skge: update version
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / dcache.c
blob37f72ee5bf7c9577f164ce4a472d7d4d8f0c4aaa
1 /*
2 * fs/dcache.c
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
9 /*
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
19 #include <linux/mm.h>
20 #include <linux/fs.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
36 #include <linux/bit_spinlock.h>
37 #include <linux/rculist_bl.h>
38 #include <linux/prefetch.h>
39 #include "internal.h"
42 * Usage:
43 * dcache->d_inode->i_lock protects:
44 * - i_dentry, d_alias, d_inode of aliases
45 * dcache_hash_bucket lock protects:
46 * - the dcache hash table
47 * s_anon bl list spinlock protects:
48 * - the s_anon list (see __d_drop)
49 * dcache_lru_lock protects:
50 * - the dcache lru lists and counters
51 * d_lock protects:
52 * - d_flags
53 * - d_name
54 * - d_lru
55 * - d_count
56 * - d_unhashed()
57 * - d_parent and d_subdirs
58 * - childrens' d_child and d_parent
59 * - d_alias, d_inode
61 * Ordering:
62 * dentry->d_inode->i_lock
63 * dentry->d_lock
64 * dcache_lru_lock
65 * dcache_hash_bucket lock
66 * s_anon lock
68 * If there is an ancestor relationship:
69 * dentry->d_parent->...->d_parent->d_lock
70 * ...
71 * dentry->d_parent->d_lock
72 * dentry->d_lock
74 * If no ancestor relationship:
75 * if (dentry1 < dentry2)
76 * dentry1->d_lock
77 * dentry2->d_lock
79 int sysctl_vfs_cache_pressure __read_mostly = 100;
80 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
82 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
83 __cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
85 EXPORT_SYMBOL(rename_lock);
87 static struct kmem_cache *dentry_cache __read_mostly;
90 * This is the single most critical data structure when it comes
91 * to the dcache: the hashtable for lookups. Somebody should try
92 * to make this good - I've just made it work.
94 * This hash-function tries to avoid losing too many bits of hash
95 * information, yet avoid using a prime hash-size or similar.
97 #define D_HASHBITS d_hash_shift
98 #define D_HASHMASK d_hash_mask
100 static unsigned int d_hash_mask __read_mostly;
101 static unsigned int d_hash_shift __read_mostly;
103 static struct hlist_bl_head *dentry_hashtable __read_mostly;
105 static inline struct hlist_bl_head *d_hash(struct dentry *parent,
106 unsigned long hash)
108 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
109 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
110 return dentry_hashtable + (hash & D_HASHMASK);
113 /* Statistics gathering. */
114 struct dentry_stat_t dentry_stat = {
115 .age_limit = 45,
118 static DEFINE_PER_CPU(unsigned int, nr_dentry);
120 #if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
121 static int get_nr_dentry(void)
123 int i;
124 int sum = 0;
125 for_each_possible_cpu(i)
126 sum += per_cpu(nr_dentry, i);
127 return sum < 0 ? 0 : sum;
130 int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
131 size_t *lenp, loff_t *ppos)
133 dentry_stat.nr_dentry = get_nr_dentry();
134 return proc_dointvec(table, write, buffer, lenp, ppos);
136 #endif
138 static void __d_free(struct rcu_head *head)
140 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
142 WARN_ON(!list_empty(&dentry->d_alias));
143 if (dname_external(dentry))
144 kfree(dentry->d_name.name);
145 kmem_cache_free(dentry_cache, dentry);
149 * no locks, please.
151 static void d_free(struct dentry *dentry)
153 BUG_ON(dentry->d_count);
154 this_cpu_dec(nr_dentry);
155 if (dentry->d_op && dentry->d_op->d_release)
156 dentry->d_op->d_release(dentry);
158 /* if dentry was never visible to RCU, immediate free is OK */
159 if (!(dentry->d_flags & DCACHE_RCUACCESS))
160 __d_free(&dentry->d_u.d_rcu);
161 else
162 call_rcu(&dentry->d_u.d_rcu, __d_free);
166 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
167 * @dentry: the target dentry
168 * After this call, in-progress rcu-walk path lookup will fail. This
169 * should be called after unhashing, and after changing d_inode (if
170 * the dentry has not already been unhashed).
172 static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
174 assert_spin_locked(&dentry->d_lock);
175 /* Go through a barrier */
176 write_seqcount_barrier(&dentry->d_seq);
180 * Release the dentry's inode, using the filesystem
181 * d_iput() operation if defined. Dentry has no refcount
182 * and is unhashed.
184 static void dentry_iput(struct dentry * dentry)
185 __releases(dentry->d_lock)
186 __releases(dentry->d_inode->i_lock)
188 struct inode *inode = dentry->d_inode;
189 if (inode) {
190 dentry->d_inode = NULL;
191 list_del_init(&dentry->d_alias);
192 spin_unlock(&dentry->d_lock);
193 spin_unlock(&inode->i_lock);
194 if (!inode->i_nlink)
195 fsnotify_inoderemove(inode);
196 if (dentry->d_op && dentry->d_op->d_iput)
197 dentry->d_op->d_iput(dentry, inode);
198 else
199 iput(inode);
200 } else {
201 spin_unlock(&dentry->d_lock);
206 * Release the dentry's inode, using the filesystem
207 * d_iput() operation if defined. dentry remains in-use.
209 static void dentry_unlink_inode(struct dentry * dentry)
210 __releases(dentry->d_lock)
211 __releases(dentry->d_inode->i_lock)
213 struct inode *inode = dentry->d_inode;
214 dentry->d_inode = NULL;
215 list_del_init(&dentry->d_alias);
216 dentry_rcuwalk_barrier(dentry);
217 spin_unlock(&dentry->d_lock);
218 spin_unlock(&inode->i_lock);
219 if (!inode->i_nlink)
220 fsnotify_inoderemove(inode);
221 if (dentry->d_op && dentry->d_op->d_iput)
222 dentry->d_op->d_iput(dentry, inode);
223 else
224 iput(inode);
228 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
230 static void dentry_lru_add(struct dentry *dentry)
232 if (list_empty(&dentry->d_lru)) {
233 spin_lock(&dcache_lru_lock);
234 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
235 dentry->d_sb->s_nr_dentry_unused++;
236 dentry_stat.nr_unused++;
237 spin_unlock(&dcache_lru_lock);
241 static void __dentry_lru_del(struct dentry *dentry)
243 list_del_init(&dentry->d_lru);
244 dentry->d_sb->s_nr_dentry_unused--;
245 dentry_stat.nr_unused--;
248 static void dentry_lru_del(struct dentry *dentry)
250 if (!list_empty(&dentry->d_lru)) {
251 spin_lock(&dcache_lru_lock);
252 __dentry_lru_del(dentry);
253 spin_unlock(&dcache_lru_lock);
257 static void dentry_lru_move_tail(struct dentry *dentry)
259 spin_lock(&dcache_lru_lock);
260 if (list_empty(&dentry->d_lru)) {
261 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
262 dentry->d_sb->s_nr_dentry_unused++;
263 dentry_stat.nr_unused++;
264 } else {
265 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
267 spin_unlock(&dcache_lru_lock);
271 * d_kill - kill dentry and return parent
272 * @dentry: dentry to kill
273 * @parent: parent dentry
275 * The dentry must already be unhashed and removed from the LRU.
