2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
41 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
44 * For the allocated request tables
46 static struct kmem_cache
*request_cachep
;
49 * For queue allocation
51 struct kmem_cache
*blk_requestq_cachep
;
54 * Controlling structure to kblockd
56 static struct workqueue_struct
*kblockd_workqueue
;
58 static void drive_stat_acct(struct request
*rq
, int new_io
)
60 struct hd_struct
*part
;
61 int rw
= rq_data_dir(rq
);
64 if (!blk_do_io_stat(rq
))
67 cpu
= part_stat_lock();
71 part_stat_inc(cpu
, part
, merges
[rw
]);
73 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
74 if (!hd_struct_try_get(part
)) {
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
83 part
= &rq
->rq_disk
->part0
;
86 part_round_stats(cpu
, part
);
87 part_inc_in_flight(part
, rw
);
94 void blk_queue_congestion_threshold(struct request_queue
*q
)
98 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
99 if (nr
> q
->nr_requests
)
101 q
->nr_congestion_on
= nr
;
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
106 q
->nr_congestion_off
= nr
;
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * Locates the passed device's request queue and returns the address of its
116 * Will return NULL if the request queue cannot be located.
118 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
120 struct backing_dev_info
*ret
= NULL
;
121 struct request_queue
*q
= bdev_get_queue(bdev
);
124 ret
= &q
->backing_dev_info
;
127 EXPORT_SYMBOL(blk_get_backing_dev_info
);
129 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
131 memset(rq
, 0, sizeof(*rq
));
133 INIT_LIST_HEAD(&rq
->queuelist
);
134 INIT_LIST_HEAD(&rq
->timeout_list
);
137 rq
->__sector
= (sector_t
) -1;
138 INIT_HLIST_NODE(&rq
->hash
);
139 RB_CLEAR_NODE(&rq
->rb_node
);
141 rq
->cmd_len
= BLK_MAX_CDB
;
144 rq
->start_time
= jiffies
;
145 set_start_time_ns(rq
);
148 EXPORT_SYMBOL(blk_rq_init
);
150 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
151 unsigned int nbytes
, int error
)
154 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
155 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
158 if (unlikely(nbytes
> bio
->bi_size
)) {
159 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
160 __func__
, nbytes
, bio
->bi_size
);
161 nbytes
= bio
->bi_size
;
164 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
165 set_bit(BIO_QUIET
, &bio
->bi_flags
);
167 bio
->bi_size
-= nbytes
;
168 bio
->bi_sector
+= (nbytes
>> 9);
170 if (bio_integrity(bio
))
171 bio_integrity_advance(bio
, nbytes
);
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
175 bio_endio(bio
, error
);
178 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
182 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
183 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
186 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq
),
188 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
189 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
190 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
192 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
193 printk(KERN_INFO
" cdb: ");
194 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
195 printk("%02x ", rq
->cmd
[bit
]);
199 EXPORT_SYMBOL(blk_dump_rq_flags
);
201 static void blk_delay_work(struct work_struct
*work
)
203 struct request_queue
*q
;
205 q
= container_of(work
, struct request_queue
, delay_work
.work
);
206 spin_lock_irq(q
->queue_lock
);
208 spin_unlock_irq(q
->queue_lock
);
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
221 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
223 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
224 msecs_to_jiffies(msecs
));
226 EXPORT_SYMBOL(blk_delay_queue
);
229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 void blk_start_queue(struct request_queue
*q
)
239 WARN_ON(!irqs_disabled());
241 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
244 EXPORT_SYMBOL(blk_start_queue
);
247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 void blk_stop_queue(struct request_queue
*q
)
262 __cancel_delayed_work(&q
->delay_work
);
263 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
265 EXPORT_SYMBOL(blk_stop_queue
);
268 * blk_sync_queue - cancel any pending callbacks on a queue
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized.
285 void blk_sync_queue(struct request_queue
*q
)
287 del_timer_sync(&q
->timeout
);
288 cancel_delayed_work_sync(&q
->delay_work
);
290 EXPORT_SYMBOL(blk_sync_queue
);
293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run
297 * See @blk_run_queue. This variant must be called with the queue lock
298 * held and interrupts disabled.
300 void __blk_run_queue(struct request_queue
*q
)
302 if (unlikely(blk_queue_stopped(q
)))
307 EXPORT_SYMBOL(__blk_run_queue
);
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 void blk_run_queue_async(struct request_queue
*q
)
319 if (likely(!blk_queue_stopped(q
))) {
320 __cancel_delayed_work(&q
->delay_work
);
321 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
324 EXPORT_SYMBOL(blk_run_queue_async
);
327 * blk_run_queue - run a single device queue
328 * @q: The queue to run
331 * Invoke request handling on this queue, if it has pending work to do.
332 * May be used to restart queueing when a request has completed.
334 void blk_run_queue(struct request_queue
*q
)
338 spin_lock_irqsave(q
->queue_lock
, flags
);
340 spin_unlock_irqrestore(q
->queue_lock
, flags
);
342 EXPORT_SYMBOL(blk_run_queue
);
344 void blk_put_queue(struct request_queue
*q
)
346 kobject_put(&q
->kobj
);
348 EXPORT_SYMBOL(blk_put_queue
);
351 * Note: If a driver supplied the queue lock, it is disconnected
352 * by this function. The actual state of the lock doesn't matter
353 * here as the request_queue isn't accessible after this point
354 * (QUEUE_FLAG_DEAD is set) and no other requests will be queued.
356 void blk_cleanup_queue(struct request_queue
*q
)
359 * We know we have process context here, so we can be a little
360 * cautious and ensure that pending block actions on this device
361 * are done before moving on. Going into this function, we should
362 * not have processes doing IO to this device.
366 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
367 mutex_lock(&q
->sysfs_lock
);
368 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
369 mutex_unlock(&q
->sysfs_lock
);
371 if (q
->queue_lock
!= &q
->__queue_lock
)
372 q
->queue_lock
= &q
->__queue_lock
;
376 EXPORT_SYMBOL(blk_cleanup_queue
);
378 static int blk_init_free_list(struct request_queue
*q
)
380 struct request_list
*rl
= &q
->rq
;
382 if (unlikely(rl
->rq_pool
))
385 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
386 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
388 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
389 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
391 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
392 mempool_free_slab
, request_cachep
, q
->node
);
400 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
402 return blk_alloc_queue_node(gfp_mask
, -1);
404 EXPORT_SYMBOL(blk_alloc_queue
);
406 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
408 struct request_queue
*q
;
411 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
412 gfp_mask
| __GFP_ZERO
, node_id
);
416 q
->backing_dev_info
.ra_pages
=
417 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
418 q
->backing_dev_info
.state
= 0;
419 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
420 q
->backing_dev_info
.name
= "block";
422 err
= bdi_init(&q
->backing_dev_info
);
424 kmem_cache_free(blk_requestq_cachep
, q
);
428 if (blk_throtl_init(q
)) {
429 kmem_cache_free(blk_requestq_cachep
, q
);
433 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
434 laptop_mode_timer_fn
, (unsigned long) q
);
435 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
436 INIT_LIST_HEAD(&q
->timeout_list
);
437 INIT_LIST_HEAD(&q
->flush_queue
[0]);
438 INIT_LIST_HEAD(&q
->flush_queue
[1]);
439 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
440 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
442 kobject_init(&q
->kobj
, &blk_queue_ktype
);
444 mutex_init(&q
->sysfs_lock
);
445 spin_lock_init(&q
->__queue_lock
);
448 * By default initialize queue_lock to internal lock and driver can
449 * override it later if need be.
451 q
->queue_lock
= &q
->__queue_lock
;
455 EXPORT_SYMBOL(blk_alloc_queue_node
);
458 * blk_init_queue - prepare a request queue for use with a block device
459 * @rfn: The function to be called to process requests that have been
460 * placed on the queue.
