2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include <linux/slab.h>
32 #include <linux/vgaarb.h>
34 #include "intel_drv.h"
37 #include "i915_trace.h"
38 #include "drm_dp_helper.h"
40 #include "drm_crtc_helper.h"
42 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
44 bool intel_pipe_has_type (struct drm_crtc
*crtc
, int type
);
45 static void intel_update_watermarks(struct drm_device
*dev
);
46 static void intel_increase_pllclock(struct drm_crtc
*crtc
);
47 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
, bool on
);
70 #define INTEL_P2_NUM 2
71 typedef struct intel_limit intel_limit_t
;
73 intel_range_t dot
, vco
, n
, m
, m1
, m2
, p
, p1
;
75 bool (* find_pll
)(const intel_limit_t
*, struct drm_crtc
*,
76 int, int, intel_clock_t
*);
79 #define I8XX_DOT_MIN 25000
80 #define I8XX_DOT_MAX 350000
81 #define I8XX_VCO_MIN 930000
82 #define I8XX_VCO_MAX 1400000
86 #define I8XX_M_MAX 140
87 #define I8XX_M1_MIN 18
88 #define I8XX_M1_MAX 26
90 #define I8XX_M2_MAX 16
92 #define I8XX_P_MAX 128
94 #define I8XX_P1_MAX 33
95 #define I8XX_P1_LVDS_MIN 1
96 #define I8XX_P1_LVDS_MAX 6
97 #define I8XX_P2_SLOW 4
98 #define I8XX_P2_FAST 2
99 #define I8XX_P2_LVDS_SLOW 14
100 #define I8XX_P2_LVDS_FAST 7
101 #define I8XX_P2_SLOW_LIMIT 165000
103 #define I9XX_DOT_MIN 20000
104 #define I9XX_DOT_MAX 400000
105 #define I9XX_VCO_MIN 1400000
106 #define I9XX_VCO_MAX 2800000
107 #define PINEVIEW_VCO_MIN 1700000
108 #define PINEVIEW_VCO_MAX 3500000
111 /* Pineview's Ncounter is a ring counter */
112 #define PINEVIEW_N_MIN 3
113 #define PINEVIEW_N_MAX 6
114 #define I9XX_M_MIN 70
115 #define I9XX_M_MAX 120
116 #define PINEVIEW_M_MIN 2
117 #define PINEVIEW_M_MAX 256
118 #define I9XX_M1_MIN 10
119 #define I9XX_M1_MAX 22
120 #define I9XX_M2_MIN 5
121 #define I9XX_M2_MAX 9
122 /* Pineview M1 is reserved, and must be 0 */
123 #define PINEVIEW_M1_MIN 0
124 #define PINEVIEW_M1_MAX 0
125 #define PINEVIEW_M2_MIN 0
126 #define PINEVIEW_M2_MAX 254
127 #define I9XX_P_SDVO_DAC_MIN 5
128 #define I9XX_P_SDVO_DAC_MAX 80
129 #define I9XX_P_LVDS_MIN 7
130 #define I9XX_P_LVDS_MAX 98
131 #define PINEVIEW_P_LVDS_MIN 7
132 #define PINEVIEW_P_LVDS_MAX 112
133 #define I9XX_P1_MIN 1
134 #define I9XX_P1_MAX 8
135 #define I9XX_P2_SDVO_DAC_SLOW 10
136 #define I9XX_P2_SDVO_DAC_FAST 5
137 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
138 #define I9XX_P2_LVDS_SLOW 14
139 #define I9XX_P2_LVDS_FAST 7
140 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
142 /*The parameter is for SDVO on G4x platform*/
143 #define G4X_DOT_SDVO_MIN 25000
144 #define G4X_DOT_SDVO_MAX 270000
145 #define G4X_VCO_MIN 1750000
146 #define G4X_VCO_MAX 3500000
147 #define G4X_N_SDVO_MIN 1
148 #define G4X_N_SDVO_MAX 4
149 #define G4X_M_SDVO_MIN 104
150 #define G4X_M_SDVO_MAX 138
151 #define G4X_M1_SDVO_MIN 17
152 #define G4X_M1_SDVO_MAX 23
153 #define G4X_M2_SDVO_MIN 5
154 #define G4X_M2_SDVO_MAX 11
155 #define G4X_P_SDVO_MIN 10
156 #define G4X_P_SDVO_MAX 30
157 #define G4X_P1_SDVO_MIN 1
158 #define G4X_P1_SDVO_MAX 3
159 #define G4X_P2_SDVO_SLOW 10
160 #define G4X_P2_SDVO_FAST 10
161 #define G4X_P2_SDVO_LIMIT 270000
163 /*The parameter is for HDMI_DAC on G4x platform*/
164 #define G4X_DOT_HDMI_DAC_MIN 22000
165 #define G4X_DOT_HDMI_DAC_MAX 400000
166 #define G4X_N_HDMI_DAC_MIN 1
167 #define G4X_N_HDMI_DAC_MAX 4
168 #define G4X_M_HDMI_DAC_MIN 104
169 #define G4X_M_HDMI_DAC_MAX 138
170 #define G4X_M1_HDMI_DAC_MIN 16
171 #define G4X_M1_HDMI_DAC_MAX 23
172 #define G4X_M2_HDMI_DAC_MIN 5
173 #define G4X_M2_HDMI_DAC_MAX 11
174 #define G4X_P_HDMI_DAC_MIN 5
175 #define G4X_P_HDMI_DAC_MAX 80
176 #define G4X_P1_HDMI_DAC_MIN 1
177 #define G4X_P1_HDMI_DAC_MAX 8
178 #define G4X_P2_HDMI_DAC_SLOW 10
179 #define G4X_P2_HDMI_DAC_FAST 5
180 #define G4X_P2_HDMI_DAC_LIMIT 165000
182 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
183 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
184 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
185 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
186 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
187 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
188 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
189 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
190 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
191 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
192 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
193 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
194 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
195 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
196 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
198 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
199 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
201 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
202 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
203 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
204 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
205 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
206 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
207 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
208 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
209 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
210 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
211 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
212 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
213 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
214 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
215 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
216 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
217 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
218 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
220 /*The parameter is for DISPLAY PORT on G4x platform*/
221 #define G4X_DOT_DISPLAY_PORT_MIN 161670
222 #define G4X_DOT_DISPLAY_PORT_MAX 227000
223 #define G4X_N_DISPLAY_PORT_MIN 1
224 #define G4X_N_DISPLAY_PORT_MAX 2
225 #define G4X_M_DISPLAY_PORT_MIN 97
226 #define G4X_M_DISPLAY_PORT_MAX 108
227 #define G4X_M1_DISPLAY_PORT_MIN 0x10
228 #define G4X_M1_DISPLAY_PORT_MAX 0x12
229 #define G4X_M2_DISPLAY_PORT_MIN 0x05
230 #define G4X_M2_DISPLAY_PORT_MAX 0x06
231 #define G4X_P_DISPLAY_PORT_MIN 10
232 #define G4X_P_DISPLAY_PORT_MAX 20
233 #define G4X_P1_DISPLAY_PORT_MIN 1
234 #define G4X_P1_DISPLAY_PORT_MAX 2
235 #define G4X_P2_DISPLAY_PORT_SLOW 10
236 #define G4X_P2_DISPLAY_PORT_FAST 10
237 #define G4X_P2_DISPLAY_PORT_LIMIT 0
239 /* Ironlake / Sandybridge */
240 /* as we calculate clock using (register_value + 2) for
241 N/M1/M2, so here the range value for them is (actual_value-2).
243 #define IRONLAKE_DOT_MIN 25000
244 #define IRONLAKE_DOT_MAX 350000
245 #define IRONLAKE_VCO_MIN 1760000
246 #define IRONLAKE_VCO_MAX 3510000
247 #define IRONLAKE_M1_MIN 12
248 #define IRONLAKE_M1_MAX 22
249 #define IRONLAKE_M2_MIN 5
250 #define IRONLAKE_M2_MAX 9
251 #define IRONLAKE_P2_DOT_LIMIT 225000 /* 225Mhz */
253 /* We have parameter ranges for different type of outputs. */
255 /* DAC & HDMI Refclk 120Mhz */
256 #define IRONLAKE_DAC_N_MIN 1
257 #define IRONLAKE_DAC_N_MAX 5
258 #define IRONLAKE_DAC_M_MIN 79
259 #define IRONLAKE_DAC_M_MAX 127
260 #define IRONLAKE_DAC_P_MIN 5
261 #define IRONLAKE_DAC_P_MAX 80
262 #define IRONLAKE_DAC_P1_MIN 1
263 #define IRONLAKE_DAC_P1_MAX 8
264 #define IRONLAKE_DAC_P2_SLOW 10
265 #define IRONLAKE_DAC_P2_FAST 5
267 /* LVDS single-channel 120Mhz refclk */
268 #define IRONLAKE_LVDS_S_N_MIN 1
269 #define IRONLAKE_LVDS_S_N_MAX 3
270 #define IRONLAKE_LVDS_S_M_MIN 79
271 #define IRONLAKE_LVDS_S_M_MAX 118
272 #define IRONLAKE_LVDS_S_P_MIN 28
273 #define IRONLAKE_LVDS_S_P_MAX 112
274 #define IRONLAKE_LVDS_S_P1_MIN 2
275 #define IRONLAKE_LVDS_S_P1_MAX 8
276 #define IRONLAKE_LVDS_S_P2_SLOW 14
277 #define IRONLAKE_LVDS_S_P2_FAST 14
279 /* LVDS dual-channel 120Mhz refclk */
280 #define IRONLAKE_LVDS_D_N_MIN 1
281 #define IRONLAKE_LVDS_D_N_MAX 3
282 #define IRONLAKE_LVDS_D_M_MIN 79
283 #define IRONLAKE_LVDS_D_M_MAX 127
284 #define IRONLAKE_LVDS_D_P_MIN 14
285 #define IRONLAKE_LVDS_D_P_MAX 56
286 #define IRONLAKE_LVDS_D_P1_MIN 2
287 #define IRONLAKE_LVDS_D_P1_MAX 8
288 #define IRONLAKE_LVDS_D_P2_SLOW 7
289 #define IRONLAKE_LVDS_D_P2_FAST 7
291 /* LVDS single-channel 100Mhz refclk */
292 #define IRONLAKE_LVDS_S_SSC_N_MIN 1
293 #define IRONLAKE_LVDS_S_SSC_N_MAX 2
294 #define IRONLAKE_LVDS_S_SSC_M_MIN 79
295 #define IRONLAKE_LVDS_S_SSC_M_MAX 126
296 #define IRONLAKE_LVDS_S_SSC_P_MIN 28
297 #define IRONLAKE_LVDS_S_SSC_P_MAX 112
298 #define IRONLAKE_LVDS_S_SSC_P1_MIN 2
299 #define IRONLAKE_LVDS_S_SSC_P1_MAX 8
300 #define IRONLAKE_LVDS_S_SSC_P2_SLOW 14
301 #define IRONLAKE_LVDS_S_SSC_P2_FAST 14
303 /* LVDS dual-channel 100Mhz refclk */
304 #define IRONLAKE_LVDS_D_SSC_N_MIN 1
305 #define IRONLAKE_LVDS_D_SSC_N_MAX 3
306 #define IRONLAKE_LVDS_D_SSC_M_MIN 79
307 #define IRONLAKE_LVDS_D_SSC_M_MAX 126
308 #define IRONLAKE_LVDS_D_SSC_P_MIN 14
309 #define IRONLAKE_LVDS_D_SSC_P_MAX 42
310 #define IRONLAKE_LVDS_D_SSC_P1_MIN 2
311 #define IRONLAKE_LVDS_D_SSC_P1_MAX 6
312 #define IRONLAKE_LVDS_D_SSC_P2_SLOW 7
313 #define IRONLAKE_LVDS_D_SSC_P2_FAST 7
316 #define IRONLAKE_DP_N_MIN 1
317 #define IRONLAKE_DP_N_MAX 2
318 #define IRONLAKE_DP_M_MIN 81
319 #define IRONLAKE_DP_M_MAX 90
320 #define IRONLAKE_DP_P_MIN 10
321 #define IRONLAKE_DP_P_MAX 20
322 #define IRONLAKE_DP_P2_FAST 10
323 #define IRONLAKE_DP_P2_SLOW 10
324 #define IRONLAKE_DP_P2_LIMIT 0
325 #define IRONLAKE_DP_P1_MIN 1
326 #define IRONLAKE_DP_P1_MAX 2
329 #define IRONLAKE_FDI_FREQ 2700000 /* in kHz for mode->clock */
332 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
333 int target
, int refclk
, intel_clock_t
*best_clock
);
335 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
336 int target
, int refclk
, intel_clock_t
*best_clock
);
339 intel_find_pll_g4x_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
340 int target
, int refclk
, intel_clock_t
*best_clock
);
342 intel_find_pll_ironlake_dp(const intel_limit_t
*, struct drm_crtc
*crtc
,
343 int target
, int refclk
, intel_clock_t
*best_clock
);
345 static inline u32
/* units of 100MHz */
346 intel_fdi_link_freq(struct drm_device
*dev
)
348 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
349 return (I915_READ(FDI_PLL_BIOS_0
) & FDI_PLL_FB_CLOCK_MASK
) + 2;
352 static const intel_limit_t intel_limits_i8xx_dvo
= {
353 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
354 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
355 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
356 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
357 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
358 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
359 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
360 .p1
= { .min
= I8XX_P1_MIN
, .max
= I8XX_P1_MAX
},
361 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
362 .p2_slow
= I8XX_P2_SLOW
, .p2_fast
= I8XX_P2_FAST
},
363 .find_pll
= intel_find_best_PLL
,
366 static const intel_limit_t intel_limits_i8xx_lvds
= {
367 .dot
= { .min
= I8XX_DOT_MIN
, .max
= I8XX_DOT_MAX
},
368 .vco
= { .min
= I8XX_VCO_MIN
, .max
= I8XX_VCO_MAX
},
369 .n
= { .min
= I8XX_N_MIN
, .max
= I8XX_N_MAX
},
370 .m
= { .min
= I8XX_M_MIN
, .max
= I8XX_M_MAX
},
371 .m1
= { .min
= I8XX_M1_MIN
, .max
= I8XX_M1_MAX
},
372 .m2
= { .min
= I8XX_M2_MIN
, .max
= I8XX_M2_MAX
},
373 .p
= { .min
= I8XX_P_MIN
, .max
= I8XX_P_MAX
},
374 .p1
= { .min
= I8XX_P1_LVDS_MIN
, .max
= I8XX_P1_LVDS_MAX
},
375 .p2
= { .dot_limit
= I8XX_P2_SLOW_LIMIT
,
376 .p2_slow
= I8XX_P2_LVDS_SLOW
, .p2_fast
= I8XX_P2_LVDS_FAST
},
377 .find_pll
= intel_find_best_PLL
,
380 static const intel_limit_t intel_limits_i9xx_sdvo
= {
381 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
382 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
383 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
384 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
385 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
386 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
387 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
388 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
389 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
390 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
391 .find_pll
= intel_find_best_PLL
,
394 static const intel_limit_t intel_limits_i9xx_lvds
= {
395 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
396 .vco
= { .min
= I9XX_VCO_MIN
, .max
= I9XX_VCO_MAX
},
397 .n
= { .min
= I9XX_N_MIN
, .max
= I9XX_N_MAX
},
398 .m
= { .min
= I9XX_M_MIN
, .max
= I9XX_M_MAX
},
399 .m1
= { .min
= I9XX_M1_MIN
, .max
= I9XX_M1_MAX
},
400 .m2
= { .min
= I9XX_M2_MIN
, .max
= I9XX_M2_MAX
},
401 .p
= { .min
= I9XX_P_LVDS_MIN
, .max
= I9XX_P_LVDS_MAX
},
402 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
403 /* The single-channel range is 25-112Mhz, and dual-channel
404 * is 80-224Mhz. Prefer single channel as much as possible.
406 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
407 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_FAST
},
408 .find_pll
= intel_find_best_PLL
,
411 /* below parameter and function is for G4X Chipset Family*/
412 static const intel_limit_t intel_limits_g4x_sdvo
= {
413 .dot
= { .min
= G4X_DOT_SDVO_MIN
, .max
= G4X_DOT_SDVO_MAX
},
414 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
415 .n
= { .min
= G4X_N_SDVO_MIN
, .max
= G4X_N_SDVO_MAX
},
416 .m
= { .min
= G4X_M_SDVO_MIN
, .max
= G4X_M_SDVO_MAX
},
417 .m1
= { .min
= G4X_M1_SDVO_MIN
, .max
= G4X_M1_SDVO_MAX
},
418 .m2
= { .min
= G4X_M2_SDVO_MIN
, .max
= G4X_M2_SDVO_MAX
},
419 .p
= { .min
= G4X_P_SDVO_MIN
, .max
= G4X_P_SDVO_MAX
},
420 .p1
= { .min
= G4X_P1_SDVO_MIN
, .max
= G4X_P1_SDVO_MAX
},
421 .p2
= { .dot_limit
= G4X_P2_SDVO_LIMIT
,
422 .p2_slow
= G4X_P2_SDVO_SLOW
,
423 .p2_fast
= G4X_P2_SDVO_FAST
425 .find_pll
= intel_g4x_find_best_PLL
,
428 static const intel_limit_t intel_limits_g4x_hdmi
= {
429 .dot
= { .min
= G4X_DOT_HDMI_DAC_MIN
, .max
= G4X_DOT_HDMI_DAC_MAX
},
430 .vco
= { .min
= G4X_VCO_MIN
, .max
= G4X_VCO_MAX
},
431 .n
= { .min
= G4X_N_HDMI_DAC_MIN
, .max
= G4X_N_HDMI_DAC_MAX
},
432 .m
= { .min
= G4X_M_HDMI_DAC_MIN
, .max
= G4X_M_HDMI_DAC_MAX
},
433 .m1
= { .min
= G4X_M1_HDMI_DAC_MIN
, .max
= G4X_M1_HDMI_DAC_MAX
},
434 .m2
= { .min
= G4X_M2_HDMI_DAC_MIN
, .max
= G4X_M2_HDMI_DAC_MAX
},
435 .p
= { .min
= G4X_P_HDMI_DAC_MIN
, .max
= G4X_P_HDMI_DAC_MAX
},
436 .p1
= { .min
= G4X_P1_HDMI_DAC_MIN
, .max
= G4X_P1_HDMI_DAC_MAX
},
437 .p2
= { .dot_limit
= G4X_P2_HDMI_DAC_LIMIT
,
438 .p2_slow
= G4X_P2_HDMI_DAC_SLOW
,
439 .p2_fast
= G4X_P2_HDMI_DAC_FAST
441 .find_pll
= intel_g4x_find_best_PLL
,
444 static const intel_limit_t intel_limits_g4x_single_channel_lvds
= {
445 .dot
= { .min
= G4X_DOT_SINGLE_CHANNEL_LVDS_MIN
,
446 .max
= G4X_DOT_SINGLE_CHANNEL_LVDS_MAX
},
447 .vco
= { .min
= G4X_VCO_MIN
,
448 .max
= G4X_VCO_MAX
},
449 .n
= { .min
= G4X_N_SINGLE_CHANNEL_LVDS_MIN
,
450 .max
= G4X_N_SINGLE_CHANNEL_LVDS_MAX
},
451 .m
= { .min
= G4X_M_SINGLE_CHANNEL_LVDS_MIN
,
452 .max
= G4X_M_SINGLE_CHANNEL_LVDS_MAX
},
453 .m1
= { .min
= G4X_M1_SINGLE_CHANNEL_LVDS_MIN
,
454 .max
= G4X_M1_SINGLE_CHANNEL_LVDS_MAX
},
455 .m2
= { .min
= G4X_M2_SINGLE_CHANNEL_LVDS_MIN
,
456 .max
= G4X_M2_SINGLE_CHANNEL_LVDS_MAX
},
457 .p
= { .min
= G4X_P_SINGLE_CHANNEL_LVDS_MIN
,
458 .max
= G4X_P_SINGLE_CHANNEL_LVDS_MAX
},
459 .p1
= { .min
= G4X_P1_SINGLE_CHANNEL_LVDS_MIN
,
460 .max
= G4X_P1_SINGLE_CHANNEL_LVDS_MAX
},
461 .p2
= { .dot_limit
= G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT
,
462 .p2_slow
= G4X_P2_SINGLE_CHANNEL_LVDS_SLOW
,
463 .p2_fast
= G4X_P2_SINGLE_CHANNEL_LVDS_FAST
465 .find_pll
= intel_g4x_find_best_PLL
,
468 static const intel_limit_t intel_limits_g4x_dual_channel_lvds
= {
469 .dot
= { .min
= G4X_DOT_DUAL_CHANNEL_LVDS_MIN
,
470 .max
= G4X_DOT_DUAL_CHANNEL_LVDS_MAX
},
471 .vco
= { .min
= G4X_VCO_MIN
,
472 .max
= G4X_VCO_MAX
},
473 .n
= { .min
= G4X_N_DUAL_CHANNEL_LVDS_MIN
,
474 .max
= G4X_N_DUAL_CHANNEL_LVDS_MAX
},
475 .m
= { .min
= G4X_M_DUAL_CHANNEL_LVDS_MIN
,
476 .max
= G4X_M_DUAL_CHANNEL_LVDS_MAX
},
477 .m1
= { .min
= G4X_M1_DUAL_CHANNEL_LVDS_MIN
,
478 .max
= G4X_M1_DUAL_CHANNEL_LVDS_MAX
},
479 .m2
= { .min
= G4X_M2_DUAL_CHANNEL_LVDS_MIN
,
480 .max
= G4X_M2_DUAL_CHANNEL_LVDS_MAX
},
481 .p
= { .min
= G4X_P_DUAL_CHANNEL_LVDS_MIN
,
482 .max
= G4X_P_DUAL_CHANNEL_LVDS_MAX
},
483 .p1
= { .min
= G4X_P1_DUAL_CHANNEL_LVDS_MIN
,
484 .max
= G4X_P1_DUAL_CHANNEL_LVDS_MAX
},
485 .p2
= { .dot_limit
= G4X_P2_DUAL_CHANNEL_LVDS_LIMIT
,
486 .p2_slow
= G4X_P2_DUAL_CHANNEL_LVDS_SLOW
,
487 .p2_fast
= G4X_P2_DUAL_CHANNEL_LVDS_FAST
489 .find_pll
= intel_g4x_find_best_PLL
,
492 static const intel_limit_t intel_limits_g4x_display_port
= {
493 .dot
= { .min
= G4X_DOT_DISPLAY_PORT_MIN
,
494 .max
= G4X_DOT_DISPLAY_PORT_MAX
},
495 .vco
= { .min
= G4X_VCO_MIN
,
497 .n
= { .min
= G4X_N_DISPLAY_PORT_MIN
,
498 .max
= G4X_N_DISPLAY_PORT_MAX
},
499 .m
= { .min
= G4X_M_DISPLAY_PORT_MIN
,
500 .max
= G4X_M_DISPLAY_PORT_MAX
},
501 .m1
= { .min
= G4X_M1_DISPLAY_PORT_MIN
,
502 .max
= G4X_M1_DISPLAY_PORT_MAX
},
503 .m2
= { .min
= G4X_M2_DISPLAY_PORT_MIN
,
504 .max
= G4X_M2_DISPLAY_PORT_MAX
},
505 .p
= { .min
= G4X_P_DISPLAY_PORT_MIN
,
506 .max
= G4X_P_DISPLAY_PORT_MAX
},
507 .p1
= { .min
= G4X_P1_DISPLAY_PORT_MIN
,
508 .max
= G4X_P1_DISPLAY_PORT_MAX
},
509 .p2
= { .dot_limit
= G4X_P2_DISPLAY_PORT_LIMIT
,
510 .p2_slow
= G4X_P2_DISPLAY_PORT_SLOW
,
511 .p2_fast
= G4X_P2_DISPLAY_PORT_FAST
},
512 .find_pll
= intel_find_pll_g4x_dp
,
515 static const intel_limit_t intel_limits_pineview_sdvo
= {
516 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
517 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
518 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
519 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
520 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
521 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
522 .p
= { .min
= I9XX_P_SDVO_DAC_MIN
, .max
= I9XX_P_SDVO_DAC_MAX
},
523 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
524 .p2
= { .dot_limit
= I9XX_P2_SDVO_DAC_SLOW_LIMIT
,
525 .p2_slow
= I9XX_P2_SDVO_DAC_SLOW
, .p2_fast
= I9XX_P2_SDVO_DAC_FAST
},
526 .find_pll
= intel_find_best_PLL
,
529 static const intel_limit_t intel_limits_pineview_lvds
= {
530 .dot
= { .min
= I9XX_DOT_MIN
, .max
= I9XX_DOT_MAX
},
531 .vco
= { .min
= PINEVIEW_VCO_MIN
, .max
= PINEVIEW_VCO_MAX
},
532 .n
= { .min
= PINEVIEW_N_MIN
, .max
= PINEVIEW_N_MAX
},
533 .m
= { .min
= PINEVIEW_M_MIN
, .max
= PINEVIEW_M_MAX
},
534 .m1
= { .min
= PINEVIEW_M1_MIN
, .max
= PINEVIEW_M1_MAX
},
535 .m2
= { .min
= PINEVIEW_M2_MIN
, .max
= PINEVIEW_M2_MAX
},
536 .p
= { .min
= PINEVIEW_P_LVDS_MIN
, .max
= PINEVIEW_P_LVDS_MAX
},
537 .p1
= { .min
= I9XX_P1_MIN
, .max
= I9XX_P1_MAX
},
538 /* Pineview only supports single-channel mode. */
539 .p2
= { .dot_limit
= I9XX_P2_LVDS_SLOW_LIMIT
,
540 .p2_slow
= I9XX_P2_LVDS_SLOW
, .p2_fast
= I9XX_P2_LVDS_SLOW
},
541 .find_pll
= intel_find_best_PLL
,
544 static const intel_limit_t intel_limits_ironlake_dac
= {
545 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
546 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
547 .n
= { .min
= IRONLAKE_DAC_N_MIN
, .max
= IRONLAKE_DAC_N_MAX
},
548 .m
= { .min
= IRONLAKE_DAC_M_MIN
, .max
= IRONLAKE_DAC_M_MAX
},
549 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
550 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
551 .p
= { .min
= IRONLAKE_DAC_P_MIN
, .max
= IRONLAKE_DAC_P_MAX
},
552 .p1
= { .min
= IRONLAKE_DAC_P1_MIN
, .max
= IRONLAKE_DAC_P1_MAX
},
553 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
554 .p2_slow
= IRONLAKE_DAC_P2_SLOW
,
555 .p2_fast
= IRONLAKE_DAC_P2_FAST
},
556 .find_pll
= intel_g4x_find_best_PLL
,
559 static const intel_limit_t intel_limits_ironlake_single_lvds
= {
560 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
561 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
562 .n
= { .min
= IRONLAKE_LVDS_S_N_MIN
, .max
= IRONLAKE_LVDS_S_N_MAX
},
563 .m
= { .min
= IRONLAKE_LVDS_S_M_MIN
, .max
= IRONLAKE_LVDS_S_M_MAX
},
564 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
565 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
566 .p
= { .min
= IRONLAKE_LVDS_S_P_MIN
, .max
= IRONLAKE_LVDS_S_P_MAX
},
567 .p1
= { .min
= IRONLAKE_LVDS_S_P1_MIN
, .max
= IRONLAKE_LVDS_S_P1_MAX
},
568 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
569 .p2_slow
= IRONLAKE_LVDS_S_P2_SLOW
,
570 .p2_fast
= IRONLAKE_LVDS_S_P2_FAST
},
571 .find_pll
= intel_g4x_find_best_PLL
,
574 static const intel_limit_t intel_limits_ironlake_dual_lvds
= {
575 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
576 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
577 .n
= { .min
= IRONLAKE_LVDS_D_N_MIN
, .max
= IRONLAKE_LVDS_D_N_MAX
},
578 .m
= { .min
= IRONLAKE_LVDS_D_M_MIN
, .max
= IRONLAKE_LVDS_D_M_MAX
},
579 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
580 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
581 .p
= { .min
= IRONLAKE_LVDS_D_P_MIN
, .max
= IRONLAKE_LVDS_D_P_MAX
},
582 .p1
= { .min
= IRONLAKE_LVDS_D_P1_MIN
, .max
= IRONLAKE_LVDS_D_P1_MAX
},
583 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
584 .p2_slow
= IRONLAKE_LVDS_D_P2_SLOW
,
585 .p2_fast
= IRONLAKE_LVDS_D_P2_FAST
},
586 .find_pll
= intel_g4x_find_best_PLL
,
589 static const intel_limit_t intel_limits_ironlake_single_lvds_100m
= {
590 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
591 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
592 .n
= { .min
= IRONLAKE_LVDS_S_SSC_N_MIN
, .max
= IRONLAKE_LVDS_S_SSC_N_MAX
},
593 .m
= { .min
= IRONLAKE_LVDS_S_SSC_M_MIN
, .max
= IRONLAKE_LVDS_S_SSC_M_MAX
},
594 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
595 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
596 .p
= { .min
= IRONLAKE_LVDS_S_SSC_P_MIN
, .max
= IRONLAKE_LVDS_S_SSC_P_MAX
},
597 .p1
= { .min
= IRONLAKE_LVDS_S_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_S_SSC_P1_MAX
},
598 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
599 .p2_slow
= IRONLAKE_LVDS_S_SSC_P2_SLOW
,
600 .p2_fast
= IRONLAKE_LVDS_S_SSC_P2_FAST
},
601 .find_pll
= intel_g4x_find_best_PLL
,
604 static const intel_limit_t intel_limits_ironlake_dual_lvds_100m
= {
605 .dot
= { .min
= IRONLAKE_DOT_MIN
, .max
