2 * Generic pidhash and scalable, time-bounded PID allocator
4 * (C) 2002-2003 William Irwin, IBM
5 * (C) 2004 William Irwin, Oracle
6 * (C) 2002-2004 Ingo Molnar, Red Hat
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/init.h>
33 #include <linux/rculist.h>
34 #include <linux/bootmem.h>
35 #include <linux/hash.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
40 #define pid_hashfn(nr, ns) \
41 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
42 static struct hlist_head
*pid_hash
;
43 static unsigned int pidhash_shift
= 4;
44 struct pid init_struct_pid
= INIT_STRUCT_PID
;
46 int pid_max
= PID_MAX_DEFAULT
;
48 #define RESERVED_PIDS 300
50 int pid_max_min
= RESERVED_PIDS
+ 1;
51 int pid_max_max
= PID_MAX_LIMIT
;
53 #define BITS_PER_PAGE (PAGE_SIZE*8)
54 #define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
56 static inline int mk_pid(struct pid_namespace
*pid_ns
,
57 struct pidmap
*map
, int off
)
59 return (map
- pid_ns
->pidmap
)*BITS_PER_PAGE
+ off
;
62 #define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
71 struct pid_namespace init_pid_ns
= {
73 .refcount
= ATOMIC_INIT(2),
76 [ 0 ... PIDMAP_ENTRIES
-1] = { ATOMIC_INIT(BITS_PER_PAGE
), NULL
}
80 .child_reaper
= &init_task
,
82 EXPORT_SYMBOL_GPL(init_pid_ns
);
84 int is_container_init(struct task_struct
*tsk
)
91 if (pid
!= NULL
&& pid
->numbers
[pid
->level
].nr
== 1)
97 EXPORT_SYMBOL(is_container_init
);
100 * Note: disable interrupts while the pidmap_lock is held as an
101 * interrupt might come in and do read_lock(&tasklist_lock).
103 * If we don't disable interrupts there is a nasty deadlock between
104 * detach_pid()->free_pid() and another cpu that does
105 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
106 * read_lock(&tasklist_lock);
108 * After we clean up the tasklist_lock and know there are no
109 * irq handlers that take it we can leave the interrupts enabled.
110 * For now it is easier to be safe than to prove it can't happen.
113 static __cacheline_aligned_in_smp
DEFINE_SPINLOCK(pidmap_lock
);
115 static void free_pidmap(struct upid
*upid
)
118 struct pidmap
*map
= upid
->ns
->pidmap
+ nr
/ BITS_PER_PAGE
;
119 int offset
= nr
& BITS_PER_PAGE_MASK
;
121 clear_bit(offset
, map
->page
);
122 atomic_inc(&map
->nr_free
);
125 static int alloc_pidmap(struct pid_namespace
*pid_ns
)
127 int i
, offset
, max_scan
, pid
, last
= pid_ns
->last_pid
;
133 offset
= pid
& BITS_PER_PAGE_MASK
;
134 map
= &pid_ns
->pidmap
[pid
/BITS_PER_PAGE
];
135 max_scan
= (pid_max
+ BITS_PER_PAGE
- 1)/BITS_PER_PAGE
- !offset
;
136 for (i
= 0; i
<= max_scan
; ++i
) {
137 if (unlikely(!map
->page
)) {
138 void *page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
140 * Free the page if someone raced with us
143 spin_lock_irq(&pidmap_lock
);
148 spin_unlock_irq(&pidmap_lock
);
149 if (unlikely(!map
->page
))
152 if (likely(atomic_read(&map
->nr_free
))) {
154 if (!test_and_set_bit(offset
, map
->page
)) {
155 atomic_dec(&map
->nr_free
);
156 pid_ns
->last_pid
= pid
;
159 offset
= find_next_offset(map
, offset
);
160 pid
= mk_pid(pid_ns
, map
, offset
);
162 * find_next_offset() found a bit, the pid from it
163 * is in-bounds, and if we fell back to the last
164 * bitmap block and the final block was the same
165 * as the starting point, pid is before last_pid.
