4864 * intel_mark_busy - mark the GPU and possibly the display busy
4865 * @dev: drm device
4866 * @obj: object we're operating on
4868 * Callers can use this function to indicate that the GPU is busy processing
4869 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4870 * buffer), we'll also mark the display as busy, so we know to increase its
4871 * clock frequency.
4873 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4875 drm_i915_private_t *dev_priv = dev->dev_private;
4876 struct drm_crtc *crtc = NULL;
4877 struct intel_framebuffer *intel_fb;
4878 struct intel_crtc *intel_crtc;
4880 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4881 return;
4883 if (!dev_priv->busy) {
4884 if (IS_I945G(dev) || IS_I945GM(dev)) {
4885 u32 fw_blc_self;
4887 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4888 fw_blc_self = I915_READ(FW_BLC_SELF);
4889 fw_blc_self &= ~FW_BLC_SELF_EN;
4890 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4892 dev_priv->busy = true;
4893 } else
4894 mod_timer(&dev_priv->idle_timer, jiffies +
4895 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4897 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4898 if (!crtc->fb)
4899 continue;
4901 intel_crtc = to_intel_crtc(crtc);
4902 intel_fb = to_intel_framebuffer(crtc->fb);
4903 if (intel_fb->obj == obj) {
4904 if (!intel_crtc->busy) {
4905 if (IS_I945G(dev) || IS_I945GM(dev)) {
4906 u32 fw_blc_self;
4908 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4909 fw_blc_self = I915_READ(FW_BLC_SELF);
4910 fw_blc_self &= ~FW_BLC_SELF_EN;
4911 I915_WRITE(FW_BLC_SELF, fw_blc_self | FW_BLC_SELF_EN_MASK);
4913 /* Non-busy -> busy, upclock */
4914 intel_increase_pllclock(crtc);
4915 intel_crtc->busy = true;
4916 } else {
4917 /* Busy -> busy, put off timer */
4918 mod_timer(&intel_crtc->idle_timer, jiffies +
4919 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4925 static void intel_crtc_destroy(struct drm_crtc *crtc)
4927 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4928 struct drm_device *dev = crtc->dev;
4929 struct intel_unpin_work *work;
4930 unsigned long flags;
4932 spin_lock_irqsave(&dev->event_lock, flags);
4933 work = intel_crtc->unpin_work;
4934 intel_crtc->unpin_work = NULL;
4935 spin_unlock_irqrestore(&dev->event_lock, flags);
4937 if (work) {
4938 cancel_work_sync(&work->work);
4939 kfree(work);
4942 drm_crtc_cleanup(crtc);
4944 kfree(intel_crtc);
4947 static void intel_unpin_work_fn(struct work_struct *__work)
4949 struct intel_unpin_work *work =
4950 container_of(__work, struct intel_unpin_work, work);
4952 mutex_lock(&work->dev->struct_mutex);
4953 i915_gem_object_unpin(work->old_fb_obj);
4954 drm_gem_object_unreference(work->pending_flip_obj);
4955 drm_gem_object_unreference(work->old_fb_obj);
4956 mutex_unlock(&work->dev->struct_mutex);
4957 kfree(work);
4960 static void do_intel_finish_page_flip(struct drm_device *dev,
4961 struct drm_crtc *crtc)
4963 drm_i915_private_t *dev_priv = dev->dev_private;
4964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4965 struct intel_unpin_work *work;
4966 struct drm_i915_gem_object *obj_priv;
4967 struct drm_pending_vblank_event *e;
4968 struct timeval now;
4969 unsigned long flags;
4971 /* Ignore early vblank irqs */
4972 if (intel_crtc == NULL)
4973 return;
4975 spin_lock_irqsave(&dev->event_lock, flags);
4976 work = intel_crtc->unpin_work;
4977 if (work == NULL || !work->pending) {
4978 spin_unlock_irqrestore(&dev->event_lock, flags);
4979 return;
4982 intel_crtc->unpin_work = NULL;
4983 drm_vblank_put(dev, intel_crtc->pipe);
4985 if (work->event) {
4986 e = work->event;
4987 do_gettimeofday(&now);
4988 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4989 e->event.tv_sec = now.tv_sec;
4990 e->event.tv_usec = now.tv_usec;
4991 list_add_tail(&e->base.link,
4992 &e->base.file_priv->event_list);
4993 wake_up_interruptible(&e->base.file_priv->event_wait);
4996 spin_unlock_irqrestore(&dev->event_lock, flags);
4998 obj_priv = to_intel_bo(work->pending_flip_obj);
5000 /* Initial scanout buffer will have a 0 pending flip count */
5001 atomic_clear_mask(1 << intel_crtc->plane,
5002 &obj_priv->pending_flip.counter);
5003 if (atomic_read(&obj_priv->pending_flip) == 0)
5004 wake_up(&dev_priv->pending_flip_queue);
5005 schedule_work(&work->work);
5007 trace_i915_flip_complete(intel_crtc->plane, work->pending_flip_obj);