= IRONLAKE_DOT_MAX
},
606 .vco
= { .min
= IRONLAKE_VCO_MIN
, .max
= IRONLAKE_VCO_MAX
},
607 .n
= { .min
= IRONLAKE_LVDS_D_SSC_N_MIN
, .max
= IRONLAKE_LVDS_D_SSC_N_MAX
},
608 .m
= { .min
= IRONLAKE_LVDS_D_SSC_M_MIN
, .max
= IRONLAKE_LVDS_D_SSC_M_MAX
},
609 .m1
= { .min
= IRONLAKE_M1_MIN
, .max
= IRONLAKE_M1_MAX
},
610 .m2
= { .min
= IRONLAKE_M2_MIN
, .max
= IRONLAKE_M2_MAX
},
611 .p
= { .min
= IRONLAKE_LVDS_D_SSC_P_MIN
, .max
= IRONLAKE_LVDS_D_SSC_P_MAX
},
612 .p1
= { .min
= IRONLAKE_LVDS_D_SSC_P1_MIN
,.max
= IRONLAKE_LVDS_D_SSC_P1_MAX
},
613 .p2
= { .dot_limit
= IRONLAKE_P2_DOT_LIMIT
,
614 .p2_slow
= IRONLAKE_LVDS_D_SSC_P2_SLOW
,
615 .p2_fast
= IRONLAKE_LVDS_D_SSC_P2_FAST
},
616 .find_pll
= intel_g4x_find_best_PLL
,
619 static const intel_limit_t intel_limits_ironlake_display_port
= {
620 .dot
= { .min
= IRONLAKE_DOT_MIN
,
621 .max
= IRONLAKE_DOT_MAX
},
622 .vco
= { .min
= IRONLAKE_VCO_MIN
,
623 .max
= IRONLAKE_VCO_MAX
},
624 .n
= { .min
= IRONLAKE_DP_N_MIN
,
625 .max
= IRONLAKE_DP_N_MAX
},
626 .m
= { .min
= IRONLAKE_DP_M_MIN
,
627 .max
= IRONLAKE_DP_M_MAX
},
628 .m1
= { .min
= IRONLAKE_M1_MIN
,
629 .max
= IRONLAKE_M1_MAX
},
630 .m2
= { .min
= IRONLAKE_M2_MIN
,
631 .max
= IRONLAKE_M2_MAX
},
632 .p
= { .min
= IRONLAKE_DP_P_MIN
,
633 .max
= IRONLAKE_DP_P_MAX
},
634 .p1
= { .min
= IRONLAKE_DP_P1_MIN
,
635 .max
= IRONLAKE_DP_P1_MAX
},
636 .p2
= { .dot_limit
= IRONLAKE_DP_P2_LIMIT
,
637 .p2_slow
= IRONLAKE_DP_P2_SLOW
,
638 .p2_fast
= IRONLAKE_DP_P2_FAST
},
639 .find_pll
= intel_find_pll_ironlake_dp
,
642 static const intel_limit_t
*intel_ironlake_limit(struct drm_crtc
*crtc
)
644 struct drm_device
*dev
= crtc
->dev
;
645 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
646 const intel_limit_t
*limit
;
649 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
650 if (dev_priv
->lvds_use_ssc
&& dev_priv
->lvds_ssc_freq
== 100)
653 if ((I915_READ(PCH_LVDS
) & LVDS_CLKB_POWER_MASK
) ==
654 LVDS_CLKB_POWER_UP
) {
655 /* LVDS dual channel */
657 limit
= &intel_limits_ironlake_dual_lvds_100m
;
659 limit
= &intel_limits_ironlake_dual_lvds
;
662 limit
= &intel_limits_ironlake_single_lvds_100m
;
664 limit
= &intel_limits_ironlake_single_lvds
;
666 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
) ||
668 limit
= &intel_limits_ironlake_display_port
;
670 limit
= &intel_limits_ironlake_dac
;
675 static const intel_limit_t
*intel_g4x_limit(struct drm_crtc
*crtc
)
677 struct drm_device
*dev
= crtc
->dev
;
678 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
679 const intel_limit_t
*limit
;
681 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
682 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
684 /* LVDS with dual channel */
685 limit
= &intel_limits_g4x_dual_channel_lvds
;
687 /* LVDS with dual channel */
688 limit
= &intel_limits_g4x_single_channel_lvds
;
689 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_HDMI
) ||
690 intel_pipe_has_type(crtc
, INTEL_OUTPUT_ANALOG
)) {
691 limit
= &intel_limits_g4x_hdmi
;
692 } else if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_SDVO
)) {
693 limit
= &intel_limits_g4x_sdvo
;
694 } else if (intel_pipe_has_type (crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
695 limit
= &intel_limits_g4x_display_port
;
696 } else /* The option is for other outputs */
697 limit
= &intel_limits_i9xx_sdvo
;
702 static const intel_limit_t
*intel_limit(struct drm_crtc
*crtc
)
704 struct drm_device
*dev
= crtc
->dev
;
705 const intel_limit_t
*limit
;
707 if (HAS_PCH_SPLIT(dev
))
708 limit
= intel_ironlake_limit(crtc
);
709 else if (IS_G4X(dev
)) {
710 limit
= intel_g4x_limit(crtc
);
711 } else if (IS_PINEVIEW(dev
)) {
712 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
713 limit
= &intel_limits_pineview_lvds
;
715 limit
= &intel_limits_pineview_sdvo
;
716 } else if (!IS_GEN2(dev
)) {
717 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
718 limit
= &intel_limits_i9xx_lvds
;
720 limit
= &intel_limits_i9xx_sdvo
;
722 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
))
723 limit
= &intel_limits_i8xx_lvds
;
725 limit
= &intel_limits_i8xx_dvo
;
730 /* m1 is reserved as 0 in Pineview, n is a ring counter */
731 static void pineview_clock(int refclk
, intel_clock_t
*clock
)
733 clock
->m
= clock
->m2
+ 2;
734 clock
->p
= clock
->p1
* clock
->p2
;
735 clock
->vco
= refclk
* clock
->m
/ clock
->n
;
736 clock
->dot
= clock
->vco
/ clock
->p
;
739 static void intel_clock(struct drm_device
*dev
, int refclk
, intel_clock_t
*clock
)
741 if (IS_PINEVIEW(dev
)) {
742 pineview_clock(refclk
, clock
);
745 clock
->m
= 5 * (clock
->m1
+ 2) + (clock
->m2
+ 2);
746 clock
->p
= clock
->p1
* clock
->p2
;
747 clock
->vco
= refclk
* clock
->m
/ (clock
->n
+ 2);
748 clock
->dot
= clock
->vco
/ clock
->p
;
752 * Returns whether any output on the specified pipe is of the specified type
754 bool intel_pipe_has_type(struct drm_crtc
*crtc
, int type
)
756 struct drm_device
*dev
= crtc
->dev
;
757 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
758 struct intel_encoder
*encoder
;
760 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
)
761 if (encoder
->base
.crtc
== crtc
&& encoder
->type
== type
)
767 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
769 * Returns whether the given set of divisors are valid for a given refclk with
770 * the given connectors.
773 static bool intel_PLL_is_valid(struct drm_crtc
*crtc
, intel_clock_t
*clock
)
775 const intel_limit_t
*limit
= intel_limit (crtc
);
776 struct drm_device
*dev
= crtc
->dev
;
778 if (clock
->p1
< limit
->p1
.min
|| limit
->p1
.max
< clock
->p1
)
779 INTELPllInvalid ("p1 out of range\n");
780 if (clock
->p
< limit
->p
.min
|| limit
->p
.max
< clock
->p
)
781 INTELPllInvalid ("p out of range\n");
782 if (clock
->m2
< limit
->m2
.min
|| limit
->m2
.max
< clock
->m2
)
783 INTELPllInvalid ("m2 out of range\n");
784 if (clock
->m1
< limit
->m1
.min
|| limit
->m1
.max
< clock
->m1
)
785 INTELPllInvalid ("m1 out of range\n");
786 if (clock
->m1
<= clock
->m2
&& !IS_PINEVIEW(dev
))
787 INTELPllInvalid ("m1 <= m2\n");
788 if (clock
->m
< limit
->m
.min
|| limit
->m
.max
< clock
->m
)
789 INTELPllInvalid ("m out of range\n");
790 if (clock
->n
< limit
->n
.min
|| limit
->n
.max
< clock
->n
)
791 INTELPllInvalid ("n out of range\n");
792 if (clock
->vco
< limit
->vco
.min
|| limit
->vco
.max
< clock
->vco
)
793 INTELPllInvalid ("vco out of range\n");
794 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
795 * connector, etc., rather than just a single range.
797 if (clock
->dot
< limit
->dot
.min
|| limit
->dot
.max
< clock
->dot
)
798 INTELPllInvalid ("dot out of range\n");
804 intel_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
805 int target
, int refclk
, intel_clock_t
*best_clock
)
808 struct drm_device
*dev
= crtc
->dev
;
809 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
813 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) &&
814 (I915_READ(LVDS
)) != 0) {
816 * For LVDS, if the panel is on, just rely on its current
817 * settings for dual-channel. We haven't figured out how to
818 * reliably set up different single/dual channel state, if we
821 if ((I915_READ(LVDS
) & LVDS_CLKB_POWER_MASK
) ==
823 clock
.p2
= limit
->p2
.p2_fast
;
825 clock
.p2
= limit
->p2
.p2_slow
;
827 if (target
< limit
->p2
.dot_limit
)
828 clock
.p2
= limit
->p2
.p2_slow
;
830 clock
.p2
= limit
->p2
.p2_fast
;
833 memset (best_clock
, 0, sizeof (*best_clock
));
835 for (clock
.m1
= limit
->m1
.min
; clock
.m1
<= limit
->m1
.max
;
837 for (clock
.m2
= limit
->m2
.min
;
838 clock
.m2
<= limit
->m2
.max
; clock
.m2
++) {
839 /* m1 is always 0 in Pineview */
840 if (clock
.m2
>= clock
.m1
&& !IS_PINEVIEW(dev
))
842 for (clock
.n
= limit
->n
.min
;
843 clock
.n
<= limit
->n
.max
; clock
.n
++) {
844 for (clock
.p1
= limit
->p1
.min
;
845 clock
.p1
<= limit
->p1
.max
; clock
.p1
++) {
848 intel_clock(dev
, refclk
, &clock
);
850 if (!intel_PLL_is_valid(crtc
, &clock
))
853 this_err
= abs(clock
.dot
- target
);
854 if (this_err
< err
) {
863 return (err
!= target
);
867 intel_g4x_find_best_PLL(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
868 int target
, int refclk
, intel_clock_t
*best_clock
)
870 struct drm_device
*dev
= crtc
->dev
;
871 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
875 /* approximately equals target * 0.00585 */
876 int err_most
= (target
>> 8) + (target
>> 9);
879 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
882 if (HAS_PCH_SPLIT(dev
))
886 if ((I915_READ(lvds_reg
) & LVDS_CLKB_POWER_MASK
) ==
888 clock
.p2
= limit
->p2
.p2_fast
;
890 clock
.p2
= limit
->p2
.p2_slow
;
892 if (target
< limit
->p2
.dot_limit
)
893 clock
.p2
= limit
->p2
.p2_slow
;
895 clock
.p2
= limit
->p2
.p2_fast
;
898 memset(best_clock
, 0, sizeof(*best_clock
));
899 max_n
= limit
->n
.max
;
900 /* based on hardware requirement, prefer smaller n to precision */
901 for (clock
.n
= limit
->n
.min
; clock
.n
<= max_n
; clock
.n
++) {
902 /* based on hardware requirement, prefere larger m1,m2 */
903 for (clock
.m1
= limit
->m1
.max
;
904 clock
.m1
>= limit
->m1
.min
; clock
.m1
--) {
905 for (clock
.m2
= limit
->m2
.max
;
906 clock
.m2
>= limit
->m2
.min
; clock
.m2
--) {
907 for (clock
.p1
= limit
->p1
.max
;
908 clock
.p1
>= limit
->p1
.min
; clock
.p1
--) {
911 intel_clock(dev
, refclk
, &clock
);
912 if (!intel_PLL_is_valid(crtc
, &clock
))
914 this_err
= abs(clock
.dot
- target
) ;
915 if (this_err
< err_most
) {
929 intel_find_pll_ironlake_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
930 int target
, int refclk
, intel_clock_t
*best_clock
)
932 struct drm_device
*dev
= crtc
->dev
;
935 if (target
< 200000) {
948 intel_clock(dev
, refclk
, &clock
);
949 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
953 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
955 intel_find_pll_g4x_dp(const intel_limit_t
*limit
, struct drm_crtc
*crtc
,
956 int target
, int refclk
, intel_clock_t
*best_clock
)
959 if (target
< 200000) {
972 clock
.m
= 5 * (clock
.m1
+ 2) + (clock
.m2
+ 2);
973 clock
.p
= (clock
.p1
* clock
.p2
);
974 clock
.dot
= 96000 * clock
.m
/ (clock
.n
+ 2) / clock
.p
;
976 memcpy(best_clock
, &clock
, sizeof(intel_clock_t
));
981 * intel_wait_for_vblank - wait for vblank on a given pipe
983 * @pipe: pipe to wait for
985 * Wait for vblank to occur on a given pipe. Needed for various bits of
988 void intel_wait_for_vblank(struct drm_device
*dev
, int pipe
)
990 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
991 int pipestat_reg
= (pipe
== 0 ? PIPEASTAT
: PIPEBSTAT
);
993 /* Clear existing vblank status. Note this will clear any other
994 * sticky status fields as well.
996 * This races with i915_driver_irq_handler() with the result
997 * that either function could miss a vblank event. Here it is not
998 * fatal, as we will either wait upon the next vblank interrupt or
999 * timeout. Generally speaking intel_wait_for_vblank() is only
1000 * called during modeset at which time the GPU should be idle and
1001 * should *not* be performing page flips and thus not waiting on
1003 * Currently, the result of us stealing a vblank from the irq
1004 * handler is that a single frame will be skipped during swapbuffers.
1006 I915_WRITE(pipestat_reg
,
1007 I915_READ(pipestat_reg
) | PIPE_VBLANK_INTERRUPT_STATUS
);
1009 /* Wait for vblank interrupt bit to set */
1010 if (wait_for(I915_READ(pipestat_reg
) &
1011 PIPE_VBLANK_INTERRUPT_STATUS
,
1013 DRM_DEBUG_KMS("vblank wait timed out\n");
1017 * intel_wait_for_pipe_off - wait for pipe to turn off
1019 * @pipe: pipe to wait for
1021 * After disabling a pipe, we can't wait for vblank in the usual way,
1022 * spinning on the vblank interrupt status bit, since we won't actually
1023 * see an interrupt when the pipe is disabled.
1025 * On Gen4 and above:
1026 * wait for the pipe register state bit to turn off
1029 * wait for the display line value to settle (it usually
1030 * ends up stopping at the start of the next frame).
1033 void intel_wait_for_pipe_off(struct drm_device
*dev
, int pipe
)
1035 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1037 if (INTEL_INFO(dev
)->gen
>= 4) {
1038 int reg
= PIPECONF(pipe
);
1040 /* Wait for the Pipe State to go off */
1041 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0,
1043 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1046 int reg
= PIPEDSL(pipe
);
1047 unsigned long timeout
= jiffies
+ msecs_to_jiffies(100);
1049 /* Wait for the display line to settle */
1051 last_line
= I915_READ(reg
) & DSL_LINEMASK
;
1053 } while (((I915_READ(reg
) & DSL_LINEMASK
) != last_line
) &&
1054 time_after(timeout
, jiffies
));
1055 if (time_after(jiffies
, timeout
))
1056 DRM_DEBUG_KMS("pipe_off wait timed out\n");
1060 static void i8xx_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1062 struct drm_device
*dev
= crtc
->dev
;
1063 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1064 struct drm_framebuffer
*fb
= crtc
->fb
;
1065 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1066 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1067 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1069 u32 fbc_ctl
, fbc_ctl2
;
1071 if (fb
->pitch
== dev_priv
->cfb_pitch
&&
1072 obj_priv
->fence_reg
== dev_priv
->cfb_fence
&&
1073 intel_crtc
->plane
== dev_priv
->cfb_plane
&&
1074 I915_READ(FBC_CONTROL
) & FBC_CTL_EN
)
1077 i8xx_disable_fbc(dev
);
1079 dev_priv
->cfb_pitch
= dev_priv
->cfb_size
/ FBC_LL_SIZE
;
1081 if (fb
->pitch
< dev_priv
->cfb_pitch
)
1082 dev_priv
->cfb_pitch
= fb
->pitch
;
1084 /* FBC_CTL wants 64B units */
1085 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1086 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1087 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1088 plane
= dev_priv
->cfb_plane
== 0 ? FBC_CTL_PLANEA
: FBC_CTL_PLANEB
;
1090 /* Clear old tags */
1091 for (i
= 0; i
< (FBC_LL_SIZE
/ 32) + 1; i
++)
1092 I915_WRITE(FBC_TAG
+ (i
* 4), 0);
1095 fbc_ctl2
= FBC_CTL_FENCE_DBL
| FBC_CTL_IDLE_IMM
| plane
;
1096 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1097 fbc_ctl2
|= FBC_CTL_CPU_FENCE
;
1098 I915_WRITE(FBC_CONTROL2
, fbc_ctl2
);
1099 I915_WRITE(FBC_FENCE_OFF
, crtc
->y
);
1102 fbc_ctl
= FBC_CTL_EN
| FBC_CTL_PERIODIC
;
1104 fbc_ctl
|= FBC_CTL_C3_IDLE
; /* 945 needs special SR handling */
1105 fbc_ctl
|= (dev_priv
->cfb_pitch
& 0xff) << FBC_CTL_STRIDE_SHIFT
;
1106 fbc_ctl
|= (interval
& 0x2fff) << FBC_CTL_INTERVAL_SHIFT
;
1107 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1108 fbc_ctl
|= dev_priv
->cfb_fence
;
1109 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1111 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
1112 dev_priv
->cfb_pitch
, crtc
->y
, dev_priv
->cfb_plane
);
1115 void i8xx_disable_fbc(struct drm_device
*dev
)
1117 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1120 /* Disable compression */
1121 fbc_ctl
= I915_READ(FBC_CONTROL
);
1122 if ((fbc_ctl
& FBC_CTL_EN
) == 0)
1125 fbc_ctl
&= ~FBC_CTL_EN
;
1126 I915_WRITE(FBC_CONTROL
, fbc_ctl
);
1128 /* Wait for compressing bit to clear */
1129 if (wait_for((I915_READ(FBC_STATUS
) & FBC_STAT_COMPRESSING
) == 0, 10)) {
1130 DRM_DEBUG_KMS("FBC idle timed out\n");
1134 DRM_DEBUG_KMS("disabled FBC\n");
1137 static bool i8xx_fbc_enabled(struct drm_device
*dev
)
1139 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1141 return I915_READ(FBC_CONTROL
) & FBC_CTL_EN
;
1144 static void g4x_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1146 struct drm_device
*dev
= crtc
->dev
;
1147 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1148 struct drm_framebuffer
*fb
= crtc
->fb
;
1149 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1150 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1151 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1152 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1153 unsigned long stall_watermark
= 200;
1156 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1157 if (dpfc_ctl
& DPFC_CTL_EN
) {
1158 if (dev_priv
->cfb_pitch
== dev_priv
->cfb_pitch
/ 64 - 1 &&
1159 dev_priv
->cfb_fence
== obj_priv
->fence_reg
&&
1160 dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1161 dev_priv
->cfb_y
== crtc
->y
)
1164 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
& ~DPFC_CTL_EN
);
1165 POSTING_READ(DPFC_CONTROL
);
1166 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
1169 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1170 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1171 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1172 dev_priv
->cfb_y
= crtc
->y
;
1174 dpfc_ctl
= plane
| DPFC_SR_EN
| DPFC_CTL_LIMIT_1X
;
1175 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1176 dpfc_ctl
|= DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
;
1177 I915_WRITE(DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1179 I915_WRITE(DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1182 I915_WRITE(DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1183 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1184 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1185 I915_WRITE(DPFC_FENCE_YOFF
, crtc
->y
);
1188 I915_WRITE(DPFC_CONTROL
, I915_READ(DPFC_CONTROL
) | DPFC_CTL_EN
);
1190 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1193 void g4x_disable_fbc(struct drm_device
*dev
)
1195 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1198 /* Disable compression */
1199 dpfc_ctl
= I915_READ(DPFC_CONTROL
);
1200 if (dpfc_ctl
& DPFC_CTL_EN
) {
1201 dpfc_ctl
&= ~DPFC_CTL_EN
;
1202 I915_WRITE(DPFC_CONTROL
, dpfc_ctl
);
1204 DRM_DEBUG_KMS("disabled FBC\n");
1208 static bool g4x_fbc_enabled(struct drm_device
*dev
)
1210 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1212 return I915_READ(DPFC_CONTROL
) & DPFC_CTL_EN
;
1215 static void ironlake_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1217 struct drm_device
*dev
= crtc
->dev
;
1218 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1219 struct drm_framebuffer
*fb
= crtc
->fb
;
1220 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
1221 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(intel_fb
->obj
);
1222 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1223 int plane
= intel_crtc
->plane
== 0 ? DPFC_CTL_PLANEA
: DPFC_CTL_PLANEB
;
1224 unsigned long stall_watermark
= 200;
1227 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1228 if (dpfc_ctl
& DPFC_CTL_EN
) {
1229 if (dev_priv
->cfb_pitch
== dev_priv
->cfb_pitch
/ 64 - 1 &&
1230 dev_priv
->cfb_fence
== obj_priv
->fence_reg
&&
1231 dev_priv
->cfb_plane
== intel_crtc
->plane
&&
1232 dev_priv
->cfb_offset
== obj_priv
->gtt_offset
&&
1233 dev_priv
->cfb_y
== crtc
->y
)
1236 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
& ~DPFC_CTL_EN
);
1237 POSTING_READ(ILK_DPFC_CONTROL
);
1238 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
1241 dev_priv
->cfb_pitch
= (dev_priv
->cfb_pitch
/ 64) - 1;
1242 dev_priv
->cfb_fence
= obj_priv
->fence_reg
;
1243 dev_priv
->cfb_plane
= intel_crtc
->plane
;
1244 dev_priv
->cfb_offset
= obj_priv
->gtt_offset
;
1245 dev_priv
->cfb_y
= crtc
->y
;
1247 dpfc_ctl
&= DPFC_RESERVED
;
1248 dpfc_ctl
|= (plane
| DPFC_CTL_LIMIT_1X
);
1249 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1250 dpfc_ctl
|= (DPFC_CTL_FENCE_EN
| dev_priv
->cfb_fence
);
1251 I915_WRITE(ILK_DPFC_CHICKEN
, DPFC_HT_MODIFY
);
1253 I915_WRITE(ILK_DPFC_CHICKEN
, ~DPFC_HT_MODIFY
);
1256 I915_WRITE(ILK_DPFC_RECOMP_CTL
, DPFC_RECOMP_STALL_EN
|
1257 (stall_watermark
<< DPFC_RECOMP_STALL_WM_SHIFT
) |
1258 (interval
<< DPFC_RECOMP_TIMER_COUNT_SHIFT
));
1259 I915_WRITE(ILK_DPFC_FENCE_YOFF
, crtc
->y
);
1260 I915_WRITE(ILK_FBC_RT_BASE
, obj_priv
->gtt_offset
| ILK_FBC_RT_VALID
);
1262 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
| DPFC_CTL_EN
);
1264 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc
->plane
);
1267 void ironlake_disable_fbc(struct drm_device
*dev
)
1269 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1272 /* Disable compression */
1273 dpfc_ctl
= I915_READ(ILK_DPFC_CONTROL
);
1274 if (dpfc_ctl
& DPFC_CTL_EN
) {
1275 dpfc_ctl
&= ~DPFC_CTL_EN
;
1276 I915_WRITE(ILK_DPFC_CONTROL
, dpfc_ctl
);
1278 DRM_DEBUG_KMS("disabled FBC\n");
1282 static bool ironlake_fbc_enabled(struct drm_device
*dev
)
1284 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1286 return I915_READ(ILK_DPFC_CONTROL
) & DPFC_CTL_EN
;
1289 bool intel_fbc_enabled(struct drm_device
*dev
)
1291 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1293 if (!dev_priv
->display
.fbc_enabled
)
1296 return dev_priv
->display
.fbc_enabled(dev
);
1299 void intel_enable_fbc(struct drm_crtc
*crtc
, unsigned long interval
)
1301 struct drm_i915_private
*dev_priv
= crtc
->dev
->dev_private
;
1303 if (!dev_priv
->display
.enable_fbc
)
1306 dev_priv
->display
.enable_fbc(crtc
, interval
);
1309 void intel_disable_fbc(struct drm_device
*dev
)
1311 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1313 if (!dev_priv
->display
.disable_fbc
)
1316 dev_priv
->display
.disable_fbc(dev
);
1320 * intel_update_fbc - enable/disable FBC as needed
1321 * @dev: the drm_device
1323 * Set up the framebuffer compression hardware at mode set time. We
1324 * enable it if possible:
1325 * - plane A only (on pre-965)
1326 * - no pixel mulitply/line duplication
1327 * - no alpha buffer discard
1329 * - framebuffer <= 2048 in width, 1536 in height
1331 * We can't assume that any compression will take place (worst case),
1332 * so the compressed buffer has to be the same size as the uncompressed
1333 * one. It also must reside (along with the line length buffer) in
1336 * We need to enable/disable FBC on a global basis.
1338 static void intel_update_fbc(struct drm_device
*dev
)
1340 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1341 struct drm_crtc
*crtc
= NULL
, *tmp_crtc
;
1342 struct intel_crtc
*intel_crtc
;
1343 struct drm_framebuffer
*fb
;
1344 struct intel_framebuffer
*intel_fb
;
1345 struct drm_i915_gem_object
*obj_priv
;
1347 DRM_DEBUG_KMS("\n");
1349 if (!i915_powersave
)
1352 if (!I915_HAS_FBC(dev
))
1356 * If FBC is already on, we just have to verify that we can
1357 * keep it that way...
1358 * Need to disable if:
1359 * - more than one pipe is active
1360 * - changing FBC params (stride, fence, mode)
1361 * - new fb is too large to fit in compressed buffer
1362 * - going to an unsupported config (interlace, pixel multiply, etc.)