167 } while (offset
< BITS_PER_PAGE
&& pid
< pid_max
&&
168 (i
!= max_scan
|| pid
< last
||
169 !((last
+1) & BITS_PER_PAGE_MASK
)));
171 if (map
< &pid_ns
->pidmap
[(pid_max
-1)/BITS_PER_PAGE
]) {
175 map
= &pid_ns
->pidmap
[0];
176 offset
= RESERVED_PIDS
;
177 if (unlikely(last
== offset
))
180 pid
= mk_pid(pid_ns
, map
, offset
);
185 int next_pidmap(struct pid_namespace
*pid_ns
, int last
)
188 struct pidmap
*map
, *end
;
190 offset
= (last
+ 1) & BITS_PER_PAGE_MASK
;
191 map
= &pid_ns
->pidmap
[(last
+ 1)/BITS_PER_PAGE
];
192 end
= &pid_ns
->pidmap
[PIDMAP_ENTRIES
];
193 for (; map
< end
; map
++, offset
= 0) {
194 if (unlikely(!map
->page
))
196 offset
= find_next_bit((map
)->page
, BITS_PER_PAGE
, offset
);
197 if (offset
< BITS_PER_PAGE
)
198 return mk_pid(pid_ns
, map
, offset
);
203 void put_pid(struct pid
*pid
)
205 struct pid_namespace
*ns
;
210 ns
= pid
->numbers
[pid
->level
].ns
;
211 if ((atomic_read(&pid
->count
) == 1) ||
212 atomic_dec_and_test(&pid
->count
)) {
213 kmem_cache_free(ns
->pid_cachep
, pid
);
217 EXPORT_SYMBOL_GPL(put_pid
);
219 static void delayed_put_pid(struct rcu_head
*rhp
)
221 struct pid
*pid
= container_of(rhp
, struct pid
, rcu
);
225 void free_pid(struct pid
*pid
)
227 /* We can be called with write_lock_irq(&tasklist_lock) held */
231 spin_lock_irqsave(&pidmap_lock
, flags
);
232 for (i
= 0; i
<= pid
->level
; i
++)
233 hlist_del_rcu(&pid
->numbers
[i
].pid_chain
);
234 spin_unlock_irqrestore(&pidmap_lock
, flags
);
236 for (i
= 0; i
<= pid
->level
; i
++)
237 free_pidmap(pid
->numbers
+ i
);
239 call_rcu(&pid
->rcu
, delayed_put_pid
);
242 struct pid
*alloc_pid(struct pid_namespace
*ns
)
247 struct pid_namespace
*tmp
;
250 pid
= kmem_cache_alloc(ns
->pid_cachep
, GFP_KERNEL
);
255 for (i
= ns
->level
; i
>= 0; i
--) {
256 nr
= alloc_pidmap(tmp
);
260 pid
->numbers
[i
].nr
= nr
;
261 pid
->numbers
[i
].ns
= tmp
;
266 pid
->level
= ns
->level
;
267 atomic_set(&pid
->count
, 1);
268 for (type
= 0; type
< PIDTYPE_MAX
; ++type
)
269 INIT_HLIST_HEAD(&pid
->tasks
[type
]);
271 spin_lock_irq(&pidmap_lock
);
272 for (i
= ns
->level
; i
>= 0; i
--) {
273 upid
= &pid
->numbers
[i
];
274 hlist_add_head_rcu(&upid
->pid_chain
,
275 &pid_hash
[pid_hashfn(upid
->nr
, upid
->ns
)]);
277 spin_unlock_irq(&pidmap_lock
);
283 while (++i
<= ns
->level
)
284 free_pidmap(pid
->numbers
+ i
);
286 kmem_cache_free(ns
->pid_cachep
, pid
);
291 struct pid
*find_pid_ns(int nr
, struct pid_namespace
*ns
)
293 struct hlist_node
*elem
;
296 hlist_for_each_entry_rcu(pnr
, elem
,
297 &pid_hash
[pid_hashfn(nr
, ns
)], pid_chain
)
298 if (pnr
->nr
== nr
&& pnr
->ns
== ns
)
299 return container_of(pnr
, struct pid
,
304 EXPORT_SYMBOL_GPL(find_pid_ns
);
306 struct pid
*find_vpid(int nr
)
308 return find_pid_ns(nr
, current
->nsproxy
->pid_ns
);
310 EXPORT_SYMBOL_GPL(find_vpid
);
313 * attach_pid() must be called with the tasklist_lock write-held.
315 void attach_pid(struct task_struct
*task
, enum pid_type type
,
318 struct pid_link
*link
;
320 link
= &task
->pids
[type
];
322 hlist_add_head_rcu(&link
->node
, &pid
->tasks
[type
]);
325 static void __change_pid(struct task_struct
*task
, enum pid_type type
,
328 struct pid_link
*link
;
332 link
= &task
->pids
[type
];
335 hlist_del_rcu(&link
->node
);
338 for (tmp
= PIDTYPE_MAX
; --tmp
>= 0; )
339 if (!hlist_empty(&pid
->tasks
[tmp
]))
345 void detach_pid(struct task_struct
*task
, enum pid_type type
)
347 __change_pid(task
, type
, NULL
);
350 void change_pid(struct task_struct
*task
, enum pid_type type
,
353 __change_pid(task
, type
, pid
);
354 attach_pid(task
, type
, pid
);
357 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
358 void transfer_pid(struct task_struct
*old
, struct task_struct
*new,
361 new->pids
[type
].pid
= old
->pids
[type
].pid
;
362 hlist_replace_rcu(&old
->pids
[type
].node
, &new->pids
[type
].node
);
365 struct task_struct
*pid_task(struct pid
*pid
, enum pid_type type
)
367 struct task_struct
*result
= NULL
;
369 struct hlist_node
*first
;
370 first
= rcu_dereference(pid
->tasks
[type
].first
);
372 result
= hlist_entry(first
, struct task_struct
, pids
[(type
)].node
);
376 EXPORT_SYMBOL(pid_task
);
379 * Must be called under rcu_read_lock() or with tasklist_lock read-held.