461 * @lock: Request queue spin lock
464 * If a block device wishes to use the standard request handling procedures,
465 * which sorts requests and coalesces adjacent requests, then it must
466 * call blk_init_queue(). The function @rfn will be called when there
467 * are requests on the queue that need to be processed. If the device
468 * supports plugging, then @rfn may not be called immediately when requests
469 * are available on the queue, but may be called at some time later instead.
470 * Plugged queues are generally unplugged when a buffer belonging to one
471 * of the requests on the queue is needed, or due to memory pressure.
473 * @rfn is not required, or even expected, to remove all requests off the
474 * queue, but only as many as it can handle at a time. If it does leave
475 * requests on the queue, it is responsible for arranging that the requests
476 * get dealt with eventually.
478 * The queue spin lock must be held while manipulating the requests on the
479 * request queue; this lock will be taken also from interrupt context, so irq
480 * disabling is needed for it.
482 * Function returns a pointer to the initialized request queue, or %NULL if
486 * blk_init_queue() must be paired with a blk_cleanup_queue() call
487 * when the block device is deactivated (such as at module unload).
490 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
492 return blk_init_queue_node(rfn
, lock
, -1);
494 EXPORT_SYMBOL(blk_init_queue
);
496 struct request_queue
*
497 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
499 struct request_queue
*uninit_q
, *q
;
501 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
505 q
= blk_init_allocated_queue_node(uninit_q
, rfn
, lock
, node_id
);
507 blk_cleanup_queue(uninit_q
);
511 EXPORT_SYMBOL(blk_init_queue_node
);
513 struct request_queue
*
514 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
517 return blk_init_allocated_queue_node(q
, rfn
, lock
, -1);
519 EXPORT_SYMBOL(blk_init_allocated_queue
);
521 struct request_queue
*
522 blk_init_allocated_queue_node(struct request_queue
*q
, request_fn_proc
*rfn
,
523 spinlock_t
*lock
, int node_id
)
529 if (blk_init_free_list(q
))
533 q
->prep_rq_fn
= NULL
;
534 q
->unprep_rq_fn
= NULL
;
535 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
537 /* Override internal queue lock with supplied lock pointer */
539 q
->queue_lock
= lock
;
542 * This also sets hw/phys segments, boundary and size
544 blk_queue_make_request(q
, __make_request
);
546 q
->sg_reserved_size
= INT_MAX
;
551 if (!elevator_init(q
, NULL
)) {
552 blk_queue_congestion_threshold(q
);
558 EXPORT_SYMBOL(blk_init_allocated_queue_node
);
560 int blk_get_queue(struct request_queue
*q
)
562 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
563 kobject_get(&q
->kobj
);
569 EXPORT_SYMBOL(blk_get_queue
);
571 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
573 if (rq
->cmd_flags
& REQ_ELVPRIV
)
574 elv_put_request(q
, rq
);
575 mempool_free(rq
, q
->rq
.rq_pool
);
578 static struct request
*
579 blk_alloc_request(struct request_queue
*q
, int flags
, int priv
, gfp_t gfp_mask
)
581 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
588 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
591 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
592 mempool_free(rq
, q
->rq
.rq_pool
);
595 rq
->cmd_flags
|= REQ_ELVPRIV
;
602 * ioc_batching returns true if the ioc is a valid batching request and
603 * should be given priority access to a request.
605 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
611 * Make sure the process is able to allocate at least 1 request
612 * even if the batch times out, otherwise we could theoretically
615 return ioc
->nr_batch_requests
== q
->nr_batching
||
616 (ioc
->nr_batch_requests
> 0
617 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
621 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
622 * will cause the process to be a "batcher" on all queues in the system. This
623 * is the behaviour we want though - once it gets a wakeup it should be given
626 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
628 if (!ioc
|| ioc_batching(q
, ioc
))
631 ioc
->nr_batch_requests
= q
->nr_batching
;
632 ioc
->last_waited
= jiffies
;
635 static void __freed_request(struct request_queue
*q
, int sync
)
637 struct request_list
*rl
= &q
->rq
;
639 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
640 blk_clear_queue_congested(q
, sync
);
642 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
643 if (waitqueue_active(&rl
->wait
[sync
]))
644 wake_up(&rl
->wait
[sync
]);
646 blk_clear_queue_full(q
, sync
);
651 * A request has just been released. Account for it, update the full and
652 * congestion status, wake up any waiters. Called under q->queue_lock.
654 static void freed_request(struct request_queue
*q
, int sync
, int priv
)
656 struct request_list
*rl
= &q
->rq
;
662 __freed_request(q
, sync
);
664 if (unlikely(rl
->starved
[sync
^ 1]))
665 __freed_request(q
, sync
^ 1);
669 * Determine if elevator data should be initialized when allocating the
670 * request associated with @bio.
672 static bool blk_rq_should_init_elevator(struct bio
*bio
)
678 * Flush requests do not use the elevator so skip initialization.
679 * This allows a request to share the flush and elevator data.
681 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
688 * Get a free request, queue_lock must be held.
689 * Returns NULL on failure, with queue_lock held.
690 * Returns !NULL on success, with queue_lock *not held*.
692 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
693 struct bio
*bio
, gfp_t gfp_mask
)
695 struct request
*rq
= NULL
;
696 struct request_list
*rl
= &q
->rq
;
697 struct io_context
*ioc
= NULL
;
698 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
699 int may_queue
, priv
= 0;
701 may_queue
= elv_may_queue(q
, rw_flags
);
702 if (may_queue
== ELV_MQUEUE_NO
)
705 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
706 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
707 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
709 * The queue will fill after this allocation, so set
710 * it as full, and mark this process as "batching".
711 * This process will be allowed to complete a batch of
712 * requests, others will be blocked.
714 if (!blk_queue_full(q
, is_sync
)) {
715 ioc_set_batching(q
, ioc
);
716 blk_set_queue_full(q
, is_sync
);
718 if (may_queue
!= ELV_MQUEUE_MUST
719 && !ioc_batching(q
, ioc
)) {
721 * The queue is full and the allocating
722 * process is not a "batcher", and not
723 * exempted by the IO scheduler
729 blk_set_queue_congested(q
, is_sync
);
733 * Only allow batching queuers to allocate up to 50% over the defined
734 * limit of requests, otherwise we could have thousands of requests
735 * allocated with any setting of ->nr_requests
737 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
740 rl
->count
[is_sync
]++;
741 rl
->starved
[is_sync
] = 0;
743 if (blk_rq_should_init_elevator(bio
)) {
744 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
749 if (blk_queue_io_stat(q
))
750 rw_flags
|= REQ_IO_STAT
;
751 spin_unlock_irq(q
->queue_lock
);
753 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
756 * Allocation failed presumably due to memory. Undo anything
757 * we might have messed up.
759 * Allocating task should really be put onto the front of the
760 * wait queue, but this is pretty rare.
762 spin_lock_irq(q
->queue_lock
);
763 freed_request(q
, is_sync
, priv
);
766 * in the very unlikely event that allocation failed and no
767 * requests for this direction was pending, mark us starved
768 * so that freeing of a request in the other direction will
769 * notice us. another possible fix would be to split the
770 * rq mempool into READ and WRITE
773 if (unlikely(rl
->count
[is_sync
] == 0))
774 rl
->starved
[is_sync
] = 1;
780 * ioc may be NULL here, and ioc_batching will be false. That's
781 * OK, if the queue is under the request limit then requests need
782 * not count toward the nr_batch_requests limit. There will always
783 * be some limit enforced by BLK_BATCH_TIME.