1364 list_for_each_entry(tmp_crtc
, &dev
->mode_config
.crtc_list
, head
) {
1365 if (tmp_crtc
->enabled
) {
1367 DRM_DEBUG_KMS("more than one pipe active, disabling compression\n");
1368 dev_priv
->no_fbc_reason
= FBC_MULTIPLE_PIPES
;
1375 if (!crtc
|| crtc
->fb
== NULL
) {
1376 DRM_DEBUG_KMS("no output, disabling\n");
1377 dev_priv
->no_fbc_reason
= FBC_NO_OUTPUT
;
1381 intel_crtc
= to_intel_crtc(crtc
);
1383 intel_fb
= to_intel_framebuffer(fb
);
1384 obj_priv
= to_intel_bo(intel_fb
->obj
);
1386 if (intel_fb
->obj
->size
> dev_priv
->cfb_size
) {
1387 DRM_DEBUG_KMS("framebuffer too large, disabling "
1389 dev_priv
->no_fbc_reason
= FBC_STOLEN_TOO_SMALL
;
1392 if ((crtc
->mode
.flags
& DRM_MODE_FLAG_INTERLACE
) ||
1393 (crtc
->mode
.flags
& DRM_MODE_FLAG_DBLSCAN
)) {
1394 DRM_DEBUG_KMS("mode incompatible with compression, "
1396 dev_priv
->no_fbc_reason
= FBC_UNSUPPORTED_MODE
;
1399 if ((crtc
->mode
.hdisplay
> 2048) ||
1400 (crtc
->mode
.vdisplay
> 1536)) {
1401 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1402 dev_priv
->no_fbc_reason
= FBC_MODE_TOO_LARGE
;
1405 if ((IS_I915GM(dev
) || IS_I945GM(dev
)) && intel_crtc
->plane
!= 0) {
1406 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1407 dev_priv
->no_fbc_reason
= FBC_BAD_PLANE
;
1410 if (obj_priv
->tiling_mode
!= I915_TILING_X
) {
1411 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1412 dev_priv
->no_fbc_reason
= FBC_NOT_TILED
;
1416 /* If the kernel debugger is active, always disable compression */
1417 if (in_dbg_master())
1420 intel_enable_fbc(crtc
, 500);
1424 /* Multiple disables should be harmless */
1425 if (intel_fbc_enabled(dev
)) {
1426 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1427 intel_disable_fbc(dev
);
1432 intel_pin_and_fence_fb_obj(struct drm_device
*dev
,
1433 struct drm_gem_object
*obj
,
1436 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
1440 switch (obj_priv
->tiling_mode
) {
1441 case I915_TILING_NONE
:
1442 if (IS_BROADWATER(dev
) || IS_CRESTLINE(dev
))
1443 alignment
= 128 * 1024;
1444 else if (INTEL_INFO(dev
)->gen
>= 4)
1445 alignment
= 4 * 1024;
1447 alignment
= 64 * 1024;
1450 /* pin() will align the object as required by fence */
1454 /* FIXME: Is this true? */
1455 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1461 ret
= i915_gem_object_pin(obj
, alignment
);
1465 ret
= i915_gem_object_set_to_display_plane(obj
, pipelined
);
1469 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1470 * fence, whereas 965+ only requires a fence if using
1471 * framebuffer compression. For simplicity, we always install
1472 * a fence as the cost is not that onerous.
1474 if (obj_priv
->fence_reg
== I915_FENCE_REG_NONE
&&
1475 obj_priv
->tiling_mode
!= I915_TILING_NONE
) {
1476 ret
= i915_gem_object_get_fence_reg(obj
, false);
1484 i915_gem_object_unpin(obj
);
1488 /* Assume fb object is pinned & idle & fenced and just update base pointers */
1490 intel_pipe_set_base_atomic(struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
1491 int x
, int y
, int enter
)
1493 struct drm_device
*dev
= crtc
->dev
;
1494 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1495 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1496 struct intel_framebuffer
*intel_fb
;
1497 struct drm_i915_gem_object
*obj_priv
;
1498 struct drm_gem_object
*obj
;
1499 int plane
= intel_crtc
->plane
;
1500 unsigned long Start
, Offset
;
1509 DRM_ERROR("Can't update plane %d in SAREA\n", plane
);
1513 intel_fb
= to_intel_framebuffer(fb
);
1514 obj
= intel_fb
->obj
;
1515 obj_priv
= to_intel_bo(obj
);
1517 reg
= DSPCNTR(plane
);
1518 dspcntr
= I915_READ(reg
);
1519 /* Mask out pixel format bits in case we change it */
1520 dspcntr
&= ~DISPPLANE_PIXFORMAT_MASK
;
1521 switch (fb
->bits_per_pixel
) {
1523 dspcntr
|= DISPPLANE_8BPP
;
1526 if (fb
->depth
== 15)
1527 dspcntr
|= DISPPLANE_15_16BPP
;
1529 dspcntr
|= DISPPLANE_16BPP
;
1533 dspcntr
|= DISPPLANE_32BPP_NO_ALPHA
;
1536 DRM_ERROR("Unknown color depth\n");
1539 if (INTEL_INFO(dev
)->gen
>= 4) {
1540 if (obj_priv
->tiling_mode
!= I915_TILING_NONE
)
1541 dspcntr
|= DISPPLANE_TILED
;
1543 dspcntr
&= ~DISPPLANE_TILED
;
1546 if (HAS_PCH_SPLIT(dev
))
1548 dspcntr
|= DISPPLANE_TRICKLE_FEED_DISABLE
;
1550 I915_WRITE(reg
, dspcntr
);
1552 Start
= obj_priv
->gtt_offset
;
1553 Offset
= y
* fb
->pitch
+ x
* (fb
->bits_per_pixel
/ 8);
1555 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d %d\n",
1556 Start
, Offset
, x
, y
, fb
->pitch
);
1557 I915_WRITE(DSPSTRIDE(plane
), fb
->pitch
);
1558 if (INTEL_INFO(dev
)->gen
>= 4) {
1559 I915_WRITE(DSPSURF(plane
), Start
);
1560 I915_WRITE(DSPTILEOFF(plane
), (y
<< 16) | x
);
1561 I915_WRITE(DSPADDR(plane
), Offset
);
1563 I915_WRITE(DSPADDR(plane
), Start
+ Offset
);
1566 intel_update_fbc(dev
);
1567 intel_increase_pllclock(crtc
);
1573 intel_pipe_set_base(struct drm_crtc
*crtc
, int x
, int y
,
1574 struct drm_framebuffer
*old_fb
)
1576 struct drm_device
*dev
= crtc
->dev
;
1577 struct drm_i915_master_private
*master_priv
;
1578 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1583 DRM_DEBUG_KMS("No FB bound\n");
1587 switch (intel_crtc
->plane
) {
1595 mutex_lock(&dev
->struct_mutex
);
1596 ret
= intel_pin_and_fence_fb_obj(dev
,
1597 to_intel_framebuffer(crtc
->fb
)->obj
,
1600 mutex_unlock(&dev
->struct_mutex
);
1605 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1606 struct drm_gem_object
*obj
= to_intel_framebuffer(old_fb
)->obj
;
1607 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
1609 wait_event(dev_priv
->pending_flip_queue
,
1610 atomic_read(&obj_priv
->pending_flip
) == 0);
1613 ret
= intel_pipe_set_base_atomic(crtc
, crtc
->fb
, x
, y
, 0);
1615 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
1616 mutex_unlock(&dev
->struct_mutex
);
1621 i915_gem_object_unpin(to_intel_framebuffer(old_fb
)->obj
);
1623 mutex_unlock(&dev
->struct_mutex
);
1625 if (!dev
->primary
->master
)
1628 master_priv
= dev
->primary
->master
->driver_priv
;
1629 if (!master_priv
->sarea_priv
)
1632 if (intel_crtc
->pipe
) {
1633 master_priv
->sarea_priv
->pipeB_x
= x
;
1634 master_priv
->sarea_priv
->pipeB_y
= y
;
1636 master_priv
->sarea_priv
->pipeA_x
= x
;
1637 master_priv
->sarea_priv
->pipeA_y
= y
;
1643 static void ironlake_set_pll_edp(struct drm_crtc
*crtc
, int clock
)
1645 struct drm_device
*dev
= crtc
->dev
;
1646 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1649 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock
);
1650 dpa_ctl
= I915_READ(DP_A
);
1651 dpa_ctl
&= ~DP_PLL_FREQ_MASK
;
1653 if (clock
< 200000) {
1655 dpa_ctl
|= DP_PLL_FREQ_160MHZ
;
1656 /* workaround for 160Mhz:
1657 1) program 0x4600c bits 15:0 = 0x8124
1658 2) program 0x46010 bit 0 = 1
1659 3) program 0x46034 bit 24 = 1
1660 4) program 0x64000 bit 14 = 1
1662 temp
= I915_READ(0x4600c);
1664 I915_WRITE(0x4600c, temp
| 0x8124);
1666 temp
= I915_READ(0x46010);
1667 I915_WRITE(0x46010, temp
| 1);
1669 temp
= I915_READ(0x46034);
1670 I915_WRITE(0x46034, temp
| (1 << 24));
1672 dpa_ctl
|= DP_PLL_FREQ_270MHZ
;
1674 I915_WRITE(DP_A
, dpa_ctl
);
1680 /* The FDI link training functions for ILK/Ibexpeak. */
1681 static void ironlake_fdi_link_train(struct drm_crtc
*crtc
)
1683 struct drm_device
*dev
= crtc
->dev
;
1684 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1685 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1686 int pipe
= intel_crtc
->pipe
;
1687 u32 reg
, temp
, tries
;
1689 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1691 reg
= FDI_RX_IMR(pipe
);
1692 temp
= I915_READ(reg
);
1693 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1694 temp
&= ~FDI_RX_BIT_LOCK
;
1695 I915_WRITE(reg
, temp
);
1699 /* enable CPU FDI TX and PCH FDI RX */
1700 reg
= FDI_TX_CTL(pipe
);
1701 temp
= I915_READ(reg
);
1703 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
1704 temp
&= ~FDI_LINK_TRAIN_NONE
;
1705 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1706 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
1708 reg
= FDI_RX_CTL(pipe
);
1709 temp
= I915_READ(reg
);
1710 temp
&= ~FDI_LINK_TRAIN_NONE
;
1711 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1712 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
1717 /* Ironlake workaround, enable clock pointer after FDI enable*/
1718 I915_WRITE(FDI_RX_CHICKEN(pipe
), FDI_RX_PHASE_SYNC_POINTER_ENABLE
);
1720 reg
= FDI_RX_IIR(pipe
);
1721 for (tries
= 0; tries
< 5; tries
++) {
1722 temp
= I915_READ(reg
);
1723 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1725 if ((temp
& FDI_RX_BIT_LOCK
)) {
1726 DRM_DEBUG_KMS("FDI train 1 done.\n");
1727 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
1732 DRM_ERROR("FDI train 1 fail!\n");
1735 reg
= FDI_TX_CTL(pipe
);
1736 temp
= I915_READ(reg
);
1737 temp
&= ~FDI_LINK_TRAIN_NONE
;
1738 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1739 I915_WRITE(reg
, temp
);
1741 reg
= FDI_RX_CTL(pipe
);
1742 temp
= I915_READ(reg
);
1743 temp
&= ~FDI_LINK_TRAIN_NONE
;
1744 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1745 I915_WRITE(reg
, temp
);
1750 reg
= FDI_RX_IIR(pipe
);
1751 for (tries
= 0; tries
< 5; tries
++) {
1752 temp
= I915_READ(reg
);
1753 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1755 if (temp
& FDI_RX_SYMBOL_LOCK
) {
1756 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
1757 DRM_DEBUG_KMS("FDI train 2 done.\n");
1762 DRM_ERROR("FDI train 2 fail!\n");
1764 DRM_DEBUG_KMS("FDI train done\n");
1766 /* enable normal train */
1767 reg
= FDI_TX_CTL(pipe
);
1768 temp
= I915_READ(reg
);
1769 temp
&= ~FDI_LINK_TRAIN_NONE
;
1770 temp
|= FDI_LINK_TRAIN_NONE
| FDI_TX_ENHANCE_FRAME_ENABLE
;
1771 I915_WRITE(reg
, temp
);
1773 reg
= FDI_RX_CTL(pipe
);
1774 temp
= I915_READ(reg
);
1775 if (HAS_PCH_CPT(dev
)) {
1776 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
1777 temp
|= FDI_LINK_TRAIN_NORMAL_CPT
;
1779 temp
&= ~FDI_LINK_TRAIN_NONE
;
1780 temp
|= FDI_LINK_TRAIN_NONE
;
1782 I915_WRITE(reg
, temp
| FDI_RX_ENHANCE_FRAME_ENABLE
);
1784 /* wait one idle pattern time */
1789 static const int const snb_b_fdi_train_param
[] = {
1790 FDI_LINK_TRAIN_400MV_0DB_SNB_B
,
1791 FDI_LINK_TRAIN_400MV_6DB_SNB_B
,
1792 FDI_LINK_TRAIN_600MV_3_5DB_SNB_B
,
1793 FDI_LINK_TRAIN_800MV_0DB_SNB_B
,
1796 /* The FDI link training functions for SNB/Cougarpoint. */
1797 static void gen6_fdi_link_train(struct drm_crtc
*crtc
)
1799 struct drm_device
*dev
= crtc
->dev
;
1800 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1801 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1802 int pipe
= intel_crtc
->pipe
;
1805 /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
1807 reg
= FDI_RX_IMR(pipe
);
1808 temp
= I915_READ(reg
);
1809 temp
&= ~FDI_RX_SYMBOL_LOCK
;
1810 temp
&= ~FDI_RX_BIT_LOCK
;
1811 I915_WRITE(reg
, temp
);
1816 /* enable CPU FDI TX and PCH FDI RX */
1817 reg
= FDI_TX_CTL(pipe
);
1818 temp
= I915_READ(reg
);
1820 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
1821 temp
&= ~FDI_LINK_TRAIN_NONE
;
1822 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1823 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1825 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
1826 I915_WRITE(reg
, temp
| FDI_TX_ENABLE
);
1828 reg
= FDI_RX_CTL(pipe
);
1829 temp
= I915_READ(reg
);
1830 if (HAS_PCH_CPT(dev
)) {
1831 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
1832 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
1834 temp
&= ~FDI_LINK_TRAIN_NONE
;
1835 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
1837 I915_WRITE(reg
, temp
| FDI_RX_ENABLE
);
1842 for (i
= 0; i
< 4; i
++ ) {
1843 reg
= FDI_TX_CTL(pipe
);
1844 temp
= I915_READ(reg
);
1845 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1846 temp
|= snb_b_fdi_train_param
[i
];
1847 I915_WRITE(reg
, temp
);
1852 reg
= FDI_RX_IIR(pipe
);
1853 temp
= I915_READ(reg
);
1854 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1856 if (temp
& FDI_RX_BIT_LOCK
) {
1857 I915_WRITE(reg
, temp
| FDI_RX_BIT_LOCK
);
1858 DRM_DEBUG_KMS("FDI train 1 done.\n");
1863 DRM_ERROR("FDI train 1 fail!\n");
1866 reg
= FDI_TX_CTL(pipe
);
1867 temp
= I915_READ(reg
);
1868 temp
&= ~FDI_LINK_TRAIN_NONE
;
1869 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1871 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1873 temp
|= FDI_LINK_TRAIN_400MV_0DB_SNB_B
;
1875 I915_WRITE(reg
, temp
);
1877 reg
= FDI_RX_CTL(pipe
);
1878 temp
= I915_READ(reg
);
1879 if (HAS_PCH_CPT(dev
)) {
1880 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
1881 temp
|= FDI_LINK_TRAIN_PATTERN_2_CPT
;
1883 temp
&= ~FDI_LINK_TRAIN_NONE
;
1884 temp
|= FDI_LINK_TRAIN_PATTERN_2
;
1886 I915_WRITE(reg
, temp
);
1891 for (i
= 0; i
< 4; i
++ ) {
1892 reg
= FDI_TX_CTL(pipe
);
1893 temp
= I915_READ(reg
);
1894 temp
&= ~FDI_LINK_TRAIN_VOL_EMP_MASK
;
1895 temp
|= snb_b_fdi_train_param
[i
];
1896 I915_WRITE(reg
, temp
);
1901 reg
= FDI_RX_IIR(pipe
);
1902 temp
= I915_READ(reg
);
1903 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp
);
1905 if (temp
& FDI_RX_SYMBOL_LOCK
) {
1906 I915_WRITE(reg
, temp
| FDI_RX_SYMBOL_LOCK
);
1907 DRM_DEBUG_KMS("FDI train 2 done.\n");
1912 DRM_ERROR("FDI train 2 fail!\n");
1914 DRM_DEBUG_KMS("FDI train done.\n");
1917 static void ironlake_fdi_enable(struct drm_crtc
*crtc
)
1919 struct drm_device
*dev
= crtc
->dev
;
1920 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1921 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
1922 int pipe
= intel_crtc
->pipe
;
1925 /* Write the TU size bits so error detection works */
1926 I915_WRITE(FDI_RX_TUSIZE1(pipe
),
1927 I915_READ(PIPE_DATA_M1(pipe
)) & TU_SIZE_MASK
);
1929 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1930 reg
= FDI_RX_CTL(pipe
);
1931 temp
= I915_READ(reg
);
1932 temp
&= ~((0x7 << 19) | (0x7 << 16));
1933 temp
|= (intel_crtc
->fdi_lanes
- 1) << 19;
1934 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
1935 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
1940 /* Switch from Rawclk to PCDclk */
1941 temp
= I915_READ(reg
);
1942 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
1947 /* Enable CPU FDI TX PLL, always on for Ironlake */
1948 reg
= FDI_TX_CTL(pipe
);
1949 temp
= I915_READ(reg
);
1950 if ((temp
& FDI_TX_PLL_ENABLE
) == 0) {
1951 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
1958 static void intel_flush_display_plane(struct drm_device
*dev
,
1961 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1962 u32 reg
= DSPADDR(plane
);
1963 I915_WRITE(reg
, I915_READ(reg
));
1967 * When we disable a pipe, we need to clear any pending scanline wait events
1968 * to avoid hanging the ring, which we assume we are waiting on.
1970 static void intel_clear_scanline_wait(struct drm_device
*dev
)
1972 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
1976 /* Can't break the hang on i8xx */
1979 tmp
= I915_READ(PRB0_CTL
);
1980 if (tmp
& RING_WAIT
) {
1981 I915_WRITE(PRB0_CTL
, tmp
);
1982 POSTING_READ(PRB0_CTL
);
1986 static void intel_crtc_wait_for_pending_flips(struct drm_crtc
*crtc
)
1988 struct drm_i915_gem_object
*obj_priv
;
1989 struct drm_i915_private
*dev_priv
;
1991 if (crtc
->fb
== NULL
)
1994 obj_priv
= to_intel_bo(to_intel_framebuffer(crtc
->fb
)->obj
);
1995 dev_priv
= crtc
->dev
->dev_private
;
1996 wait_event(dev_priv
->pending_flip_queue
,
1997 atomic_read(&obj_priv
->pending_flip
) == 0);
2000 static void ironlake_crtc_enable(struct drm_crtc
*crtc
)
2002 struct drm_device
*dev
= crtc
->dev
;
2003 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2004 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2005 int pipe
= intel_crtc
->pipe
;
2006 int plane
= intel_crtc
->plane
;
2009 if (intel_crtc
->active
)
2012 intel_crtc
->active
= true;
2013 intel_update_watermarks(dev
);
2015 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
2016 temp
= I915_READ(PCH_LVDS
);
2017 if ((temp
& LVDS_PORT_EN
) == 0)
2018 I915_WRITE(PCH_LVDS
, temp
| LVDS_PORT_EN
);
2021 ironlake_fdi_enable(crtc
);
2023 /* Enable panel fitting for LVDS */
2024 if (dev_priv
->pch_pf_size
&&
2025 (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
) || HAS_eDP
)) {
2026 /* Force use of hard-coded filter coefficients
2027 * as some pre-programmed values are broken,
2030 I915_WRITE(pipe
? PFB_CTL_1
: PFA_CTL_1
,
2031 PF_ENABLE
| PF_FILTER_MED_3x3
);
2032 I915_WRITE(pipe
? PFB_WIN_POS
: PFA_WIN_POS
,
2033 dev_priv
->pch_pf_pos
);
2034 I915_WRITE(pipe
? PFB_WIN_SZ
: PFA_WIN_SZ
,
2035 dev_priv
->pch_pf_size
);
2038 /* Enable CPU pipe */
2039 reg
= PIPECONF(pipe
);
2040 temp
= I915_READ(reg
);
2041 if ((temp
& PIPECONF_ENABLE
) == 0) {
2042 I915_WRITE(reg
, temp
| PIPECONF_ENABLE
);
2047 /* configure and enable CPU plane */
2048 reg
= DSPCNTR(plane
);
2049 temp
= I915_READ(reg
);
2050 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
2051 I915_WRITE(reg
, temp
| DISPLAY_PLANE_ENABLE
);
2052 intel_flush_display_plane(dev
, plane
);
2055 /* For PCH output, training FDI link */
2057 gen6_fdi_link_train(crtc
);
2059 ironlake_fdi_link_train(crtc
);
2061 /* enable PCH DPLL */
2062 reg
= PCH_DPLL(pipe
);
2063 temp
= I915_READ(reg
);
2064 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
2065 I915_WRITE(reg
, temp
| DPLL_VCO_ENABLE
);
2070 if (HAS_PCH_CPT(dev
)) {
2071 /* Be sure PCH DPLL SEL is set */
2072 temp
= I915_READ(PCH_DPLL_SEL
);
2073 if (pipe
== 0 && (temp
& TRANSA_DPLL_ENABLE
) == 0)
2074 temp
|= (TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
);
2075 else if (pipe
== 1 && (temp
& TRANSB_DPLL_ENABLE
) == 0)
2076 temp
|= (TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2077 I915_WRITE(PCH_DPLL_SEL
, temp
);
2080 /* set transcoder timing */
2081 I915_WRITE(TRANS_HTOTAL(pipe
), I915_READ(HTOTAL(pipe
)));
2082 I915_WRITE(TRANS_HBLANK(pipe
), I915_READ(HBLANK(pipe
)));
2083 I915_WRITE(TRANS_HSYNC(pipe
), I915_READ(HSYNC(pipe
)));
2085 I915_WRITE(TRANS_VTOTAL(pipe
), I915_READ(VTOTAL(pipe
)));
2086 I915_WRITE(TRANS_VBLANK(pipe
), I915_READ(VBLANK(pipe
)));
2087 I915_WRITE(TRANS_VSYNC(pipe
), I915_READ(VSYNC(pipe
)));
2089 /* For PCH DP, enable TRANS_DP_CTL */
2090 if (HAS_PCH_CPT(dev
) &&
2091 intel_pipe_has_type(crtc
, INTEL_OUTPUT_DISPLAYPORT
)) {
2092 reg
= TRANS_DP_CTL(pipe
);
2093 temp
= I915_READ(reg
);
2094 temp
&= ~(TRANS_DP_PORT_SEL_MASK
|
2095 TRANS_DP_SYNC_MASK
);
2096 temp
|= (TRANS_DP_OUTPUT_ENABLE
|
2097 TRANS_DP_ENH_FRAMING
);
2099 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PHSYNC
)
2100 temp
|= TRANS_DP_HSYNC_ACTIVE_HIGH
;
2101 if (crtc
->mode
.flags
& DRM_MODE_FLAG_PVSYNC
)
2102 temp
|= TRANS_DP_VSYNC_ACTIVE_HIGH
;
2104 switch (intel_trans_dp_port_sel(crtc
)) {
2106 temp
|= TRANS_DP_PORT_SEL_B
;
2109 temp
|= TRANS_DP_PORT_SEL_C
;
2112 temp
|= TRANS_DP_PORT_SEL_D
;
2115 DRM_DEBUG_KMS("Wrong PCH DP port return. Guess port B\n");
2116 temp
|= TRANS_DP_PORT_SEL_B
;
2120 I915_WRITE(reg
, temp
);
2123 /* enable PCH transcoder */
2124 reg
= TRANSCONF(pipe
);
2125 temp
= I915_READ(reg
);
2127 * make the BPC in transcoder be consistent with
2128 * that in pipeconf reg.