277 * If this is the root of the dentry tree, return NULL.
279 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
280 * d_kill.
282 static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
283 __releases(dentry->d_lock)
284 __releases(parent->d_lock)
285 __releases(dentry->d_inode->i_lock)
287 list_del(&dentry->d_u.d_child);
289 * Inform try_to_ascend() that we are no longer attached to the
290 * dentry tree
292 dentry->d_flags |= DCACHE_DISCONNECTED;
293 if (parent)
294 spin_unlock(&parent->d_lock);
295 dentry_iput(dentry);
297 * dentry_iput drops the locks, at which point nobody (except
298 * transient RCU lookups) can reach this dentry.
300 d_free(dentry);
301 return parent;
305 * d_drop - drop a dentry
306 * @dentry: dentry to drop
308 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
309 * be found through a VFS lookup any more. Note that this is different from
310 * deleting the dentry - d_delete will try to mark the dentry negative if
311 * possible, giving a successful _negative_ lookup, while d_drop will
312 * just make the cache lookup fail.
314 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
315 * reason (NFS timeouts or autofs deletes).
317 * __d_drop requires dentry->d_lock.
319 void __d_drop(struct dentry *dentry)
321 if (!d_unhashed(dentry)) {
322 struct hlist_bl_head *b;
323 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
324 b = &dentry->d_sb->s_anon;
325 else
326 b = d_hash(dentry->d_parent, dentry->d_name.hash);
328 hlist_bl_lock(b);
329 __hlist_bl_del(&dentry->d_hash);
330 dentry->d_hash.pprev = NULL;
331 hlist_bl_unlock(b);
333 dentry_rcuwalk_barrier(dentry);
336 EXPORT_SYMBOL(__d_drop);
338 void d_drop(struct dentry *dentry)
340 spin_lock(&dentry->d_lock);
341 __d_drop(dentry);
342 spin_unlock(&dentry->d_lock);
344 EXPORT_SYMBOL(d_drop);
347 * Finish off a dentry we've decided to kill.
348 * dentry->d_lock must be held, returns with it unlocked.
349 * If ref is non-zero, then decrement the refcount too.
350 * Returns dentry requiring refcount drop, or NULL if we're done.
352 static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
353 __releases(dentry->d_lock)
355 struct inode *inode;
356 struct dentry *parent;
358 inode = dentry->d_inode;
359 if (inode && !spin_trylock(&inode->i_lock)) {
360 relock:
361 spin_unlock(&dentry->d_lock);
362 cpu_relax();
363 return dentry; /* try again with same dentry */
365 if (IS_ROOT(dentry))
366 parent = NULL;
367 else
368 parent = dentry->d_parent;
369 if (parent && !spin_trylock(&parent->d_lock)) {
370 if (inode)
371 spin_unlock(&inode->i_lock);
372 goto relock;
375 if (ref)
376 dentry->d_count--;
377 /* if dentry was on the d_lru list delete it from there */
378 dentry_lru_del(dentry);
379 /* if it was on the hash then remove it */
380 __d_drop(dentry);
381 return d_kill(dentry, parent);
385 * This is dput
387 * This is complicated by the fact that we do not want to put
388 * dentries that are no longer on any hash chain on the unused
389 * list: we'd much rather just get rid of them immediately.
391 * However, that implies that we have to traverse the dentry
392 * tree upwards to the parents which might _also_ now be
393 * scheduled for deletion (it may have been only waiting for
394 * its last child to go away).
396 * This tail recursion is done by hand as we don't want to depend
397 * on the compiler to always get this right (gcc generally doesn't).
398 * Real recursion would eat up our stack space.
402 * dput - release a dentry
403 * @dentry: dentry to release
405 * Release a dentry. This will drop the usage count and if appropriate
406 * call the dentry unlink method as well as removing it from the queues and
407 * releasing its resources. If the parent dentries were scheduled for release
408 * they too may now get deleted.
410 void dput(struct dentry *dentry)
412 if (!dentry)
413 return;
415 repeat:
416 if (dentry->d_count == 1)
417 might_sleep();
418 spin_lock(&dentry->d_lock);
419 BUG_ON(!dentry->d_count);
420 if (dentry->d_count > 1) {
421 dentry->d_count--;
422 spin_unlock(&dentry->d_lock);
423 return;
426 if (dentry->d_flags & DCACHE_OP_DELETE) {
427 if (dentry->d_op->d_delete(dentry))
428 goto kill_it;
431 /* Unreachable? Get rid of it */
432 if (d_unhashed(dentry))
433 goto kill_it;
435 /* Otherwise leave it cached and ensure it's on the LRU */
436 dentry->d_flags |= DCACHE_REFERENCED;
437 dentry_lru_add(dentry);
439 dentry->d_count--;
440 spin_unlock(&dentry->d_lock);
441 return;
443 kill_it:
444 dentry = dentry_kill(dentry, 1);
445 if (dentry)
446 goto repeat;
448 EXPORT_SYMBOL(dput);
451 * d_invalidate - invalidate a dentry
452 * @dentry: dentry to invalidate
454 * Try to invalidate the dentry if it turns out to be
455 * possible. If there are other dentries that can be
456 * reached through this one we can't delete it and we
457 * return -EBUSY. On success we return 0.
459 * no dcache lock.
462 int d_invalidate(struct dentry * dentry)
465 * If it's already been dropped, return OK.
467 spin_lock(&dentry->d_lock);
468 if (d_unhashed(dentry)) {
469 spin_unlock(&dentry->d_lock);
470 return 0;
473 * Check whether to do a partial shrink_dcache
474 * to get rid of unused child entries.
476 if (!list_empty(&dentry->d_subdirs)) {
477 spin_unlock(&dentry->d_lock);
478 shrink_dcache_parent(dentry);
479 spin_lock(&dentry->d_lock);
483 * Somebody else still using it?
485 * If it's a directory, we can't drop it
486 * for fear of somebody re-populating it
487 * with children (even though dropping it
488 * would make it unreachable from the root,
489 * we might still populate it if it was a
490 * working directory or similar).
492 if (dentry->d_count > 1) {
493 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
494 spin_unlock(&dentry->d_lock);
495 return -EBUSY;
499 __d_drop(dentry);
500 spin_unlock(&dentry->d_lock);
501 return 0;
503 EXPORT_SYMBOL(d_invalidate);
505 /* This must be called with d_lock held */
506 static inline void __dget_dlock(struct dentry *dentry)
508 dentry->d_count++;
511 static inline void __dget(struct dentry *dentry)
513 spin_lock(&dentry->d_lock);
514 __dget_dlock(dentry);
515 spin_unlock(&dentry->d_lock);
518 struct dentry *dget_parent(struct dentry *dentry)
520 struct dentry *ret;
522 repeat:
524 * Don't need rcu_dereference because we re-check it was correct under
525 * the lock.