5010 void intel_finish_page_flip(struct drm_device *dev, int pipe)
5012 drm_i915_private_t *dev_priv = dev->dev_private;
5013 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
5015 do_intel_finish_page_flip(dev, crtc);
5018 void intel_finish_page_flip_plane(struct drm_device *dev, int plane)
5020 drm_i915_private_t *dev_priv = dev->dev_private;
5021 struct drm_crtc *crtc = dev_priv->plane_to_crtc_mapping[plane];
5023 do_intel_finish_page_flip(dev, crtc);
5026 void intel_prepare_page_flip(struct drm_device *dev, int plane)
5028 drm_i915_private_t *dev_priv = dev->dev_private;
5029 struct intel_crtc *intel_crtc =
5030 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
5031 unsigned long flags;
5033 spin_lock_irqsave(&dev->event_lock, flags);
5034 if (intel_crtc->unpin_work) {
5035 if ((++intel_crtc->unpin_work->pending) > 1)
5036 DRM_ERROR("Prepared flip multiple times\n");
5037 } else {
5038 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5040 spin_unlock_irqrestore(&dev->event_lock, flags);
5043 static int intel_crtc_page_flip(struct drm_crtc *crtc,
5044 struct drm_framebuffer *fb,
5045 struct drm_pending_vblank_event *event)
5047 struct drm_device *dev = crtc->dev;
5048 struct drm_i915_private *dev_priv = dev->dev_private;
5049 struct intel_framebuffer *intel_fb;
5050 struct drm_i915_gem_object *obj_priv;
5051 struct drm_gem_object *obj;
5052 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5053 struct intel_unpin_work *work;
5054 unsigned long flags, offset;
5055 int pipe = intel_crtc->pipe;
5056 u32 pf, pipesrc;
5057 int ret;
5059 work = kzalloc(sizeof *work, GFP_KERNEL);
5060 if (work == NULL)
5061 return -ENOMEM;
5063 work->event = event;
5064 work->dev = crtc->dev;
5065 intel_fb = to_intel_framebuffer(crtc->fb);
5066 work->old_fb_obj = intel_fb->obj;
5067 INIT_WORK(&work->work, intel_unpin_work_fn);
5069 /* We borrow the event spin lock for protecting unpin_work */
5070 spin_lock_irqsave(&dev->event_lock, flags);
5071 if (intel_crtc->unpin_work) {
5072 spin_unlock_irqrestore(&dev->event_lock, flags);
5073 kfree(work);
5075 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5076 return -EBUSY;
5078 intel_crtc->unpin_work = work;
5079 spin_unlock_irqrestore(&dev->event_lock, flags);
5081 intel_fb = to_intel_framebuffer(fb);
5082 obj = intel_fb->obj;
5084 mutex_lock(&dev->struct_mutex);
5085 ret = intel_pin_and_fence_fb_obj(dev, obj, true);
5086 if (ret)
5087 goto cleanup_work;
5089 /* Reference the objects for the scheduled work. */
5090 drm_gem_object_reference(work->old_fb_obj);
5091 drm_gem_object_reference(obj);
5093 crtc->fb = fb;
5095 ret = drm_vblank_get(dev, intel_crtc->pipe);
5096 if (ret)
5097 goto cleanup_objs;
5099 obj_priv = to_intel_bo(obj);
5100 atomic_add(1 << intel_crtc->plane, &obj_priv->pending_flip);
5101 work->pending_flip_obj = obj;
5103 if (IS_GEN3(dev) || IS_GEN2(dev)) {
5104 u32 flip_mask;
5106 /* Can't queue multiple flips, so wait for the previous
5107 * one to finish before executing the next.
5109 BEGIN_LP_RING(2);
5110 if (intel_crtc->plane)
5111 flip_mask = MI_WAIT_FOR_PLANE_B_FLIP;
5112 else
5113 flip_mask = MI_WAIT_FOR_PLANE_A_FLIP;
5114 OUT_RING(MI_WAIT_FOR_EVENT | flip_mask);
5115 OUT_RING(MI_NOOP);
5116 ADVANCE_LP_RING();
5119 work->enable_stall_check = true;
5121 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5122 offset = crtc->y * fb->pitch + crtc->x * fb->bits_per_pixel/8;
5124 BEGIN_LP_RING(4);
5125 switch(INTEL_INFO(dev)->gen) {
5126 case 2:
5127 OUT_RING(MI_DISPLAY_FLIP |
5128 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5129 OUT_RING(fb->pitch);
5130 OUT_RING(obj_priv->gtt_offset + offset);
5131 OUT_RING(MI_NOOP);
5132 break;
5134 case 3:
5135 OUT_RING(MI_DISPLAY_FLIP_I915 |
5136 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5137 OUT_RING(fb->pitch);
5138 OUT_RING(obj_priv->gtt_offset + offset);
5139 OUT_RING(MI_NOOP);
5140 break;
5142 case 4:
5143 case 5:
5144 /* i965+ uses the linear or tiled offsets from the
5145 * Display Registers (which do not change across a page-flip)
5146 * so we need only reprogram the base address.
5148 OUT_RING(MI_DISPLAY_FLIP |
5149 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5150 OUT_RING(fb->pitch);
5151 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
5153 /* XXX Enabling the panel-fitter across page-flip is so far
5154 * untested on non-native modes, so ignore it for now.