381 struct task_struct
*find_task_by_pid_ns(pid_t nr
, struct pid_namespace
*ns
)
383 return pid_task(find_pid_ns(nr
, ns
), PIDTYPE_PID
);
386 struct task_struct
*find_task_by_vpid(pid_t vnr
)
388 return find_task_by_pid_ns(vnr
, current
->nsproxy
->pid_ns
);
391 struct pid
*get_task_pid(struct task_struct
*task
, enum pid_type type
)
395 if (type
!= PIDTYPE_PID
)
396 task
= task
->group_leader
;
397 pid
= get_pid(task
->pids
[type
].pid
);
402 struct task_struct
*get_pid_task(struct pid
*pid
, enum pid_type type
)
404 struct task_struct
*result
;
406 result
= pid_task(pid
, type
);
408 get_task_struct(result
);
413 struct pid
*find_get_pid(pid_t nr
)
418 pid
= get_pid(find_vpid(nr
));
423 EXPORT_SYMBOL_GPL(find_get_pid
);
425 pid_t
pid_nr_ns(struct pid
*pid
, struct pid_namespace
*ns
)
430 if (pid
&& ns
->level
<= pid
->level
) {
431 upid
= &pid
->numbers
[ns
->level
];
438 pid_t
pid_vnr(struct pid
*pid
)
440 return pid_nr_ns(pid
, current
->nsproxy
->pid_ns
);
442 EXPORT_SYMBOL_GPL(pid_vnr
);
444 pid_t
__task_pid_nr_ns(struct task_struct
*task
, enum pid_type type
,
445 struct pid_namespace
*ns
)
451 ns
= current
->nsproxy
->pid_ns
;
452 if (likely(pid_alive(task
))) {
453 if (type
!= PIDTYPE_PID
)
454 task
= task
->group_leader
;
455 nr
= pid_nr_ns(task
->pids
[type
].pid
, ns
);
461 EXPORT_SYMBOL(__task_pid_nr_ns
);
463 pid_t
task_tgid_nr_ns(struct task_struct
*tsk
, struct pid_namespace
*ns
)
465 return pid_nr_ns(task_tgid(tsk
), ns
);
467 EXPORT_SYMBOL(task_tgid_nr_ns
);
469 struct pid_namespace
*task_active_pid_ns(struct task_struct
*tsk
)
471 return ns_of_pid(task_pid(tsk
));
473 EXPORT_SYMBOL_GPL(task_active_pid_ns
);
476 * Used by proc to find the first pid that is greater than or equal to nr.
478 * If there is a pid at nr this function is exactly the same as find_pid_ns.
480 struct pid
*find_ge_pid(int nr
, struct pid_namespace
*ns
)
485 pid
= find_pid_ns(nr
, ns
);
488 nr
= next_pidmap(ns
, nr
);
495 * The pid hash table is scaled according to the amount of memory in the
496 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
499 void __init
pidhash_init(void)
503 pid_hash
= alloc_large_system_hash("PID", sizeof(*pid_hash
), 0, 18,
504 HASH_EARLY
| HASH_SMALL
,
505 &pidhash_shift
, NULL
, 4096);
506 pidhash_size
= 1 << pidhash_shift
;
508 for (i
= 0; i
< pidhash_size
; i
++)
509 INIT_HLIST_HEAD(&pid_hash
[i
]);
512 void __init
pidmap_init(void)
514 init_pid_ns
.pidmap
[0].page
= kzalloc(PAGE_SIZE
, GFP_KERNEL
);
515 /* Reserve PID 0. We never call free_pidmap(0) */
516 set_bit(0, init_pid_ns
.pidmap
[0].page
);
517 atomic_dec(&init_pid_ns
.pidmap
[0].nr_free
);
519 init_pid_ns
.pid_cachep
= KMEM_CACHE(pid
,
520 SLAB_HWCACHE_ALIGN
| SLAB_PANIC
);