527 rcu_read_lock();
528 ret = dentry->d_parent;
529 if (!ret) {
530 rcu_read_unlock();
531 goto out;
533 spin_lock(&ret->d_lock);
534 if (unlikely(ret != dentry->d_parent)) {
535 spin_unlock(&ret->d_lock);
536 rcu_read_unlock();
537 goto repeat;
539 rcu_read_unlock();
540 BUG_ON(!ret->d_count);
541 ret->d_count++;
542 spin_unlock(&ret->d_lock);
543 out:
544 return ret;
546 EXPORT_SYMBOL(dget_parent);
549 * d_find_alias - grab a hashed alias of inode
550 * @inode: inode in question
551 * @want_discon: flag, used by d_splice_alias, to request
552 * that only a DISCONNECTED alias be returned.
554 * If inode has a hashed alias, or is a directory and has any alias,
555 * acquire the reference to alias and return it. Otherwise return NULL.
556 * Notice that if inode is a directory there can be only one alias and
557 * it can be unhashed only if it has no children, or if it is the root
558 * of a filesystem.
560 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
561 * any other hashed alias over that one unless @want_discon is set,
562 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
564 static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
566 struct dentry *alias, *discon_alias;
568 again:
569 discon_alias = NULL;
570 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
571 spin_lock(&alias->d_lock);
572 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
573 if (IS_ROOT(alias) &&
574 (alias->d_flags & DCACHE_DISCONNECTED)) {
575 discon_alias = alias;
576 } else if (!want_discon) {
577 __dget_dlock(alias);
578 spin_unlock(&alias->d_lock);
579 return alias;
582 spin_unlock(&alias->d_lock);
584 if (discon_alias) {
585 alias = discon_alias;
586 spin_lock(&alias->d_lock);
587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
588 if (IS_ROOT(alias) &&
589 (alias->d_flags & DCACHE_DISCONNECTED)) {
590 __dget_dlock(alias);
591 spin_unlock(&alias->d_lock);
592 return alias;
595 spin_unlock(&alias->d_lock);
596 goto again;
598 return NULL;
601 struct dentry *d_find_alias(struct inode *inode)
603 struct dentry *de = NULL;
605 if (!list_empty(&inode->i_dentry)) {
606 spin_lock(&inode->i_lock);
607 de = __d_find_alias(inode, 0);
608 spin_unlock(&inode->i_lock);
610 return de;
612 EXPORT_SYMBOL(d_find_alias);
615 * Try to kill dentries associated with this inode.
616 * WARNING: you must own a reference to inode.
618 void d_prune_aliases(struct inode *inode)
620 struct dentry *dentry;
621 restart:
622 spin_lock(&inode->i_lock);
623 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
624 spin_lock(&dentry->d_lock);
625 if (!dentry->d_count) {
626 __dget_dlock(dentry);
627 __d_drop(dentry);
628 spin_unlock(&dentry->d_lock);
629 spin_unlock(&inode->i_lock);
630 dput(dentry);
631 goto restart;
633 spin_unlock(&dentry->d_lock);
635 spin_unlock(&inode->i_lock);
637 EXPORT_SYMBOL(d_prune_aliases);
640 * Try to throw away a dentry - free the inode, dput the parent.
641 * Requires dentry->d_lock is held, and dentry->d_count == 0.
642 * Releases dentry->d_lock.
644 * This may fail if locks cannot be acquired no problem, just try again.
646 static void try_prune_one_dentry(struct dentry *dentry)
647 __releases(dentry->d_lock)
649 struct dentry *parent;
651 parent = dentry_kill(dentry, 0);
653 * If dentry_kill returns NULL, we have nothing more to do.
654 * if it returns the same dentry, trylocks failed. In either
655 * case, just loop again.
657 * Otherwise, we need to prune ancestors too. This is necessary
658 * to prevent quadratic behavior of shrink_dcache_parent(), but
659 * is also expected to be beneficial in reducing dentry cache
660 * fragmentation.
662 if (!parent)
663 return;
664 if (parent == dentry)
665 return;
667 /* Prune ancestors. */
668 dentry = parent;
669 while (dentry) {
670 spin_lock(&dentry->d_lock);
671 if (dentry->d_count > 1) {
672 dentry->d_count--;
673 spin_unlock(&dentry->d_lock);
674 return;
676 dentry = dentry_kill(dentry, 1);
680 static void shrink_dentry_list(struct list_head *list)
682 struct dentry *dentry;
684 rcu_read_lock();
685 for (;;) {
686 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
687 if (&dentry->d_lru == list)
688 break; /* empty */
689 spin_lock(&dentry->d_lock);
690 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
691 spin_unlock(&dentry->d_lock);
692 continue;
696 * We found an inuse dentry which was not removed from
697 * the LRU because of laziness during lookup. Do not free
698 * it - just keep it off the LRU list.
700 if (dentry->d_count) {
701 dentry_lru_del(dentry);
702 spin_unlock(&dentry->d_lock);
703 continue;
706 rcu_read_unlock();
708 try_prune_one_dentry(dentry);
710 rcu_read_lock();
712 rcu_read_unlock();
716 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
717 * @sb: superblock to shrink dentry LRU.
718 * @count: number of entries to prune
719 * @flags: flags to control the dentry processing
721 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
723 static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
725 /* called from prune_dcache() and shrink_dcache_parent() */
726 struct dentry *dentry;
727 LIST_HEAD(referenced);
728 LIST_HEAD(tmp);
729 int cnt = *count;
731 relock:
732 spin_lock(&dcache_lru_lock);
733 while (!list_empty(&sb->s_dentry_lru)) {
734 dentry = list_entry(sb->s_dentry_lru.prev,
735 struct dentry, d_lru);
736 BUG_ON(dentry->d_sb != sb);
738 if (!spin_trylock(&dentry->d_lock)) {
739 spin_unlock(&dcache_lru_lock);
740 cpu_relax();
741 goto relock;
745 * If we are honouring the DCACHE_REFERENCED flag and the
746 * dentry has this flag set, don't free it. Clear the flag
747 * and put it back on the LRU.
749 if (flags & DCACHE_REFERENCED &&
750 dentry->d_flags & DCACHE_REFERENCED) {
751 dentry->d_flags &= ~DCACHE_REFERENCED;
752 list_move(&dentry->d_lru, &referenced);
753 spin_unlock(&dentry->d_lock);
754 } else {
755 list_move_tail(&dentry->d_lru, &tmp);
756 spin_unlock(&dentry->d_lock);
757 if (!--cnt)
758 break;
760 cond_resched_lock(&dcache_lru_lock);
762 if (!list_empty(&referenced))
763 list_splice(&referenced, &sb->s_dentry_lru);
764 spin_unlock(&dcache_lru_lock);
766 shrink_dentry_list(&tmp);
768 *count = cnt;
772 * prune_dcache - shrink the dcache
773 * @count: number of entries to try to free
775 * Shrink the dcache. This is done when we need more memory, or simply when we
776 * need to unmount something (at which point we need to unuse all dentries).
778 * This function may fail to free any resources if all the dentries are in use.
780 static void prune_dcache(int count)
782 struct super_block *sb, *p = NULL;
783 int w_count;
784 int unused = dentry_stat.nr_unused;
785 int prune_ratio;
786 int pruned;
788 if (unused == 0 || count == 0)
789 return;
790 if (count >= unused)
791 prune_ratio = 1;
792 else
793 prune_ratio = unused / count;
794 spin_lock(&sb_lock);
795 list_for_each_entry(sb, &super_blocks, s_list) {
796 if (list_empty(&sb->s_instances))
797 continue;
798 if (sb->s_nr_dentry_unused == 0)
799 continue;
800 sb->s_count++;
801 /* Now, we reclaim unused dentrins with fairness.