5155 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5157 pf = 0;
5158 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5159 OUT_RING(pf | pipesrc);
5160 break;
5162 case 6:
5163 OUT_RING(MI_DISPLAY_FLIP |
5164 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
5165 OUT_RING(fb->pitch | obj_priv->tiling_mode);
5166 OUT_RING(obj_priv->gtt_offset);
5168 pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5169 pipesrc = I915_READ(pipe == 0 ? PIPEASRC : PIPEBSRC) & 0x0fff0fff;
5170 OUT_RING(pf | pipesrc);
5171 break;
5173 ADVANCE_LP_RING();
5175 mutex_unlock(&dev->struct_mutex);
5177 trace_i915_flip_request(intel_crtc->plane, obj);
5179 return 0;
5181 cleanup_objs:
5182 drm_gem_object_unreference(work->old_fb_obj);
5183 drm_gem_object_unreference(obj);
5184 cleanup_work:
5185 mutex_unlock(&dev->struct_mutex);
5187 spin_lock_irqsave(&dev->event_lock, flags);
5188 intel_crtc->unpin_work = NULL;
5189 spin_unlock_irqrestore(&dev->event_lock, flags);
5191 kfree(work);
5193 return ret;
5196 static struct drm_crtc_helper_funcs intel_helper_funcs = {
5197 .dpms = intel_crtc_dpms,
5198 .mode_fixup = intel_crtc_mode_fixup,
5199 .mode_set = intel_crtc_mode_set,
5200 .mode_set_base = intel_pipe_set_base,
5201 .mode_set_base_atomic = intel_pipe_set_base_atomic,
5202 .load_lut = intel_crtc_load_lut,
5203 .disable = intel_crtc_disable,
5206 static const struct drm_crtc_funcs intel_crtc_funcs = {
5207 .cursor_set = intel_crtc_cursor_set,
5208 .cursor_move = intel_crtc_cursor_move,
5209 .gamma_set = intel_crtc_gamma_set,
5210 .set_config = drm_crtc_helper_set_config,
5211 .destroy = intel_crtc_destroy,
5212 .page_flip = intel_crtc_page_flip,
5216 static void intel_crtc_init(struct drm_device *dev, int pipe)
5218 drm_i915_private_t *dev_priv = dev->dev_private;
5219 struct intel_crtc *intel_crtc;
5220 int i;
5222 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
5223 if (intel_crtc == NULL)
5224 return;
5226 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
5228 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
5229 for (i = 0; i < 256; i++) {
5230 intel_crtc->lut_r[i] = i;
5231 intel_crtc->lut_g[i] = i;
5232 intel_crtc->lut_b[i] = i;
5235 /* Swap pipes & planes for FBC on pre-965 */
5236 intel_crtc->pipe = pipe;
5237 intel_crtc->plane = pipe;
5238 if (IS_MOBILE(dev) && IS_GEN3(dev)) {
5239 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5240 intel_crtc->plane = !pipe;
5243 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
5244 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] != NULL);
5245 dev_priv->plane_to_crtc_mapping[intel_crtc->plane] = &intel_crtc->base;
5246 dev_priv->pipe_to_crtc_mapping[intel_crtc->pipe] = &intel_crtc->base;
5248 intel_crtc->cursor_addr = 0;
5249 intel_crtc->dpms_mode = -1;
5250 intel_crtc->active = true; /* force the pipe off on setup_init_config */
5252 if (HAS_PCH_SPLIT(dev)) {
5253 intel_helper_funcs.prepare = ironlake_crtc_prepare;
5254 intel_helper_funcs.commit = ironlake_crtc_commit;
5255 } else {
5256 intel_helper_funcs.prepare = i9xx_crtc_prepare;
5257 intel_helper_funcs.commit = i9xx_crtc_commit;
5260 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
5262 intel_crtc->busy = false;
5264 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
5265 (unsigned long)intel_crtc);
5268 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
5269 struct drm_file *file_priv)
5271 drm_i915_private_t *dev_priv = dev->dev_private;
5272 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
5273 struct drm_mode_object *drmmode_obj;
5274 struct intel_crtc *crtc;
5276 if (!dev_priv) {
5277 DRM_ERROR("called with no initialization\n");
5278 return -EINVAL;
5281 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
5282 DRM_MODE_OBJECT_CRTC);
5284 if (!drmmode_obj) {
5285 DRM_ERROR("no such CRTC id\n");
5286 return -EINVAL;
5289 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
5290 pipe_from_crtc_id->pipe = crtc->pipe;
5292 return 0;
5295 static int intel_encoder_clones(struct drm_device *dev, int type_mask)
5297 struct intel_encoder *encoder;
5298 int index_mask = 0;
5299 int entry = 0;
5301 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5302 if (type_mask & encoder->clone_mask)
5303 index_mask |= (1 << entry);
5304 entry++;
5307 return index_mask;
5310 static void intel_setup_outputs(struct drm_device *dev)
5312 struct drm_i915_private *dev_priv = dev->dev_private;
5313 struct intel_encoder *encoder;
5314 bool dpd_is_edp = false;
5316 if (IS_MOBILE(dev) && !IS_I830(dev))
5317 intel_lvds_init(dev);
5319 if (HAS_PCH_SPLIT(dev)) {
5320 dpd_is_edp = intel_dpd_is_edp(dev);
5322 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
5323 intel_dp_init(dev, DP_A);
5325 if (dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5326 intel_dp_init(dev, PCH_DP_D);
5329 intel_crt_init(dev);
5331 if (HAS_PCH_SPLIT(dev)) {
5332 int found;
5334 if (I915_READ(HDMIB) & PORT_DETECTED) {
5335 /* PCH SDVOB multiplex with HDMIB */
5336 found = intel_sdvo_init(dev, PCH_SDVOB);
5337 if (!found)
5338 intel_hdmi_init(dev, HDMIB);
5339 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
5340 intel_dp_init(dev, PCH_DP_B);
5343 if (I915_READ(HDMIC) & PORT_DETECTED)
5344 intel_hdmi_init(dev, HDMIC);
5346 if (I915_READ(HDMID) & PORT_DETECTED)