2130 temp
&= ~PIPE_BPC_MASK
;
2131 temp
|= I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
;
2132 I915_WRITE(reg
, temp
| TRANS_ENABLE
);
2133 if (wait_for(I915_READ(reg
) & TRANS_STATE_ENABLE
, 100))
2134 DRM_ERROR("failed to enable transcoder\n");
2136 intel_crtc_load_lut(crtc
);
2137 intel_update_fbc(dev
);
2138 intel_crtc_update_cursor(crtc
, true);
2141 static void ironlake_crtc_disable(struct drm_crtc
*crtc
)
2143 struct drm_device
*dev
= crtc
->dev
;
2144 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2145 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2146 int pipe
= intel_crtc
->pipe
;
2147 int plane
= intel_crtc
->plane
;
2150 if (!intel_crtc
->active
)
2153 intel_crtc_wait_for_pending_flips(crtc
);
2154 drm_vblank_off(dev
, pipe
);
2155 intel_crtc_update_cursor(crtc
, false);
2157 /* Disable display plane */
2158 reg
= DSPCNTR(plane
);
2159 temp
= I915_READ(reg
);
2160 if (temp
& DISPLAY_PLANE_ENABLE
) {
2161 I915_WRITE(reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
2162 intel_flush_display_plane(dev
, plane
);
2165 if (dev_priv
->cfb_plane
== plane
&&
2166 dev_priv
->display
.disable_fbc
)
2167 dev_priv
->display
.disable_fbc(dev
);
2169 /* disable cpu pipe, disable after all planes disabled */
2170 reg
= PIPECONF(pipe
);
2171 temp
= I915_READ(reg
);
2172 if (temp
& PIPECONF_ENABLE
) {
2173 I915_WRITE(reg
, temp
& ~PIPECONF_ENABLE
);
2174 /* wait for cpu pipe off, pipe state */
2175 if (wait_for((I915_READ(reg
) & I965_PIPECONF_ACTIVE
) == 0, 50))
2176 DRM_ERROR("failed to turn off cpu pipe\n");
2180 I915_WRITE(pipe
? PFB_CTL_1
: PFA_CTL_1
, 0);
2181 I915_WRITE(pipe
? PFB_WIN_SZ
: PFA_WIN_SZ
, 0);
2183 /* disable CPU FDI tx and PCH FDI rx */
2184 reg
= FDI_TX_CTL(pipe
);
2185 temp
= I915_READ(reg
);
2186 I915_WRITE(reg
, temp
& ~FDI_TX_ENABLE
);
2189 reg
= FDI_RX_CTL(pipe
);
2190 temp
= I915_READ(reg
);
2191 temp
&= ~(0x7 << 16);
2192 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2193 I915_WRITE(reg
, temp
& ~FDI_RX_ENABLE
);
2198 /* Ironlake workaround, disable clock pointer after downing FDI */
2199 I915_WRITE(FDI_RX_CHICKEN(pipe
),
2200 I915_READ(FDI_RX_CHICKEN(pipe
) &
2201 ~FDI_RX_PHASE_SYNC_POINTER_ENABLE
));
2203 /* still set train pattern 1 */
2204 reg
= FDI_TX_CTL(pipe
);
2205 temp
= I915_READ(reg
);
2206 temp
&= ~FDI_LINK_TRAIN_NONE
;
2207 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2208 I915_WRITE(reg
, temp
);
2210 reg
= FDI_RX_CTL(pipe
);
2211 temp
= I915_READ(reg
);
2212 if (HAS_PCH_CPT(dev
)) {
2213 temp
&= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT
;
2214 temp
|= FDI_LINK_TRAIN_PATTERN_1_CPT
;
2216 temp
&= ~FDI_LINK_TRAIN_NONE
;
2217 temp
|= FDI_LINK_TRAIN_PATTERN_1
;
2219 /* BPC in FDI rx is consistent with that in PIPECONF */
2220 temp
&= ~(0x07 << 16);
2221 temp
|= (I915_READ(PIPECONF(pipe
)) & PIPE_BPC_MASK
) << 11;
2222 I915_WRITE(reg
, temp
);
2227 if (intel_pipe_has_type(crtc
, INTEL_OUTPUT_LVDS
)) {
2228 temp
= I915_READ(PCH_LVDS
);
2229 if (temp
& LVDS_PORT_EN
) {
2230 I915_WRITE(PCH_LVDS
, temp
& ~LVDS_PORT_EN
);
2231 POSTING_READ(PCH_LVDS
);
2236 /* disable PCH transcoder */
2237 reg
= TRANSCONF(plane
);
2238 temp
= I915_READ(reg
);
2239 if (temp
& TRANS_ENABLE
) {
2240 I915_WRITE(reg
, temp
& ~TRANS_ENABLE
);
2241 /* wait for PCH transcoder off, transcoder state */
2242 if (wait_for((I915_READ(reg
) & TRANS_STATE_ENABLE
) == 0, 50))
2243 DRM_ERROR("failed to disable transcoder\n");
2246 if (HAS_PCH_CPT(dev
)) {
2247 /* disable TRANS_DP_CTL */
2248 reg
= TRANS_DP_CTL(pipe
);
2249 temp
= I915_READ(reg
);
2250 temp
&= ~(TRANS_DP_OUTPUT_ENABLE
| TRANS_DP_PORT_SEL_MASK
);
2251 I915_WRITE(reg
, temp
);
2253 /* disable DPLL_SEL */
2254 temp
= I915_READ(PCH_DPLL_SEL
);
2256 temp
&= ~(TRANSA_DPLL_ENABLE
| TRANSA_DPLLB_SEL
);
2258 temp
&= ~(TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
);
2259 I915_WRITE(PCH_DPLL_SEL
, temp
);
2262 /* disable PCH DPLL */
2263 reg
= PCH_DPLL(pipe
);
2264 temp
= I915_READ(reg
);
2265 I915_WRITE(reg
, temp
& ~DPLL_VCO_ENABLE
);
2267 /* Switch from PCDclk to Rawclk */
2268 reg
= FDI_RX_CTL(pipe
);
2269 temp
= I915_READ(reg
);
2270 I915_WRITE(reg
, temp
& ~FDI_PCDCLK
);
2272 /* Disable CPU FDI TX PLL */
2273 reg
= FDI_TX_CTL(pipe
);
2274 temp
= I915_READ(reg
);
2275 I915_WRITE(reg
, temp
& ~FDI_TX_PLL_ENABLE
);
2280 reg
= FDI_RX_CTL(pipe
);
2281 temp
= I915_READ(reg
);
2282 I915_WRITE(reg
, temp
& ~FDI_RX_PLL_ENABLE
);
2284 /* Wait for the clocks to turn off. */
2288 intel_crtc
->active
= false;
2289 intel_update_watermarks(dev
);
2290 intel_update_fbc(dev
);
2291 intel_clear_scanline_wait(dev
);
2294 static void ironlake_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2296 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2297 int pipe
= intel_crtc
->pipe
;
2298 int plane
= intel_crtc
->plane
;
2300 /* XXX: When our outputs are all unaware of DPMS modes other than off
2301 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2304 case DRM_MODE_DPMS_ON
:
2305 case DRM_MODE_DPMS_STANDBY
:
2306 case DRM_MODE_DPMS_SUSPEND
:
2307 DRM_DEBUG_KMS("crtc %d/%d dpms on\n", pipe
, plane
);
2308 ironlake_crtc_enable(crtc
);
2311 case DRM_MODE_DPMS_OFF
:
2312 DRM_DEBUG_KMS("crtc %d/%d dpms off\n", pipe
, plane
);
2313 ironlake_crtc_disable(crtc
);
2318 static void intel_crtc_dpms_overlay(struct intel_crtc
*intel_crtc
, bool enable
)
2320 if (!enable
&& intel_crtc
->overlay
) {
2321 struct drm_device
*dev
= intel_crtc
->base
.dev
;
2323 mutex_lock(&dev
->struct_mutex
);
2324 (void) intel_overlay_switch_off(intel_crtc
->overlay
, false);
2325 mutex_unlock(&dev
->struct_mutex
);
2328 /* Let userspace switch the overlay on again. In most cases userspace
2329 * has to recompute where to put it anyway.
2333 static void i9xx_crtc_enable(struct drm_crtc
*crtc
)
2335 struct drm_device
*dev
= crtc
->dev
;
2336 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2337 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2338 int pipe
= intel_crtc
->pipe
;
2339 int plane
= intel_crtc
->plane
;
2342 if (intel_crtc
->active
)
2345 intel_crtc
->active
= true;
2346 intel_update_watermarks(dev
);
2348 /* Enable the DPLL */
2350 temp
= I915_READ(reg
);
2351 if ((temp
& DPLL_VCO_ENABLE
) == 0) {
2352 I915_WRITE(reg
, temp
);
2354 /* Wait for the clocks to stabilize. */
2358 I915_WRITE(reg
, temp
| DPLL_VCO_ENABLE
);
2360 /* Wait for the clocks to stabilize. */
2364 I915_WRITE(reg
, temp
| DPLL_VCO_ENABLE
);
2366 /* Wait for the clocks to stabilize. */
2371 /* Enable the pipe */
2372 reg
= PIPECONF(pipe
);
2373 temp
= I915_READ(reg
);
2374 if ((temp
& PIPECONF_ENABLE
) == 0)
2375 I915_WRITE(reg
, temp
| PIPECONF_ENABLE
);
2377 /* Enable the plane */
2378 reg
= DSPCNTR(plane
);
2379 temp
= I915_READ(reg
);
2380 if ((temp
& DISPLAY_PLANE_ENABLE
) == 0) {
2381 I915_WRITE(reg
, temp
| DISPLAY_PLANE_ENABLE
);
2382 intel_flush_display_plane(dev
, plane
);
2385 intel_crtc_load_lut(crtc
);
2386 intel_update_fbc(dev
);
2388 /* Give the overlay scaler a chance to enable if it's on this pipe */
2389 intel_crtc_dpms_overlay(intel_crtc
, true);
2390 intel_crtc_update_cursor(crtc
, true);
2393 static void i9xx_crtc_disable(struct drm_crtc
*crtc
)
2395 struct drm_device
*dev
= crtc
->dev
;
2396 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2397 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2398 int pipe
= intel_crtc
->pipe
;
2399 int plane
= intel_crtc
->plane
;
2402 if (!intel_crtc
->active
)
2405 /* Give the overlay scaler a chance to disable if it's on this pipe */
2406 intel_crtc_wait_for_pending_flips(crtc
);
2407 drm_vblank_off(dev
, pipe
);
2408 intel_crtc_dpms_overlay(intel_crtc
, false);
2409 intel_crtc_update_cursor(crtc
, false);
2411 if (dev_priv
->cfb_plane
== plane
&&
2412 dev_priv
->display
.disable_fbc
)
2413 dev_priv
->display
.disable_fbc(dev
);
2415 /* Disable display plane */
2416 reg
= DSPCNTR(plane
);
2417 temp
= I915_READ(reg
);
2418 if (temp
& DISPLAY_PLANE_ENABLE
) {
2419 I915_WRITE(reg
, temp
& ~DISPLAY_PLANE_ENABLE
);
2420 /* Flush the plane changes */
2421 intel_flush_display_plane(dev
, plane
);
2423 /* Wait for vblank for the disable to take effect */
2425 intel_wait_for_vblank(dev
, pipe
);
2428 /* Don't disable pipe A or pipe A PLLs if needed */
2429 if (pipe
== 0 && (dev_priv
->quirks
& QUIRK_PIPEA_FORCE
))
2432 /* Next, disable display pipes */
2433 reg
= PIPECONF(pipe
);
2434 temp
= I915_READ(reg
);
2435 if (temp
& PIPECONF_ENABLE
) {
2436 I915_WRITE(reg
, temp
& ~PIPECONF_ENABLE
);
2438 /* Wait for the pipe to turn off */
2440 intel_wait_for_pipe_off(dev
, pipe
);
2444 temp
= I915_READ(reg
);
2445 if (temp
& DPLL_VCO_ENABLE
) {
2446 I915_WRITE(reg
, temp
& ~DPLL_VCO_ENABLE
);
2448 /* Wait for the clocks to turn off. */
2454 intel_crtc
->active
= false;
2455 intel_update_fbc(dev
);
2456 intel_update_watermarks(dev
);
2457 intel_clear_scanline_wait(dev
);
2460 static void i9xx_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2462 /* XXX: When our outputs are all unaware of DPMS modes other than off
2463 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
2466 case DRM_MODE_DPMS_ON
:
2467 case DRM_MODE_DPMS_STANDBY
:
2468 case DRM_MODE_DPMS_SUSPEND
:
2469 i9xx_crtc_enable(crtc
);
2471 case DRM_MODE_DPMS_OFF
:
2472 i9xx_crtc_disable(crtc
);
2478 * Sets the power management mode of the pipe and plane.
2480 static void intel_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
2482 struct drm_device
*dev
= crtc
->dev
;
2483 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2484 struct drm_i915_master_private
*master_priv
;
2485 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
2486 int pipe
= intel_crtc
->pipe
;
2489 if (intel_crtc
->dpms_mode
== mode
)
2492 intel_crtc
->dpms_mode
= mode
;
2494 dev_priv
->display
.dpms(crtc
, mode
);
2496 if (!dev
->primary
->master
)
2499 master_priv
= dev
->primary
->master
->driver_priv
;
2500 if (!master_priv
->sarea_priv
)
2503 enabled
= crtc
->enabled
&& mode
!= DRM_MODE_DPMS_OFF
;
2507 master_priv
->sarea_priv
->pipeA_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2508 master_priv
->sarea_priv
->pipeA_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2511 master_priv
->sarea_priv
->pipeB_w
= enabled
? crtc
->mode
.hdisplay
: 0;
2512 master_priv
->sarea_priv
->pipeB_h
= enabled
? crtc
->mode
.vdisplay
: 0;
2515 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe
);
2520 static void intel_crtc_disable(struct drm_crtc
*crtc
)
2522 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
2523 struct drm_device
*dev
= crtc
->dev
;
2525 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_OFF
);
2528 mutex_lock(&dev
->struct_mutex
);
2529 i915_gem_object_unpin(to_intel_framebuffer(crtc
->fb
)->obj
);
2530 mutex_unlock(&dev
->struct_mutex
);
2534 /* Prepare for a mode set.
2536 * Note we could be a lot smarter here. We need to figure out which outputs
2537 * will be enabled, which disabled (in short, how the config will changes)
2538 * and perform the minimum necessary steps to accomplish that, e.g. updating
2539 * watermarks, FBC configuration, making sure PLLs are programmed correctly,
2540 * panel fitting is in the proper state, etc.
2542 static void i9xx_crtc_prepare(struct drm_crtc
*crtc
)
2544 i9xx_crtc_disable(crtc
);
2547 static void i9xx_crtc_commit(struct drm_crtc
*crtc
)
2549 i9xx_crtc_enable(crtc
);
2552 static void ironlake_crtc_prepare(struct drm_crtc
*crtc
)
2554 ironlake_crtc_disable(crtc
);
2557 static void ironlake_crtc_commit(struct drm_crtc
*crtc
)
2559 ironlake_crtc_enable(crtc
);
2562 void intel_encoder_prepare (struct drm_encoder
*encoder
)
2564 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2565 /* lvds has its own version of prepare see intel_lvds_prepare */
2566 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_OFF
);
2569 void intel_encoder_commit (struct drm_encoder
*encoder
)
2571 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
2572 /* lvds has its own version of commit see intel_lvds_commit */
2573 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
2576 void intel_encoder_destroy(struct drm_encoder
*encoder
)
2578 struct intel_encoder
*intel_encoder
= to_intel_encoder(encoder
);
2580 drm_encoder_cleanup(encoder
);
2581 kfree(intel_encoder
);
2584 static bool intel_crtc_mode_fixup(struct drm_crtc
*crtc
,
2585 struct drm_display_mode
*mode
,
2586 struct drm_display_mode
*adjusted_mode
)
2588 struct drm_device
*dev
= crtc
->dev
;
2590 if (HAS_PCH_SPLIT(dev
)) {
2591 /* FDI link clock is fixed at 2.7G */
2592 if (mode
->clock
* 3 > IRONLAKE_FDI_FREQ
* 4)
2596 /* XXX some encoders set the crtcinfo, others don't.
2597 * Obviously we need some form of conflict resolution here...
2599 if (adjusted_mode
->crtc_htotal
== 0)
2600 drm_mode_set_crtcinfo(adjusted_mode
, 0);
2605 static int i945_get_display_clock_speed(struct drm_device
*dev
)
2610 static int i915_get_display_clock_speed(struct drm_device
*dev
)
2615 static int i9xx_misc_get_display_clock_speed(struct drm_device
*dev
)
2620 static int i915gm_get_display_clock_speed(struct drm_device
*dev
)
2624 pci_read_config_word(dev
->pdev
, GCFGC
, &gcfgc
);
2626 if (gcfgc
& GC_LOW_FREQUENCY_ENABLE
)
2629 switch (gcfgc
& GC_DISPLAY_CLOCK_MASK
) {
2630 case GC_DISPLAY_CLOCK_333_MHZ
:
2633 case GC_DISPLAY_CLOCK_190_200_MHZ
:
2639 static int i865_get_display_clock_speed(struct drm_device
*dev
)
2644 static int i855_get_display_clock_speed(struct drm_device
*dev
)
2647 /* Assume that the hardware is in the high speed state. This
2648 * should be the default.
2650 switch (hpllcc
& GC_CLOCK_CONTROL_MASK
) {
2651 case GC_CLOCK_133_200
:
2652 case GC_CLOCK_100_200
:
2654 case GC_CLOCK_166_250
:
2656 case GC_CLOCK_100_133
:
2660 /* Shouldn't happen */
2664 static int i830_get_display_clock_speed(struct drm_device
*dev
)
2678 fdi_reduce_ratio(u32
*num
, u32
*den
)
2680 while (*num
> 0xffffff || *den
> 0xffffff) {
2686 #define DATA_N 0x800000
2687 #define LINK_N 0x80000
2690 ironlake_compute_m_n(int bits_per_pixel
, int nlanes
, int pixel_clock
,
2691 int link_clock
, struct fdi_m_n
*m_n
)
2695 m_n
->tu
= 64; /* default size */
2697 temp
= (u64
) DATA_N
* pixel_clock
;
2698 temp
= div_u64(temp
, link_clock
);
2699 m_n
->gmch_m
= div_u64(temp
* bits_per_pixel
, nlanes
);
2700 m_n
->gmch_m
>>= 3; /* convert to bytes_per_pixel */
2701 m_n
->gmch_n
= DATA_N
;
2702 fdi_reduce_ratio(&m_n
->gmch_m
, &m_n
->gmch_n
);
2704 temp
= (u64
) LINK_N
* pixel_clock
;
2705 m_n
->link_m
= div_u64(temp
, link_clock
);
2706 m_n
->link_n
= LINK_N
;
2707 fdi_reduce_ratio(&m_n
->link_m
, &m_n
->link_n
);
2711 struct intel_watermark_params
{
2712 unsigned long fifo_size
;
2713 unsigned long max_wm
;
2714 unsigned long default_wm
;
2715 unsigned long guard_size
;
2716 unsigned long cacheline_size
;
2719 /* Pineview has different values for various configs */
2720 static struct intel_watermark_params pineview_display_wm
= {
2721 PINEVIEW_DISPLAY_FIFO
,
2725 PINEVIEW_FIFO_LINE_SIZE
2727 static struct intel_watermark_params pineview_display_hplloff_wm
= {
2728 PINEVIEW_DISPLAY_FIFO
,
2730 PINEVIEW_DFT_HPLLOFF_WM
,
2732 PINEVIEW_FIFO_LINE_SIZE
2734 static struct intel_watermark_params pineview_cursor_wm
= {
2735 PINEVIEW_CURSOR_FIFO
,
2736 PINEVIEW_CURSOR_MAX_WM
,
2737 PINEVIEW_CURSOR_DFT_WM
,
2738 PINEVIEW_CURSOR_GUARD_WM
,
2739 PINEVIEW_FIFO_LINE_SIZE
,
2741 static struct intel_watermark_params pineview_cursor_hplloff_wm
= {
2742 PINEVIEW_CURSOR_FIFO
,
2743 PINEVIEW_CURSOR_MAX_WM
,
2744 PINEVIEW_CURSOR_DFT_WM
,
2745 PINEVIEW_CURSOR_GUARD_WM
,
2746 PINEVIEW_FIFO_LINE_SIZE
2748 static struct intel_watermark_params g4x_wm_info
= {
2755 static struct intel_watermark_params g4x_cursor_wm_info
= {
2762 static struct intel_watermark_params i965_cursor_wm_info
= {
2767 I915_FIFO_LINE_SIZE
,
2769 static struct intel_watermark_params i945_wm_info
= {
2776 static struct intel_watermark_params i915_wm_info
= {
2783 static struct intel_watermark_params i855_wm_info
= {
2790 static struct intel_watermark_params i830_wm_info
= {
2798 static struct intel_watermark_params ironlake_display_wm_info
= {
2806 static struct intel_watermark_params ironlake_cursor_wm_info
= {
2814 static struct intel_watermark_params ironlake_display_srwm_info
= {
2815 ILK_DISPLAY_SR_FIFO
,
2816 ILK_DISPLAY_MAX_SRWM
,
2817 ILK_DISPLAY_DFT_SRWM
,
2822 static struct intel_watermark_params ironlake_cursor_srwm_info
= {
2824 ILK_CURSOR_MAX_SRWM
,
2825 ILK_CURSOR_DFT_SRWM
,
2831 * intel_calculate_wm - calculate watermark level
2832 * @clock_in_khz: pixel clock
2833 * @wm: chip FIFO params
2834 * @pixel_size: display pixel size
2835 * @latency_ns: memory latency for the platform
2837 * Calculate the watermark level (the level at which the display plane will
2838 * start fetching from memory again). Each chip has a different display
2839 * FIFO size and allocation, so the caller needs to figure that out and pass
2840 * in the correct intel_watermark_params structure.
2842 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2843 * on the pixel size. When it reaches the watermark level, it'll start
2844 * fetching FIFO line sized based chunks from memory until the FIFO fills
2845 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2846 * will occur, and a display engine hang could result.
2848 static unsigned long intel_calculate_wm(unsigned long clock_in_khz
,
2849 struct intel_watermark_params
*wm
,
2851 unsigned long latency_ns
)
2853 long entries_required
, wm_size
;
2856 * Note: we need to make sure we don't overflow for various clock &
2858 * clocks go from a few thousand to several hundred thousand.
2859 * latency is usually a few thousand
2861 entries_required
= ((clock_in_khz
/ 1000) * pixel_size
* latency_ns
) /
2863 entries_required
= DIV_ROUND_UP(entries_required
, wm
->cacheline_size
);
2865 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required
);
2867 wm_size
= wm
->fifo_size
- (entries_required
+ wm
->guard_size
);
2869 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size
);
2871 /* Don't promote wm_size to unsigned... */
2872 if (wm_size
> (long)wm
->max_wm
)
2873 wm_size
= wm
->max_wm
;
2875 wm_size
= wm
->default_wm
;
2879 struct cxsr_latency
{
2882 unsigned long fsb_freq
;
2883 unsigned long mem_freq
;
2884 unsigned long display_sr
;
2885 unsigned long display_hpll_disable
;
2886 unsigned long cursor_sr
;
2887 unsigned long cursor_hpll_disable
;
2890 static const struct cxsr_latency cxsr_latency_table
[] = {
2891 {1, 0, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2892 {1, 0, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2893 {1, 0, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2894 {1, 1, 800, 667, 6420, 36420, 6873, 36873}, /* DDR3-667 SC */
2895 {1, 1, 800, 800, 5902, 35902, 6318, 36318}, /* DDR3-800 SC */
2897 {1, 0, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2898 {1, 0, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2899 {1, 0, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2900 {1, 1, 667, 667, 6438, 36438, 6911, 36911}, /* DDR3-667 SC */
2901 {1, 1, 667, 800, 5941, 35941, 6377, 36377}, /* DDR3-800 SC */
2903 {1, 0, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2904 {1, 0, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2905 {1, 0, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2906 {1, 1, 400, 667, 6509, 36509, 7062, 37062}, /* DDR3-667 SC */
2907 {1, 1, 400, 800, 5985, 35985, 6501, 36501}, /* DDR3-800 SC */
2909 {0, 0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2910 {0, 0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2911 {0, 0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2912 {0, 1, 800, 667, 6476, 36476, 6955, 36955}, /* DDR3-667 SC */
2913 {0, 1, 800, 800, 5958, 35958, 6400, 36400}, /* DDR3-800 SC */
2915 {0, 0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2916 {0, 0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2917 {0, 0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2918 {0, 1, 667, 667, 6494, 36494, 6993, 36993}, /* DDR3-667 SC */
2919 {0, 1, 667, 800, 5998, 35998, 6460, 36460}, /* DDR3-800 SC */
2921 {0, 0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2922 {0, 0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2923 {0, 0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2924 {0, 1, 400, 667, 6566, 36566, 7145, 37145}, /* DDR3-667 SC */
2925 {0, 1, 400, 800, 6042, 36042, 6584, 36584}, /* DDR3-800 SC */
2928 static const struct cxsr_latency
*intel_get_cxsr_latency(int is_desktop
,
2933 const struct cxsr_latency
*latency
;
2936 if (fsb
== 0 || mem
== 0)
2939 for (i
= 0; i
< ARRAY_SIZE(cxsr_latency_table
); i
++) {
2940 latency
= &cxsr_latency_table
[i
];
2941 if (is_desktop
== latency
->is_desktop
&&
2942 is_ddr3
== latency
->is_ddr3
&&
2943 fsb
== latency
->fsb_freq
&& mem
== latency
->mem_freq
)
2947 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2952 static void pineview_disable_cxsr(struct drm_device
*dev
)
2954 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2956 /* deactivate cxsr */
2957 I915_WRITE(DSPFW3
, I915_READ(DSPFW3
) & ~PINEVIEW_SELF_REFRESH_EN
);
2961 * Latency for FIFO fetches is dependent on several factors:
2962 * - memory configuration (speed, channels)
2964 * - current MCH state
2965 * It can be fairly high in some situations, so here we assume a fairly
2966 * pessimal value. It's a tradeoff between extra memory fetches (if we
2967 * set this value too high, the FIFO will fetch frequently to stay full)
2968 * and power consumption (set it too low to save power and we might see
2969 * FIFO underruns and display "flicker").
2971 * A value of 5us seems to be a good balance; safe for very low end
2972 * platforms but not overly aggressive on lower latency configs.
2974 static const int latency_ns
= 5000;
2976 static int i9xx_get_fifo_size(struct drm_device
*dev
, int plane
)
2978 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2979 uint32_t dsparb
= I915_READ(DSPARB
);
2982 size
= dsparb
& 0x7f;
2984 size
= ((dsparb
>> DSPARB_CSTART_SHIFT
) & 0x7f) - size
;
2986 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
2987 plane
? "B" : "A", size
);
2992 static int i85x_get_fifo_size(struct drm_device
*dev
, int plane
)
2994 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
2995 uint32_t dsparb
= I915_READ(DSPARB
);
2998 size
= dsparb
& 0x1ff;
3000 size
= ((dsparb
>> DSPARB_BEND_SHIFT
) & 0x1ff) - size
;
3001 size
>>= 1; /* Convert to cachelines */
3003 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3004 plane
? "B" : "A", size
);
3009 static int i845_get_fifo_size(struct drm_device
*dev
, int plane
)
3011 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3012 uint32_t dsparb
= I915_READ(DSPARB
);
3015 size
= dsparb
& 0x7f;
3016 size
>>= 2; /* Convert to cachelines */
3018 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3025 static int i830_get_fifo_size(struct drm_device
*dev
, int plane
)
3027 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3028 uint32_t dsparb
= I915_READ(DSPARB
);
3031 size
= dsparb
& 0x7f;
3032 size
>>= 1; /* Convert to cachelines */
3034 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb
,
3035 plane
? "B" : "A", size
);
3040 static void pineview_update_wm(struct drm_device
*dev
, int planea_clock
,
3041 int planeb_clock
, int sr_hdisplay
, int unused
,
3044 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3045 const struct cxsr_latency
*latency
;
3050 latency
= intel_get_cxsr_latency(IS_PINEVIEW_G(dev
), dev_priv
->is_ddr3
,
3051 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
3053 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
3054 pineview_disable_cxsr(dev
);
3058 if (!planea_clock
|| !planeb_clock
) {
3059 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3062 wm
= intel_calculate_wm(sr_clock
, &pineview_display_wm
,
3063 pixel_size
, latency
->display_sr
);
3064 reg
= I915_READ(DSPFW1
);
3065 reg
&= ~DSPFW_SR_MASK
;
3066 reg
|= wm
<< DSPFW_SR_SHIFT
;
3067 I915_WRITE(DSPFW1
, reg
);
3068 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg
);
3071 wm
= intel_calculate_wm(sr_clock
, &pineview_cursor_wm
,
3072 pixel_size
, latency
->cursor_sr
);
3073 reg
= I915_READ(DSPFW3
);
3074 reg
&= ~DSPFW_CURSOR_SR_MASK
;
3075 reg
|= (wm
& 0x3f) << DSPFW_CURSOR_SR_SHIFT
;
3076 I915_WRITE(DSPFW3
, reg
);
3078 /* Display HPLL off SR */
3079 wm
= intel_calculate_wm(sr_clock
, &pineview_display_hplloff_wm
,
3080 pixel_size
, latency
->display_hpll_disable
);
3081 reg
= I915_READ(DSPFW3
);
3082 reg
&= ~DSPFW_HPLL_SR_MASK
;
3083 reg
|= wm
& DSPFW_HPLL_SR_MASK
;
3084 I915_WRITE(DSPFW3
, reg
);
3086 /* cursor HPLL off SR */
3087 wm
= intel_calculate_wm(sr_clock
, &pineview_cursor_hplloff_wm
,
3088 pixel_size
, latency
->cursor_hpll_disable
);
3089 reg
= I915_READ(DSPFW3
);
3090 reg
&= ~DSPFW_HPLL_CURSOR_MASK
;
3091 reg
|= (wm
& 0x3f) << DSPFW_HPLL_CURSOR_SHIFT
;
3092 I915_WRITE(DSPFW3
, reg
);
3093 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg
);
3097 I915_READ(DSPFW3
) | PINEVIEW_SELF_REFRESH_EN
);
3098 DRM_DEBUG_KMS("Self-refresh is enabled\n");
3100 pineview_disable_cxsr(dev
);
3101 DRM_DEBUG_KMS("Self-refresh is disabled\n");
3105 static void g4x_update_wm(struct drm_device
*dev
, int planea_clock
,
3106 int planeb_clock
, int sr_hdisplay
, int sr_htotal
,
3109 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3110 int total_size
, cacheline_size
;
3111 int planea_wm
, planeb_wm
, cursora_wm
, cursorb_wm
, cursor_sr
;
3112 struct intel_watermark_params planea_params
, planeb_params
;
3113 unsigned long line_time_us
;
3114 int sr_clock
, sr_entries
= 0, entries_required
;
3116 /* Create copies of the base settings for each pipe */
3117 planea_params
= planeb_params
= g4x_wm_info
;
3119 /* Grab a couple of global values before we overwrite them */
3120 total_size
= planea_params
.fifo_size
;
3121 cacheline_size
= planea_params
.cacheline_size
;
3124 * Note: we need to make sure we don't overflow for various clock &
3126 * clocks go from a few thousand to several hundred thousand.