802 * We reclaim them same percentage from each superblock.
803 * We calculate number of dentries to scan on this sb
804 * as follows, but the implementation is arranged to avoid
805 * overflows:
806 * number of dentries to scan on this sb =
807 * count * (number of dentries on this sb /
808 * number of dentries in the machine)
810 spin_unlock(&sb_lock);
811 if (prune_ratio != 1)
812 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
813 else
814 w_count = sb->s_nr_dentry_unused;
815 pruned = w_count;
817 * We need to be sure this filesystem isn't being unmounted,
818 * otherwise we could race with generic_shutdown_super(), and
819 * end up holding a reference to an inode while the filesystem
820 * is unmounted. So we try to get s_umount, and make sure
821 * s_root isn't NULL.
823 if (down_read_trylock(&sb->s_umount)) {
824 if ((sb->s_root != NULL) &&
825 (!list_empty(&sb->s_dentry_lru))) {
826 __shrink_dcache_sb(sb, &w_count,
827 DCACHE_REFERENCED);
828 pruned -= w_count;
830 up_read(&sb->s_umount);
832 spin_lock(&sb_lock);
833 if (p)
834 __put_super(p);
835 count -= pruned;
836 p = sb;
837 /* more work left to do? */
838 if (count <= 0)
839 break;
841 if (p)
842 __put_super(p);
843 spin_unlock(&sb_lock);
847 * shrink_dcache_sb - shrink dcache for a superblock
848 * @sb: superblock
850 * Shrink the dcache for the specified super block. This is used to free
851 * the dcache before unmounting a file system.
853 void shrink_dcache_sb(struct super_block *sb)
855 LIST_HEAD(tmp);
857 spin_lock(&dcache_lru_lock);
858 while (!list_empty(&sb->s_dentry_lru)) {
859 list_splice_init(&sb->s_dentry_lru, &tmp);
860 spin_unlock(&dcache_lru_lock);
861 shrink_dentry_list(&tmp);
862 spin_lock(&dcache_lru_lock);
864 spin_unlock(&dcache_lru_lock);
866 EXPORT_SYMBOL(shrink_dcache_sb);
869 * destroy a single subtree of dentries for unmount
870 * - see the comments on shrink_dcache_for_umount() for a description of the
871 * locking
873 static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
875 struct dentry *parent;
876 unsigned detached = 0;
878 BUG_ON(!IS_ROOT(dentry));
880 /* detach this root from the system */
881 spin_lock(&dentry->d_lock);
882 dentry_lru_del(dentry);
883 __d_drop(dentry);
884 spin_unlock(&dentry->d_lock);
886 for (;;) {
887 /* descend to the first leaf in the current subtree */
888 while (!list_empty(&dentry->d_subdirs)) {
889 struct dentry *loop;
891 /* this is a branch with children - detach all of them
892 * from the system in one go */
893 spin_lock(&dentry->d_lock);
894 list_for_each_entry(loop, &dentry->d_subdirs,
895 d_u.d_child) {
896 spin_lock_nested(&loop->d_lock,
897 DENTRY_D_LOCK_NESTED);
898 dentry_lru_del(loop);
899 __d_drop(loop);
900 spin_unlock(&loop->d_lock);
902 spin_unlock(&dentry->d_lock);
904 /* move to the first child */
905 dentry = list_entry(dentry->d_subdirs.next,
906 struct dentry, d_u.d_child);
909 /* consume the dentries from this leaf up through its parents
910 * until we find one with children or run out altogether */
911 do {
912 struct inode *inode;
914 if (dentry->d_count != 0) {
915 printk(KERN_ERR
916 "BUG: Dentry %p{i=%lx,n=%s}"
917 " still in use (%d)"
918 " [unmount of %s %s]\n",
919 dentry,
920 dentry->d_inode ?
921 dentry->d_inode->i_ino : 0UL,
922 dentry->d_name.name,
923 dentry->d_count,
924 dentry->d_sb->s_type->name,
925 dentry->d_sb->s_id);
926 BUG();
929 if (IS_ROOT(dentry)) {
930 parent = NULL;
931 list_del(&dentry->d_u.d_child);
932 } else {
933 parent = dentry->d_parent;
934 spin_lock(&parent->d_lock);
935 parent->d_count--;
936 list_del(&dentry->d_u.d_child);
937 spin_unlock(&parent->d_lock);
940 detached++;
942 inode = dentry->d_inode;
943 if (inode) {
944 dentry->d_inode = NULL;
945 list_del_init(&dentry->d_alias);
946 if (dentry->d_op && dentry->d_op->d_iput)
947 dentry->d_op->d_iput(dentry, inode);
948 else
949 iput(inode);
952 d_free(dentry);
954 /* finished when we fall off the top of the tree,
955 * otherwise we ascend to the parent and move to the
956 * next sibling if there is one */
957 if (!parent)
958 return;
959 dentry = parent;
960 } while (list_empty(&dentry->d_subdirs));
962 dentry = list_entry(dentry->d_subdirs.next,
963 struct dentry, d_u.d_child);
968 * destroy the dentries attached to a superblock on unmounting
969 * - we don't need to use dentry->d_lock because:
970 * - the superblock is detached from all mountings and open files, so the
971 * dentry trees will not be rearranged by the VFS
972 * - s_umount is write-locked, so the memory pressure shrinker will ignore
973 * any dentries belonging to this superblock that it comes across
974 * - the filesystem itself is no longer permitted to rearrange the dentries
975 * in this superblock
977 void shrink_dcache_for_umount(struct super_block *sb)
979 struct dentry *dentry;
981 if (down_read_trylock(&sb->s_umount))
982 BUG();
984 dentry = sb->s_root;
985 sb->s_root = NULL;
986 spin_lock(&dentry->d_lock);
987 dentry->d_count--;
988 spin_unlock(&dentry->d_lock);
989 shrink_dcache_for_umount_subtree(dentry);
991 while (!hlist_bl_empty(&sb->s_anon)) {
992 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
993 shrink_dcache_for_umount_subtree(dentry);
998 * This tries to ascend one level of parenthood, but
999 * we can race with renaming, so we need to re-check
1000 * the parenthood after dropping the lock and check
1001 * that the sequence number still matches.
1003 static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1005 struct dentry *new = old->d_parent;
1007 rcu_read_lock();
1008 spin_unlock(&old->d_lock);
1009 spin_lock(&new->d_lock);
1012 * might go back up the wrong parent if we have had a rename
1013 * or deletion
1015 if (new != old->d_parent ||
1016 (old->d_flags & DCACHE_DISCONNECTED) ||
1017 (!locked && read_seqretry(&rename_lock, seq))) {
1018 spin_unlock(&new->d_lock);
1019 new = NULL;
1021 rcu_read_unlock();
1022 return new;
1027 * Search for at least 1 mount point in the dentry's subdirs.
1028 * We descend to the next level whenever the d_subdirs
1029 * list is non-empty and continue searching.
1033 * have_submounts - check for mounts over a dentry
1034 * @parent: dentry to check.