5347 intel_hdmi_init(dev, HDMID);
5349 if (I915_READ(PCH_DP_C) & DP_DETECTED)
5350 intel_dp_init(dev, PCH_DP_C);
5352 if (!dpd_is_edp && (I915_READ(PCH_DP_D) & DP_DETECTED))
5353 intel_dp_init(dev, PCH_DP_D);
5355 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
5356 bool found = false;
5358 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5359 DRM_DEBUG_KMS("probing SDVOB\n");
5360 found = intel_sdvo_init(dev, SDVOB);
5361 if (!found && SUPPORTS_INTEGRATED_HDMI(dev)) {
5362 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5363 intel_hdmi_init(dev, SDVOB);
5366 if (!found && SUPPORTS_INTEGRATED_DP(dev)) {
5367 DRM_DEBUG_KMS("probing DP_B\n");
5368 intel_dp_init(dev, DP_B);
5372 /* Before G4X SDVOC doesn't have its own detect register */
5374 if (I915_READ(SDVOB) & SDVO_DETECTED) {
5375 DRM_DEBUG_KMS("probing SDVOC\n");
5376 found = intel_sdvo_init(dev, SDVOC);
5379 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
5381 if (SUPPORTS_INTEGRATED_HDMI(dev)) {
5382 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5383 intel_hdmi_init(dev, SDVOC);
5385 if (SUPPORTS_INTEGRATED_DP(dev)) {
5386 DRM_DEBUG_KMS("probing DP_C\n");
5387 intel_dp_init(dev, DP_C);
5391 if (SUPPORTS_INTEGRATED_DP(dev) &&
5392 (I915_READ(DP_D) & DP_DETECTED)) {
5393 DRM_DEBUG_KMS("probing DP_D\n");
5394 intel_dp_init(dev, DP_D);
5396 } else if (IS_GEN2(dev))
5397 intel_dvo_init(dev);
5399 if (SUPPORTS_TV(dev))
5400 intel_tv_init(dev);
5402 list_for_each_entry(encoder, &dev->mode_config.encoder_list, base.head) {
5403 encoder->base.possible_crtcs = encoder->crtc_mask;
5404 encoder->base.possible_clones =
5405 intel_encoder_clones(dev, encoder->clone_mask);
5409 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
5411 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5413 drm_framebuffer_cleanup(fb);
5414 drm_gem_object_unreference_unlocked(intel_fb->obj);
5416 kfree(intel_fb);
5419 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
5420 struct drm_file *file_priv,
5421 unsigned int *handle)
5423 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
5424 struct drm_gem_object *object = intel_fb->obj;
5426 return drm_gem_handle_create(file_priv, object, handle);
5429 static const struct drm_framebuffer_funcs intel_fb_funcs = {
5430 .destroy = intel_user_framebuffer_destroy,
5431 .create_handle = intel_user_framebuffer_create_handle,
5434 int intel_framebuffer_init(struct drm_device *dev,
5435 struct intel_framebuffer *intel_fb,
5436 struct drm_mode_fb_cmd *mode_cmd,
5437 struct drm_gem_object *obj)
5439 struct drm_i915_gem_object *obj_priv = to_intel_bo(obj);
5440 int ret;
5442 if (obj_priv->tiling_mode == I915_TILING_Y)
5443 return -EINVAL;
5445 if (mode_cmd->pitch & 63)
5446 return -EINVAL;
5448 switch (mode_cmd->bpp) {
5449 case 8:
5450 case 16:
5451 case 24:
5452 case 32:
5453 break;
5454 default:
5455 return -EINVAL;
5458 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
5459 if (ret) {
5460 DRM_ERROR("framebuffer init failed %d\n", ret);
5461 return ret;
5464 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
5465 intel_fb->obj = obj;
5466 return 0;
5469 static struct drm_framebuffer *
5470 intel_user_framebuffer_create(struct drm_device *dev,
5471 struct drm_file *filp,
5472 struct drm_mode_fb_cmd *mode_cmd)
5474 struct drm_gem_object *obj;
5475 struct intel_framebuffer *intel_fb;
5476 int ret;
5478 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
5479 if (!obj)
5480 return ERR_PTR(-ENOENT);
5482 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
5483 if (!intel_fb)
5484 return ERR_PTR(-ENOMEM);
5486 ret = intel_framebuffer_init(dev, intel_fb,
5487 mode_cmd, obj);
5488 if (ret) {
5489 drm_gem_object_unreference_unlocked(obj);
5490 kfree(intel_fb);
5491 return ERR_PTR(ret);
5494 return &intel_fb->base;
5497 static const struct drm_mode_config_funcs intel_mode_funcs = {
5498 .fb_create = intel_user_framebuffer_create,
5499 .output_poll_changed = intel_fb_output_poll_changed,
5502 static struct drm_gem_object *
5503 intel_alloc_context_page(struct drm_device *dev)
5505 struct drm_gem_object *ctx;
5506 int ret;
5508 ctx = i915_gem_alloc_object(dev, 4096);
5509 if (!ctx) {
5510 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5511 return NULL;
5514 mutex_lock(&dev->struct_mutex);
5515 ret = i915_gem_object_pin(ctx, 4096);
5516 if (ret) {
5517 DRM_ERROR("failed to pin power context: %d\n", ret);
5518 goto err_unref;
5521 ret = i915_gem_object_set_to_gtt_domain(ctx, 1);
5522 if (ret) {
5523 DRM_ERROR("failed to set-domain on power context: %d\n", ret);
5524 goto err_unpin;
5526 mutex_unlock(&dev->struct_mutex);
5528 return ctx;
5530 err_unpin:
5531 i915_gem_object_unpin(ctx);
5532 err_unref:
5533 drm_gem_object_unreference(ctx);
5534 mutex_unlock(&dev->struct_mutex);
5535 return NULL;
5538 bool ironlake_set_drps(struct drm_device *dev, u8 val)
5540 struct drm_i915_private *dev_priv = dev->dev_private;
5541 u16 rgvswctl;
5543 rgvswctl = I915_READ16(MEMSWCTL);
5544 if (rgvswctl & MEMCTL_CMD_STS) {
5545 DRM_DEBUG("gpu busy, RCS change rejected\n");
5546 return false; /* still busy with another command */
5549 rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
5550 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
5551 I915_WRITE16(MEMSWCTL, rgvswctl);