785 if (ioc_batching(q
, ioc
))
786 ioc
->nr_batch_requests
--;
788 trace_block_getrq(q
, bio
, rw_flags
& 1);
794 * No available requests for this queue, wait for some requests to become
797 * Called with q->queue_lock held, and returns with it unlocked.
799 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
802 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
805 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
808 struct io_context
*ioc
;
809 struct request_list
*rl
= &q
->rq
;
811 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
812 TASK_UNINTERRUPTIBLE
);
814 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
816 spin_unlock_irq(q
->queue_lock
);
820 * After sleeping, we become a "batching" process and
821 * will be able to allocate at least one request, and
822 * up to a big batch of them for a small period time.
823 * See ioc_batching, ioc_set_batching
825 ioc
= current_io_context(GFP_NOIO
, q
->node
);
826 ioc_set_batching(q
, ioc
);
828 spin_lock_irq(q
->queue_lock
);
829 finish_wait(&rl
->wait
[is_sync
], &wait
);
831 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
837 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
841 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
844 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
846 spin_lock_irq(q
->queue_lock
);
847 if (gfp_mask
& __GFP_WAIT
) {
848 rq
= get_request_wait(q
, rw
, NULL
);
850 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
852 spin_unlock_irq(q
->queue_lock
);
854 /* q->queue_lock is unlocked at this point */
858 EXPORT_SYMBOL(blk_get_request
);
861 * blk_make_request - given a bio, allocate a corresponding struct request.
862 * @q: target request queue
863 * @bio: The bio describing the memory mappings that will be submitted for IO.
864 * It may be a chained-bio properly constructed by block/bio layer.
865 * @gfp_mask: gfp flags to be used for memory allocation
867 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
868 * type commands. Where the struct request needs to be farther initialized by
869 * the caller. It is passed a &struct bio, which describes the memory info of
872 * The caller of blk_make_request must make sure that bi_io_vec
873 * are set to describe the memory buffers. That bio_data_dir() will return
874 * the needed direction of the request. (And all bio's in the passed bio-chain
875 * are properly set accordingly)
877 * If called under none-sleepable conditions, mapped bio buffers must not
878 * need bouncing, by calling the appropriate masked or flagged allocator,
879 * suitable for the target device. Otherwise the call to blk_queue_bounce will
882 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
883 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
884 * anything but the first bio in the chain. Otherwise you risk waiting for IO
885 * completion of a bio that hasn't been submitted yet, thus resulting in a
886 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
887 * of bio_alloc(), as that avoids the mempool deadlock.
888 * If possible a big IO should be split into smaller parts when allocation
889 * fails. Partial allocation should not be an error, or you risk a live-lock.
891 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
894 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
897 return ERR_PTR(-ENOMEM
);
900 struct bio
*bounce_bio
= bio
;
903 blk_queue_bounce(q
, &bounce_bio
);
904 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
913 EXPORT_SYMBOL(blk_make_request
);
916 * blk_requeue_request - put a request back on queue
917 * @q: request queue where request should be inserted
918 * @rq: request to be inserted
921 * Drivers often keep queueing requests until the hardware cannot accept
922 * more, when that condition happens we need to put the request back
923 * on the queue. Must be called with queue lock held.
925 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
927 blk_delete_timer(rq
);
928 blk_clear_rq_complete(rq
);
929 trace_block_rq_requeue(q
, rq
);
931 if (blk_rq_tagged(rq
))
932 blk_queue_end_tag(q
, rq
);
934 BUG_ON(blk_queued_rq(rq
));
936 elv_requeue_request(q
, rq
);
938 EXPORT_SYMBOL(blk_requeue_request
);
940 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
943 drive_stat_acct(rq
, 1);
944 __elv_add_request(q
, rq
, where
);
948 * blk_insert_request - insert a special request into a request queue
949 * @q: request queue where request should be inserted
950 * @rq: request to be inserted
951 * @at_head: insert request at head or tail of queue
952 * @data: private data
955 * Many block devices need to execute commands asynchronously, so they don't
956 * block the whole kernel from preemption during request execution. This is
957 * accomplished normally by inserting aritficial requests tagged as
958 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
959 * be scheduled for actual execution by the request queue.
961 * We have the option of inserting the head or the tail of the queue.
962 * Typically we use the tail for new ioctls and so forth. We use the head
963 * of the queue for things like a QUEUE_FULL message from a device, or a
964 * host that is unable to accept a particular command.
966 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
967 int at_head
, void *data
)
969 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
973 * tell I/O scheduler that this isn't a regular read/write (ie it
974 * must not attempt merges on this) and that it acts as a soft
977 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
981 spin_lock_irqsave(q
->queue_lock
, flags
);
984 * If command is tagged, release the tag
986 if (blk_rq_tagged(rq
))
987 blk_queue_end_tag(q
, rq
);
989 add_acct_request(q
, rq
, where
);
991 spin_unlock_irqrestore(q
->queue_lock
, flags
);
993 EXPORT_SYMBOL(blk_insert_request
);
995 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
998 if (now
== part
->stamp
)
1001 if (part_in_flight(part
)) {
1002 __part_stat_add(cpu
, part
, time_in_queue
,
1003 part_in_flight(part
) * (now
- part
->stamp
));
1004 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1010 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1011 * @cpu: cpu number for stats access
1012 * @part: target partition
1014 * The average IO queue length and utilisation statistics are maintained
1015 * by observing the current state of the queue length and the amount of
1016 * time it has been in this state for.
1018 * Normally, that accounting is done on IO completion, but that can result
1019 * in more than a second's worth of IO being accounted for within any one
1020 * second, leading to >100% utilisation. To deal with that, we call this
1021 * function to do a round-off before returning the results when reading
1022 * /proc/diskstats. This accounts immediately for all queue usage up to
1023 * the current jiffies and restarts the counters again.
1025 void part_round_stats(int cpu
, struct hd_struct
*part
)
1027 unsigned long now
= jiffies
;
1030 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1031 part_round_stats_single(cpu
, part
, now
);
1033 EXPORT_SYMBOL_GPL(part_round_stats
);
1036 * queue lock must be held
1038 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1042 if (unlikely(--req
->ref_count
))
1045 elv_completed_request(q
, req
);
1047 /* this is a bio leak */
1048 WARN_ON(req
->bio
!= NULL
);
1051 * Request may not have originated from ll_rw_blk. if not,
1052 * it didn't come out of our reserved rq pools
1054 if (req
->cmd_flags
& REQ_ALLOCED
) {
1055 int is_sync
= rq_is_sync(req
) != 0;
1056 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1058 BUG_ON(!list_empty(&req
->queuelist
));
1059 BUG_ON(!hlist_unhashed(&req
->hash
));
1061 blk_free_request(q
, req
);
1062 freed_request(q
, is_sync
, priv
);
1065 EXPORT_SYMBOL_GPL(__blk_put_request
);
1067 void blk_put_request(struct request
*req
)
1069 unsigned long flags
;
1070 struct request_queue
*q
= req
->q
;
1072 spin_lock_irqsave(q
->queue_lock
, flags
);
1073 __blk_put_request(q
, req
);
1074 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1076 EXPORT_SYMBOL(blk_put_request
);
1079 * blk_add_request_payload - add a payload to a request
1080 * @rq: request to update
1081 * @page: page backing the payload
1082 * @len: length of the payload.
1084 * This allows to later add a payload to an already submitted request by
1085 * a block driver. The driver needs to take care of freeing the payload
1088 * Note that this is a quite horrible hack and nothing but handling of
1089 * discard requests should ever use it.