1036 * Return true if the parent or its subdirectories contain
1037 * a mount point
1039 int have_submounts(struct dentry *parent)
1041 struct dentry *this_parent;
1042 struct list_head *next;
1043 unsigned seq;
1044 int locked = 0;
1046 seq = read_seqbegin(&rename_lock);
1047 again:
1048 this_parent = parent;
1050 if (d_mountpoint(parent))
1051 goto positive;
1052 spin_lock(&this_parent->d_lock);
1053 repeat:
1054 next = this_parent->d_subdirs.next;
1055 resume:
1056 while (next != &this_parent->d_subdirs) {
1057 struct list_head *tmp = next;
1058 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1059 next = tmp->next;
1061 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1062 /* Have we found a mount point ? */
1063 if (d_mountpoint(dentry)) {
1064 spin_unlock(&dentry->d_lock);
1065 spin_unlock(&this_parent->d_lock);
1066 goto positive;
1068 if (!list_empty(&dentry->d_subdirs)) {
1069 spin_unlock(&this_parent->d_lock);
1070 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1071 this_parent = dentry;
1072 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1073 goto repeat;
1075 spin_unlock(&dentry->d_lock);
1078 * All done at this level ... ascend and resume the search.
1080 if (this_parent != parent) {
1081 struct dentry *child = this_parent;
1082 this_parent = try_to_ascend(this_parent, locked, seq);
1083 if (!this_parent)
1084 goto rename_retry;
1085 next = child->d_u.d_child.next;
1086 goto resume;
1088 spin_unlock(&this_parent->d_lock);
1089 if (!locked && read_seqretry(&rename_lock, seq))
1090 goto rename_retry;
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1093 return 0; /* No mount points found in tree */
1094 positive:
1095 if (!locked && read_seqretry(&rename_lock, seq))
1096 goto rename_retry;
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1099 return 1;
1101 rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1106 EXPORT_SYMBOL(have_submounts);
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1122 static int select_parent(struct dentry * parent)
1124 struct dentry *this_parent;
1125 struct list_head *next;
1126 unsigned seq;
1127 int found = 0;
1128 int locked = 0;
1130 seq = read_seqbegin(&rename_lock);
1131 again:
1132 this_parent = parent;
1133 spin_lock(&this_parent->d_lock);
1134 repeat:
1135 next = this_parent->d_subdirs.next;
1136 resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1140 next = tmp->next;
1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1148 if (!dentry->d_count) {
1149 dentry_lru_move_tail(dentry);
1150 found++;
1151 } else {
1152 dentry_lru_del(dentry);
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1162 goto out;
1166 * Descend a level if the d_subdirs list is non-empty.
1168 if (!list_empty(&dentry->d_subdirs)) {
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1171 this_parent = dentry;
1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1173 goto repeat;
1176 spin_unlock(&dentry->d_lock);
1179 * All done at this level ... ascend and resume the search.
1181 if (this_parent != parent) {
1182 struct dentry *child = this_parent;
1183 this_parent = try_to_ascend(this_parent, locked, seq);
1184 if (!this_parent)
1185 goto rename_retry;
1186 next = child->d_u.d_child.next;
1187 goto resume;
1189 out:
1190 spin_unlock(&this_parent->d_lock);
1191 if (!locked && read_seqretry(&rename_lock, seq))
1192 goto rename_retry;
1193 if (locked)
1194 write_sequnlock(&rename_lock);
1195 return found;
1197 rename_retry:
1198 if (found)
1199 return found;
1200 locked = 1;
1201 write_seqlock(&rename_lock);
1202 goto again;
1206 * shrink_dcache_parent - prune dcache
1207 * @parent: parent of entries to prune
1209 * Prune the dcache to remove unused children of the parent dentry.
1212 void shrink_dcache_parent(struct dentry * parent)
1214 struct super_block *sb = parent->d_sb;
1215 int found;
1217 while ((found = select_parent(parent)) != 0)
1218 __shrink_dcache_sb(sb, &found, 0);
1220 EXPORT_SYMBOL(shrink_dcache_parent);
1223 * Scan `sc->nr_slab_to_reclaim' dentries and return the number which remain.
1225 * We need to avoid reentering the filesystem if the caller is performing a
1226 * GFP_NOFS allocation attempt. One example deadlock is:
1228 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1229 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1230 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1232 * In this case we return -1 to tell the caller that we baled.
1234 static int shrink_dcache_memory(struct shrinker *shrink,
1235 struct shrink_control *sc)
1237 int nr = sc->nr_to_scan;
1238 gfp_t gfp_mask = sc->gfp_mask;
1240 if (nr) {
1241 if (!(gfp_mask & __GFP_FS))
1242 return -1;
1243 prune_dcache(nr);
1246 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1249 static struct shrinker dcache_shrinker = {
1250 .shrink = shrink_dcache_memory,
1251 .seeks = DEFAULT_SEEKS,
1255 * d_alloc - allocate a dcache entry
1256 * @parent: parent of entry to allocate
1257 * @name: qstr of the name
1259 * Allocates a dentry. It returns %NULL if there is insufficient memory
1260 * available. On a success the dentry is returned. The name passed in is
1261 * copied and the copy passed in may be reused after this call.
1264 struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1266 struct dentry *dentry;
1267 char *dname;
1269 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1270 if (!dentry)
1271 return NULL;
1273 if (name->len > DNAME_INLINE_LEN-1) {
1274 dname = kmalloc(name->len + 1, GFP_KERNEL);
1275 if (!dname) {
1276 kmem_cache_free(dentry_cache, dentry);
1277 return NULL;
1279 } else {
1280 dname = dentry->d_iname;
1282 dentry->d_name.name = dname;
1284 dentry->d_name.len = name->len;
1285 dentry->d_name.hash = name->hash;
1286 memcpy(dname, name->name, name->len);
1287 dname[name->len] = 0;
1289 dentry->d_count = 1;
1290 dentry->d_flags = 0;
1291 spin_lock_init(&dentry->d_lock);
1292 seqcount_init(&dentry->d_seq);
1293 dentry->d_inode = NULL;
1294 dentry->d_parent = NULL;
1295 dentry->d_sb = NULL;
1296 dentry->d_op = NULL;
1297 dentry->d_fsdata = NULL;
1298 INIT_HLIST_BL_NODE(&dentry->d_hash);
1299 INIT_LIST_HEAD(&dentry->d_lru);
1300 INIT_LIST_HEAD(&dentry->d_subdirs);
1301 INIT_LIST_HEAD(&dentry->d_alias);
1302 INIT_LIST_HEAD(&dentry->d_u.d_child);
1304 if (parent) {
1305 spin_lock(&parent->d_lock);
1307 * don't need child lock because it is not subject
1308 * to concurrency here
1310 __dget_dlock(parent);
1311 dentry->d_parent = parent;
1312 dentry->d_sb = parent->d_sb;
1313 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1314 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1315 spin_unlock(&parent->d_lock);
1318 this_cpu_inc(nr_dentry);
1320 return dentry;
1322 EXPORT_SYMBOL(d_alloc);
1324 struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1326 struct dentry *dentry = d_alloc(NULL, name);
1327 if (dentry) {
1328 dentry->d_sb = sb;
1329 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1330 dentry->d_parent = dentry;
1331 dentry->d_flags |= DCACHE_DISCONNECTED;
1333 return dentry;
1335 EXPORT_SYMBOL(d_alloc_pseudo);
1337 struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1339 struct qstr q;
1341 q.name = name;
1342 q.len = strlen(name);
1343 q.hash = full_name_hash(q.name, q.len);
1344 return d_alloc(parent, &q);
1346 EXPORT_SYMBOL(d_alloc_name);
1348 void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1350 WARN_ON_ONCE(dentry->d_op);
1351 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
1352 DCACHE_OP_COMPARE |
1353 DCACHE_OP_REVALIDATE |
1354 DCACHE_OP_DELETE ));
1355 dentry->d_op = op;
1356 if (!op)
1357 return;
1358 if (op->d_hash)
1359 dentry->d_flags |= DCACHE_OP_HASH;
1360 if (op->d_compare)
1361 dentry->d_flags |= DCACHE_OP_COMPARE;
1362 if (op->d_revalidate)
1363 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1364 if (op->d_delete)
1365 dentry->d_flags |= DCACHE_OP_DELETE;
1368 EXPORT_SYMBOL(d_set_d_op);
1370 static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1372 spin_lock(&dentry->d_lock);
1373 if (inode) {
1374 if (unlikely(IS_AUTOMOUNT(inode)))
1375 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
1376 list_add(&dentry->d_alias, &inode->i_dentry);
1378 dentry->d_inode = inode;
1379 dentry_rcuwalk_barrier(dentry);
1380 spin_unlock(&dentry->d_lock);
1381 fsnotify_d_instantiate(dentry, inode);
1385 * d_instantiate - fill in inode information for a dentry
1386 * @entry: dentry to complete
1387 * @inode: inode to attach to this dentry
1389 * Fill in inode information in the entry.