5552 POSTING_READ16(MEMSWCTL);
5554 rgvswctl |= MEMCTL_CMD_STS;
5555 I915_WRITE16(MEMSWCTL, rgvswctl);
5557 return true;
5560 void ironlake_enable_drps(struct drm_device *dev)
5562 struct drm_i915_private *dev_priv = dev->dev_private;
5563 u32 rgvmodectl = I915_READ(MEMMODECTL);
5564 u8 fmax, fmin, fstart, vstart;
5566 /* Enable temp reporting */
5567 I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
5568 I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
5570 /* 100ms RC evaluation intervals */
5571 I915_WRITE(RCUPEI, 100000);
5572 I915_WRITE(RCDNEI, 100000);
5574 /* Set max/min thresholds to 90ms and 80ms respectively */
5575 I915_WRITE(RCBMAXAVG, 90000);
5576 I915_WRITE(RCBMINAVG, 80000);
5578 I915_WRITE(MEMIHYST, 1);
5580 /* Set up min, max, and cur for interrupt handling */
5581 fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
5582 fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
5583 fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
5584 MEMMODE_FSTART_SHIFT;
5585 fstart = fmax;
5587 vstart = (I915_READ(PXVFREQ_BASE + (fstart * 4)) & PXVFREQ_PX_MASK) >>
5588 PXVFREQ_PX_SHIFT;
5590 dev_priv->fmax = fstart; /* IPS callback will increase this */
5591 dev_priv->fstart = fstart;
5593 dev_priv->max_delay = fmax;
5594 dev_priv->min_delay = fmin;
5595 dev_priv->cur_delay = fstart;
5597 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax, fmin,
5598 fstart);
5600 I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
5603 * Interrupts will be enabled in ironlake_irq_postinstall
5606 I915_WRITE(VIDSTART, vstart);
5607 POSTING_READ(VIDSTART);
5609 rgvmodectl |= MEMMODE_SWMODE_EN;
5610 I915_WRITE(MEMMODECTL, rgvmodectl);
5612 if (wait_for((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
5613 DRM_ERROR("stuck trying to change perf mode\n");
5614 msleep(1);
5616 ironlake_set_drps(dev, fstart);
5618 dev_priv->last_count1 = I915_READ(0x112e4) + I915_READ(0x112e8) +
5619 I915_READ(0x112e0);
5620 dev_priv->last_time1 = jiffies_to_msecs(jiffies);
5621 dev_priv->last_count2 = I915_READ(0x112f4);
5622 getrawmonotonic(&dev_priv->last_time2);
5625 void ironlake_disable_drps(struct drm_device *dev)
5627 struct drm_i915_private *dev_priv = dev->dev_private;
5628 u16 rgvswctl = I915_READ16(MEMSWCTL);
5630 /* Ack interrupts, disable EFC interrupt */
5631 I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
5632 I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
5633 I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
5634 I915_WRITE(DEIIR, DE_PCU_EVENT);
5635 I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
5637 /* Go back to the starting frequency */
5638 ironlake_set_drps(dev, dev_priv->fstart);
5639 msleep(1);
5640 rgvswctl |= MEMCTL_CMD_STS;
5641 I915_WRITE(MEMSWCTL, rgvswctl);
5642 msleep(1);
5646 static unsigned long intel_pxfreq(u32 vidfreq)
5648 unsigned long freq;
5649 int div = (vidfreq & 0x3f0000) >> 16;
5650 int post = (vidfreq & 0x3000) >> 12;
5651 int pre = (vidfreq & 0x7);
5653 if (!pre)
5654 return 0;
5656 freq = ((div * 133333) / ((1<<post) * pre));
5658 return freq;
5661 void intel_init_emon(struct drm_device *dev)
5663 struct drm_i915_private *dev_priv = dev->dev_private;
5664 u32 lcfuse;
5665 u8 pxw[16];
5666 int i;
5668 /* Disable to program */
5669 I915_WRITE(ECR, 0);
5670 POSTING_READ(ECR);
5672 /* Program energy weights for various events */
5673 I915_WRITE(SDEW, 0x15040d00);
5674 I915_WRITE(CSIEW0, 0x007f0000);
5675 I915_WRITE(CSIEW1, 0x1e220004);
5676 I915_WRITE(CSIEW2, 0x04000004);
5678 for (i = 0; i < 5; i++)
5679 I915_WRITE(PEW + (i * 4), 0);
5680 for (i = 0; i < 3; i++)
5681 I915_WRITE(DEW + (i * 4), 0);
5683 /* Program P-state weights to account for frequency power adjustment */
5684 for (i = 0; i < 16; i++) {
5685 u32 pxvidfreq = I915_READ(PXVFREQ_BASE + (i * 4));
5686 unsigned long freq = intel_pxfreq(pxvidfreq);
5687 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
5688 PXVFREQ_PX_SHIFT;
5689 unsigned long val;
5691 val = vid * vid;
5692 val *= (freq / 1000);
5693 val *= 255;
5694 val /= (127*127*900);
5695 if (val > 0xff)
5696 DRM_ERROR("bad pxval: %ld\n", val);
5697 pxw[i] = val;
5699 /* Render standby states get 0 weight */
5700 pxw[14] = 0;
5701 pxw[15] = 0;
5703 for (i = 0; i < 4; i++) {
5704 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
5705 (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
5706 I915_WRITE(PXW + (i * 4), val);
5709 /* Adjust magic regs to magic values (more experimental results) */
5710 I915_WRITE(OGW0, 0);
5711 I915_WRITE(OGW1, 0);
5712 I915_WRITE(EG0, 0x00007f00);
5713 I915_WRITE(EG1, 0x0000000e);
5714 I915_WRITE(EG2, 0x000e0000);
5715 I915_WRITE(EG3, 0x68000300);
5716 I915_WRITE(EG4, 0x42000000);
5717 I915_WRITE(EG5, 0x00140031);
5718 I915_WRITE(EG6, 0);
5719 I915_WRITE(EG7, 0);
5721 for (i = 0; i < 8; i++)
5722 I915_WRITE(PXWL + (i * 4), 0);
5724 /* Enable PMON + select events */
5725 I915_WRITE(ECR, 0x80000019);
5727 lcfuse = I915_READ(LCFUSE02);
5729 dev_priv->corr = (lcfuse & LCFUSE_HIV_MASK);
5732 void intel_init_clock_gating(struct drm_device *dev)
5734 struct drm_i915_private *dev_priv = dev->dev_private;
5737 * Disable clock gating reported to work incorrectly according to the
5738 * specs, but enable as much else as we can.