3127 * latency is usually a few thousand
3129 entries_required
= ((planea_clock
/ 1000) * pixel_size
* latency_ns
) /
3131 entries_required
= DIV_ROUND_UP(entries_required
, G4X_FIFO_LINE_SIZE
);
3132 planea_wm
= entries_required
+ planea_params
.guard_size
;
3134 entries_required
= ((planeb_clock
/ 1000) * pixel_size
* latency_ns
) /
3136 entries_required
= DIV_ROUND_UP(entries_required
, G4X_FIFO_LINE_SIZE
);
3137 planeb_wm
= entries_required
+ planeb_params
.guard_size
;
3139 cursora_wm
= cursorb_wm
= 16;
3142 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
3144 /* Calc sr entries for one plane configs */
3145 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
3146 /* self-refresh has much higher latency */
3147 static const int sr_latency_ns
= 12000;
3149 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3150 line_time_us
= ((sr_htotal
* 1000) / sr_clock
);
3152 /* Use ns/us then divide to preserve precision */
3153 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3154 pixel_size
* sr_hdisplay
;
3155 sr_entries
= DIV_ROUND_UP(sr_entries
, cacheline_size
);
3157 entries_required
= (((sr_latency_ns
/ line_time_us
) +
3158 1000) / 1000) * pixel_size
* 64;
3159 entries_required
= DIV_ROUND_UP(entries_required
,
3160 g4x_cursor_wm_info
.cacheline_size
);
3161 cursor_sr
= entries_required
+ g4x_cursor_wm_info
.guard_size
;
3163 if (cursor_sr
> g4x_cursor_wm_info
.max_wm
)
3164 cursor_sr
= g4x_cursor_wm_info
.max_wm
;
3165 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3166 "cursor %d\n", sr_entries
, cursor_sr
);
3168 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
3170 /* Turn off self refresh if both pipes are enabled */
3171 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3175 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
3176 planea_wm
, planeb_wm
, sr_entries
);
3181 I915_WRITE(DSPFW1
, (sr_entries
<< DSPFW_SR_SHIFT
) |
3182 (cursorb_wm
<< DSPFW_CURSORB_SHIFT
) |
3183 (planeb_wm
<< DSPFW_PLANEB_SHIFT
) | planea_wm
);
3184 I915_WRITE(DSPFW2
, (I915_READ(DSPFW2
) & DSPFW_CURSORA_MASK
) |
3185 (cursora_wm
<< DSPFW_CURSORA_SHIFT
));
3186 /* HPLL off in SR has some issues on G4x... disable it */
3187 I915_WRITE(DSPFW3
, (I915_READ(DSPFW3
) & ~DSPFW_HPLL_SR_EN
) |
3188 (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
3191 static void i965_update_wm(struct drm_device
*dev
, int planea_clock
,
3192 int planeb_clock
, int sr_hdisplay
, int sr_htotal
,
3195 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3196 unsigned long line_time_us
;
3197 int sr_clock
, sr_entries
, srwm
= 1;
3200 /* Calc sr entries for one plane configs */
3201 if (sr_hdisplay
&& (!planea_clock
|| !planeb_clock
)) {
3202 /* self-refresh has much higher latency */
3203 static const int sr_latency_ns
= 12000;
3205 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3206 line_time_us
= ((sr_htotal
* 1000) / sr_clock
);
3208 /* Use ns/us then divide to preserve precision */
3209 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3210 pixel_size
* sr_hdisplay
;
3211 sr_entries
= DIV_ROUND_UP(sr_entries
, I915_FIFO_LINE_SIZE
);
3212 DRM_DEBUG("self-refresh entries: %d\n", sr_entries
);
3213 srwm
= I965_FIFO_SIZE
- sr_entries
;
3218 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3220 sr_entries
= DIV_ROUND_UP(sr_entries
,
3221 i965_cursor_wm_info
.cacheline_size
);
3222 cursor_sr
= i965_cursor_wm_info
.fifo_size
-
3223 (sr_entries
+ i965_cursor_wm_info
.guard_size
);
3225 if (cursor_sr
> i965_cursor_wm_info
.max_wm
)
3226 cursor_sr
= i965_cursor_wm_info
.max_wm
;
3228 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
3229 "cursor %d\n", srwm
, cursor_sr
);
3231 if (IS_CRESTLINE(dev
))
3232 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN
);
3234 /* Turn off self refresh if both pipes are enabled */
3235 if (IS_CRESTLINE(dev
))
3236 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3240 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
3243 /* 965 has limitations... */
3244 I915_WRITE(DSPFW1
, (srwm
<< DSPFW_SR_SHIFT
) | (8 << 16) | (8 << 8) |
3246 I915_WRITE(DSPFW2
, (8 << 8) | (8 << 0));
3247 /* update cursor SR watermark */
3248 I915_WRITE(DSPFW3
, (cursor_sr
<< DSPFW_CURSOR_SR_SHIFT
));
3251 static void i9xx_update_wm(struct drm_device
*dev
, int planea_clock
,
3252 int planeb_clock
, int sr_hdisplay
, int sr_htotal
,
3255 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3258 int total_size
, cacheline_size
, cwm
, srwm
= 1;
3259 int planea_wm
, planeb_wm
;
3260 struct intel_watermark_params planea_params
, planeb_params
;
3261 unsigned long line_time_us
;
3262 int sr_clock
, sr_entries
= 0;
3264 /* Create copies of the base settings for each pipe */
3265 if (IS_CRESTLINE(dev
) || IS_I945GM(dev
))
3266 planea_params
= planeb_params
= i945_wm_info
;
3267 else if (!IS_GEN2(dev
))
3268 planea_params
= planeb_params
= i915_wm_info
;
3270 planea_params
= planeb_params
= i855_wm_info
;
3272 /* Grab a couple of global values before we overwrite them */
3273 total_size
= planea_params
.fifo_size
;
3274 cacheline_size
= planea_params
.cacheline_size
;
3276 /* Update per-plane FIFO sizes */
3277 planea_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
3278 planeb_params
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 1);
3280 planea_wm
= intel_calculate_wm(planea_clock
, &planea_params
,
3281 pixel_size
, latency_ns
);
3282 planeb_wm
= intel_calculate_wm(planeb_clock
, &planeb_params
,
3283 pixel_size
, latency_ns
);
3284 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm
, planeb_wm
);
3287 * Overlay gets an aggressive default since video jitter is bad.
3291 /* Calc sr entries for one plane configs */
3292 if (HAS_FW_BLC(dev
) && sr_hdisplay
&&
3293 (!planea_clock
|| !planeb_clock
)) {
3294 /* self-refresh has much higher latency */
3295 static const int sr_latency_ns
= 6000;
3297 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3298 line_time_us
= ((sr_htotal
* 1000) / sr_clock
);
3300 /* Use ns/us then divide to preserve precision */
3301 sr_entries
= (((sr_latency_ns
/ line_time_us
) + 1000) / 1000) *
3302 pixel_size
* sr_hdisplay
;
3303 sr_entries
= DIV_ROUND_UP(sr_entries
, cacheline_size
);
3304 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries
);
3305 srwm
= total_size
- sr_entries
;
3309 if (IS_I945G(dev
) || IS_I945GM(dev
))
3310 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_FIFO_MASK
| (srwm
& 0xff));
3311 else if (IS_I915GM(dev
)) {
3312 /* 915M has a smaller SRWM field */
3313 I915_WRITE(FW_BLC_SELF
, srwm
& 0x3f);
3314 I915_WRITE(INSTPM
, I915_READ(INSTPM
) | INSTPM_SELF_EN
);
3317 /* Turn off self refresh if both pipes are enabled */
3318 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
3319 I915_WRITE(FW_BLC_SELF
, I915_READ(FW_BLC_SELF
)
3321 } else if (IS_I915GM(dev
)) {
3322 I915_WRITE(INSTPM
, I915_READ(INSTPM
) & ~INSTPM_SELF_EN
);
3326 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
3327 planea_wm
, planeb_wm
, cwm
, srwm
);
3329 fwater_lo
= ((planeb_wm
& 0x3f) << 16) | (planea_wm
& 0x3f);
3330 fwater_hi
= (cwm
& 0x1f);
3332 /* Set request length to 8 cachelines per fetch */
3333 fwater_lo
= fwater_lo
| (1 << 24) | (1 << 8);
3334 fwater_hi
= fwater_hi
| (1 << 8);
3336 I915_WRITE(FW_BLC
, fwater_lo
);
3337 I915_WRITE(FW_BLC2
, fwater_hi
);
3340 static void i830_update_wm(struct drm_device
*dev
, int planea_clock
, int unused
,
3341 int unused2
, int unused3
, int pixel_size
)
3343 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3344 uint32_t fwater_lo
= I915_READ(FW_BLC
) & ~0xfff;
3347 i830_wm_info
.fifo_size
= dev_priv
->display
.get_fifo_size(dev
, 0);
3349 planea_wm
= intel_calculate_wm(planea_clock
, &i830_wm_info
,
3350 pixel_size
, latency_ns
);
3351 fwater_lo
|= (3<<8) | planea_wm
;
3353 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm
);
3355 I915_WRITE(FW_BLC
, fwater_lo
);
3358 #define ILK_LP0_PLANE_LATENCY 700
3359 #define ILK_LP0_CURSOR_LATENCY 1300
3361 static bool ironlake_compute_wm0(struct drm_device
*dev
,
3366 struct drm_crtc
*crtc
;
3367 int htotal
, hdisplay
, clock
, pixel_size
= 0;
3368 int line_time_us
, line_count
, entries
;
3370 crtc
= intel_get_crtc_for_pipe(dev
, pipe
);
3371 if (crtc
->fb
== NULL
|| !crtc
->enabled
)
3374 htotal
= crtc
->mode
.htotal
;
3375 hdisplay
= crtc
->mode
.hdisplay
;
3376 clock
= crtc
->mode
.clock
;
3377 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3379 /* Use the small buffer method to calculate plane watermark */
3380 entries
= ((clock
* pixel_size
/ 1000) * ILK_LP0_PLANE_LATENCY
) / 1000;
3381 entries
= DIV_ROUND_UP(entries
,
3382 ironlake_display_wm_info
.cacheline_size
);
3383 *plane_wm
= entries
+ ironlake_display_wm_info
.guard_size
;
3384 if (*plane_wm
> (int)ironlake_display_wm_info
.max_wm
)
3385 *plane_wm
= ironlake_display_wm_info
.max_wm
;
3387 /* Use the large buffer method to calculate cursor watermark */
3388 line_time_us
= ((htotal
* 1000) / clock
);
3389 line_count
= (ILK_LP0_CURSOR_LATENCY
/ line_time_us
+ 1000) / 1000;
3390 entries
= line_count
* 64 * pixel_size
;
3391 entries
= DIV_ROUND_UP(entries
,
3392 ironlake_cursor_wm_info
.cacheline_size
);
3393 *cursor_wm
= entries
+ ironlake_cursor_wm_info
.guard_size
;
3394 if (*cursor_wm
> ironlake_cursor_wm_info
.max_wm
)
3395 *cursor_wm
= ironlake_cursor_wm_info
.max_wm
;
3400 static void ironlake_update_wm(struct drm_device
*dev
,
3401 int planea_clock
, int planeb_clock
,
3402 int sr_hdisplay
, int sr_htotal
,
3405 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3406 int plane_wm
, cursor_wm
, enabled
;
3410 if (ironlake_compute_wm0(dev
, 0, &plane_wm
, &cursor_wm
)) {
3411 I915_WRITE(WM0_PIPEA_ILK
,
3412 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
3413 DRM_DEBUG_KMS("FIFO watermarks For pipe A -"
3414 " plane %d, " "cursor: %d\n",
3415 plane_wm
, cursor_wm
);
3419 if (ironlake_compute_wm0(dev
, 1, &plane_wm
, &cursor_wm
)) {
3420 I915_WRITE(WM0_PIPEB_ILK
,
3421 (plane_wm
<< WM0_PIPE_PLANE_SHIFT
) | cursor_wm
);
3422 DRM_DEBUG_KMS("FIFO watermarks For pipe B -"
3423 " plane %d, cursor: %d\n",
3424 plane_wm
, cursor_wm
);
3429 * Calculate and update the self-refresh watermark only when one
3430 * display plane is used.
3433 if (enabled
== 1 && /* XXX disabled due to buggy implmentation? */ 0) {
3434 unsigned long line_time_us
;
3435 int small
, large
, plane_fbc
;
3436 int sr_clock
, entries
;
3437 int line_count
, line_size
;
3438 /* Read the self-refresh latency. The unit is 0.5us */
3439 int ilk_sr_latency
= I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
;
3441 sr_clock
= planea_clock
? planea_clock
: planeb_clock
;
3442 line_time_us
= (sr_htotal
* 1000) / sr_clock
;
3444 /* Use ns/us then divide to preserve precision */
3445 line_count
= ((ilk_sr_latency
* 500) / line_time_us
+ 1000)
3447 line_size
= sr_hdisplay
* pixel_size
;
3449 /* Use the minimum of the small and large buffer method for primary */
3450 small
= ((sr_clock
* pixel_size
/ 1000) * (ilk_sr_latency
* 500)) / 1000;
3451 large
= line_count
* line_size
;
3453 entries
= DIV_ROUND_UP(min(small
, large
),
3454 ironlake_display_srwm_info
.cacheline_size
);
3456 plane_fbc
= entries
* 64;
3457 plane_fbc
= DIV_ROUND_UP(plane_fbc
, line_size
);
3459 plane_wm
= entries
+ ironlake_display_srwm_info
.guard_size
;
3460 if (plane_wm
> (int)ironlake_display_srwm_info
.max_wm
)
3461 plane_wm
= ironlake_display_srwm_info
.max_wm
;
3463 /* calculate the self-refresh watermark for display cursor */
3464 entries
= line_count
* pixel_size
* 64;
3465 entries
= DIV_ROUND_UP(entries
,
3466 ironlake_cursor_srwm_info
.cacheline_size
);
3468 cursor_wm
= entries
+ ironlake_cursor_srwm_info
.guard_size
;
3469 if (cursor_wm
> (int)ironlake_cursor_srwm_info
.max_wm
)
3470 cursor_wm
= ironlake_cursor_srwm_info
.max_wm
;
3472 /* configure watermark and enable self-refresh */
3473 tmp
= (WM1_LP_SR_EN
|
3474 (ilk_sr_latency
<< WM1_LP_LATENCY_SHIFT
) |
3475 (plane_fbc
<< WM1_LP_FBC_SHIFT
) |
3476 (plane_wm
<< WM1_LP_SR_SHIFT
) |
3478 DRM_DEBUG_KMS("self-refresh watermark: display plane %d, fbc lines %d,"
3479 " cursor %d\n", plane_wm
, plane_fbc
, cursor_wm
);
3481 I915_WRITE(WM1_LP_ILK
, tmp
);
3482 /* XXX setup WM2 and WM3 */
3486 * intel_update_watermarks - update FIFO watermark values based on current modes
3488 * Calculate watermark values for the various WM regs based on current mode
3489 * and plane configuration.
3491 * There are several cases to deal with here:
3492 * - normal (i.e. non-self-refresh)
3493 * - self-refresh (SR) mode
3494 * - lines are large relative to FIFO size (buffer can hold up to 2)
3495 * - lines are small relative to FIFO size (buffer can hold more than 2
3496 * lines), so need to account for TLB latency
3498 * The normal calculation is:
3499 * watermark = dotclock * bytes per pixel * latency
3500 * where latency is platform & configuration dependent (we assume pessimal
3503 * The SR calculation is:
3504 * watermark = (trunc(latency/line time)+1) * surface width *
3507 * line time = htotal / dotclock
3508 * surface width = hdisplay for normal plane and 64 for cursor
3509 * and latency is assumed to be high, as above.
3511 * The final value programmed to the register should always be rounded up,
3512 * and include an extra 2 entries to account for clock crossings.
3514 * We don't use the sprite, so we can ignore that. And on Crestline we have
3515 * to set the non-SR watermarks to 8.
3517 static void intel_update_watermarks(struct drm_device
*dev
)
3519 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3520 struct drm_crtc
*crtc
;
3521 int sr_hdisplay
= 0;
3522 unsigned long planea_clock
= 0, planeb_clock
= 0, sr_clock
= 0;
3523 int enabled
= 0, pixel_size
= 0;
3526 if (!dev_priv
->display
.update_wm
)
3529 /* Get the clock config from both planes */
3530 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
3531 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3532 if (intel_crtc
->active
) {
3534 if (intel_crtc
->plane
== 0) {
3535 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
3536 intel_crtc
->pipe
, crtc
->mode
.clock
);
3537 planea_clock
= crtc
->mode
.clock
;
3539 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
3540 intel_crtc
->pipe
, crtc
->mode
.clock
);
3541 planeb_clock
= crtc
->mode
.clock
;
3543 sr_hdisplay
= crtc
->mode
.hdisplay
;
3544 sr_clock
= crtc
->mode
.clock
;
3545 sr_htotal
= crtc
->mode
.htotal
;
3547 pixel_size
= crtc
->fb
->bits_per_pixel
/ 8;
3549 pixel_size
= 4; /* by default */
3556 dev_priv
->display
.update_wm(dev
, planea_clock
, planeb_clock
,
3557 sr_hdisplay
, sr_htotal
, pixel_size
);
3560 static int intel_crtc_mode_set(struct drm_crtc
*crtc
,
3561 struct drm_display_mode
*mode
,
3562 struct drm_display_mode
*adjusted_mode
,
3564 struct drm_framebuffer
*old_fb
)
3566 struct drm_device
*dev
= crtc
->dev
;
3567 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
3568 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
3569 int pipe
= intel_crtc
->pipe
;
3570 int plane
= intel_crtc
->plane
;
3571 u32 fp_reg
, dpll_reg
;
3572 int refclk
, num_connectors
= 0;
3573 intel_clock_t clock
, reduced_clock
;
3574 u32 dpll
, fp
= 0, fp2
= 0, dspcntr
, pipeconf
;
3575 bool ok
, has_reduced_clock
= false, is_sdvo
= false, is_dvo
= false;
3576 bool is_crt
= false, is_lvds
= false, is_tv
= false, is_dp
= false;
3577 struct intel_encoder
*has_edp_encoder
= NULL
;
3578 struct drm_mode_config
*mode_config
= &dev
->mode_config
;
3579 struct intel_encoder
*encoder
;
3580 const intel_limit_t
*limit
;
3582 struct fdi_m_n m_n
= {0};
3586 drm_vblank_pre_modeset(dev
, pipe
);
3588 list_for_each_entry(encoder
, &mode_config
->encoder_list
, base
.head
) {
3589 if (encoder
->base
.crtc
!= crtc
)
3592 switch (encoder
->type
) {
3593 case INTEL_OUTPUT_LVDS
:
3596 case INTEL_OUTPUT_SDVO
:
3597 case INTEL_OUTPUT_HDMI
:
3599 if (encoder
->needs_tv_clock
)
3602 case INTEL_OUTPUT_DVO
:
3605 case INTEL_OUTPUT_TVOUT
:
3608 case INTEL_OUTPUT_ANALOG
:
3611 case INTEL_OUTPUT_DISPLAYPORT
:
3614 case INTEL_OUTPUT_EDP
:
3615 has_edp_encoder
= encoder
;
3622 if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_connectors
< 2) {
3623 refclk
= dev_priv
->lvds_ssc_freq
* 1000;
3624 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
3626 } else if (!IS_GEN2(dev
)) {
3628 if (HAS_PCH_SPLIT(dev
))
3629 refclk
= 120000; /* 120Mhz refclk */
3635 * Returns a set of divisors for the desired target clock with the given
3636 * refclk, or FALSE. The returned values represent the clock equation:
3637 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
3639 limit
= intel_limit(crtc
);
3640 ok
= limit
->find_pll(limit
, crtc
, adjusted_mode
->clock
, refclk
, &clock
);
3642 DRM_ERROR("Couldn't find PLL settings for mode!\n");
3643 drm_vblank_post_modeset(dev
, pipe
);
3647 /* Ensure that the cursor is valid for the new mode before changing... */
3648 intel_crtc_update_cursor(crtc
, true);
3650 if (is_lvds
&& dev_priv
->lvds_downclock_avail
) {
3651 has_reduced_clock
= limit
->find_pll(limit
, crtc
,
3652 dev_priv
->lvds_downclock
,
3655 if (has_reduced_clock
&& (clock
.p
!= reduced_clock
.p
)) {
3657 * If the different P is found, it means that we can't
3658 * switch the display clock by using the FP0/FP1.
3659 * In such case we will disable the LVDS downclock
3662 DRM_DEBUG_KMS("Different P is found for "
3663 "LVDS clock/downclock\n");
3664 has_reduced_clock
= 0;
3667 /* SDVO TV has fixed PLL values depend on its clock range,
3668 this mirrors vbios setting. */
3669 if (is_sdvo
&& is_tv
) {
3670 if (adjusted_mode
->clock
>= 100000
3671 && adjusted_mode
->clock
< 140500) {
3677 } else if (adjusted_mode
->clock
>= 140500
3678 && adjusted_mode
->clock
<= 200000) {
3688 if (HAS_PCH_SPLIT(dev
)) {
3689 int lane
= 0, link_bw
, bpp
;
3690 /* CPU eDP doesn't require FDI link, so just set DP M/N
3691 according to current link config */
3692 if (has_edp_encoder
&& !intel_encoder_is_pch_edp(&encoder
->base
)) {
3693 target_clock
= mode
->clock
;
3694 intel_edp_link_config(has_edp_encoder
,
3697 /* [e]DP over FDI requires target mode clock
3698 instead of link clock */
3699 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
))
3700 target_clock
= mode
->clock
;
3702 target_clock
= adjusted_mode
->clock
;
3704 /* FDI is a binary signal running at ~2.7GHz, encoding
3705 * each output octet as 10 bits. The actual frequency
3706 * is stored as a divider into a 100MHz clock, and the
3707 * mode pixel clock is stored in units of 1KHz.
3708 * Hence the bw of each lane in terms of the mode signal
3711 link_bw
= intel_fdi_link_freq(dev
) * MHz(100)/KHz(1)/10;
3714 /* determine panel color depth */
3715 temp
= I915_READ(PIPECONF(pipe
));
3716 temp
&= ~PIPE_BPC_MASK
;
3718 /* the BPC will be 6 if it is 18-bit LVDS panel */
3719 if ((I915_READ(PCH_LVDS
) & LVDS_A3_POWER_MASK
) == LVDS_A3_POWER_UP
)
3723 } else if (has_edp_encoder
) {
3724 switch (dev_priv
->edp
.bpp
/3) {
3740 I915_WRITE(PIPECONF(pipe
), temp
);
3742 switch (temp
& PIPE_BPC_MASK
) {
3756 DRM_ERROR("unknown pipe bpc value\n");
3762 * Account for spread spectrum to avoid
3763 * oversubscribing the link. Max center spread
3764 * is 2.5%; use 5% for safety's sake.
3766 u32 bps
= target_clock
* bpp
* 21 / 20;
3767 lane
= bps
/ (link_bw
* 8) + 1;
3770 intel_crtc
->fdi_lanes
= lane
;
3772 ironlake_compute_m_n(bpp
, lane
, target_clock
, link_bw
, &m_n
);
3775 /* Ironlake: try to setup display ref clock before DPLL
3776 * enabling. This is only under driver's control after
3777 * PCH B stepping, previous chipset stepping should be
3778 * ignoring this setting.
3780 if (HAS_PCH_SPLIT(dev
)) {
3781 temp
= I915_READ(PCH_DREF_CONTROL
);
3782 /* Always enable nonspread source */
3783 temp
&= ~DREF_NONSPREAD_SOURCE_MASK
;
3784 temp
|= DREF_NONSPREAD_SOURCE_ENABLE
;
3785 temp
&= ~DREF_SSC_SOURCE_MASK
;
3786 temp
|= DREF_SSC_SOURCE_ENABLE
;
3787 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3789 POSTING_READ(PCH_DREF_CONTROL
);
3792 if (has_edp_encoder
) {
3793 if (dev_priv
->lvds_use_ssc
) {
3794 temp
|= DREF_SSC1_ENABLE
;
3795 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3797 POSTING_READ(PCH_DREF_CONTROL
);
3800 temp
&= ~DREF_CPU_SOURCE_OUTPUT_MASK
;
3801 temp
|= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD
;
3803 temp
|= DREF_CPU_SOURCE_OUTPUT_NONSPREAD
;
3805 I915_WRITE(PCH_DREF_CONTROL
, temp
);
3809 if (IS_PINEVIEW(dev
)) {
3810 fp
= (1 << clock
.n
) << 16 | clock
.m1
<< 8 | clock
.m2
;
3811 if (has_reduced_clock
)
3812 fp2
= (1 << reduced_clock
.n
) << 16 |
3813 reduced_clock
.m1
<< 8 | reduced_clock
.m2
;
3815 fp
= clock
.n
<< 16 | clock
.m1
<< 8 | clock
.m2
;
3816 if (has_reduced_clock
)
3817 fp2
= reduced_clock
.n
<< 16 | reduced_clock
.m1
<< 8 |
3822 if (!HAS_PCH_SPLIT(dev
))
3823 dpll
= DPLL_VGA_MODE_DIS
;
3825 if (!IS_GEN2(dev
)) {
3827 dpll
|= DPLLB_MODE_LVDS
;
3829 dpll
|= DPLLB_MODE_DAC_SERIAL
;
3831 int pixel_multiplier
= intel_mode_get_pixel_multiplier(adjusted_mode
);
3832 if (pixel_multiplier
> 1) {
3833 if (IS_I945G(dev
) || IS_I945GM(dev
) || IS_G33(dev
))
3834 dpll
|= (pixel_multiplier
- 1) << SDVO_MULTIPLIER_SHIFT_HIRES
;
3835 else if (HAS_PCH_SPLIT(dev
))
3836 dpll
|= (pixel_multiplier
- 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT
;
3838 dpll
|= DPLL_DVO_HIGH_SPEED
;
3841 dpll
|= DPLL_DVO_HIGH_SPEED
;
3843 /* compute bitmask from p1 value */
3844 if (IS_PINEVIEW(dev
))
3845 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
;
3847 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3849 if (HAS_PCH_SPLIT(dev
))
3850 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3851 if (IS_G4X(dev
) && has_reduced_clock
)
3852 dpll
|= (1 << (reduced_clock
.p1
- 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT
;
3856 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
;
3859 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_7
;
3862 dpll
|= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10
;
3865 dpll
|= DPLLB_LVDS_P2_CLOCK_DIV_14
;
3868 if (INTEL_INFO(dev
)->gen
>= 4 && !HAS_PCH_SPLIT(dev
))
3869 dpll
|= (6 << PLL_LOAD_PULSE_PHASE_SHIFT
);
3872 dpll
|= (1 << (clock
.p1
- 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3875 dpll
|= PLL_P1_DIVIDE_BY_TWO
;
3877 dpll
|= (clock
.p1
- 2) << DPLL_FPA01_P1_POST_DIV_SHIFT
;
3879 dpll
|= PLL_P2_DIVIDE_BY_4
;
3883 if (is_sdvo
&& is_tv
)
3884 dpll
|= PLL_REF_INPUT_TVCLKINBC
;
3886 /* XXX: just matching BIOS for now */
3887 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3889 else if (is_lvds
&& dev_priv
->lvds_use_ssc
&& num_connectors
< 2)
3890 dpll
|= PLLB_REF_INPUT_SPREADSPECTRUMIN
;
3892 dpll
|= PLL_REF_INPUT_DREFCLK
;
3894 /* setup pipeconf */
3895 pipeconf
= I915_READ(PIPECONF(pipe
));
3897 /* Set up the display plane register */
3898 dspcntr
= DISPPLANE_GAMMA_ENABLE
;
3900 /* Ironlake's plane is forced to pipe, bit 24 is to
3901 enable color space conversion */
3902 if (!HAS_PCH_SPLIT(dev
)) {
3904 dspcntr
&= ~DISPPLANE_SEL_PIPE_MASK
;
3906 dspcntr
|= DISPPLANE_SEL_PIPE_B
;
3909 if (pipe
== 0 && INTEL_INFO(dev
)->gen
< 4) {
3910 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3913 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3917 dev_priv
->display
.get_display_clock_speed(dev
) * 9 / 10)
3918 pipeconf
|= PIPECONF_DOUBLE_WIDE
;
3920 pipeconf
&= ~PIPECONF_DOUBLE_WIDE
;
3923 dspcntr
|= DISPLAY_PLANE_ENABLE
;
3924 pipeconf
|= PIPECONF_ENABLE
;
3925 dpll
|= DPLL_VCO_ENABLE
;
3927 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe
== 0 ? 'A' : 'B');
3928 drm_mode_debug_printmodeline(mode
);
3930 /* assign to Ironlake registers */
3931 if (HAS_PCH_SPLIT(dev
)) {
3932 fp_reg
= PCH_FP0(pipe
);
3933 dpll_reg
= PCH_DPLL(pipe
);
3936 dpll_reg
= DPLL(pipe
);
3939 /* PCH eDP needs FDI, but CPU eDP does not */
3940 if (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
3941 I915_WRITE(fp_reg
, fp
);
3942 I915_WRITE(dpll_reg
, dpll
& ~DPLL_VCO_ENABLE
);
3944 POSTING_READ(dpll_reg
);
3948 /* enable transcoder DPLL */
3949 if (HAS_PCH_CPT(dev
)) {
3950 temp
= I915_READ(PCH_DPLL_SEL
);
3952 temp
|= TRANSA_DPLL_ENABLE
| TRANSA_DPLLA_SEL
;
3954 temp
|= TRANSB_DPLL_ENABLE
| TRANSB_DPLLB_SEL
;
3955 I915_WRITE(PCH_DPLL_SEL
, temp
);
3957 POSTING_READ(PCH_DPLL_SEL
);
3961 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3962 * This is an exception to the general rule that mode_set doesn't turn
3967 if (HAS_PCH_SPLIT(dev
))
3970 temp
= I915_READ(reg
);
3971 temp
|= LVDS_PORT_EN
| LVDS_A0A2_CLKA_POWER_UP
;
3973 if (HAS_PCH_CPT(dev
))
3974 temp
|= PORT_TRANS_B_SEL_CPT
;
3976 temp
|= LVDS_PIPEB_SELECT
;
3978 if (HAS_PCH_CPT(dev
))
3979 temp
&= ~PORT_TRANS_SEL_MASK
;
3981 temp
&= ~LVDS_PIPEB_SELECT
;
3983 /* set the corresponsding LVDS_BORDER bit */
3984 temp
|= dev_priv
->lvds_border_bits
;
3985 /* Set the B0-B3 data pairs corresponding to whether we're going to
3986 * set the DPLLs for dual-channel mode or not.