1091 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1094 struct bio
*bio
= rq
->bio
;
1096 bio
->bi_io_vec
->bv_page
= page
;
1097 bio
->bi_io_vec
->bv_offset
= 0;
1098 bio
->bi_io_vec
->bv_len
= len
;
1102 bio
->bi_phys_segments
= 1;
1104 rq
->__data_len
= rq
->resid_len
= len
;
1105 rq
->nr_phys_segments
= 1;
1106 rq
->buffer
= bio_data(bio
);
1108 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1110 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1113 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1115 if (!ll_back_merge_fn(q
, req
, bio
))
1118 trace_block_bio_backmerge(q
, bio
);
1120 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1121 blk_rq_set_mixed_merge(req
);
1123 req
->biotail
->bi_next
= bio
;
1125 req
->__data_len
+= bio
->bi_size
;
1126 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1128 drive_stat_acct(req
, 0);
1129 elv_bio_merged(q
, req
, bio
);
1133 static bool bio_attempt_front_merge(struct request_queue
*q
,
1134 struct request
*req
, struct bio
*bio
)
1136 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1138 if (!ll_front_merge_fn(q
, req
, bio
))
1141 trace_block_bio_frontmerge(q
, bio
);
1143 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1144 blk_rq_set_mixed_merge(req
);
1146 bio
->bi_next
= req
->bio
;
1150 * may not be valid. if the low level driver said
1151 * it didn't need a bounce buffer then it better
1152 * not touch req->buffer either...
1154 req
->buffer
= bio_data(bio
);
1155 req
->__sector
= bio
->bi_sector
;
1156 req
->__data_len
+= bio
->bi_size
;
1157 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1159 drive_stat_acct(req
, 0);
1160 elv_bio_merged(q
, req
, bio
);
1165 * Attempts to merge with the plugged list in the current process. Returns
1166 * true if merge was successful, otherwise false.
1168 static bool attempt_plug_merge(struct task_struct
*tsk
, struct request_queue
*q
,
1169 struct bio
*bio
, unsigned int *request_count
)
1171 struct blk_plug
*plug
;
1180 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1188 el_ret
= elv_try_merge(rq
, bio
);
1189 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1190 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1193 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1194 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1203 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1205 req
->cpu
= bio
->bi_comp_cpu
;
1206 req
->cmd_type
= REQ_TYPE_FS
;
1208 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1209 if (bio
->bi_rw
& REQ_RAHEAD
)
1210 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1213 req
->__sector
= bio
->bi_sector
;
1214 req
->ioprio
= bio_prio(bio
);
1215 blk_rq_bio_prep(req
->q
, req
, bio
);
1218 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1220 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1221 struct blk_plug
*plug
;
1222 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1223 struct request
*req
;
1224 unsigned int request_count
= 0;
1227 * low level driver can indicate that it wants pages above a
1228 * certain limit bounced to low memory (ie for highmem, or even
1229 * ISA dma in theory)
1231 blk_queue_bounce(q
, &bio
);
1233 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1234 spin_lock_irq(q
->queue_lock
);
1235 where
= ELEVATOR_INSERT_FLUSH
;
1240 * Check if we can merge with the plugged list before grabbing
1243 if (attempt_plug_merge(current
, q
, bio
, &request_count
))
1246 spin_lock_irq(q
->queue_lock
);
1248 el_ret
= elv_merge(q
, &req
, bio
);
1249 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1250 if (bio_attempt_back_merge(q
, req
, bio
)) {
1251 if (!attempt_back_merge(q
, req
))
1252 elv_merged_request(q
, req
, el_ret
);
1255 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1256 if (bio_attempt_front_merge(q
, req
, bio
)) {
1257 if (!attempt_front_merge(q
, req
))
1258 elv_merged_request(q
, req
, el_ret
);
1265 * This sync check and mask will be re-done in init_request_from_bio(),
1266 * but we need to set it earlier to expose the sync flag to the
1267 * rq allocator and io schedulers.
1269 rw_flags
= bio_data_dir(bio
);
1271 rw_flags
|= REQ_SYNC
;
1274 * Grab a free request. This is might sleep but can not fail.
1275 * Returns with the queue unlocked.
1277 req
= get_request_wait(q
, rw_flags
, bio
);
1280 * After dropping the lock and possibly sleeping here, our request
1281 * may now be mergeable after it had proven unmergeable (above).
1282 * We don't worry about that case for efficiency. It won't happen
1283 * often, and the elevators are able to handle it.
1285 init_request_from_bio(req
, bio
);
1287 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
) ||
1288 bio_flagged(bio
, BIO_CPU_AFFINE
))
1289 req
->cpu
= raw_smp_processor_id();
1291 plug
= current
->plug
;
1294 * If this is the first request added after a plug, fire
1295 * of a plug trace. If others have been added before, check
1296 * if we have multiple devices in this plug. If so, make a
1297 * note to sort the list before dispatch.
1299 if (list_empty(&plug
->list
))
1300 trace_block_plug(q
);
1301 else if (!plug
->should_sort
) {
1302 struct request
*__rq
;
1304 __rq
= list_entry_rq(plug
->list
.prev
);
1306 plug
->should_sort
= 1;
1308 if (request_count
>= BLK_MAX_REQUEST_COUNT
)
1309 blk_flush_plug_list(plug
, false);
1310 list_add_tail(&req
->queuelist
, &plug
->list
);
1311 drive_stat_acct(req
, 1);
1313 spin_lock_irq(q
->queue_lock
);
1314 add_acct_request(q
, req
, where
);
1317 spin_unlock_irq(q
->queue_lock
);
1324 * If bio->bi_dev is a partition, remap the location
1326 static inline void blk_partition_remap(struct bio
*bio
)
1328 struct block_device
*bdev
= bio
->bi_bdev
;
1330 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1331 struct hd_struct
*p
= bdev
->bd_part
;
1333 bio
->bi_sector
+= p
->start_sect
;
1334 bio
->bi_bdev
= bdev
->bd_contains
;
1336 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1338 bio
->bi_sector
- p
->start_sect
);
1342 static void handle_bad_sector(struct bio
*bio
)
1344 char b
[BDEVNAME_SIZE
];
1346 printk(KERN_INFO
"attempt to access beyond end of device\n");
1347 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1348 bdevname(bio
->bi_bdev
, b
),
1350 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1351 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1353 set_bit(BIO_EOF
, &bio
->bi_flags
);
1356 #ifdef CONFIG_FAIL_MAKE_REQUEST
1358 static DECLARE_FAULT_ATTR(fail_make_request
);
1360 static int __init
setup_fail_make_request(char *str
)
1362 return setup_fault_attr(&fail_make_request
, str
);
1364 __setup("fail_make_request=", setup_fail_make_request
);
1366 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1368 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1371 static int __init
fail_make_request_debugfs(void)
1373 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1374 NULL
, &fail_make_request
);
1376 return IS_ERR(dir
) ? PTR_ERR(dir
) : 0;
1379 late_initcall(fail_make_request_debugfs
);
1381 #else /* CONFIG_FAIL_MAKE_REQUEST */
1383 static inline bool should_fail_request(struct hd_struct
*part
,
1389 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1392 * Check whether this bio extends beyond the end of the device.
1394 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1401 /* Test device or partition size, when known. */
1402 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1404 sector_t sector
= bio
->bi_sector
;
1406 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1408 * This may well happen - the kernel calls bread()
1409 * without checking the size of the device, e.g., when
1410 * mounting a device.
1412 handle_bad_sector(bio
);
1421 * generic_make_request - hand a buffer to its device driver for I/O
1422 * @bio: The bio describing the location in memory and on the device.
1424 * generic_make_request() is used to make I/O requests of block
1425 * devices. It is passed a &struct bio, which describes the I/O that needs
1428 * generic_make_request() does not return any status. The
1429 * success/failure status of the request, along with notification of
1430 * completion, is delivered asynchronously through the bio->bi_end_io
1431 * function described (one day) else where.
1433 * The caller of generic_make_request must make sure that bi_io_vec
1434 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1435 * set to describe the device address, and the
1436 * bi_end_io and optionally bi_private are set to describe how
1437 * completion notification should be signaled.