5740 if (HAS_PCH_SPLIT(dev)) {
5741 uint32_t dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE;
5743 if (IS_IRONLAKE(dev)) {
5744 /* Required for FBC */
5745 dspclk_gate |= DPFDUNIT_CLOCK_GATE_DISABLE;
5746 /* Required for CxSR */
5747 dspclk_gate |= DPARBUNIT_CLOCK_GATE_DISABLE;
5749 I915_WRITE(PCH_3DCGDIS0,
5750 MARIUNIT_CLOCK_GATE_DISABLE |
5751 SVSMUNIT_CLOCK_GATE_DISABLE);
5754 I915_WRITE(PCH_DSPCLK_GATE_D, dspclk_gate);
5757 * According to the spec the following bits should be set in
5758 * order to enable memory self-refresh
5759 * The bit 22/21 of 0x42004
5760 * The bit 5 of 0x42020
5761 * The bit 15 of 0x45000
5763 if (IS_IRONLAKE(dev)) {
5764 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5765 (I915_READ(ILK_DISPLAY_CHICKEN2) |
5766 ILK_DPARB_GATE | ILK_VSDPFD_FULL));
5767 I915_WRITE(ILK_DSPCLK_GATE,
5768 (I915_READ(ILK_DSPCLK_GATE) |
5769 ILK_DPARB_CLK_GATE));
5770 I915_WRITE(DISP_ARB_CTL,
5771 (I915_READ(DISP_ARB_CTL) |
5772 DISP_FBC_WM_DIS));
5773 I915_WRITE(WM3_LP_ILK, 0);
5774 I915_WRITE(WM2_LP_ILK, 0);
5775 I915_WRITE(WM1_LP_ILK, 0);
5778 * Based on the document from hardware guys the following bits
5779 * should be set unconditionally in order to enable FBC.
5780 * The bit 22 of 0x42000
5781 * The bit 22 of 0x42004
5782 * The bit 7,8,9 of 0x42020.
5784 if (IS_IRONLAKE_M(dev)) {
5785 I915_WRITE(ILK_DISPLAY_CHICKEN1,
5786 I915_READ(ILK_DISPLAY_CHICKEN1) |
5787 ILK_FBCQ_DIS);
5788 I915_WRITE(ILK_DISPLAY_CHICKEN2,
5789 I915_READ(ILK_DISPLAY_CHICKEN2) |
5790 ILK_DPARB_GATE);
5791 I915_WRITE(ILK_DSPCLK_GATE,
5792 I915_READ(ILK_DSPCLK_GATE) |
5793 ILK_DPFC_DIS1 |
5794 ILK_DPFC_DIS2 |
5795 ILK_CLK_FBC);
5797 return;
5798 } else if (IS_G4X(dev)) {
5799 uint32_t dspclk_gate;
5800 I915_WRITE(RENCLK_GATE_D1, 0);
5801 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
5802 GS_UNIT_CLOCK_GATE_DISABLE |
5803 CL_UNIT_CLOCK_GATE_DISABLE);
5804 I915_WRITE(RAMCLK_GATE_D, 0);
5805 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
5806 OVRUNIT_CLOCK_GATE_DISABLE |
5807 OVCUNIT_CLOCK_GATE_DISABLE;
5808 if (IS_GM45(dev))
5809 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
5810 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
5811 } else if (IS_CRESTLINE(dev)) {
5812 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
5813 I915_WRITE(RENCLK_GATE_D2, 0);
5814 I915_WRITE(DSPCLK_GATE_D, 0);
5815 I915_WRITE(RAMCLK_GATE_D, 0);
5816 I915_WRITE16(DEUC, 0);
5817 } else if (IS_BROADWATER(dev)) {
5818 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
5819 I965_RCC_CLOCK_GATE_DISABLE |
5820 I965_RCPB_CLOCK_GATE_DISABLE |
5821 I965_ISC_CLOCK_GATE_DISABLE |
5822 I965_FBC_CLOCK_GATE_DISABLE);
5823 I915_WRITE(RENCLK_GATE_D2, 0);
5824 } else if (IS_GEN3(dev)) {
5825 u32 dstate = I915_READ(D_STATE);
5827 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
5828 DSTATE_DOT_CLOCK_GATING;
5829 I915_WRITE(D_STATE, dstate);
5830 } else if (IS_I85X(dev) || IS_I865G(dev)) {
5831 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
5832 } else if (IS_I830(dev)) {
5833 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
5837 * GPU can automatically power down the render unit if given a page
5838 * to save state.
5840 if (IS_IRONLAKE_M(dev)) {
5841 if (dev_priv->renderctx == NULL)
5842 dev_priv->renderctx = intel_alloc_context_page(dev);
5843 if (dev_priv->renderctx) {
5844 struct drm_i915_gem_object *obj_priv;
5845 obj_priv = to_intel_bo(dev_priv->renderctx);