1391 * This turns negative dentries into productive full members
1392 * of society.
1394 * NOTE! This assumes that the inode count has been incremented
1395 * (or otherwise set) by the caller to indicate that it is now
1396 * in use by the dcache.
1399 void d_instantiate(struct dentry *entry, struct inode * inode)
1401 BUG_ON(!list_empty(&entry->d_alias));
1402 if (inode)
1403 spin_lock(&inode->i_lock);
1404 __d_instantiate(entry, inode);
1405 if (inode)
1406 spin_unlock(&inode->i_lock);
1407 security_d_instantiate(entry, inode);
1409 EXPORT_SYMBOL(d_instantiate);
1412 * d_instantiate_unique - instantiate a non-aliased dentry
1413 * @entry: dentry to instantiate
1414 * @inode: inode to attach to this dentry
1416 * Fill in inode information in the entry. On success, it returns NULL.
1417 * If an unhashed alias of "entry" already exists, then we return the
1418 * aliased dentry instead and drop one reference to inode.
1420 * Note that in order to avoid conflicts with rename() etc, the caller
1421 * had better be holding the parent directory semaphore.
1423 * This also assumes that the inode count has been incremented
1424 * (or otherwise set) by the caller to indicate that it is now
1425 * in use by the dcache.
1427 static struct dentry *__d_instantiate_unique(struct dentry *entry,
1428 struct inode *inode)
1430 struct dentry *alias;
1431 int len = entry->d_name.len;
1432 const char *name = entry->d_name.name;
1433 unsigned int hash = entry->d_name.hash;
1435 if (!inode) {
1436 __d_instantiate(entry, NULL);
1437 return NULL;
1440 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1441 struct qstr *qstr = &alias->d_name;
1444 * Don't need alias->d_lock here, because aliases with
1445 * d_parent == entry->d_parent are not subject to name or
1446 * parent changes, because the parent inode i_mutex is held.
1448 if (qstr->hash != hash)
1449 continue;
1450 if (alias->d_parent != entry->d_parent)
1451 continue;
1452 if (dentry_cmp(qstr->name, qstr->len, name, len))
1453 continue;
1454 __dget(alias);
1455 return alias;
1458 __d_instantiate(entry, inode);
1459 return NULL;
1462 struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1464 struct dentry *result;
1466 BUG_ON(!list_empty(&entry->d_alias));
1468 if (inode)
1469 spin_lock(&inode->i_lock);
1470 result = __d_instantiate_unique(entry, inode);
1471 if (inode)
1472 spin_unlock(&inode->i_lock);
1474 if (!result) {
1475 security_d_instantiate(entry, inode);
1476 return NULL;
1479 BUG_ON(!d_unhashed(result));
1480 iput(inode);
1481 return result;
1484 EXPORT_SYMBOL(d_instantiate_unique);
1487 * d_alloc_root - allocate root dentry
1488 * @root_inode: inode to allocate the root for
1490 * Allocate a root ("/") dentry for the inode given. The inode is
1491 * instantiated and returned. %NULL is returned if there is insufficient
1492 * memory or the inode passed is %NULL.
1495 struct dentry * d_alloc_root(struct inode * root_inode)
1497 struct dentry *res = NULL;
1499 if (root_inode) {
1500 static const struct qstr name = { .name = "/", .len = 1 };
1502 res = d_alloc(NULL, &name);
1503 if (res) {
1504 res->d_sb = root_inode->i_sb;
1505 d_set_d_op(res, res->d_sb->s_d_op);
1506 res->d_parent = res;
1507 d_instantiate(res, root_inode);
1510 return res;
1512 EXPORT_SYMBOL(d_alloc_root);
1514 static struct dentry * __d_find_any_alias(struct inode *inode)
1516 struct dentry *alias;
1518 if (list_empty(&inode->i_dentry))
1519 return NULL;
1520 alias = list_first_entry(&inode->i_dentry, struct dentry, d_alias);
1521 __dget(alias);
1522 return alias;
1525 static struct dentry * d_find_any_alias(struct inode *inode)
1527 struct dentry *de;
1529 spin_lock(&inode->i_lock);
1530 de = __d_find_any_alias(inode);
1531 spin_unlock(&inode->i_lock);
1532 return de;
1537 * d_obtain_alias - find or allocate a dentry for a given inode
1538 * @inode: inode to allocate the dentry for
1540 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1541 * similar open by handle operations. The returned dentry may be anonymous,
1542 * or may have a full name (if the inode was already in the cache).
1544 * When called on a directory inode, we must ensure that the inode only ever
1545 * has one dentry. If a dentry is found, that is returned instead of
1546 * allocating a new one.
1548 * On successful return, the reference to the inode has been transferred
1549 * to the dentry. In case of an error the reference on the inode is released.