1439 * generic_make_request and the drivers it calls may use bi_next if this
1440 * bio happens to be merged with someone else, and may change bi_dev and
1441 * bi_sector for remaps as it sees fit. So the values of these fields
1442 * should NOT be depended on after the call to generic_make_request.
1444 static inline void __generic_make_request(struct bio
*bio
)
1446 struct request_queue
*q
;
1447 sector_t old_sector
;
1448 int ret
, nr_sectors
= bio_sectors(bio
);
1454 if (bio_check_eod(bio
, nr_sectors
))
1458 * Resolve the mapping until finished. (drivers are
1459 * still free to implement/resolve their own stacking
1460 * by explicitly returning 0)
1462 * NOTE: we don't repeat the blk_size check for each new device.
1463 * Stacking drivers are expected to know what they are doing.
1468 char b
[BDEVNAME_SIZE
];
1469 struct hd_struct
*part
;
1471 q
= bdev_get_queue(bio
->bi_bdev
);
1474 "generic_make_request: Trying to access "
1475 "nonexistent block-device %s (%Lu)\n",
1476 bdevname(bio
->bi_bdev
, b
),
1477 (long long) bio
->bi_sector
);
1481 if (unlikely(!(bio
->bi_rw
& REQ_DISCARD
) &&
1482 nr_sectors
> queue_max_hw_sectors(q
))) {
1483 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1484 bdevname(bio
->bi_bdev
, b
),
1486 queue_max_hw_sectors(q
));
1490 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1493 part
= bio
->bi_bdev
->bd_part
;
1494 if (should_fail_request(part
, bio
->bi_size
) ||
1495 should_fail_request(&part_to_disk(part
)->part0
,
1500 * If this device has partitions, remap block n
1501 * of partition p to block n+start(p) of the disk.
1503 blk_partition_remap(bio
);
1505 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1508 if (old_sector
!= -1)
1509 trace_block_bio_remap(q
, bio
, old_dev
, old_sector
);
1511 old_sector
= bio
->bi_sector
;
1512 old_dev
= bio
->bi_bdev
->bd_dev
;
1514 if (bio_check_eod(bio
, nr_sectors
))
1518 * Filter flush bio's early so that make_request based
1519 * drivers without flush support don't have to worry
1522 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1523 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1530 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1531 (!blk_queue_discard(q
) ||
1532 ((bio
->bi_rw
& REQ_SECURE
) &&
1533 !blk_queue_secdiscard(q
)))) {
1538 if (blk_throtl_bio(q
, &bio
))
1542 * If bio = NULL, bio has been throttled and will be submitted
1548 trace_block_bio_queue(q
, bio
);
1550 ret
= q
->make_request_fn(q
, bio
);
1556 bio_endio(bio
, err
);
1560 * We only want one ->make_request_fn to be active at a time,
1561 * else stack usage with stacked devices could be a problem.
1562 * So use current->bio_list to keep a list of requests
1563 * submited by a make_request_fn function.
1564 * current->bio_list is also used as a flag to say if
1565 * generic_make_request is currently active in this task or not.
1566 * If it is NULL, then no make_request is active. If it is non-NULL,
1567 * then a make_request is active, and new requests should be added
1570 void generic_make_request(struct bio
*bio
)
1572 struct bio_list bio_list_on_stack
;
1574 if (current
->bio_list
) {
1575 /* make_request is active */
1576 bio_list_add(current
->bio_list
, bio
);
1579 /* following loop may be a bit non-obvious, and so deserves some
1581 * Before entering the loop, bio->bi_next is NULL (as all callers
1582 * ensure that) so we have a list with a single bio.
1583 * We pretend that we have just taken it off a longer list, so
1584 * we assign bio_list to a pointer to the bio_list_on_stack,
1585 * thus initialising the bio_list of new bios to be
1586 * added. __generic_make_request may indeed add some more bios
1587 * through a recursive call to generic_make_request. If it
1588 * did, we find a non-NULL value in bio_list and re-enter the loop
1589 * from the top. In this case we really did just take the bio
1590 * of the top of the list (no pretending) and so remove it from
1591 * bio_list, and call into __generic_make_request again.
1593 * The loop was structured like this to make only one call to
1594 * __generic_make_request (which is important as it is large and
1595 * inlined) and to keep the structure simple.
1597 BUG_ON(bio
->bi_next
);
1598 bio_list_init(&bio_list_on_stack
);
1599 current
->bio_list
= &bio_list_on_stack
;
1601 __generic_make_request(bio
);
1602 bio
= bio_list_pop(current
->bio_list
);
1604 current
->bio_list
= NULL
; /* deactivate */
1606 EXPORT_SYMBOL(generic_make_request
);
1609 * submit_bio - submit a bio to the block device layer for I/O
1610 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1611 * @bio: The &struct bio which describes the I/O
1613 * submit_bio() is very similar in purpose to generic_make_request(), and
1614 * uses that function to do most of the work. Both are fairly rough
1615 * interfaces; @bio must be presetup and ready for I/O.
1618 void submit_bio(int rw
, struct bio
*bio
)
1620 int count
= bio_sectors(bio
);
1625 * If it's a regular read/write or a barrier with data attached,
1626 * go through the normal accounting stuff before submission.
1628 if (bio_has_data(bio
) && !(rw
& REQ_DISCARD
)) {
1630 count_vm_events(PGPGOUT
, count
);
1632 task_io_account_read(bio
->bi_size
);
1633 count_vm_events(PGPGIN
, count
);
1636 if (unlikely(block_dump
)) {
1637 char b
[BDEVNAME_SIZE
];
1638 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1639 current
->comm
, task_pid_nr(current
),
1640 (rw
& WRITE
) ? "WRITE" : "READ",
1641 (unsigned long long)bio
->bi_sector
,
1642 bdevname(bio
->bi_bdev
, b
),
1647 generic_make_request(bio
);
1649 EXPORT_SYMBOL(submit_bio
);
1652 * blk_rq_check_limits - Helper function to check a request for the queue limit
1654 * @rq: the request being checked
1657 * @rq may have been made based on weaker limitations of upper-level queues
1658 * in request stacking drivers, and it may violate the limitation of @q.
1659 * Since the block layer and the underlying device driver trust @rq
1660 * after it is inserted to @q, it should be checked against @q before
1661 * the insertion using this generic function.
1663 * This function should also be useful for request stacking drivers
1664 * in some cases below, so export this function.
1665 * Request stacking drivers like request-based dm may change the queue
1666 * limits while requests are in the queue (e.g. dm's table swapping).
1667 * Such request stacking drivers should check those requests agaist
1668 * the new queue limits again when they dispatch those requests,
1669 * although such checkings are also done against the old queue limits
1670 * when submitting requests.
1672 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1674 if (rq
->cmd_flags
& REQ_DISCARD
)
1677 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1678 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1679 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1684 * queue's settings related to segment counting like q->bounce_pfn
1685 * may differ from that of other stacking queues.
1686 * Recalculate it to check the request correctly on this queue's
1689 blk_recalc_rq_segments(rq
);
1690 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1691 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1697 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1700 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1701 * @q: the queue to submit the request
1702 * @rq: the request being queued
1704 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1706 unsigned long flags
;
1707 int where
= ELEVATOR_INSERT_BACK
;
1709 if (blk_rq_check_limits(q
, rq
))
1713 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
1716 spin_lock_irqsave(q
->queue_lock
, flags
);
1719 * Submitting request must be dequeued before calling this function
1720 * because it will be linked to another request_queue
1722 BUG_ON(blk_queued_rq(rq
));
1724 if (rq
->cmd_flags
& (REQ_FLUSH
|REQ_FUA
))
1725 where
= ELEVATOR_INSERT_FLUSH
;
1727 add_acct_request(q
, rq
, where
);
1728 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1732 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1735 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1736 * @rq: request to examine
1739 * A request could be merge of IOs which require different failure
1740 * handling. This function determines the number of bytes which
1741 * can be failed from the beginning of the request without
1742 * crossing into area which need to be retried further.