5846 if (obj_priv) {
5847 BEGIN_LP_RING(4);
5848 OUT_RING(MI_SET_CONTEXT);
5849 OUT_RING(obj_priv->gtt_offset |
5850 MI_MM_SPACE_GTT |
5851 MI_SAVE_EXT_STATE_EN |
5852 MI_RESTORE_EXT_STATE_EN |
5853 MI_RESTORE_INHIBIT);
5854 OUT_RING(MI_NOOP);
5855 OUT_RING(MI_FLUSH);
5856 ADVANCE_LP_RING();
5858 } else
5859 DRM_DEBUG_KMS("Failed to allocate render context."
5860 "Disable RC6\n");
5863 if (I915_HAS_RC6(dev) && drm_core_check_feature(dev, DRIVER_MODESET)) {
5864 struct drm_i915_gem_object *obj_priv = NULL;
5866 if (dev_priv->pwrctx) {
5867 obj_priv = to_intel_bo(dev_priv->pwrctx);
5868 } else {
5869 struct drm_gem_object *pwrctx;
5871 pwrctx = intel_alloc_context_page(dev);
5872 if (pwrctx) {
5873 dev_priv->pwrctx = pwrctx;
5874 obj_priv = to_intel_bo(pwrctx);
5878 if (obj_priv) {
5879 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
5880 I915_WRITE(MCHBAR_RENDER_STANDBY,
5881 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
5886 /* Set up chip specific display functions */
5887 static void intel_init_display(struct drm_device *dev)
5889 struct drm_i915_private *dev_priv = dev->dev_private;
5891 /* We always want a DPMS function */
5892 if (HAS_PCH_SPLIT(dev))
5893 dev_priv->display.dpms = ironlake_crtc_dpms;
5894 else
5895 dev_priv->display.dpms = i9xx_crtc_dpms;
5897 if (I915_HAS_FBC(dev)) {
5898 if (IS_IRONLAKE_M(dev)) {
5899 dev_priv->display.fbc_enabled = ironlake_fbc_enabled;
5900 dev_priv->display.enable_fbc = ironlake_enable_fbc;
5901 dev_priv->display.disable_fbc = ironlake_disable_fbc;
5902 } else if (IS_GM45(dev)) {
5903 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
5904 dev_priv->display.enable_fbc = g4x_enable_fbc;
5905 dev_priv->display.disable_fbc = g4x_disable_fbc;
5906 } else if (IS_CRESTLINE(dev)) {
5907 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
5908 dev_priv->display.enable_fbc = i8xx_enable_fbc;
5909 dev_priv->display.disable_fbc = i8xx_disable_fbc;
5911 /* 855GM needs testing */
5914 /* Returns the core display clock speed */
5915 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_PINEVIEW_M(dev)))
5916 dev_priv->display.get_display_clock_speed =
5917 i945_get_display_clock_speed;
5918 else if (IS_I915G(dev))
5919 dev_priv->display.get_display_clock_speed =
5920 i915_get_display_clock_speed;
5921 else if (IS_I945GM(dev) || IS_845G(dev) || IS_PINEVIEW_M(dev))
5922 dev_priv->display.get_display_clock_speed =
5923 i9xx_misc_get_display_clock_speed;
5924 else if (IS_I915GM(dev))
5925 dev_priv->display.get_display_clock_speed =
5926 i915gm_get_display_clock_speed;
5927 else if (IS_I865G(dev))
5928 dev_priv->display.get_display_clock_speed =
5929 i865_get_display_clock_speed;
5930 else if (IS_I85X(dev))
5931 dev_priv->display.get_display_clock_speed =
5932 i855_get_display_clock_speed;
5933 else /* 852, 830 */
5934 dev_priv->display.get_display_clock_speed =
5935 i830_get_display_clock_speed;
5937 /* For FIFO watermark updates */
5938 if (HAS_PCH_SPLIT(dev)) {
5939 if (IS_IRONLAKE(dev)) {
5940 if (I915_READ(MLTR_ILK) & ILK_SRLT_MASK)
5941 dev_priv->display.update_wm = ironlake_update_wm;
5942 else {
5943 DRM_DEBUG_KMS("Failed to get proper latency. "
5944 "Disable CxSR\n");
5945 dev_priv->display.update_wm = NULL;
5947 } else
5948 dev_priv->display.update_wm = NULL;
5949 } else if (IS_PINEVIEW(dev)) {
5950 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
5951 dev_priv->is_ddr3,
5952 dev_priv->fsb_freq,
5953 dev_priv->mem_freq)) {
5954 DRM_INFO("failed to find known CxSR latency "
5955 "(found ddr%s fsb freq %d, mem freq %d), "
5956 "disabling CxSR\n",
5957 (dev_priv->is_ddr3 == 1) ? "3": "2",
5958 dev_priv->fsb_freq, dev_priv->mem_freq);
5959 /* Disable CxSR and never update its watermark again */
5960 pineview_disable_cxsr(dev);
5961 dev_priv->display.update_wm = NULL;
5962 } else
5963 dev_priv->display.update_wm = pineview_update_wm;
5964 } else if (IS_G4X(dev))
5965 dev_priv->display.update_wm = g4x_update_wm;
5966 else if (IS_GEN4(dev))
5967 dev_priv->display.update_wm = i965_update_wm;
5968 else if (IS_GEN3(dev)) {
5969 dev_priv->display.update_wm = i9xx_update_wm;
5970 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
5971 } else if (IS_I85X(dev)) {
5972 dev_priv->display.update_wm = i9xx_update_wm;
5973 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
5974 } else {
5975 dev_priv->display.update_wm = i830_update_wm;
5976 if (IS_845G(dev))
5977 dev_priv->display.get_fifo_size = i845_get_fifo_size;
5978 else
5979 dev_priv->display.get_fifo_size = i830_get_fifo_size;
5984 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5985 * resume, or other times. This quirk makes sure that's the case for
5986 * affected systems.