3989 temp
|= LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
;
3991 temp
&= ~(LVDS_B0B3_POWER_UP
| LVDS_CLKB_POWER_UP
);
3993 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3994 * appropriately here, but we need to look more thoroughly into how
3995 * panels behave in the two modes.
3997 /* set the dithering flag on non-PCH LVDS as needed */
3998 if (INTEL_INFO(dev
)->gen
>= 4 && !HAS_PCH_SPLIT(dev
)) {
3999 if (dev_priv
->lvds_dither
)
4000 temp
|= LVDS_ENABLE_DITHER
;
4002 temp
&= ~LVDS_ENABLE_DITHER
;
4004 I915_WRITE(reg
, temp
);
4007 /* set the dithering flag and clear for anything other than a panel. */
4008 if (HAS_PCH_SPLIT(dev
)) {
4009 pipeconf
&= ~PIPECONF_DITHER_EN
;
4010 pipeconf
&= ~PIPECONF_DITHER_TYPE_MASK
;
4011 if (dev_priv
->lvds_dither
&& (is_lvds
|| has_edp_encoder
)) {
4012 pipeconf
|= PIPECONF_DITHER_EN
;
4013 pipeconf
|= PIPECONF_DITHER_TYPE_ST1
;
4017 if (is_dp
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
4018 intel_dp_set_m_n(crtc
, mode
, adjusted_mode
);
4019 } else if (HAS_PCH_SPLIT(dev
)) {
4020 /* For non-DP output, clear any trans DP clock recovery setting.*/
4022 I915_WRITE(TRANSA_DATA_M1
, 0);
4023 I915_WRITE(TRANSA_DATA_N1
, 0);
4024 I915_WRITE(TRANSA_DP_LINK_M1
, 0);
4025 I915_WRITE(TRANSA_DP_LINK_N1
, 0);
4027 I915_WRITE(TRANSB_DATA_M1
, 0);
4028 I915_WRITE(TRANSB_DATA_N1
, 0);
4029 I915_WRITE(TRANSB_DP_LINK_M1
, 0);
4030 I915_WRITE(TRANSB_DP_LINK_N1
, 0);
4034 if (!has_edp_encoder
|| intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
4035 I915_WRITE(fp_reg
, fp
);
4036 I915_WRITE(dpll_reg
, dpll
);
4038 /* Wait for the clocks to stabilize. */
4039 POSTING_READ(dpll_reg
);
4042 if (INTEL_INFO(dev
)->gen
>= 4 && !HAS_PCH_SPLIT(dev
)) {
4045 temp
= intel_mode_get_pixel_multiplier(adjusted_mode
);
4047 temp
= (temp
- 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT
;
4051 I915_WRITE(DPLL_MD(pipe
), temp
);
4053 /* write it again -- the BIOS does, after all */
4054 I915_WRITE(dpll_reg
, dpll
);
4057 /* Wait for the clocks to stabilize. */
4058 POSTING_READ(dpll_reg
);
4062 intel_crtc
->lowfreq_avail
= false;
4063 if (is_lvds
&& has_reduced_clock
&& i915_powersave
) {
4064 I915_WRITE(fp_reg
+ 4, fp2
);
4065 intel_crtc
->lowfreq_avail
= true;
4066 if (HAS_PIPE_CXSR(dev
)) {
4067 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
4068 pipeconf
|= PIPECONF_CXSR_DOWNCLOCK
;
4071 I915_WRITE(fp_reg
+ 4, fp
);
4072 if (HAS_PIPE_CXSR(dev
)) {
4073 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
4074 pipeconf
&= ~PIPECONF_CXSR_DOWNCLOCK
;
4078 if (adjusted_mode
->flags
& DRM_MODE_FLAG_INTERLACE
) {
4079 pipeconf
|= PIPECONF_INTERLACE_W_FIELD_INDICATION
;
4080 /* the chip adds 2 halflines automatically */
4081 adjusted_mode
->crtc_vdisplay
-= 1;
4082 adjusted_mode
->crtc_vtotal
-= 1;
4083 adjusted_mode
->crtc_vblank_start
-= 1;
4084 adjusted_mode
->crtc_vblank_end
-= 1;
4085 adjusted_mode
->crtc_vsync_end
-= 1;
4086 adjusted_mode
->crtc_vsync_start
-= 1;
4088 pipeconf
&= ~PIPECONF_INTERLACE_W_FIELD_INDICATION
; /* progressive */
4090 I915_WRITE(HTOTAL(pipe
),
4091 (adjusted_mode
->crtc_hdisplay
- 1) |
4092 ((adjusted_mode
->crtc_htotal
- 1) << 16));
4093 I915_WRITE(HBLANK(pipe
),
4094 (adjusted_mode
->crtc_hblank_start
- 1) |
4095 ((adjusted_mode
->crtc_hblank_end
- 1) << 16));
4096 I915_WRITE(HSYNC(pipe
),
4097 (adjusted_mode
->crtc_hsync_start
- 1) |
4098 ((adjusted_mode
->crtc_hsync_end
- 1) << 16));
4100 I915_WRITE(VTOTAL(pipe
),
4101 (adjusted_mode
->crtc_vdisplay
- 1) |
4102 ((adjusted_mode
->crtc_vtotal
- 1) << 16));
4103 I915_WRITE(VBLANK(pipe
),
4104 (adjusted_mode
->crtc_vblank_start
- 1) |
4105 ((adjusted_mode
->crtc_vblank_end
- 1) << 16));
4106 I915_WRITE(VSYNC(pipe
),
4107 (adjusted_mode
->crtc_vsync_start
- 1) |
4108 ((adjusted_mode
->crtc_vsync_end
- 1) << 16));
4110 /* pipesrc and dspsize control the size that is scaled from,
4111 * which should always be the user's requested size.
4113 if (!HAS_PCH_SPLIT(dev
)) {
4114 I915_WRITE(DSPSIZE(plane
),
4115 ((mode
->vdisplay
- 1) << 16) |
4116 (mode
->hdisplay
- 1));
4117 I915_WRITE(DSPPOS(plane
), 0);
4119 I915_WRITE(PIPESRC(pipe
),
4120 ((mode
->hdisplay
- 1) << 16) | (mode
->vdisplay
- 1));
4122 if (HAS_PCH_SPLIT(dev
)) {
4123 I915_WRITE(PIPE_DATA_M1(pipe
), TU_SIZE(m_n
.tu
) | m_n
.gmch_m
);
4124 I915_WRITE(PIPE_DATA_N1(pipe
), m_n
.gmch_n
);
4125 I915_WRITE(PIPE_LINK_M1(pipe
), m_n
.link_m
);
4126 I915_WRITE(PIPE_LINK_N1(pipe
), m_n
.link_n
);
4128 if (has_edp_encoder
&& !intel_encoder_is_pch_edp(&has_edp_encoder
->base
)) {
4129 ironlake_set_pll_edp(crtc
, adjusted_mode
->clock
);
4131 /* enable FDI RX PLL too */
4132 reg
= FDI_RX_CTL(pipe
);
4133 temp
= I915_READ(reg
);
4134 I915_WRITE(reg
, temp
| FDI_RX_PLL_ENABLE
);
4139 /* enable FDI TX PLL too */
4140 reg
= FDI_TX_CTL(pipe
);
4141 temp
= I915_READ(reg
);
4142 I915_WRITE(reg
, temp
| FDI_TX_PLL_ENABLE
);
4144 /* enable FDI RX PCDCLK */
4145 reg
= FDI_RX_CTL(pipe
);
4146 temp
= I915_READ(reg
);
4147 I915_WRITE(reg
, temp
| FDI_PCDCLK
);
4154 I915_WRITE(PIPECONF(pipe
), pipeconf
);
4155 POSTING_READ(PIPECONF(pipe
));
4157 intel_wait_for_vblank(dev
, pipe
);
4159 if (IS_IRONLAKE(dev
)) {
4160 /* enable address swizzle for tiling buffer */
4161 temp
= I915_READ(DISP_ARB_CTL
);
4162 I915_WRITE(DISP_ARB_CTL
, temp
| DISP_TILE_SURFACE_SWIZZLING
);
4165 I915_WRITE(DSPCNTR(plane
), dspcntr
);
4167 ret
= intel_pipe_set_base(crtc
, x
, y
, old_fb
);
4169 intel_update_watermarks(dev
);
4171 drm_vblank_post_modeset(dev
, pipe
);
4176 /** Loads the palette/gamma unit for the CRTC with the prepared values */
4177 void intel_crtc_load_lut(struct drm_crtc
*crtc
)
4179 struct drm_device
*dev
= crtc
->dev
;
4180 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4181 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4182 int palreg
= (intel_crtc
->pipe
== 0) ? PALETTE_A
: PALETTE_B
;
4185 /* The clocks have to be on to load the palette. */
4189 /* use legacy palette for Ironlake */
4190 if (HAS_PCH_SPLIT(dev
))
4191 palreg
= (intel_crtc
->pipe
== 0) ? LGC_PALETTE_A
:
4194 for (i
= 0; i
< 256; i
++) {
4195 I915_WRITE(palreg
+ 4 * i
,
4196 (intel_crtc
->lut_r
[i
] << 16) |
4197 (intel_crtc
->lut_g
[i
] << 8) |
4198 intel_crtc
->lut_b
[i
]);
4202 static void i845_update_cursor(struct drm_crtc
*crtc
, u32 base
)
4204 struct drm_device
*dev
= crtc
->dev
;
4205 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4206 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4207 bool visible
= base
!= 0;
4210 if (intel_crtc
->cursor_visible
== visible
)
4213 cntl
= I915_READ(CURACNTR
);
4215 /* On these chipsets we can only modify the base whilst
4216 * the cursor is disabled.
4218 I915_WRITE(CURABASE
, base
);
4220 cntl
&= ~(CURSOR_FORMAT_MASK
);
4221 /* XXX width must be 64, stride 256 => 0x00 << 28 */
4222 cntl
|= CURSOR_ENABLE
|
4223 CURSOR_GAMMA_ENABLE
|
4226 cntl
&= ~(CURSOR_ENABLE
| CURSOR_GAMMA_ENABLE
);
4227 I915_WRITE(CURACNTR
, cntl
);
4229 intel_crtc
->cursor_visible
= visible
;
4232 static void i9xx_update_cursor(struct drm_crtc
*crtc
, u32 base
)
4234 struct drm_device
*dev
= crtc
->dev
;
4235 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4236 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4237 int pipe
= intel_crtc
->pipe
;
4238 bool visible
= base
!= 0;
4240 if (intel_crtc
->cursor_visible
!= visible
) {
4241 uint32_t cntl
= I915_READ(pipe
== 0 ? CURACNTR
: CURBCNTR
);
4243 cntl
&= ~(CURSOR_MODE
| MCURSOR_PIPE_SELECT
);
4244 cntl
|= CURSOR_MODE_64_ARGB_AX
| MCURSOR_GAMMA_ENABLE
;
4245 cntl
|= pipe
<< 28; /* Connect to correct pipe */
4247 cntl
&= ~(CURSOR_MODE
| MCURSOR_GAMMA_ENABLE
);
4248 cntl
|= CURSOR_MODE_DISABLE
;
4250 I915_WRITE(pipe
== 0 ? CURACNTR
: CURBCNTR
, cntl
);
4252 intel_crtc
->cursor_visible
= visible
;
4254 /* and commit changes on next vblank */
4255 I915_WRITE(pipe
== 0 ? CURABASE
: CURBBASE
, base
);
4258 /* If no-part of the cursor is visible on the framebuffer, then the GPU may hang... */
4259 static void intel_crtc_update_cursor(struct drm_crtc
*crtc
,
4262 struct drm_device
*dev
= crtc
->dev
;
4263 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4264 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4265 int pipe
= intel_crtc
->pipe
;
4266 int x
= intel_crtc
->cursor_x
;
4267 int y
= intel_crtc
->cursor_y
;
4273 if (on
&& crtc
->enabled
&& crtc
->fb
) {
4274 base
= intel_crtc
->cursor_addr
;
4275 if (x
> (int) crtc
->fb
->width
)
4278 if (y
> (int) crtc
->fb
->height
)
4284 if (x
+ intel_crtc
->cursor_width
< 0)
4287 pos
|= CURSOR_POS_SIGN
<< CURSOR_X_SHIFT
;
4290 pos
|= x
<< CURSOR_X_SHIFT
;
4293 if (y
+ intel_crtc
->cursor_height
< 0)
4296 pos
|= CURSOR_POS_SIGN
<< CURSOR_Y_SHIFT
;
4299 pos
|= y
<< CURSOR_Y_SHIFT
;
4301 visible
= base
!= 0;
4302 if (!visible
&& !intel_crtc
->cursor_visible
)
4305 I915_WRITE(pipe
== 0 ? CURAPOS
: CURBPOS
, pos
);
4306 if (IS_845G(dev
) || IS_I865G(dev
))
4307 i845_update_cursor(crtc
, base
);
4309 i9xx_update_cursor(crtc
, base
);
4312 intel_mark_busy(dev
, to_intel_framebuffer(crtc
->fb
)->obj
);
4315 static int intel_crtc_cursor_set(struct drm_crtc
*crtc
,
4316 struct drm_file
*file_priv
,
4318 uint32_t width
, uint32_t height
)
4320 struct drm_device
*dev
= crtc
->dev
;
4321 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4322 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4323 struct drm_gem_object
*bo
;
4324 struct drm_i915_gem_object
*obj_priv
;
4328 DRM_DEBUG_KMS("\n");
4330 /* if we want to turn off the cursor ignore width and height */
4332 DRM_DEBUG_KMS("cursor off\n");
4335 mutex_lock(&dev
->struct_mutex
);
4339 /* Currently we only support 64x64 cursors */
4340 if (width
!= 64 || height
!= 64) {
4341 DRM_ERROR("we currently only support 64x64 cursors\n");
4345 bo
= drm_gem_object_lookup(dev
, file_priv
, handle
);
4349 obj_priv
= to_intel_bo(bo
);
4351 if (bo
->size
< width
* height
* 4) {
4352 DRM_ERROR("buffer is to small\n");
4357 /* we only need to pin inside GTT if cursor is non-phy */
4358 mutex_lock(&dev
->struct_mutex
);
4359 if (!dev_priv
->info
->cursor_needs_physical
) {
4360 ret
= i915_gem_object_pin(bo
, PAGE_SIZE
);
4362 DRM_ERROR("failed to pin cursor bo\n");
4366 ret
= i915_gem_object_set_to_gtt_domain(bo
, 0);
4368 DRM_ERROR("failed to move cursor bo into the GTT\n");
4372 addr
= obj_priv
->gtt_offset
;
4374 int align
= IS_I830(dev
) ? 16 * 1024 : 256;
4375 ret
= i915_gem_attach_phys_object(dev
, bo
,
4376 (intel_crtc
->pipe
== 0) ? I915_GEM_PHYS_CURSOR_0
: I915_GEM_PHYS_CURSOR_1
,
4379 DRM_ERROR("failed to attach phys object\n");
4382 addr
= obj_priv
->phys_obj
->handle
->busaddr
;
4386 I915_WRITE(CURSIZE
, (height
<< 12) | width
);
4389 if (intel_crtc
->cursor_bo
) {
4390 if (dev_priv
->info
->cursor_needs_physical
) {
4391 if (intel_crtc
->cursor_bo
!= bo
)
4392 i915_gem_detach_phys_object(dev
, intel_crtc
->cursor_bo
);
4394 i915_gem_object_unpin(intel_crtc
->cursor_bo
);
4395 drm_gem_object_unreference(intel_crtc
->cursor_bo
);
4398 mutex_unlock(&dev
->struct_mutex
);
4400 intel_crtc
->cursor_addr
= addr
;
4401 intel_crtc
->cursor_bo
= bo
;
4402 intel_crtc
->cursor_width
= width
;
4403 intel_crtc
->cursor_height
= height
;
4405 intel_crtc_update_cursor(crtc
, true);
4409 i915_gem_object_unpin(bo
);
4411 mutex_unlock(&dev
->struct_mutex
);
4413 drm_gem_object_unreference_unlocked(bo
);
4417 static int intel_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
4419 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4421 intel_crtc
->cursor_x
= x
;
4422 intel_crtc
->cursor_y
= y
;
4424 intel_crtc_update_cursor(crtc
, true);
4429 /** Sets the color ramps on behalf of RandR */
4430 void intel_crtc_fb_gamma_set(struct drm_crtc
*crtc
, u16 red
, u16 green
,
4431 u16 blue
, int regno
)
4433 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4435 intel_crtc
->lut_r
[regno
] = red
>> 8;
4436 intel_crtc
->lut_g
[regno
] = green
>> 8;
4437 intel_crtc
->lut_b
[regno
] = blue
>> 8;
4440 void intel_crtc_fb_gamma_get(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
4441 u16
*blue
, int regno
)
4443 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4445 *red
= intel_crtc
->lut_r
[regno
] << 8;
4446 *green
= intel_crtc
->lut_g
[regno
] << 8;
4447 *blue
= intel_crtc
->lut_b
[regno
] << 8;
4450 static void intel_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*red
, u16
*green
,
4451 u16
*blue
, uint32_t start
, uint32_t size
)
4453 int end
= (start
+ size
> 256) ? 256 : start
+ size
, i
;
4454 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4456 for (i
= start
; i
< end
; i
++) {
4457 intel_crtc
->lut_r
[i
] = red
[i
] >> 8;
4458 intel_crtc
->lut_g
[i
] = green
[i
] >> 8;
4459 intel_crtc
->lut_b
[i
] = blue
[i
] >> 8;
4462 intel_crtc_load_lut(crtc
);
4466 * Get a pipe with a simple mode set on it for doing load-based monitor
4469 * It will be up to the load-detect code to adjust the pipe as appropriate for
4470 * its requirements. The pipe will be connected to no other encoders.
4472 * Currently this code will only succeed if there is a pipe with no encoders
4473 * configured for it. In the future, it could choose to temporarily disable
4474 * some outputs to free up a pipe for its use.
4476 * \return crtc, or NULL if no pipes are available.
4479 /* VESA 640x480x72Hz mode to set on the pipe */
4480 static struct drm_display_mode load_detect_mode
= {
4481 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT
, 31500, 640, 664,
4482 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC
| DRM_MODE_FLAG_NVSYNC
),
4485 struct drm_crtc
*intel_get_load_detect_pipe(struct intel_encoder
*intel_encoder
,
4486 struct drm_connector
*connector
,
4487 struct drm_display_mode
*mode
,
4490 struct intel_crtc
*intel_crtc
;
4491 struct drm_crtc
*possible_crtc
;
4492 struct drm_crtc
*supported_crtc
=NULL
;
4493 struct drm_encoder
*encoder
= &intel_encoder
->base
;
4494 struct drm_crtc
*crtc
= NULL
;
4495 struct drm_device
*dev
= encoder
->dev
;
4496 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
4497 struct drm_crtc_helper_funcs
*crtc_funcs
;
4501 * Algorithm gets a little messy:
4502 * - if the connector already has an assigned crtc, use it (but make
4503 * sure it's on first)
4504 * - try to find the first unused crtc that can drive this connector,
4505 * and use that if we find one
4506 * - if there are no unused crtcs available, try to use the first
4507 * one we found that supports the connector
4510 /* See if we already have a CRTC for this connector */
4511 if (encoder
->crtc
) {
4512 crtc
= encoder
->crtc
;
4513 /* Make sure the crtc and connector are running */
4514 intel_crtc
= to_intel_crtc(crtc
);
4515 *dpms_mode
= intel_crtc
->dpms_mode
;
4516 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
4517 crtc_funcs
= crtc
->helper_private
;
4518 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
4519 encoder_funcs
->dpms(encoder
, DRM_MODE_DPMS_ON
);
4524 /* Find an unused one (if possible) */
4525 list_for_each_entry(possible_crtc
, &dev
->mode_config
.crtc_list
, head
) {
4527 if (!(encoder
->possible_crtcs
& (1 << i
)))
4529 if (!possible_crtc
->enabled
) {
4530 crtc
= possible_crtc
;
4533 if (!supported_crtc
)
4534 supported_crtc
= possible_crtc
;
4538 * If we didn't find an unused CRTC, don't use any.
4544 encoder
->crtc
= crtc
;
4545 connector
->encoder
= encoder
;
4546 intel_encoder
->load_detect_temp
= true;
4548 intel_crtc
= to_intel_crtc(crtc
);
4549 *dpms_mode
= intel_crtc
->dpms_mode
;
4551 if (!crtc
->enabled
) {
4553 mode
= &load_detect_mode
;
4554 drm_crtc_helper_set_mode(crtc
, mode
, 0, 0, crtc
->fb
);
4556 if (intel_crtc
->dpms_mode
!= DRM_MODE_DPMS_ON
) {
4557 crtc_funcs
= crtc
->helper_private
;
4558 crtc_funcs
->dpms(crtc
, DRM_MODE_DPMS_ON
);
4561 /* Add this connector to the crtc */
4562 encoder_funcs
->mode_set(encoder
, &crtc
->mode
, &crtc
->mode
);
4563 encoder_funcs
->commit(encoder
);
4565 /* let the connector get through one full cycle before testing */
4566 intel_wait_for_vblank(dev
, intel_crtc
->pipe
);
4571 void intel_release_load_detect_pipe(struct intel_encoder
*intel_encoder
,
4572 struct drm_connector
*connector
, int dpms_mode
)
4574 struct drm_encoder
*encoder
= &intel_encoder
->base
;
4575 struct drm_device
*dev
= encoder
->dev
;
4576 struct drm_crtc
*crtc
= encoder
->crtc
;
4577 struct drm_encoder_helper_funcs
*encoder_funcs
= encoder
->helper_private
;
4578 struct drm_crtc_helper_funcs
*crtc_funcs
= crtc
->helper_private
;
4580 if (intel_encoder
->load_detect_temp
) {
4581 encoder
->crtc
= NULL
;
4582 connector
->encoder
= NULL
;
4583 intel_encoder
->load_detect_temp
= false;
4584 crtc
->enabled
= drm_helper_crtc_in_use(crtc
);
4585 drm_helper_disable_unused_functions(dev
);
4588 /* Switch crtc and encoder back off if necessary */
4589 if (crtc
->enabled
&& dpms_mode
!= DRM_MODE_DPMS_ON
) {
4590 if (encoder
->crtc
== crtc
)
4591 encoder_funcs
->dpms(encoder
, dpms_mode
);
4592 crtc_funcs
->dpms(crtc
, dpms_mode
);
4596 /* Returns the clock of the currently programmed mode of the given pipe. */
4597 static int intel_crtc_clock_get(struct drm_device
*dev
, struct drm_crtc
*crtc
)
4599 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4600 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4601 int pipe
= intel_crtc
->pipe
;
4602 u32 dpll
= I915_READ((pipe
== 0) ? DPLL_A
: DPLL_B
);
4604 intel_clock_t clock
;
4606 if ((dpll
& DISPLAY_RATE_SELECT_FPA1
) == 0)
4607 fp
= I915_READ((pipe
== 0) ? FPA0
: FPB0
);
4609 fp
= I915_READ((pipe
== 0) ? FPA1
: FPB1
);
4611 clock
.m1
= (fp
& FP_M1_DIV_MASK
) >> FP_M1_DIV_SHIFT
;
4612 if (IS_PINEVIEW(dev
)) {
4613 clock
.n
= ffs((fp
& FP_N_PINEVIEW_DIV_MASK
) >> FP_N_DIV_SHIFT
) - 1;
4614 clock
.m2
= (fp
& FP_M2_PINEVIEW_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
4616 clock
.n
= (fp
& FP_N_DIV_MASK
) >> FP_N_DIV_SHIFT
;
4617 clock
.m2
= (fp
& FP_M2_DIV_MASK
) >> FP_M2_DIV_SHIFT
;
4620 if (!IS_GEN2(dev
)) {
4621 if (IS_PINEVIEW(dev
))
4622 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW
) >>
4623 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW
);
4625 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK
) >>
4626 DPLL_FPA01_P1_POST_DIV_SHIFT
);
4628 switch (dpll
& DPLL_MODE_MASK
) {
4629 case DPLLB_MODE_DAC_SERIAL
:
4630 clock
.p2
= dpll
& DPLL_DAC_SERIAL_P2_CLOCK_DIV_5
?
4633 case DPLLB_MODE_LVDS
:
4634 clock
.p2
= dpll
& DPLLB_LVDS_P2_CLOCK_DIV_7
?
4638 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
4639 "mode\n", (int)(dpll
& DPLL_MODE_MASK
));
4643 /* XXX: Handle the 100Mhz refclk */
4644 intel_clock(dev
, 96000, &clock
);
4646 bool is_lvds
= (pipe
== 1) && (I915_READ(LVDS
) & LVDS_PORT_EN
);
4649 clock
.p1
= ffs((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS
) >>
4650 DPLL_FPA01_P1_POST_DIV_SHIFT
);
4653 if ((dpll
& PLL_REF_INPUT_MASK
) ==
4654 PLLB_REF_INPUT_SPREADSPECTRUMIN
) {
4655 /* XXX: might not be 66MHz */
4656 intel_clock(dev
, 66000, &clock
);
4658 intel_clock(dev
, 48000, &clock
);
4660 if (dpll
& PLL_P1_DIVIDE_BY_TWO
)
4663 clock
.p1
= ((dpll
& DPLL_FPA01_P1_POST_DIV_MASK_I830
) >>
4664 DPLL_FPA01_P1_POST_DIV_SHIFT
) + 2;
4666 if (dpll
& PLL_P2_DIVIDE_BY_4
)
4671 intel_clock(dev
, 48000, &clock
);
4675 /* XXX: It would be nice to validate the clocks, but we can't reuse
4676 * i830PllIsValid() because it relies on the xf86_config connector
4677 * configuration being accurate, which it isn't necessarily.