1550 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1551 * be passed in and will be the error will be propagate to the return value,
1552 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1554 struct dentry *d_obtain_alias(struct inode *inode)
1556 static const struct qstr anonstring = { .name = "" };
1557 struct dentry *tmp;
1558 struct dentry *res;
1560 if (!inode)
1561 return ERR_PTR(-ESTALE);
1562 if (IS_ERR(inode))
1563 return ERR_CAST(inode);
1565 res = d_find_any_alias(inode);
1566 if (res)
1567 goto out_iput;
1569 tmp = d_alloc(NULL, &anonstring);
1570 if (!tmp) {
1571 res = ERR_PTR(-ENOMEM);
1572 goto out_iput;
1574 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1577 spin_lock(&inode->i_lock);
1578 res = __d_find_any_alias(inode);
1579 if (res) {
1580 spin_unlock(&inode->i_lock);
1581 dput(tmp);
1582 goto out_iput;
1585 /* attach a disconnected dentry */
1586 spin_lock(&tmp->d_lock);
1587 tmp->d_sb = inode->i_sb;
1588 d_set_d_op(tmp, tmp->d_sb->s_d_op);
1589 tmp->d_inode = inode;
1590 tmp->d_flags |= DCACHE_DISCONNECTED;
1591 list_add(&tmp->d_alias, &inode->i_dentry);
1592 hlist_bl_lock(&tmp->d_sb->s_anon);
1593 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1594 hlist_bl_unlock(&tmp->d_sb->s_anon);
1595 spin_unlock(&tmp->d_lock);
1596 spin_unlock(&inode->i_lock);
1597 security_d_instantiate(tmp, inode);
1599 return tmp;
1601 out_iput:
1602 if (res && !IS_ERR(res))
1603 security_d_instantiate(res, inode);
1604 iput(inode);
1605 return res;
1607 EXPORT_SYMBOL(d_obtain_alias);
1610 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1611 * @inode: the inode which may have a disconnected dentry
1612 * @dentry: a negative dentry which we want to point to the inode.
1614 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1615 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1616 * and return it, else simply d_add the inode to the dentry and return NULL.
1618 * This is needed in the lookup routine of any filesystem that is exportable
1619 * (via knfsd) so that we can build dcache paths to directories effectively.
1621 * If a dentry was found and moved, then it is returned. Otherwise NULL
1622 * is returned. This matches the expected return value of ->lookup.
1625 struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1627 struct dentry *new = NULL;
1629 if (inode && S_ISDIR(inode->i_mode)) {
1630 spin_lock(&inode->i_lock);
1631 new = __d_find_alias(inode, 1);
1632 if (new) {
1633 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
1634 spin_unlock(&inode->i_lock);
1635 security_d_instantiate(new, inode);
1636 d_move(new, dentry);
1637 iput(inode);
1638 } else {
1639 /* already taking inode->i_lock, so d_add() by hand */
1640 __d_instantiate(dentry, inode);
1641 spin_unlock(&inode->i_lock);
1642 security_d_instantiate(dentry, inode);
1643 d_rehash(dentry);
1645 } else
1646 d_add(dentry, inode);
1647 return new;
1649 EXPORT_SYMBOL(d_splice_alias);
1652 * d_add_ci - lookup or allocate new dentry with case-exact name
1653 * @inode: the inode case-insensitive lookup has found
1654 * @dentry: the negative dentry that was passed to the parent's lookup func
1655 * @name: the case-exact name to be associated with the returned dentry
1657 * This is to avoid filling the dcache with case-insensitive names to the
1658 * same inode, only the actual correct case is stored in the dcache for
1659 * case-insensitive filesystems.
1661 * For a case-insensitive lookup match and if the the case-exact dentry
1662 * already exists in in the dcache, use it and return it.
1664 * If no entry exists with the exact case name, allocate new dentry with
1665 * the exact case, and return the spliced entry.
1667 struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
1668 struct qstr *name)
1670 int error;
1671 struct dentry *found;
1672 struct dentry *new;
1675 * First check if a dentry matching the name already exists,
1676 * if not go ahead and create it now.
1678 found = d_hash_and_lookup(dentry->d_parent, name);
1679 if (!found) {
1680 new = d_alloc(dentry->d_parent, name);
1681 if (!new) {
1682 error = -ENOMEM;
1683 goto err_out;
1686 found = d_splice_alias(inode, new);
1687 if (found) {
1688 dput(new);
1689 return found;
1691 return new;
1695 * If a matching dentry exists, and it's not negative use it.
1697 * Decrement the reference count to balance the iget() done
1698 * earlier on.
1700 if (found->d_inode) {
1701 if (unlikely(found->d_inode != inode)) {
1702 /* This can't happen because bad inodes are unhashed. */
1703 BUG_ON(!is_bad_inode(inode));
1704 BUG_ON(!is_bad_inode(found->d_inode));
1706 iput(inode);
1707 return found;
1711 * Negative dentry: instantiate it unless the inode is a directory and
1712 * already has a dentry.
1714 spin_lock(&inode->i_lock);
1715 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
1716 __d_instantiate(found, inode);
1717 spin_unlock(&inode->i_lock);
1718 security_d_instantiate(found, inode);
1719 return found;
1723 * In case a directory already has a (disconnected) entry grab a
1724 * reference to it, move it in place and use it.
1726 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
1727 __dget(new);
1728 spin_unlock(&inode->i_lock);
1729 security_d_instantiate(found, inode);
1730 d_move(new, found);
1731 iput(inode);
1732 dput(found);
1733 return new;
1735 err_out:
1736 iput(inode);
1737 return ERR_PTR(error);
1739 EXPORT_SYMBOL(d_add_ci);
1742 * __d_lookup_rcu - search for a dentry (racy, store-free)
1743 * @parent: parent dentry
1744 * @name: qstr of name we wish to find
1745 * @seq: returns d_seq value at the point where the dentry was found
1746 * @inode: returns dentry->d_inode when the inode was found valid.
1747 * Returns: dentry, or NULL
1749 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1750 * resolution (store-free path walking) design described in
1751 * Documentation/filesystems/path-lookup.txt.
1753 * This is not to be used outside core vfs.
1755 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1756 * held, and rcu_read_lock held. The returned dentry must not be stored into
1757 * without taking d_lock and checking d_seq sequence count against @seq
1758 * returned here.
1760 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1761 * function.
1763 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1764 * the returned dentry, so long as its parent's seqlock is checked after the
1765 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1766 * is formed, giving integrity down the path walk.
1768 struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1769 unsigned *seq, struct inode **inode)
1771 unsigned int len = name->len;
1772 unsigned int hash = name->hash;
1773 const unsigned char *str = name->name;
1774 struct hlist_bl_head *b = d_hash(parent, hash);
1775 struct hlist_bl_node *node;
1776 struct dentry *dentry;
1779 * Note: There is significant duplication with __d_lookup_rcu which is
1780 * required to prevent single threaded performance regressions
1781 * especially on architectures where smp_rmb (in seqcounts) are costly.
1782 * Keep the two functions in sync.
1786 * The hash list is protected using RCU.
1788 * Carefully use d_seq when comparing a candidate dentry, to avoid
1789 * races with d_move().
1791 * It is possible that concurrent renames can mess up our list
1792 * walk here and result in missing our dentry, resulting in the
1793 * false-negative result. d_lookup() protects against concurrent
1794 * renames using rename_lock seqlock.
1796 * See Documentation/filesystems/path-lookup.txt for more details.
1798 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1799 struct inode *i;
1800 const char *tname;
1801 int tlen;
1803 if (dentry->d_name.hash != hash)
1804 continue;
1806 seqretry:
1807 *seq = read_seqcount_begin(&dentry->d_seq);
1808 if (dentry->d_parent != parent)
1809 continue;
1810 if (d_unhashed(dentry))
1811 continue;
1812 tlen = dentry->d_name.len;
1813 tname = dentry->d_name.name;
1814 i = dentry->d_inode;
1815 prefetch(tname);
1816 if (i)
1817 prefetch(i);
1819 * This seqcount check is required to ensure name and
1820 * len are loaded atomically, so as not to walk off the
1821 * edge of memory when walking. If we could load this
1822 * atomically some other way, we could drop this check.