5988 static void quirk_pipea_force (struct drm_device *dev)
5990 struct drm_i915_private *dev_priv = dev->dev_private;
5992 dev_priv->quirks |= QUIRK_PIPEA_FORCE;
5993 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5996 struct intel_quirk {
5997 int device;
5998 int subsystem_vendor;
5999 int subsystem_device;
6000 void (*hook)(struct drm_device *dev);
6003 struct intel_quirk intel_quirks[] = {
6004 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6005 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force },
6006 /* HP Mini needs pipe A force quirk (LP: #322104) */
6007 { 0x27ae,0x103c, 0x361a, quirk_pipea_force },
6009 /* Thinkpad R31 needs pipe A force quirk */
6010 { 0x3577, 0x1014, 0x0505, quirk_pipea_force },
6011 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6012 { 0x2592, 0x1179, 0x0001, quirk_pipea_force },
6014 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6015 { 0x3577, 0x1014, 0x0513, quirk_pipea_force },
6016 /* ThinkPad X40 needs pipe A force quirk */
6018 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6019 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force },
6021 /* 855 & before need to leave pipe A & dpll A up */
6022 { 0x3582, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6023 { 0x2562, PCI_ANY_ID, PCI_ANY_ID, quirk_pipea_force },
6026 static void intel_init_quirks(struct drm_device *dev)
6028 struct pci_dev *d = dev->pdev;
6029 int i;
6031 for (i = 0; i < ARRAY_SIZE(intel_quirks); i++) {
6032 struct intel_quirk *q = &intel_quirks[i];
6034 if (d->device == q->device &&
6035 (d->subsystem_vendor == q->subsystem_vendor ||
6036 q->subsystem_vendor == PCI_ANY_ID) &&
6037 (d->subsystem_device == q->subsystem_device ||
6038 q->subsystem_device == PCI_ANY_ID))
6039 q->hook(dev);
6043 /* Disable the VGA plane that we never use */
6044 static void i915_disable_vga(struct drm_device *dev)
6046 struct drm_i915_private *dev_priv = dev->dev_private;
6047 u8 sr1;
6048 u32 vga_reg;
6050 if (HAS_PCH_SPLIT(dev))
6051 vga_reg = CPU_VGACNTRL;
6052 else
6053 vga_reg = VGACNTRL;
6055 vga_get_uninterruptible(dev->pdev, VGA_RSRC_LEGACY_IO);
6056 outb(1, VGA_SR_INDEX);
6057 sr1 = inb(VGA_SR_DATA);
6058 outb(sr1 | 1<<5, VGA_SR_DATA);
6059 vga_put(dev->pdev, VGA_RSRC_LEGACY_IO);
6060 udelay(300);
6062 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
6063 POSTING_READ(vga_reg);
6066 void intel_modeset_init(struct drm_device *dev)
6068 struct drm_i915_private *dev_priv = dev->dev_private;
6069 int i;
6071 drm_mode_config_init(dev);
6073 dev->mode_config.min_width = 0;
6074 dev->mode_config.min_height = 0;
6076 dev->mode_config.funcs = (void *)&intel_mode_funcs;
6078 intel_init_quirks(dev);
6080 intel_init_display(dev);
6082 if (IS_GEN2(dev)) {
6083 dev->mode_config.max_width = 2048;
6084 dev->mode_config.max_height = 2048;
6085 } else if (IS_GEN3(dev)) {
6086 dev->mode_config.max_width = 4096;
6087 dev->mode_config.max_height = 4096;
6088 } else {
6089 dev->mode_config.max_width = 8192;
6090 dev->mode_config.max_height = 8192;
6093 /* set memory base */
6094 if (IS_GEN2(dev))
6095 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
6096 else
6097 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
6099 if (IS_MOBILE(dev) || !IS_GEN2(dev))
6100 dev_priv->num_pipe = 2;
6101 else
6102 dev_priv->num_pipe = 1;
6103 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6104 dev_priv->num_pipe, dev_priv->num_pipe > 1 ? "s" : "");
6106 for (i = 0; i < dev_priv->num_pipe; i++) {
6107 intel_crtc_init(dev, i);
6110 intel_setup_outputs(dev);
6112 intel_init_clock_gating(dev);
6114 /* Just disable it once at startup */
6115 i915_disable_vga(dev);
6117 if (IS_IRONLAKE_M(dev)) {
6118 ironlake_enable_drps(dev);
6119 intel_init_emon(dev);
6122 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
6123 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
6124 (unsigned long)dev);
6126 intel_setup_overlay(dev);
6129 void intel_modeset_cleanup(struct drm_device *dev)
6131 struct drm_i915_private *dev_priv = dev->dev_private;
6132 struct drm_crtc *crtc;
6133 struct intel_crtc *intel_crtc;
6135 drm_kms_helper_poll_fini(dev);
6136 mutex_lock(&dev->struct_mutex);
6138 intel_unregister_dsm_handler();
6141 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6142 /* Skip inactive CRTCs */
6143 if (!crtc->fb)
6144 continue;
6146 intel_crtc = to_intel_crtc(crtc);
6147 intel_increase_pllclock(crtc);
6150 if (dev_priv->display.disable_fbc)
6151 dev_priv->display.disable_fbc(dev);
6153 if (dev_priv->renderctx) {
6154 struct drm_i915_gem_object *obj_priv;
6156 obj_priv = to_intel_bo(dev_priv->renderctx);
6157 I915_WRITE(CCID, obj_priv->gtt_offset &~ CCID_EN);
6158 I915_READ(CCID);
6159 i915_gem_object_unpin(dev_priv->renderctx);
6160 drm_gem_object_unreference(dev_priv->renderctx);
6163 if (dev_priv->pwrctx) {
6164 struct drm_i915_gem_object *obj_priv;
6166 obj_priv = to_intel_bo(dev_priv->pwrctx);
6167 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
6168 I915_READ(PWRCTXA);
6169 i915_gem_object_unpin(dev_priv->pwrctx);
6170 drm_gem_object_unreference(dev_priv->pwrctx);
6173 if (IS_IRONLAKE_M(dev))
6174 ironlake_disable_drps(dev);
6176 mutex_unlock(&dev->struct_mutex);
6178 /* Disable the irq before mode object teardown, for the irq might
6179 * enqueue unpin/hotplug work. */
6180 drm_irq_uninstall(dev);
6181 cancel_work_sync(&dev_priv->hotplug_work);
6183 /* Shut off idle work before the crtcs get freed. */
6184 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
6185 intel_crtc = to_intel_crtc(crtc);
6186 del_timer_sync(&intel_crtc->idle_timer);
6188 del_timer_sync(&dev_priv->idle_timer);
6189 cancel_work_sync(&dev_priv->idle_work);
6191 drm_mode_config_cleanup(dev);
6195 * Return which encoder is currently attached for connector.
6197 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
6199 return &intel_attached_encoder(connector)->base;
6202 void intel_connector_attach_encoder(struct intel_connector *connector,
6203 struct intel_encoder *encoder)
6205 connector->encoder = encoder;
6206 drm_mode_connector_attach_encoder(&connector->base,
6207 &encoder->base);
6211 * set vga decode state - true == enable VGA decode
6213 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
6215 struct drm_i915_private *dev_priv = dev->dev_private;
6216 u16 gmch_ctrl;
6218 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
6219 if (state)
6220 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
6221 else
6222 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
6223 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
6224 return 0;