4683 /** Returns the currently programmed mode of the given pipe. */
4684 struct drm_display_mode
*intel_crtc_mode_get(struct drm_device
*dev
,
4685 struct drm_crtc
*crtc
)
4687 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
4688 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4689 int pipe
= intel_crtc
->pipe
;
4690 struct drm_display_mode
*mode
;
4691 int htot
= I915_READ((pipe
== 0) ? HTOTAL_A
: HTOTAL_B
);
4692 int hsync
= I915_READ((pipe
== 0) ? HSYNC_A
: HSYNC_B
);
4693 int vtot
= I915_READ((pipe
== 0) ? VTOTAL_A
: VTOTAL_B
);
4694 int vsync
= I915_READ((pipe
== 0) ? VSYNC_A
: VSYNC_B
);
4696 mode
= kzalloc(sizeof(*mode
), GFP_KERNEL
);
4700 mode
->clock
= intel_crtc_clock_get(dev
, crtc
);
4701 mode
->hdisplay
= (htot
& 0xffff) + 1;
4702 mode
->htotal
= ((htot
& 0xffff0000) >> 16) + 1;
4703 mode
->hsync_start
= (hsync
& 0xffff) + 1;
4704 mode
->hsync_end
= ((hsync
& 0xffff0000) >> 16) + 1;
4705 mode
->vdisplay
= (vtot
& 0xffff) + 1;
4706 mode
->vtotal
= ((vtot
& 0xffff0000) >> 16) + 1;
4707 mode
->vsync_start
= (vsync
& 0xffff) + 1;
4708 mode
->vsync_end
= ((vsync
& 0xffff0000) >> 16) + 1;
4710 drm_mode_set_name(mode
);
4711 drm_mode_set_crtcinfo(mode
, 0);
4716 #define GPU_IDLE_TIMEOUT 500 /* ms */
4718 /* When this timer fires, we've been idle for awhile */
4719 static void intel_gpu_idle_timer(unsigned long arg
)
4721 struct drm_device
*dev
= (struct drm_device
*)arg
;
4722 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4724 dev_priv
->busy
= false;
4726 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
4729 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
4731 static void intel_crtc_idle_timer(unsigned long arg
)
4733 struct intel_crtc
*intel_crtc
= (struct intel_crtc
*)arg
;
4734 struct drm_crtc
*crtc
= &intel_crtc
->base
;
4735 drm_i915_private_t
*dev_priv
= crtc
->dev
->dev_private
;
4737 intel_crtc
->busy
= false;
4739 queue_work(dev_priv
->wq
, &dev_priv
->idle_work
);
4742 static void intel_increase_pllclock(struct drm_crtc
*crtc
)
4744 struct drm_device
*dev
= crtc
->dev
;
4745 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4746 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4747 int pipe
= intel_crtc
->pipe
;
4748 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
4749 int dpll
= I915_READ(dpll_reg
);
4751 if (HAS_PCH_SPLIT(dev
))
4754 if (!dev_priv
->lvds_downclock_avail
)
4757 if (!HAS_PIPE_CXSR(dev
) && (dpll
& DISPLAY_RATE_SELECT_FPA1
)) {
4758 DRM_DEBUG_DRIVER("upclocking LVDS\n");
4760 /* Unlock panel regs */
4761 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
4764 dpll
&= ~DISPLAY_RATE_SELECT_FPA1
;
4765 I915_WRITE(dpll_reg
, dpll
);
4766 dpll
= I915_READ(dpll_reg
);
4767 intel_wait_for_vblank(dev
, pipe
);
4768 dpll
= I915_READ(dpll_reg
);
4769 if (dpll
& DISPLAY_RATE_SELECT_FPA1
)
4770 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
4772 /* ...and lock them again */
4773 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
4776 /* Schedule downclock */
4777 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
4778 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
4781 static void intel_decrease_pllclock(struct drm_crtc
*crtc
)
4783 struct drm_device
*dev
= crtc
->dev
;
4784 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4785 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4786 int pipe
= intel_crtc
->pipe
;
4787 int dpll_reg
= (pipe
== 0) ? DPLL_A
: DPLL_B
;
4788 int dpll
= I915_READ(dpll_reg
);
4790 if (HAS_PCH_SPLIT(dev
))
4793 if (!dev_priv
->lvds_downclock_avail
)
4797 * Since this is called by a timer, we should never get here in
4800 if (!HAS_PIPE_CXSR(dev
) && intel_crtc
->lowfreq_avail
) {
4801 DRM_DEBUG_DRIVER("downclocking LVDS\n");
4803 /* Unlock panel regs */
4804 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) |
4807 dpll
|= DISPLAY_RATE_SELECT_FPA1
;
4808 I915_WRITE(dpll_reg
, dpll
);
4809 dpll
= I915_READ(dpll_reg
);
4810 intel_wait_for_vblank(dev
, pipe
);
4811 dpll
= I915_READ(dpll_reg
);
4812 if (!(dpll
& DISPLAY_RATE_SELECT_FPA1
))
4813 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
4815 /* ...and lock them again */
4816 I915_WRITE(PP_CONTROL
, I915_READ(PP_CONTROL
) & 0x3);
4822 * intel_idle_update - adjust clocks for idleness
4823 * @work: work struct
4825 * Either the GPU or display (or both) went idle. Check the busy status
4826 * here and adjust the CRTC and GPU clocks as necessary.
4828 static void intel_idle_update(struct work_struct
*work
)
4830 drm_i915_private_t
*dev_priv
= container_of(work
, drm_i915_private_t
,
4832 struct drm_device
*dev
= dev_priv
->dev
;
4833 struct drm_crtc
*crtc
;
4834 struct intel_crtc
*intel_crtc
;
4837 if (!i915_powersave
)
4840 mutex_lock(&dev
->struct_mutex
);
4842 i915_update_gfx_val(dev_priv
);
4844 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4845 /* Skip inactive CRTCs */
4850 intel_crtc
= to_intel_crtc(crtc
);
4851 if (!intel_crtc
->busy
)
4852 intel_decrease_pllclock(crtc
);
4855 if ((enabled
== 1) && (IS_I945G(dev
) || IS_I945GM(dev
))) {
4856 DRM_DEBUG_DRIVER("enable memory self refresh on 945\n");
4857 I915_WRITE(FW_BLC_SELF
, FW_BLC_SELF_EN_MASK
| FW_BLC_SELF_EN
);
4860 mutex_unlock(&dev
->struct_mutex
);
4864 * intel_mark_busy - mark the GPU and possibly the display busy
4866 * @obj: object we're operating on
4868 * Callers can use this function to indicate that the GPU is busy processing
4869 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4870 * buffer), we'll also mark the display as busy, so we know to increase its
4873 void intel_mark_busy(struct drm_device
*dev
, struct drm_gem_object
*obj
)
4875 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4876 struct drm_crtc
*crtc
= NULL
;
4877 struct intel_framebuffer
*intel_fb
;
4878 struct intel_crtc
*intel_crtc
;
4880 if (!drm_core_check_feature(dev
, DRIVER_MODESET
))
4883 if (!dev_priv
->busy
) {
4884 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4887 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4888 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4889 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4890 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4892 dev_priv
->busy
= true;
4894 mod_timer(&dev_priv
->idle_timer
, jiffies
+
4895 msecs_to_jiffies(GPU_IDLE_TIMEOUT
));
4897 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
4901 intel_crtc
= to_intel_crtc(crtc
);
4902 intel_fb
= to_intel_framebuffer(crtc
->fb
);
4903 if (intel_fb
->obj
== obj
) {
4904 if (!intel_crtc
->busy
) {
4905 if (IS_I945G(dev
) || IS_I945GM(dev
)) {
4908 DRM_DEBUG_DRIVER("disable memory self refresh on 945\n");
4909 fw_blc_self
= I915_READ(FW_BLC_SELF
);
4910 fw_blc_self
&= ~FW_BLC_SELF_EN
;
4911 I915_WRITE(FW_BLC_SELF
, fw_blc_self
| FW_BLC_SELF_EN_MASK
);
4913 /* Non-busy -> busy, upclock */
4914 intel_increase_pllclock(crtc
);
4915 intel_crtc
->busy
= true;
4917 /* Busy -> busy, put off timer */
4918 mod_timer(&intel_crtc
->idle_timer
, jiffies
+
4919 msecs_to_jiffies(CRTC_IDLE_TIMEOUT
));
4925 static void intel_crtc_destroy(struct drm_crtc
*crtc
)
4927 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4928 struct drm_device
*dev
= crtc
->dev
;
4929 struct intel_unpin_work
*work
;
4930 unsigned long flags
;
4932 spin_lock_irqsave(&dev
->event_lock
, flags
);
4933 work
= intel_crtc
->unpin_work
;
4934 intel_crtc
->unpin_work
= NULL
;
4935 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4938 cancel_work_sync(&work
->work
);
4942 drm_crtc_cleanup(crtc
);
4947 static void intel_unpin_work_fn(struct work_struct
*__work
)
4949 struct intel_unpin_work
*work
=
4950 container_of(__work
, struct intel_unpin_work
, work
);
4952 mutex_lock(&work
->dev
->struct_mutex
);
4953 i915_gem_object_unpin(work
->old_fb_obj
);
4954 drm_gem_object_unreference(work
->pending_flip_obj
);
4955 drm_gem_object_unreference(work
->old_fb_obj
);
4956 mutex_unlock(&work
->dev
->struct_mutex
);
4960 static void do_intel_finish_page_flip(struct drm_device
*dev
,
4961 struct drm_crtc
*crtc
)
4963 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
4964 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
4965 struct intel_unpin_work
*work
;
4966 struct drm_i915_gem_object
*obj_priv
;
4967 struct drm_pending_vblank_event
*e
;
4969 unsigned long flags
;
4971 /* Ignore early vblank irqs */
4972 if (intel_crtc
== NULL
)
4975 spin_lock_irqsave(&dev
->event_lock
, flags
);
4976 work
= intel_crtc
->unpin_work
;
4977 if (work
== NULL
|| !work
->pending
) {
4978 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4982 intel_crtc
->unpin_work
= NULL
;
4983 drm_vblank_put(dev
, intel_crtc
->pipe
);
4987 do_gettimeofday(&now
);
4988 e
->event
.sequence
= drm_vblank_count(dev
, intel_crtc
->pipe
);
4989 e
->event
.tv_sec
= now
.tv_sec
;
4990 e
->event
.tv_usec
= now
.tv_usec
;
4991 list_add_tail(&e
->base
.link
,
4992 &e
->base
.file_priv
->event_list
);
4993 wake_up_interruptible(&e
->base
.file_priv
->event_wait
);
4996 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
4998 obj_priv
= to_intel_bo(work
->pending_flip_obj
);
5000 /* Initial scanout buffer will have a 0 pending flip count */
5001 atomic_clear_mask(1 << intel_crtc
->plane
,
5002 &obj_priv
->pending_flip
.counter
);
5003 if (atomic_read(&obj_priv
->pending_flip
) == 0)
5004 wake_up(&dev_priv
->pending_flip_queue
);
5005 schedule_work(&work
->work
);
5007 trace_i915_flip_complete(intel_crtc
->plane
, work
->pending_flip_obj
);
5010 void intel_finish_page_flip(struct drm_device
*dev
, int pipe
)
5012 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5013 struct drm_crtc
*crtc
= dev_priv
->pipe_to_crtc_mapping
[pipe
];
5015 do_intel_finish_page_flip(dev
, crtc
);
5018 void intel_finish_page_flip_plane(struct drm_device
*dev
, int plane
)
5020 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5021 struct drm_crtc
*crtc
= dev_priv
->plane_to_crtc_mapping
[plane
];
5023 do_intel_finish_page_flip(dev
, crtc
);
5026 void intel_prepare_page_flip(struct drm_device
*dev
, int plane
)
5028 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5029 struct intel_crtc
*intel_crtc
=
5030 to_intel_crtc(dev_priv
->plane_to_crtc_mapping
[plane
]);
5031 unsigned long flags
;
5033 spin_lock_irqsave(&dev
->event_lock
, flags
);
5034 if (intel_crtc
->unpin_work
) {
5035 if ((++intel_crtc
->unpin_work
->pending
) > 1)
5036 DRM_ERROR("Prepared flip multiple times\n");
5038 DRM_DEBUG_DRIVER("preparing flip with no unpin work?\n");
5040 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5043 static int intel_crtc_page_flip(struct drm_crtc
*crtc
,
5044 struct drm_framebuffer
*fb
,
5045 struct drm_pending_vblank_event
*event
)
5047 struct drm_device
*dev
= crtc
->dev
;
5048 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5049 struct intel_framebuffer
*intel_fb
;
5050 struct drm_i915_gem_object
*obj_priv
;
5051 struct drm_gem_object
*obj
;
5052 struct intel_crtc
*intel_crtc
= to_intel_crtc(crtc
);
5053 struct intel_unpin_work
*work
;
5054 unsigned long flags
, offset
;
5055 int pipe
= intel_crtc
->pipe
;
5059 work
= kzalloc(sizeof *work
, GFP_KERNEL
);
5063 work
->event
= event
;
5064 work
->dev
= crtc
->dev
;
5065 intel_fb
= to_intel_framebuffer(crtc
->fb
);
5066 work
->old_fb_obj
= intel_fb
->obj
;
5067 INIT_WORK(&work
->work
, intel_unpin_work_fn
);
5069 /* We borrow the event spin lock for protecting unpin_work */
5070 spin_lock_irqsave(&dev
->event_lock
, flags
);
5071 if (intel_crtc
->unpin_work
) {
5072 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5075 DRM_DEBUG_DRIVER("flip queue: crtc already busy\n");
5078 intel_crtc
->unpin_work
= work
;
5079 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5081 intel_fb
= to_intel_framebuffer(fb
);
5082 obj
= intel_fb
->obj
;
5084 mutex_lock(&dev
->struct_mutex
);
5085 ret
= intel_pin_and_fence_fb_obj(dev
, obj
, true);
5089 /* Reference the objects for the scheduled work. */
5090 drm_gem_object_reference(work
->old_fb_obj
);
5091 drm_gem_object_reference(obj
);
5095 ret
= drm_vblank_get(dev
, intel_crtc
->pipe
);
5099 obj_priv
= to_intel_bo(obj
);
5100 atomic_add(1 << intel_crtc
->plane
, &obj_priv
->pending_flip
);
5101 work
->pending_flip_obj
= obj
;
5103 if (IS_GEN3(dev
) || IS_GEN2(dev
)) {
5106 /* Can't queue multiple flips, so wait for the previous
5107 * one to finish before executing the next.
5110 if (intel_crtc
->plane
)
5111 flip_mask
= MI_WAIT_FOR_PLANE_B_FLIP
;
5113 flip_mask
= MI_WAIT_FOR_PLANE_A_FLIP
;
5114 OUT_RING(MI_WAIT_FOR_EVENT
| flip_mask
);
5119 work
->enable_stall_check
= true;
5121 /* Offset into the new buffer for cases of shared fbs between CRTCs */
5122 offset
= crtc
->y
* fb
->pitch
+ crtc
->x
* fb
->bits_per_pixel
/8;
5125 switch(INTEL_INFO(dev
)->gen
) {
5127 OUT_RING(MI_DISPLAY_FLIP
|
5128 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5129 OUT_RING(fb
->pitch
);
5130 OUT_RING(obj_priv
->gtt_offset
+ offset
);
5135 OUT_RING(MI_DISPLAY_FLIP_I915
|
5136 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5137 OUT_RING(fb
->pitch
);
5138 OUT_RING(obj_priv
->gtt_offset
+ offset
);
5144 /* i965+ uses the linear or tiled offsets from the
5145 * Display Registers (which do not change across a page-flip)
5146 * so we need only reprogram the base address.
5148 OUT_RING(MI_DISPLAY_FLIP
|
5149 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5150 OUT_RING(fb
->pitch
);
5151 OUT_RING(obj_priv
->gtt_offset
| obj_priv
->tiling_mode
);
5153 /* XXX Enabling the panel-fitter across page-flip is so far
5154 * untested on non-native modes, so ignore it for now.
5155 * pf = I915_READ(pipe == 0 ? PFA_CTL_1 : PFB_CTL_1) & PF_ENABLE;
5158 pipesrc
= I915_READ(pipe
== 0 ? PIPEASRC
: PIPEBSRC
) & 0x0fff0fff;
5159 OUT_RING(pf
| pipesrc
);
5163 OUT_RING(MI_DISPLAY_FLIP
|
5164 MI_DISPLAY_FLIP_PLANE(intel_crtc
->plane
));
5165 OUT_RING(fb
->pitch
| obj_priv
->tiling_mode
);
5166 OUT_RING(obj_priv
->gtt_offset
);
5168 pf
= I915_READ(pipe
== 0 ? PFA_CTL_1
: PFB_CTL_1
) & PF_ENABLE
;
5169 pipesrc
= I915_READ(pipe
== 0 ? PIPEASRC
: PIPEBSRC
) & 0x0fff0fff;
5170 OUT_RING(pf
| pipesrc
);
5175 mutex_unlock(&dev
->struct_mutex
);
5177 trace_i915_flip_request(intel_crtc
->plane
, obj
);
5182 drm_gem_object_unreference(work
->old_fb_obj
);
5183 drm_gem_object_unreference(obj
);
5185 mutex_unlock(&dev
->struct_mutex
);
5187 spin_lock_irqsave(&dev
->event_lock
, flags
);
5188 intel_crtc
->unpin_work
= NULL
;
5189 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
5196 static struct drm_crtc_helper_funcs intel_helper_funcs
= {
5197 .dpms
= intel_crtc_dpms
,
5198 .mode_fixup
= intel_crtc_mode_fixup
,
5199 .mode_set
= intel_crtc_mode_set
,
5200 .mode_set_base
= intel_pipe_set_base
,
5201 .mode_set_base_atomic
= intel_pipe_set_base_atomic
,
5202 .load_lut
= intel_crtc_load_lut
,
5203 .disable
= intel_crtc_disable
,
5206 static const struct drm_crtc_funcs intel_crtc_funcs
= {
5207 .cursor_set
= intel_crtc_cursor_set
,
5208 .cursor_move
= intel_crtc_cursor_move
,
5209 .gamma_set
= intel_crtc_gamma_set
,
5210 .set_config
= drm_crtc_helper_set_config
,
5211 .destroy
= intel_crtc_destroy
,
5212 .page_flip
= intel_crtc_page_flip
,
5216 static void intel_crtc_init(struct drm_device
*dev
, int pipe
)
5218 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5219 struct intel_crtc
*intel_crtc
;
5222 intel_crtc
= kzalloc(sizeof(struct intel_crtc
) + (INTELFB_CONN_LIMIT
* sizeof(struct drm_connector
*)), GFP_KERNEL
);
5223 if (intel_crtc
== NULL
)
5226 drm_crtc_init(dev
, &intel_crtc
->base
, &intel_crtc_funcs
);
5228 drm_mode_crtc_set_gamma_size(&intel_crtc
->base
, 256);
5229 for (i
= 0; i
< 256; i
++) {
5230 intel_crtc
->lut_r
[i
] = i
;
5231 intel_crtc
->lut_g
[i
] = i
;
5232 intel_crtc
->lut_b
[i
] = i
;
5235 /* Swap pipes & planes for FBC on pre-965 */
5236 intel_crtc
->pipe
= pipe
;
5237 intel_crtc
->plane
= pipe
;
5238 if (IS_MOBILE(dev
) && IS_GEN3(dev
)) {
5239 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
5240 intel_crtc
->plane
= !pipe
;
5243 BUG_ON(pipe
>= ARRAY_SIZE(dev_priv
->plane_to_crtc_mapping
) ||
5244 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] != NULL
);
5245 dev_priv
->plane_to_crtc_mapping
[intel_crtc
->plane
] = &intel_crtc
->base
;
5246 dev_priv
->pipe_to_crtc_mapping
[intel_crtc
->pipe
] = &intel_crtc
->base
;
5248 intel_crtc
->cursor_addr
= 0;
5249 intel_crtc
->dpms_mode
= -1;
5250 intel_crtc
->active
= true; /* force the pipe off on setup_init_config */
5252 if (HAS_PCH_SPLIT(dev
)) {
5253 intel_helper_funcs
.prepare
= ironlake_crtc_prepare
;
5254 intel_helper_funcs
.commit
= ironlake_crtc_commit
;
5256 intel_helper_funcs
.prepare
= i9xx_crtc_prepare
;
5257 intel_helper_funcs
.commit
= i9xx_crtc_commit
;
5260 drm_crtc_helper_add(&intel_crtc
->base
, &intel_helper_funcs
);
5262 intel_crtc
->busy
= false;
5264 setup_timer(&intel_crtc
->idle_timer
, intel_crtc_idle_timer
,
5265 (unsigned long)intel_crtc
);
5268 int intel_get_pipe_from_crtc_id(struct drm_device
*dev
, void *data
,
5269 struct drm_file
*file_priv
)
5271 drm_i915_private_t
*dev_priv
= dev
->dev_private
;
5272 struct drm_i915_get_pipe_from_crtc_id
*pipe_from_crtc_id
= data
;
5273 struct drm_mode_object
*drmmode_obj
;
5274 struct intel_crtc
*crtc
;
5277 DRM_ERROR("called with no initialization\n");
5281 drmmode_obj
= drm_mode_object_find(dev
, pipe_from_crtc_id
->crtc_id
,
5282 DRM_MODE_OBJECT_CRTC
);
5285 DRM_ERROR("no such CRTC id\n");
5289 crtc
= to_intel_crtc(obj_to_crtc(drmmode_obj
));
5290 pipe_from_crtc_id
->pipe
= crtc
->pipe
;
5295 static int intel_encoder_clones(struct drm_device
*dev
, int type_mask
)
5297 struct intel_encoder
*encoder
;
5301 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
5302 if (type_mask
& encoder
->clone_mask
)
5303 index_mask
|= (1 << entry
);
5310 static void intel_setup_outputs(struct drm_device
*dev
)
5312 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5313 struct intel_encoder
*encoder
;
5314 bool dpd_is_edp
= false;
5316 if (IS_MOBILE(dev
) && !IS_I830(dev
))
5317 intel_lvds_init(dev
);
5319 if (HAS_PCH_SPLIT(dev
)) {
5320 dpd_is_edp
= intel_dpd_is_edp(dev
);
5322 if (IS_MOBILE(dev
) && (I915_READ(DP_A
) & DP_DETECTED
))
5323 intel_dp_init(dev
, DP_A
);
5325 if (dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
5326 intel_dp_init(dev
, PCH_DP_D
);
5329 intel_crt_init(dev
);
5331 if (HAS_PCH_SPLIT(dev
)) {
5334 if (I915_READ(HDMIB
) & PORT_DETECTED
) {
5335 /* PCH SDVOB multiplex with HDMIB */
5336 found
= intel_sdvo_init(dev
, PCH_SDVOB
);
5338 intel_hdmi_init(dev
, HDMIB
);
5339 if (!found
&& (I915_READ(PCH_DP_B
) & DP_DETECTED
))
5340 intel_dp_init(dev
, PCH_DP_B
);
5343 if (I915_READ(HDMIC
) & PORT_DETECTED
)
5344 intel_hdmi_init(dev
, HDMIC
);
5346 if (I915_READ(HDMID
) & PORT_DETECTED
)
5347 intel_hdmi_init(dev
, HDMID
);
5349 if (I915_READ(PCH_DP_C
) & DP_DETECTED
)
5350 intel_dp_init(dev
, PCH_DP_C
);
5352 if (!dpd_is_edp
&& (I915_READ(PCH_DP_D
) & DP_DETECTED
))
5353 intel_dp_init(dev
, PCH_DP_D
);
5355 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev
)) {
5358 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
5359 DRM_DEBUG_KMS("probing SDVOB\n");
5360 found
= intel_sdvo_init(dev
, SDVOB
);
5361 if (!found
&& SUPPORTS_INTEGRATED_HDMI(dev
)) {
5362 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
5363 intel_hdmi_init(dev
, SDVOB
);
5366 if (!found
&& SUPPORTS_INTEGRATED_DP(dev
)) {
5367 DRM_DEBUG_KMS("probing DP_B\n");
5368 intel_dp_init(dev
, DP_B
);
5372 /* Before G4X SDVOC doesn't have its own detect register */
5374 if (I915_READ(SDVOB
) & SDVO_DETECTED
) {
5375 DRM_DEBUG_KMS("probing SDVOC\n");
5376 found
= intel_sdvo_init(dev
, SDVOC
);
5379 if (!found
&& (I915_READ(SDVOC
) & SDVO_DETECTED
)) {
5381 if (SUPPORTS_INTEGRATED_HDMI(dev
)) {
5382 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
5383 intel_hdmi_init(dev
, SDVOC
);
5385 if (SUPPORTS_INTEGRATED_DP(dev
)) {
5386 DRM_DEBUG_KMS("probing DP_C\n");
5387 intel_dp_init(dev
, DP_C
);
5391 if (SUPPORTS_INTEGRATED_DP(dev
) &&
5392 (I915_READ(DP_D
) & DP_DETECTED
)) {
5393 DRM_DEBUG_KMS("probing DP_D\n");
5394 intel_dp_init(dev
, DP_D
);
5396 } else if (IS_GEN2(dev
))
5397 intel_dvo_init(dev
);
5399 if (SUPPORTS_TV(dev
))
5402 list_for_each_entry(encoder
, &dev
->mode_config
.encoder_list
, base
.head
) {
5403 encoder
->base
.possible_crtcs
= encoder
->crtc_mask
;
5404 encoder
->base
.possible_clones
=
5405 intel_encoder_clones(dev
, encoder
->clone_mask
);
5409 static void intel_user_framebuffer_destroy(struct drm_framebuffer
*fb
)
5411 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
5413 drm_framebuffer_cleanup(fb
);
5414 drm_gem_object_unreference_unlocked(intel_fb
->obj
);
5419 static int intel_user_framebuffer_create_handle(struct drm_framebuffer
*fb
,
5420 struct drm_file
*file_priv
,
5421 unsigned int *handle
)
5423 struct intel_framebuffer
*intel_fb
= to_intel_framebuffer(fb
);
5424 struct drm_gem_object
*object
= intel_fb
->obj
;
5426 return drm_gem_handle_create(file_priv
, object
, handle
);
5429 static const struct drm_framebuffer_funcs intel_fb_funcs
= {
5430 .destroy
= intel_user_framebuffer_destroy
,
5431 .create_handle
= intel_user_framebuffer_create_handle
,
5434 int intel_framebuffer_init(struct drm_device
*dev
,
5435 struct intel_framebuffer
*intel_fb
,
5436 struct drm_mode_fb_cmd
*mode_cmd
,
5437 struct drm_gem_object
*obj
)
5439 struct drm_i915_gem_object
*obj_priv
= to_intel_bo(obj
);
5442 if (obj_priv
->tiling_mode
== I915_TILING_Y
)
5445 if (mode_cmd
->pitch
& 63)
5448 switch (mode_cmd
->bpp
) {
5458 ret
= drm_framebuffer_init(dev
, &intel_fb
->base
, &intel_fb_funcs
);
5460 DRM_ERROR("framebuffer init failed %d\n", ret
);
5464 drm_helper_mode_fill_fb_struct(&intel_fb
->base
, mode_cmd
);
5465 intel_fb
->obj
= obj
;
5469 static struct drm_framebuffer
*
5470 intel_user_framebuffer_create(struct drm_device
*dev
,
5471 struct drm_file
*filp
,
5472 struct drm_mode_fb_cmd
*mode_cmd
)
5474 struct drm_gem_object
*obj
;
5475 struct intel_framebuffer
*intel_fb
;
5478 obj
= drm_gem_object_lookup(dev
, filp
, mode_cmd
->handle
);
5480 return ERR_PTR(-ENOENT
);
5482 intel_fb
= kzalloc(sizeof(*intel_fb
), GFP_KERNEL
);
5484 return ERR_PTR(-ENOMEM
);
5486 ret
= intel_framebuffer_init(dev
, intel_fb
,
5489 drm_gem_object_unreference_unlocked(obj
);
5491 return ERR_PTR(ret
);
5494 return &intel_fb
->base
;
5497 static const struct drm_mode_config_funcs intel_mode_funcs
= {
5498 .fb_create
= intel_user_framebuffer_create
,
5499 .output_poll_changed
= intel_fb_output_poll_changed
,
5502 static struct drm_gem_object
*
5503 intel_alloc_context_page(struct drm_device
*dev
)
5505 struct drm_gem_object
*ctx
;
5508 ctx
= i915_gem_alloc_object(dev
, 4096);
5510 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
5514 mutex_lock(&dev
->struct_mutex
);
5515 ret
= i915_gem_object_pin(ctx
, 4096);
5517 DRM_ERROR("failed to pin power context: %d\n", ret
);
5521 ret
= i915_gem_object_set_to_gtt_domain(ctx
, 1);
5523 DRM_ERROR("failed to set-domain on power context: %d\n", ret
);
5526 mutex_unlock(&dev
->struct_mutex
);
5531 i915_gem_object_unpin(ctx
);
5533 drm_gem_object_unreference(ctx
);
5534 mutex_unlock(&dev
->struct_mutex
);
5538 bool ironlake_set_drps(struct drm_device
*dev
, u8 val
)
5540 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5543 rgvswctl
= I915_READ16(MEMSWCTL
);
5544 if (rgvswctl
& MEMCTL_CMD_STS
) {
5545 DRM_DEBUG("gpu busy, RCS change rejected\n");
5546 return false; /* still busy with another command */
5549 rgvswctl
= (MEMCTL_CMD_CHFREQ
<< MEMCTL_CMD_SHIFT
) |
5550 (val
<< MEMCTL_FREQ_SHIFT
) | MEMCTL_SFCAVM
;
5551 I915_WRITE16(MEMSWCTL
, rgvswctl
);
5552 POSTING_READ16(MEMSWCTL
);
5554 rgvswctl
|= MEMCTL_CMD_STS
;
5555 I915_WRITE16(MEMSWCTL
, rgvswctl
);
5560 void ironlake_enable_drps(struct drm_device
*dev
)
5562 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5563 u32 rgvmodectl
= I915_READ(MEMMODECTL
);
5564 u8 fmax
, fmin
, fstart
, vstart
;
5566 /* Enable temp reporting */
5567 I915_WRITE16(PMMISC
, I915_READ(PMMISC
) | MCPPCE_EN
);
5568 I915_WRITE16(TSC1
, I915_READ(TSC1
) | TSE
);
5570 /* 100ms RC evaluation intervals */
5571 I915_WRITE(RCUPEI
, 100000);
5572 I915_WRITE(RCDNEI
, 100000);
5574 /* Set max/min thresholds to 90ms and 80ms respectively */
5575 I915_WRITE(RCBMAXAVG
, 90000);
5576 I915_WRITE(RCBMINAVG
, 80000);
5578 I915_WRITE(MEMIHYST
, 1);
5580 /* Set up min, max, and cur for interrupt handling */
5581 fmax
= (rgvmodectl
& MEMMODE_FMAX_MASK
) >> MEMMODE_FMAX_SHIFT
;
5582 fmin
= (rgvmodectl
& MEMMODE_FMIN_MASK
);
5583 fstart
= (rgvmodectl
& MEMMODE_FSTART_MASK
) >>
5584 MEMMODE_FSTART_SHIFT
;
5587 vstart
= (I915_READ(PXVFREQ_BASE
+ (fstart
* 4)) & PXVFREQ_PX_MASK
) >>
5590 dev_priv
->fmax
= fstart
; /* IPS callback will increase this */
5591 dev_priv
->fstart
= fstart
;
5593 dev_priv
->max_delay
= fmax
;
5594 dev_priv
->min_delay
= fmin
;
5595 dev_priv
->cur_delay
= fstart
;
5597 DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n", fmax
, fmin
,
5600 I915_WRITE(MEMINTREN
, MEMINT_CX_SUPR_EN
| MEMINT_EVAL_CHG_EN
);
5603 * Interrupts will be enabled in ironlake_irq_postinstall
5606 I915_WRITE(VIDSTART
, vstart
);
5607 POSTING_READ(VIDSTART
);
5609 rgvmodectl
|= MEMMODE_SWMODE_EN
;
5610 I915_WRITE(MEMMODECTL
, rgvmodectl
);
5612 if (wait_for((I915_READ(MEMSWCTL
) & MEMCTL_CMD_STS
) == 0, 10))
5613 DRM_ERROR("stuck trying to change perf mode\n");
5616 ironlake_set_drps(dev
, fstart
);
5618 dev_priv
->last_count1
= I915_READ(0x112e4) + I915_READ(0x112e8) +
5620 dev_priv
->last_time1
= jiffies_to_msecs(jiffies
);
5621 dev_priv
->last_count2
= I915_READ(0x112f4);
5622 getrawmonotonic(&dev_priv
->last_time2
);
5625 void ironlake_disable_drps(struct drm_device
*dev
)
5627 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5628 u16 rgvswctl
= I915_READ16(MEMSWCTL
);
5630 /* Ack interrupts, disable EFC interrupt */
5631 I915_WRITE(MEMINTREN
, I915_READ(MEMINTREN
) & ~MEMINT_EVAL_CHG_EN
);
5632 I915_WRITE(MEMINTRSTS
, MEMINT_EVAL_CHG
);
5633 I915_WRITE(DEIER
, I915_READ(DEIER
) & ~DE_PCU_EVENT
);
5634 I915_WRITE(DEIIR
, DE_PCU_EVENT
);
5635 I915_WRITE(DEIMR
, I915_READ(DEIMR
) | DE_PCU_EVENT
);
5637 /* Go back to the starting frequency */
5638 ironlake_set_drps(dev
, dev_priv
->fstart
);
5640 rgvswctl
|= MEMCTL_CMD_STS
;
5641 I915_WRITE(MEMSWCTL
, rgvswctl
);
5646 static unsigned long intel_pxfreq(u32 vidfreq
)
5649 int div
= (vidfreq
& 0x3f0000) >> 16;
5650 int post
= (vidfreq
& 0x3000) >> 12;
5651 int pre
= (vidfreq
& 0x7);
5656 freq
= ((div
* 133333) / ((1<<post
) * pre
));
5661 void intel_init_emon(struct drm_device
*dev
)
5663 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5668 /* Disable to program */
5672 /* Program energy weights for various events */
5673 I915_WRITE(SDEW
, 0x15040d00);
5674 I915_WRITE(CSIEW0
, 0x007f0000);
5675 I915_WRITE(CSIEW1
, 0x1e220004);
5676 I915_WRITE(CSIEW2
, 0x04000004);
5678 for (i
= 0; i
< 5; i
++)
5679 I915_WRITE(PEW
+ (i
* 4), 0);
5680 for (i
= 0; i
< 3; i
++)
5681 I915_WRITE(DEW
+ (i
* 4), 0);
5683 /* Program P-state weights to account for frequency power adjustment */
5684 for (i
= 0; i
< 16; i
++) {
5685 u32 pxvidfreq
= I915_READ(PXVFREQ_BASE
+ (i
* 4));
5686 unsigned long freq
= intel_pxfreq(pxvidfreq
);
5687 unsigned long vid
= (pxvidfreq
& PXVFREQ_PX_MASK
) >>
5692 val
*= (freq
/ 1000);
5694 val
/= (127*127*900);
5696 DRM_ERROR("bad pxval: %ld\n", val
);
5699 /* Render standby states get 0 weight */
5703 for (i
= 0; i
< 4; i
++) {
5704 u32 val
= (pxw
[i
*4] << 24) | (pxw
[(i
*4)+1] << 16) |
5705 (pxw
[(i
*4)+2] << 8) | (pxw
[(i
*4)+3]);
5706 I915_WRITE(PXW
+ (i
* 4), val
);
5709 /* Adjust magic regs to magic values (more experimental results) */
5710 I915_WRITE(OGW0
, 0);
5711 I915_WRITE(OGW1
, 0);
5712 I915_WRITE(EG0
, 0x00007f00);
5713 I915_WRITE(EG1
, 0x0000000e);
5714 I915_WRITE(EG2
, 0x000e0000);
5715 I915_WRITE(EG3
, 0x68000300);
5716 I915_WRITE(EG4
, 0x42000000);
5717 I915_WRITE(EG5
, 0x00140031);
5721 for (i
= 0; i
< 8; i
++)
5722 I915_WRITE(PXWL
+ (i
* 4), 0);
5724 /* Enable PMON + select events */
5725 I915_WRITE(ECR
, 0x80000019);
5727 lcfuse
= I915_READ(LCFUSE02
);
5729 dev_priv
->corr
= (lcfuse
& LCFUSE_HIV_MASK
);
5732 void intel_init_clock_gating(struct drm_device
*dev
)
5734 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5737 * Disable clock gating reported to work incorrectly according to the
5738 * specs, but enable as much else as we can.