1745 * The number of bytes to fail.
1748 * queue_lock must be held.
1750 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1752 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1753 unsigned int bytes
= 0;
1756 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1757 return blk_rq_bytes(rq
);
1760 * Currently the only 'mixing' which can happen is between
1761 * different fastfail types. We can safely fail portions
1762 * which have all the failfast bits that the first one has -
1763 * the ones which are at least as eager to fail as the first
1766 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1767 if ((bio
->bi_rw
& ff
) != ff
)
1769 bytes
+= bio
->bi_size
;
1772 /* this could lead to infinite loop */
1773 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1776 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1778 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1780 if (blk_do_io_stat(req
)) {
1781 const int rw
= rq_data_dir(req
);
1782 struct hd_struct
*part
;
1785 cpu
= part_stat_lock();
1787 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1792 static void blk_account_io_done(struct request
*req
)
1795 * Account IO completion. flush_rq isn't accounted as a
1796 * normal IO on queueing nor completion. Accounting the
1797 * containing request is enough.
1799 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
1800 unsigned long duration
= jiffies
- req
->start_time
;
1801 const int rw
= rq_data_dir(req
);
1802 struct hd_struct
*part
;
1805 cpu
= part_stat_lock();
1808 part_stat_inc(cpu
, part
, ios
[rw
]);
1809 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1810 part_round_stats(cpu
, part
);
1811 part_dec_in_flight(part
, rw
);
1813 hd_struct_put(part
);
1819 * blk_peek_request - peek at the top of a request queue
1820 * @q: request queue to peek at
1823 * Return the request at the top of @q. The returned request
1824 * should be started using blk_start_request() before LLD starts
1828 * Pointer to the request at the top of @q if available. Null
1832 * queue_lock must be held.
1834 struct request
*blk_peek_request(struct request_queue
*q
)
1839 while ((rq
= __elv_next_request(q
)) != NULL
) {
1840 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1842 * This is the first time the device driver
1843 * sees this request (possibly after
1844 * requeueing). Notify IO scheduler.
1846 if (rq
->cmd_flags
& REQ_SORTED
)
1847 elv_activate_rq(q
, rq
);
1850 * just mark as started even if we don't start
1851 * it, a request that has been delayed should
1852 * not be passed by new incoming requests
1854 rq
->cmd_flags
|= REQ_STARTED
;
1855 trace_block_rq_issue(q
, rq
);
1858 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1859 q
->end_sector
= rq_end_sector(rq
);
1860 q
->boundary_rq
= NULL
;
1863 if (rq
->cmd_flags
& REQ_DONTPREP
)
1866 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1868 * make sure space for the drain appears we
1869 * know we can do this because max_hw_segments
1870 * has been adjusted to be one fewer than the
1873 rq
->nr_phys_segments
++;
1879 ret
= q
->prep_rq_fn(q
, rq
);
1880 if (ret
== BLKPREP_OK
) {
1882 } else if (ret
== BLKPREP_DEFER
) {
1884 * the request may have been (partially) prepped.
1885 * we need to keep this request in the front to
1886 * avoid resource deadlock. REQ_STARTED will
1887 * prevent other fs requests from passing this one.
1889 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
1890 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
1892 * remove the space for the drain we added
1893 * so that we don't add it again
1895 --rq
->nr_phys_segments
;
1900 } else if (ret
== BLKPREP_KILL
) {
1901 rq
->cmd_flags
|= REQ_QUIET
;
1903 * Mark this request as started so we don't trigger
1904 * any debug logic in the end I/O path.
1906 blk_start_request(rq
);
1907 __blk_end_request_all(rq
, -EIO
);
1909 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
1916 EXPORT_SYMBOL(blk_peek_request
);
1918 void blk_dequeue_request(struct request
*rq
)
1920 struct request_queue
*q
= rq
->q
;
1922 BUG_ON(list_empty(&rq
->queuelist
));
1923 BUG_ON(ELV_ON_HASH(rq
));
1925 list_del_init(&rq
->queuelist
);
1928 * the time frame between a request being removed from the lists
1929 * and to it is freed is accounted as io that is in progress at
1932 if (blk_account_rq(rq
)) {
1933 q
->in_flight
[rq_is_sync(rq
)]++;
1934 set_io_start_time_ns(rq
);
1939 * blk_start_request - start request processing on the driver
1940 * @req: request to dequeue
1943 * Dequeue @req and start timeout timer on it. This hands off the
1944 * request to the driver.
1946 * Block internal functions which don't want to start timer should
1947 * call blk_dequeue_request().
1950 * queue_lock must be held.
1952 void blk_start_request(struct request
*req
)
1954 blk_dequeue_request(req
);
1957 * We are now handing the request to the hardware, initialize
1958 * resid_len to full count and add the timeout handler.
1960 req
->resid_len
= blk_rq_bytes(req
);
1961 if (unlikely(blk_bidi_rq(req
)))
1962 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
1966 EXPORT_SYMBOL(blk_start_request
);
1969 * blk_fetch_request - fetch a request from a request queue
1970 * @q: request queue to fetch a request from
1973 * Return the request at the top of @q. The request is started on
1974 * return and LLD can start processing it immediately.
1977 * Pointer to the request at the top of @q if available. Null
1981 * queue_lock must be held.
1983 struct request
*blk_fetch_request(struct request_queue
*q
)
1987 rq
= blk_peek_request(q
);
1989 blk_start_request(rq
);
1992 EXPORT_SYMBOL(blk_fetch_request
);
1995 * blk_update_request - Special helper function for request stacking drivers
1996 * @req: the request being processed
1997 * @error: %0 for success, < %0 for error
1998 * @nr_bytes: number of bytes to complete @req
2001 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2002 * the request structure even if @req doesn't have leftover.
2003 * If @req has leftover, sets it up for the next range of segments.
2005 * This special helper function is only for request stacking drivers
2006 * (e.g. request-based dm) so that they can handle partial completion.
2007 * Actual device drivers should use blk_end_request instead.
2009 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2010 * %false return from this function.
2013 * %false - this request doesn't have any more data
2014 * %true - this request has more data
2016 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2018 int total_bytes
, bio_nbytes
, next_idx
= 0;
2024 trace_block_rq_complete(req
->q
, req
);
2027 * For fs requests, rq is just carrier of independent bio's
2028 * and each partial completion should be handled separately.
2029 * Reset per-request error on each partial completion.
2031 * TODO: tj: This is too subtle. It would be better to let
2032 * low level drivers do what they see fit.