5740 if (HAS_PCH_SPLIT(dev
)) {
5741 uint32_t dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
;
5743 if (IS_IRONLAKE(dev
)) {
5744 /* Required for FBC */
5745 dspclk_gate
|= DPFDUNIT_CLOCK_GATE_DISABLE
;
5746 /* Required for CxSR */
5747 dspclk_gate
|= DPARBUNIT_CLOCK_GATE_DISABLE
;
5749 I915_WRITE(PCH_3DCGDIS0
,
5750 MARIUNIT_CLOCK_GATE_DISABLE
|
5751 SVSMUNIT_CLOCK_GATE_DISABLE
);
5754 I915_WRITE(PCH_DSPCLK_GATE_D
, dspclk_gate
);
5757 * According to the spec the following bits should be set in
5758 * order to enable memory self-refresh
5759 * The bit 22/21 of 0x42004
5760 * The bit 5 of 0x42020
5761 * The bit 15 of 0x45000
5763 if (IS_IRONLAKE(dev
)) {
5764 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
5765 (I915_READ(ILK_DISPLAY_CHICKEN2
) |
5766 ILK_DPARB_GATE
| ILK_VSDPFD_FULL
));
5767 I915_WRITE(ILK_DSPCLK_GATE
,
5768 (I915_READ(ILK_DSPCLK_GATE
) |
5769 ILK_DPARB_CLK_GATE
));
5770 I915_WRITE(DISP_ARB_CTL
,
5771 (I915_READ(DISP_ARB_CTL
) |
5773 I915_WRITE(WM3_LP_ILK
, 0);
5774 I915_WRITE(WM2_LP_ILK
, 0);
5775 I915_WRITE(WM1_LP_ILK
, 0);
5778 * Based on the document from hardware guys the following bits
5779 * should be set unconditionally in order to enable FBC.
5780 * The bit 22 of 0x42000
5781 * The bit 22 of 0x42004
5782 * The bit 7,8,9 of 0x42020.
5784 if (IS_IRONLAKE_M(dev
)) {
5785 I915_WRITE(ILK_DISPLAY_CHICKEN1
,
5786 I915_READ(ILK_DISPLAY_CHICKEN1
) |
5788 I915_WRITE(ILK_DISPLAY_CHICKEN2
,
5789 I915_READ(ILK_DISPLAY_CHICKEN2
) |
5791 I915_WRITE(ILK_DSPCLK_GATE
,
5792 I915_READ(ILK_DSPCLK_GATE
) |
5798 } else if (IS_G4X(dev
)) {
5799 uint32_t dspclk_gate
;
5800 I915_WRITE(RENCLK_GATE_D1
, 0);
5801 I915_WRITE(RENCLK_GATE_D2
, VF_UNIT_CLOCK_GATE_DISABLE
|
5802 GS_UNIT_CLOCK_GATE_DISABLE
|
5803 CL_UNIT_CLOCK_GATE_DISABLE
);
5804 I915_WRITE(RAMCLK_GATE_D
, 0);
5805 dspclk_gate
= VRHUNIT_CLOCK_GATE_DISABLE
|
5806 OVRUNIT_CLOCK_GATE_DISABLE
|
5807 OVCUNIT_CLOCK_GATE_DISABLE
;
5809 dspclk_gate
|= DSSUNIT_CLOCK_GATE_DISABLE
;
5810 I915_WRITE(DSPCLK_GATE_D
, dspclk_gate
);
5811 } else if (IS_CRESTLINE(dev
)) {
5812 I915_WRITE(RENCLK_GATE_D1
, I965_RCC_CLOCK_GATE_DISABLE
);
5813 I915_WRITE(RENCLK_GATE_D2
, 0);
5814 I915_WRITE(DSPCLK_GATE_D
, 0);
5815 I915_WRITE(RAMCLK_GATE_D
, 0);
5816 I915_WRITE16(DEUC
, 0);
5817 } else if (IS_BROADWATER(dev
)) {
5818 I915_WRITE(RENCLK_GATE_D1
, I965_RCZ_CLOCK_GATE_DISABLE
|
5819 I965_RCC_CLOCK_GATE_DISABLE
|
5820 I965_RCPB_CLOCK_GATE_DISABLE
|
5821 I965_ISC_CLOCK_GATE_DISABLE
|
5822 I965_FBC_CLOCK_GATE_DISABLE
);
5823 I915_WRITE(RENCLK_GATE_D2
, 0);
5824 } else if (IS_GEN3(dev
)) {
5825 u32 dstate
= I915_READ(D_STATE
);
5827 dstate
|= DSTATE_PLL_D3_OFF
| DSTATE_GFX_CLOCK_GATING
|
5828 DSTATE_DOT_CLOCK_GATING
;
5829 I915_WRITE(D_STATE
, dstate
);
5830 } else if (IS_I85X(dev
) || IS_I865G(dev
)) {
5831 I915_WRITE(RENCLK_GATE_D1
, SV_CLOCK_GATE_DISABLE
);
5832 } else if (IS_I830(dev
)) {
5833 I915_WRITE(DSPCLK_GATE_D
, OVRUNIT_CLOCK_GATE_DISABLE
);
5837 * GPU can automatically power down the render unit if given a page
5840 if (IS_IRONLAKE_M(dev
)) {
5841 if (dev_priv
->renderctx
== NULL
)
5842 dev_priv
->renderctx
= intel_alloc_context_page(dev
);
5843 if (dev_priv
->renderctx
) {
5844 struct drm_i915_gem_object
*obj_priv
;
5845 obj_priv
= to_intel_bo(dev_priv
->renderctx
);
5848 OUT_RING(MI_SET_CONTEXT
);
5849 OUT_RING(obj_priv
->gtt_offset
|
5851 MI_SAVE_EXT_STATE_EN
|
5852 MI_RESTORE_EXT_STATE_EN
|
5853 MI_RESTORE_INHIBIT
);
5859 DRM_DEBUG_KMS("Failed to allocate render context."
5863 if (I915_HAS_RC6(dev
) && drm_core_check_feature(dev
, DRIVER_MODESET
)) {
5864 struct drm_i915_gem_object
*obj_priv
= NULL
;
5866 if (dev_priv
->pwrctx
) {
5867 obj_priv
= to_intel_bo(dev_priv
->pwrctx
);
5869 struct drm_gem_object
*pwrctx
;
5871 pwrctx
= intel_alloc_context_page(dev
);
5873 dev_priv
->pwrctx
= pwrctx
;
5874 obj_priv
= to_intel_bo(pwrctx
);
5879 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
| PWRCTX_EN
);
5880 I915_WRITE(MCHBAR_RENDER_STANDBY
,
5881 I915_READ(MCHBAR_RENDER_STANDBY
) & ~RCX_SW_EXIT
);
5886 /* Set up chip specific display functions */
5887 static void intel_init_display(struct drm_device
*dev
)
5889 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5891 /* We always want a DPMS function */
5892 if (HAS_PCH_SPLIT(dev
))
5893 dev_priv
->display
.dpms
= ironlake_crtc_dpms
;
5895 dev_priv
->display
.dpms
= i9xx_crtc_dpms
;
5897 if (I915_HAS_FBC(dev
)) {
5898 if (IS_IRONLAKE_M(dev
)) {
5899 dev_priv
->display
.fbc_enabled
= ironlake_fbc_enabled
;
5900 dev_priv
->display
.enable_fbc
= ironlake_enable_fbc
;
5901 dev_priv
->display
.disable_fbc
= ironlake_disable_fbc
;
5902 } else if (IS_GM45(dev
)) {
5903 dev_priv
->display
.fbc_enabled
= g4x_fbc_enabled
;
5904 dev_priv
->display
.enable_fbc
= g4x_enable_fbc
;
5905 dev_priv
->display
.disable_fbc
= g4x_disable_fbc
;
5906 } else if (IS_CRESTLINE(dev
)) {
5907 dev_priv
->display
.fbc_enabled
= i8xx_fbc_enabled
;
5908 dev_priv
->display
.enable_fbc
= i8xx_enable_fbc
;
5909 dev_priv
->display
.disable_fbc
= i8xx_disable_fbc
;
5911 /* 855GM needs testing */
5914 /* Returns the core display clock speed */
5915 if (IS_I945G(dev
) || (IS_G33(dev
) && ! IS_PINEVIEW_M(dev
)))
5916 dev_priv
->display
.get_display_clock_speed
=
5917 i945_get_display_clock_speed
;
5918 else if (IS_I915G(dev
))
5919 dev_priv
->display
.get_display_clock_speed
=
5920 i915_get_display_clock_speed
;
5921 else if (IS_I945GM(dev
) || IS_845G(dev
) || IS_PINEVIEW_M(dev
))
5922 dev_priv
->display
.get_display_clock_speed
=
5923 i9xx_misc_get_display_clock_speed
;
5924 else if (IS_I915GM(dev
))
5925 dev_priv
->display
.get_display_clock_speed
=
5926 i915gm_get_display_clock_speed
;
5927 else if (IS_I865G(dev
))
5928 dev_priv
->display
.get_display_clock_speed
=
5929 i865_get_display_clock_speed
;
5930 else if (IS_I85X(dev
))
5931 dev_priv
->display
.get_display_clock_speed
=
5932 i855_get_display_clock_speed
;
5934 dev_priv
->display
.get_display_clock_speed
=
5935 i830_get_display_clock_speed
;
5937 /* For FIFO watermark updates */
5938 if (HAS_PCH_SPLIT(dev
)) {
5939 if (IS_IRONLAKE(dev
)) {
5940 if (I915_READ(MLTR_ILK
) & ILK_SRLT_MASK
)
5941 dev_priv
->display
.update_wm
= ironlake_update_wm
;
5943 DRM_DEBUG_KMS("Failed to get proper latency. "
5945 dev_priv
->display
.update_wm
= NULL
;
5948 dev_priv
->display
.update_wm
= NULL
;
5949 } else if (IS_PINEVIEW(dev
)) {
5950 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev
),
5953 dev_priv
->mem_freq
)) {
5954 DRM_INFO("failed to find known CxSR latency "
5955 "(found ddr%s fsb freq %d, mem freq %d), "
5957 (dev_priv
->is_ddr3
== 1) ? "3": "2",
5958 dev_priv
->fsb_freq
, dev_priv
->mem_freq
);
5959 /* Disable CxSR and never update its watermark again */
5960 pineview_disable_cxsr(dev
);
5961 dev_priv
->display
.update_wm
= NULL
;
5963 dev_priv
->display
.update_wm
= pineview_update_wm
;
5964 } else if (IS_G4X(dev
))
5965 dev_priv
->display
.update_wm
= g4x_update_wm
;
5966 else if (IS_GEN4(dev
))
5967 dev_priv
->display
.update_wm
= i965_update_wm
;
5968 else if (IS_GEN3(dev
)) {
5969 dev_priv
->display
.update_wm
= i9xx_update_wm
;
5970 dev_priv
->display
.get_fifo_size
= i9xx_get_fifo_size
;
5971 } else if (IS_I85X(dev
)) {
5972 dev_priv
->display
.update_wm
= i9xx_update_wm
;
5973 dev_priv
->display
.get_fifo_size
= i85x_get_fifo_size
;
5975 dev_priv
->display
.update_wm
= i830_update_wm
;
5977 dev_priv
->display
.get_fifo_size
= i845_get_fifo_size
;
5979 dev_priv
->display
.get_fifo_size
= i830_get_fifo_size
;
5984 * Some BIOSes insist on assuming the GPU's pipe A is enabled at suspend,
5985 * resume, or other times. This quirk makes sure that's the case for
5988 static void quirk_pipea_force (struct drm_device
*dev
)
5990 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
5992 dev_priv
->quirks
|= QUIRK_PIPEA_FORCE
;
5993 DRM_DEBUG_DRIVER("applying pipe a force quirk\n");
5996 struct intel_quirk
{
5998 int subsystem_vendor
;
5999 int subsystem_device
;
6000 void (*hook
)(struct drm_device
*dev
);
6003 struct intel_quirk intel_quirks
[] = {
6004 /* HP Compaq 2730p needs pipe A force quirk (LP: #291555) */
6005 { 0x2a42, 0x103c, 0x30eb, quirk_pipea_force
},
6006 /* HP Mini needs pipe A force quirk (LP: #322104) */
6007 { 0x27ae,0x103c, 0x361a, quirk_pipea_force
},
6009 /* Thinkpad R31 needs pipe A force quirk */
6010 { 0x3577, 0x1014, 0x0505, quirk_pipea_force
},
6011 /* Toshiba Protege R-205, S-209 needs pipe A force quirk */
6012 { 0x2592, 0x1179, 0x0001, quirk_pipea_force
},
6014 /* ThinkPad X30 needs pipe A force quirk (LP: #304614) */
6015 { 0x3577, 0x1014, 0x0513, quirk_pipea_force
},
6016 /* ThinkPad X40 needs pipe A force quirk */
6018 /* ThinkPad T60 needs pipe A force quirk (bug #16494) */
6019 { 0x2782, 0x17aa, 0x201a, quirk_pipea_force
},
6021 /* 855 & before need to leave pipe A & dpll A up */
6022 { 0x3582, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
6023 { 0x2562, PCI_ANY_ID
, PCI_ANY_ID
, quirk_pipea_force
},
6026 static void intel_init_quirks(struct drm_device
*dev
)
6028 struct pci_dev
*d
= dev
->pdev
;
6031 for (i
= 0; i
< ARRAY_SIZE(intel_quirks
); i
++) {
6032 struct intel_quirk
*q
= &intel_quirks
[i
];
6034 if (d
->device
== q
->device
&&
6035 (d
->subsystem_vendor
== q
->subsystem_vendor
||
6036 q
->subsystem_vendor
== PCI_ANY_ID
) &&
6037 (d
->subsystem_device
== q
->subsystem_device
||
6038 q
->subsystem_device
== PCI_ANY_ID
))
6043 /* Disable the VGA plane that we never use */
6044 static void i915_disable_vga(struct drm_device
*dev
)
6046 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6050 if (HAS_PCH_SPLIT(dev
))
6051 vga_reg
= CPU_VGACNTRL
;
6055 vga_get_uninterruptible(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
6056 outb(1, VGA_SR_INDEX
);
6057 sr1
= inb(VGA_SR_DATA
);
6058 outb(sr1
| 1<<5, VGA_SR_DATA
);
6059 vga_put(dev
->pdev
, VGA_RSRC_LEGACY_IO
);
6062 I915_WRITE(vga_reg
, VGA_DISP_DISABLE
);
6063 POSTING_READ(vga_reg
);
6066 void intel_modeset_init(struct drm_device
*dev
)
6068 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6071 drm_mode_config_init(dev
);
6073 dev
->mode_config
.min_width
= 0;
6074 dev
->mode_config
.min_height
= 0;
6076 dev
->mode_config
.funcs
= (void *)&intel_mode_funcs
;
6078 intel_init_quirks(dev
);
6080 intel_init_display(dev
);
6083 dev
->mode_config
.max_width
= 2048;
6084 dev
->mode_config
.max_height
= 2048;
6085 } else if (IS_GEN3(dev
)) {
6086 dev
->mode_config
.max_width
= 4096;
6087 dev
->mode_config
.max_height
= 4096;
6089 dev
->mode_config
.max_width
= 8192;
6090 dev
->mode_config
.max_height
= 8192;
6093 /* set memory base */
6095 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 0);
6097 dev
->mode_config
.fb_base
= pci_resource_start(dev
->pdev
, 2);
6099 if (IS_MOBILE(dev
) || !IS_GEN2(dev
))
6100 dev_priv
->num_pipe
= 2;
6102 dev_priv
->num_pipe
= 1;
6103 DRM_DEBUG_KMS("%d display pipe%s available.\n",
6104 dev_priv
->num_pipe
, dev_priv
->num_pipe
> 1 ? "s" : "");
6106 for (i
= 0; i
< dev_priv
->num_pipe
; i
++) {
6107 intel_crtc_init(dev
, i
);
6110 intel_setup_outputs(dev
);
6112 intel_init_clock_gating(dev
);
6114 /* Just disable it once at startup */
6115 i915_disable_vga(dev
);
6117 if (IS_IRONLAKE_M(dev
)) {
6118 ironlake_enable_drps(dev
);
6119 intel_init_emon(dev
);
6122 INIT_WORK(&dev_priv
->idle_work
, intel_idle_update
);
6123 setup_timer(&dev_priv
->idle_timer
, intel_gpu_idle_timer
,
6124 (unsigned long)dev
);
6126 intel_setup_overlay(dev
);
6129 void intel_modeset_cleanup(struct drm_device
*dev
)
6131 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6132 struct drm_crtc
*crtc
;
6133 struct intel_crtc
*intel_crtc
;
6135 drm_kms_helper_poll_fini(dev
);
6136 mutex_lock(&dev
->struct_mutex
);
6138 intel_unregister_dsm_handler();
6141 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6142 /* Skip inactive CRTCs */
6146 intel_crtc
= to_intel_crtc(crtc
);
6147 intel_increase_pllclock(crtc
);
6150 if (dev_priv
->display
.disable_fbc
)
6151 dev_priv
->display
.disable_fbc(dev
);
6153 if (dev_priv
->renderctx
) {
6154 struct drm_i915_gem_object
*obj_priv
;
6156 obj_priv
= to_intel_bo(dev_priv
->renderctx
);
6157 I915_WRITE(CCID
, obj_priv
->gtt_offset
&~ CCID_EN
);
6159 i915_gem_object_unpin(dev_priv
->renderctx
);
6160 drm_gem_object_unreference(dev_priv
->renderctx
);
6163 if (dev_priv
->pwrctx
) {
6164 struct drm_i915_gem_object
*obj_priv
;
6166 obj_priv
= to_intel_bo(dev_priv
->pwrctx
);
6167 I915_WRITE(PWRCTXA
, obj_priv
->gtt_offset
&~ PWRCTX_EN
);
6169 i915_gem_object_unpin(dev_priv
->pwrctx
);
6170 drm_gem_object_unreference(dev_priv
->pwrctx
);
6173 if (IS_IRONLAKE_M(dev
))
6174 ironlake_disable_drps(dev
);
6176 mutex_unlock(&dev
->struct_mutex
);
6178 /* Disable the irq before mode object teardown, for the irq might
6179 * enqueue unpin/hotplug work. */
6180 drm_irq_uninstall(dev
);
6181 cancel_work_sync(&dev_priv
->hotplug_work
);
6183 /* Shut off idle work before the crtcs get freed. */
6184 list_for_each_entry(crtc
, &dev
->mode_config
.crtc_list
, head
) {
6185 intel_crtc
= to_intel_crtc(crtc
);
6186 del_timer_sync(&intel_crtc
->idle_timer
);
6188 del_timer_sync(&dev_priv
->idle_timer
);
6189 cancel_work_sync(&dev_priv
->idle_work
);
6191 drm_mode_config_cleanup(dev
);
6195 * Return which encoder is currently attached for connector.
6197 struct drm_encoder
*intel_best_encoder(struct drm_connector
*connector
)
6199 return &intel_attached_encoder(connector
)->base
;
6202 void intel_connector_attach_encoder(struct intel_connector
*connector
,
6203 struct intel_encoder
*encoder
)
6205 connector
->encoder
= encoder
;
6206 drm_mode_connector_attach_encoder(&connector
->base
,
6211 * set vga decode state - true == enable VGA decode
6213 int intel_modeset_vga_set_state(struct drm_device
*dev
, bool state
)
6215 struct drm_i915_private
*dev_priv
= dev
->dev_private
;
6218 pci_read_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, &gmch_ctrl
);
6220 gmch_ctrl
&= ~INTEL_GMCH_VGA_DISABLE
;
6222 gmch_ctrl
|= INTEL_GMCH_VGA_DISABLE
;
6223 pci_write_config_word(dev_priv
->bridge_dev
, INTEL_GMCH_CTRL
, gmch_ctrl
);