2034 if (req
->cmd_type
== REQ_TYPE_FS
)
2037 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2038 !(req
->cmd_flags
& REQ_QUIET
)) {
2043 error_type
= "recoverable transport";
2046 error_type
= "critical target";
2049 error_type
= "critical nexus";
2056 printk(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2057 error_type
, req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
2058 (unsigned long long)blk_rq_pos(req
));
2061 blk_account_io_completion(req
, nr_bytes
);
2063 total_bytes
= bio_nbytes
= 0;
2064 while ((bio
= req
->bio
) != NULL
) {
2067 if (nr_bytes
>= bio
->bi_size
) {
2068 req
->bio
= bio
->bi_next
;
2069 nbytes
= bio
->bi_size
;
2070 req_bio_endio(req
, bio
, nbytes
, error
);
2074 int idx
= bio
->bi_idx
+ next_idx
;
2076 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2077 blk_dump_rq_flags(req
, "__end_that");
2078 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2079 __func__
, idx
, bio
->bi_vcnt
);
2083 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2084 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2087 * not a complete bvec done
2089 if (unlikely(nbytes
> nr_bytes
)) {
2090 bio_nbytes
+= nr_bytes
;
2091 total_bytes
+= nr_bytes
;
2096 * advance to the next vector
2099 bio_nbytes
+= nbytes
;
2102 total_bytes
+= nbytes
;
2108 * end more in this run, or just return 'not-done'
2110 if (unlikely(nr_bytes
<= 0))
2120 * Reset counters so that the request stacking driver
2121 * can find how many bytes remain in the request
2124 req
->__data_len
= 0;
2129 * if the request wasn't completed, update state
2132 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2133 bio
->bi_idx
+= next_idx
;
2134 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2135 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2138 req
->__data_len
-= total_bytes
;
2139 req
->buffer
= bio_data(req
->bio
);
2141 /* update sector only for requests with clear definition of sector */
2142 if (req
->cmd_type
== REQ_TYPE_FS
|| (req
->cmd_flags
& REQ_DISCARD
))
2143 req
->__sector
+= total_bytes
>> 9;
2145 /* mixed attributes always follow the first bio */
2146 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2147 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2148 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2152 * If total number of sectors is less than the first segment
2153 * size, something has gone terribly wrong.
2155 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2156 blk_dump_rq_flags(req
, "request botched");
2157 req
->__data_len
= blk_rq_cur_bytes(req
);
2160 /* recalculate the number of segments */
2161 blk_recalc_rq_segments(req
);
2165 EXPORT_SYMBOL_GPL(blk_update_request
);
2167 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2168 unsigned int nr_bytes
,
2169 unsigned int bidi_bytes
)
2171 if (blk_update_request(rq
, error
, nr_bytes
))
2174 /* Bidi request must be completed as a whole */
2175 if (unlikely(blk_bidi_rq(rq
)) &&
2176 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2179 if (blk_queue_add_random(rq
->q
))
2180 add_disk_randomness(rq
->rq_disk
);
2186 * blk_unprep_request - unprepare a request
2189 * This function makes a request ready for complete resubmission (or
2190 * completion). It happens only after all error handling is complete,
2191 * so represents the appropriate moment to deallocate any resources
2192 * that were allocated to the request in the prep_rq_fn. The queue
2193 * lock is held when calling this.
2195 void blk_unprep_request(struct request
*req
)
2197 struct request_queue
*q
= req
->q
;
2199 req
->cmd_flags
&= ~REQ_DONTPREP
;
2200 if (q
->unprep_rq_fn
)
2201 q
->unprep_rq_fn(q
, req
);
2203 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2206 * queue lock must be held
2208 static void blk_finish_request(struct request
*req
, int error
)
2210 if (blk_rq_tagged(req
))
2211 blk_queue_end_tag(req
->q
, req
);
2213 BUG_ON(blk_queued_rq(req
));
2215 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2216 laptop_io_completion(&req
->q
->backing_dev_info
);
2218 blk_delete_timer(req
);
2220 if (req
->cmd_flags
& REQ_DONTPREP
)
2221 blk_unprep_request(req
);
2224 blk_account_io_done(req
);
2227 req
->end_io(req
, error
);
2229 if (blk_bidi_rq(req
))
2230 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2232 __blk_put_request(req
->q
, req
);
2237 * blk_end_bidi_request - Complete a bidi request
2238 * @rq: the request to complete
2239 * @error: %0 for success, < %0 for error
2240 * @nr_bytes: number of bytes to complete @rq
2241 * @bidi_bytes: number of bytes to complete @rq->next_rq
2244 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2245 * Drivers that supports bidi can safely call this member for any
2246 * type of request, bidi or uni. In the later case @bidi_bytes is
2250 * %false - we are done with this request
2251 * %true - still buffers pending for this request
2253 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2254 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2256 struct request_queue
*q
= rq
->q
;
2257 unsigned long flags
;
2259 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2262 spin_lock_irqsave(q
->queue_lock
, flags
);
2263 blk_finish_request(rq
, error
);
2264 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2270 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2271 * @rq: the request to complete
2272 * @error: %0 for success, < %0 for error
2273 * @nr_bytes: number of bytes to complete @rq
2274 * @bidi_bytes: number of bytes to complete @rq->next_rq
2277 * Identical to blk_end_bidi_request() except that queue lock is
2278 * assumed to be locked on entry and remains so on return.
2281 * %false - we are done with this request
2282 * %true - still buffers pending for this request
2284 bool __blk_end_bidi_request(struct request
*rq
, int error
,
2285 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2287 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2290 blk_finish_request(rq
, error
);
2296 * blk_end_request - Helper function for drivers to complete the request.
2297 * @rq: the request being processed
2298 * @error: %0 for success, < %0 for error
2299 * @nr_bytes: number of bytes to complete
2302 * Ends I/O on a number of bytes attached to @rq.
2303 * If @rq has leftover, sets it up for the next range of segments.
2306 * %false - we are done with this request
2307 * %true - still buffers pending for this request
2309 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2311 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2313 EXPORT_SYMBOL(blk_end_request
);
2316 * blk_end_request_all - Helper function for drives to finish the request.
2317 * @rq: the request to finish
2318 * @error: %0 for success, < %0 for error
2321 * Completely finish @rq.
2323 void blk_end_request_all(struct request
*rq
, int error
)
2326 unsigned int bidi_bytes
= 0;
2328 if (unlikely(blk_bidi_rq(rq
)))
2329 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2331 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2334 EXPORT_SYMBOL(blk_end_request_all
);
2337 * blk_end_request_cur - Helper function to finish the current request chunk.
2338 * @rq: the request to finish the current chunk for
2339 * @error: %0 for success, < %0 for error
2342 * Complete the current consecutively mapped chunk from @rq.
2345 * %false - we are done with this request
2346 * %true - still buffers pending for this request
2348 bool blk_end_request_cur(struct request
*rq
, int error
)
2350 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2352 EXPORT_SYMBOL(blk_end_request_cur
);
2355 * blk_end_request_err - Finish a request till the next failure boundary.
2356 * @rq: the request to finish till the next failure boundary for
2357 * @error: must be negative errno
2360 * Complete @rq till the next failure boundary.
2363 * %false - we are done with this request
2364 * %true - still buffers pending for this request
2366 bool blk_end_request_err(struct request
*rq
, int error
)
2368 WARN_ON(error
>= 0);
2369 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2371 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2374 * __blk_end_request - Helper function for drivers to complete the request.
2375 * @rq: the request being processed
2376 * @error: %0 for success, < %0 for error
2377 * @nr_bytes: number of bytes to complete
2380 * Must be called with queue lock held unlike blk_end_request().
2383 * %false - we are done with this request
2384 * %true - still buffers pending for this request
2386 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2388 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2390 EXPORT_SYMBOL(__blk_end_request
);
2393 * __blk_end_request_all - Helper function for drives to finish the request.
2394 * @rq: the request to finish
2395 * @error: %0 for success, < %0 for error
2398 * Completely finish @rq. Must be called with queue lock held.
2400 void __blk_end_request_all(struct request
*rq
, int error
)
2403 unsigned int bidi_bytes
= 0;
2405 if (unlikely(blk_bidi_rq(rq
)))
2406 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2408 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2411 EXPORT_SYMBOL(__blk_end_request_all
);
2414 * __blk_end_request_cur - Helper function to finish the current request chunk.
2415 * @rq: the request to finish the current chunk for
2416 * @error: %0 for success, < %0 for error
2419 * Complete the current consecutively mapped chunk from @rq. Must
2420 * be called with queue lock held.
2423 * %false - we are done with this request
2424 * %true - still buffers pending for this request
2426 bool __blk_end_request_cur(struct request
*rq
, int error
)
2428 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2430 EXPORT_SYMBOL(__blk_end_request_cur
);
2433 * __blk_end_request_err - Finish a request till the next failure boundary.
2434 * @rq: the request to finish till the next failure boundary for
2435 * @error: must be negative errno
2438 * Complete @rq till the next failure boundary. Must be called
2439 * with queue lock held.
2442 * %false - we are done with this request
2443 * %true - still buffers pending for this request
2445 bool __blk_end_request_err(struct request
*rq
, int error
)
2447 WARN_ON(error
>= 0);
2448 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2450 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2452 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2455 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2456 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2458 if (bio_has_data(bio
)) {
2459 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2460 rq
->buffer
= bio_data(bio
);
2462 rq
->__data_len
= bio
->bi_size
;
2463 rq
->bio
= rq
->biotail
= bio
;
2466 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2469 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2471 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2472 * @rq: the request to be flushed
2475 * Flush all pages in @rq.
2477 void rq_flush_dcache_pages(struct request
*rq
)
2479 struct req_iterator iter
;
2480 struct bio_vec
*bvec
;
2482 rq_for_each_segment(bvec
, rq
, iter
)
2483 flush_dcache_page(bvec
->bv_page
);
2485 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2489 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2490 * @q : the queue of the device being checked
2493 * Check if underlying low-level drivers of a device are busy.
2494 * If the drivers want to export their busy state, they must set own
2495 * exporting function using blk_queue_lld_busy() first.
2497 * Basically, this function is used only by request stacking drivers
2498 * to stop dispatching requests to underlying devices when underlying
2499 * devices are busy. This behavior helps more I/O merging on the queue
2500 * of the request stacking driver and prevents I/O throughput regression
2501 * on burst I/O load.
2504 * 0 - Not busy (The request stacking driver should dispatch request)
2505 * 1 - Busy (The request stacking driver should stop dispatching request)
2507 int blk_lld_busy(struct request_queue
*q
)
2510 return q
->lld_busy_fn(q
);
2514 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2517 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2518 * @rq: the clone request to be cleaned up
2521 * Free all bios in @rq for a cloned request.
2523 void blk_rq_unprep_clone(struct request
*rq
)
2527 while ((bio
= rq
->bio
) != NULL
) {
2528 rq
->bio
= bio
->bi_next
;
2533 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2536 * Copy attributes of the original request to the clone request.
2537 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2539 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2541 dst
->cpu
= src
->cpu
;
2542 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2543 dst
->cmd_type
= src
->cmd_type
;
2544 dst
->__sector
= blk_rq_pos(src
);
2545 dst
->__data_len
= blk_rq_bytes(src
);
2546 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2547 dst
->ioprio
= src
->ioprio
;
2548 dst
->extra_len
= src
->extra_len
;
2552 * blk_rq_prep_clone - Helper function to setup clone request
2553 * @rq: the request to be setup
2554 * @rq_src: original request to be cloned
2555 * @bs: bio_set that bios for clone are allocated from
2556 * @gfp_mask: memory allocation mask for bio
2557 * @bio_ctr: setup function to be called for each clone bio.
2558 * Returns %0 for success, non %0 for failure.
2559 * @data: private data to be passed to @bio_ctr
2562 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2563 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2564 * are not copied, and copying such parts is the caller's responsibility.
2565 * Also, pages which the original bios are pointing to are not copied
2566 * and the cloned bios just point same pages.
2567 * So cloned bios must be completed before original bios, which means
2568 * the caller must complete @rq before @rq_src.
2570 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2571 struct bio_set
*bs
, gfp_t gfp_mask
,
2572 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2575 struct bio
*bio
, *bio_src
;
2580 blk_rq_init(NULL
, rq
);
2582 __rq_for_each_bio(bio_src
, rq_src
) {
2583 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2587 __bio_clone(bio
, bio_src
);
2589 if (bio_integrity(bio_src
) &&
2590 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2593 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2597 rq
->biotail
->bi_next
= bio
;
2600 rq
->bio
= rq
->biotail
= bio
;
2603 __blk_rq_prep_clone(rq
, rq_src
);
2610 blk_rq_unprep_clone(rq
);
2614 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2616 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2618 return queue_work(kblockd_workqueue
, work
);
2620 EXPORT_SYMBOL(kblockd_schedule_work
);
2622 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2623 struct delayed_work
*dwork
, unsigned long delay
)
2625 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2627 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2629 #define PLUG_MAGIC 0x91827364
2631 void blk_start_plug(struct blk_plug
*plug
)
2633 struct task_struct
*tsk
= current
;
2635 plug
->magic
= PLUG_MAGIC
;
2636 INIT_LIST_HEAD(&plug
->list
);
2637 INIT_LIST_HEAD(&plug
->cb_list
);
2638 plug
->should_sort
= 0;
2641 * If this is a nested plug, don't actually assign it. It will be
2642 * flushed on its own.
2646 * Store ordering should not be needed here, since a potential
2647 * preempt will imply a full memory barrier
2652 EXPORT_SYMBOL(blk_start_plug
);
2654 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2656 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2657 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2659 return !(rqa
->q
<= rqb
->q
);
2663 * If 'from_schedule' is true, then postpone the dispatch of requests
2664 * until a safe kblockd context. We due this to avoid accidental big
2665 * additional stack usage in driver dispatch, in places where the originally
2666 * plugger did not intend it.
2668 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2670 __releases(q
->queue_lock
)
2672 trace_block_unplug(q
, depth
, !from_schedule
);
2675 * If we are punting this to kblockd, then we can safely drop
2676 * the queue_lock before waking kblockd (which needs to take
2679 if (from_schedule
) {
2680 spin_unlock(q
->queue_lock
);
2681 blk_run_queue_async(q
);
2684 spin_unlock(q
->queue_lock
);
2689 static void flush_plug_callbacks(struct blk_plug
*plug
)
2691 LIST_HEAD(callbacks
);
2693 if (list_empty(&plug
->cb_list
))
2696 list_splice_init(&plug
->cb_list
, &callbacks
);
2698 while (!list_empty(&callbacks
)) {
2699 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2702 list_del(&cb
->list
);
2707 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2709 struct request_queue
*q
;
2710 unsigned long flags
;
2715 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2717 flush_plug_callbacks(plug
);
2718 if (list_empty(&plug
->list
))
2721 list_splice_init(&plug
->list
, &list
);
2723 if (plug
->should_sort
) {
2724 list_sort(NULL
, &list
, plug_rq_cmp
);
2725 plug
->should_sort
= 0;
2732 * Save and disable interrupts here, to avoid doing it for every
2733 * queue lock we have to take.
2735 local_irq_save(flags
);
2736 while (!list_empty(&list
)) {
2737 rq
= list_entry_rq(list
.next
);
2738 list_del_init(&rq
->queuelist
);
2742 * This drops the queue lock
2745 queue_unplugged(q
, depth
, from_schedule
);
2748 spin_lock(q
->queue_lock
);
2751 * rq is already accounted, so use raw insert
2753 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
2754 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
2756 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
2762 * This drops the queue lock
2765 queue_unplugged(q
, depth
, from_schedule
);
2767 local_irq_restore(flags
);
2770 void blk_finish_plug(struct blk_plug
*plug
)
2772 blk_flush_plug_list(plug
, false);
2774 if (plug
== current
->plug
)
2775 current
->plug
= NULL
;
2777 EXPORT_SYMBOL(blk_finish_plug
);
2779 int __init
blk_dev_init(void)
2781 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2782 sizeof(((struct request
*)0)->cmd_flags
));
2784 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2785 kblockd_workqueue
= alloc_workqueue("kblockd",
2786 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2787 if (!kblockd_workqueue
)
2788 panic("Failed to create kblockd\n");
2790 request_cachep
= kmem_cache_create("blkdev_requests",
2791 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2793 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2794 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);