1824 if (read_seqcount_retry(&dentry->d_seq, *seq))
1825 goto seqretry;
1826 if (parent->d_flags & DCACHE_OP_COMPARE) {
1827 if (parent->d_op->d_compare(parent, *inode,
1828 dentry, i,
1829 tlen, tname, name))
1830 continue;
1831 } else {
1832 if (dentry_cmp(tname, tlen, str, len))
1833 continue;
1836 * No extra seqcount check is required after the name
1837 * compare. The caller must perform a seqcount check in
1838 * order to do anything useful with the returned dentry
1839 * anyway.
1841 *inode = i;
1842 return dentry;
1844 return NULL;
1848 * d_lookup - search for a dentry
1849 * @parent: parent dentry
1850 * @name: qstr of name we wish to find
1851 * Returns: dentry, or NULL
1853 * d_lookup searches the children of the parent dentry for the name in
1854 * question. If the dentry is found its reference count is incremented and the
1855 * dentry is returned. The caller must use dput to free the entry when it has
1856 * finished using it. %NULL is returned if the dentry does not exist.
1858 struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1860 struct dentry *dentry;
1861 unsigned seq;
1863 do {
1864 seq = read_seqbegin(&rename_lock);
1865 dentry = __d_lookup(parent, name);
1866 if (dentry)
1867 break;
1868 } while (read_seqretry(&rename_lock, seq));
1869 return dentry;
1871 EXPORT_SYMBOL(d_lookup);
1874 * __d_lookup - search for a dentry (racy)
1875 * @parent: parent dentry
1876 * @name: qstr of name we wish to find
1877 * Returns: dentry, or NULL
1879 * __d_lookup is like d_lookup, however it may (rarely) return a
1880 * false-negative result due to unrelated rename activity.
1882 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1883 * however it must be used carefully, eg. with a following d_lookup in
1884 * the case of failure.
1886 * __d_lookup callers must be commented.
1888 struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1890 unsigned int len = name->len;
1891 unsigned int hash = name->hash;
1892 const unsigned char *str = name->name;
1893 struct hlist_bl_head *b = d_hash(parent, hash);
1894 struct hlist_bl_node *node;
1895 struct dentry *found = NULL;
1896 struct dentry *dentry;
1899 * Note: There is significant duplication with __d_lookup_rcu which is
1900 * required to prevent single threaded performance regressions
1901 * especially on architectures where smp_rmb (in seqcounts) are costly.
1902 * Keep the two functions in sync.
1906 * The hash list is protected using RCU.
1908 * Take d_lock when comparing a candidate dentry, to avoid races
1909 * with d_move().
1911 * It is possible that concurrent renames can mess up our list
1912 * walk here and result in missing our dentry, resulting in the
1913 * false-negative result. d_lookup() protects against concurrent
1914 * renames using rename_lock seqlock.
1916 * See Documentation/filesystems/path-lookup.txt for more details.
1918 rcu_read_lock();
1920 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1921 const char *tname;
1922 int tlen;
1924 if (dentry->d_name.hash != hash)
1925 continue;
1927 spin_lock(&dentry->d_lock);
1928 if (dentry->d_parent != parent)
1929 goto next;
1930 if (d_unhashed(dentry))
1931 goto next;
1934 * It is safe to compare names since d_move() cannot
1935 * change the qstr (protected by d_lock).
1937 tlen = dentry->d_name.len;
1938 tname = dentry->d_name.name;
1939 if (parent->d_flags & DCACHE_OP_COMPARE) {
1940 if (parent->d_op->d_compare(parent, parent->d_inode,
1941 dentry, dentry->d_inode,
1942 tlen, tname, name))
1943 goto next;
1944 } else {
1945 if (dentry_cmp(tname, tlen, str, len))
1946 goto next;
1949 dentry->d_count++;
1950 found = dentry;
1951 spin_unlock(&dentry->d_lock);
1952 break;
1953 next:
1954 spin_unlock(&dentry->d_lock);
1956 rcu_read_unlock();
1958 return found;
1962 * d_hash_and_lookup - hash the qstr then search for a dentry
1963 * @dir: Directory to search in
1964 * @name: qstr of name we wish to find
1966 * On hash failure or on lookup failure NULL is returned.
1968 struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1970 struct dentry *dentry = NULL;
1973 * Check for a fs-specific hash function. Note that we must
1974 * calculate the standard hash first, as the d_op->d_hash()
1975 * routine may choose to leave the hash value unchanged.
1977 name->hash = full_name_hash(name->name, name->len);
1978 if (dir->d_flags & DCACHE_OP_HASH) {
1979 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
1980 goto out;
1982 dentry = d_lookup(dir, name);
1983 out:
1984 return dentry;
1988 * d_validate - verify dentry provided from insecure source (deprecated)
1989 * @dentry: The dentry alleged to be valid child of @dparent
1990 * @dparent: The parent dentry (known to be valid)
1992 * An insecure source has sent us a dentry, here we verify it and dget() it.
1993 * This is used by ncpfs in its readdir implementation.
1994 * Zero is returned in the dentry is invalid.
1996 * This function is slow for big directories, and deprecated, do not use it.
1998 int d_validate(struct dentry *dentry, struct dentry *dparent)
2000 struct dentry *child;
2002 spin_lock(&dparent->d_lock);
2003 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2004 if (dentry == child) {
2005 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2006 __dget_dlock(dentry);
2007 spin_unlock(&dentry->d_lock);
2008 spin_unlock(&dparent->d_lock);
2009 return 1;
2012 spin_unlock(&dparent->d_lock);
2014 return 0;
2016 EXPORT_SYMBOL(d_validate);
2019 * When a file is deleted, we have two options:
2020 * - turn this dentry into a negative dentry
2021 * - unhash this dentry and free it.
2023 * Usually, we want to just turn this into
2024 * a negative dentry, but if anybody else is
2025 * currently using the dentry or the inode
2026 * we can't do that and we fall back on removing
2027 * it from the hash queues and waiting for
2028 * it to be deleted later when it has no users
2032 * d_delete - delete a dentry
2033 * @dentry: The dentry to delete
2035 * Turn the dentry into a negative dentry if possible, otherwise
2036 * remove it from the hash queues so it can be deleted later
2039 void d_delete(struct dentry * dentry)
2041 struct inode *inode;
2042 int isdir = 0;
2044 * Are we the only user?
2046 again:
2047 spin_lock(&dentry->d_lock);
2048 inode = dentry->d_inode;
2049 isdir = S_ISDIR(inode->i_mode);
2050 if (dentry->d_count == 1) {
2051 if (inode && !spin_trylock(&inode->i_lock)) {
2052 spin_unlock(&dentry->d_lock);
2053 cpu_relax();
2054 goto again;
2056 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
2057 dentry_unlink_inode(dentry);
2058 fsnotify_nameremove(dentry, isdir);
2059 return;
2062 if (!d_unhashed(dentry))
2063 __d_drop(dentry);
2065 spin_unlock(&dentry->d_lock);
2067 fsnotify_nameremove(dentry, isdir);
2069 EXPORT_SYMBOL(d_delete);
2071 static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
2073 BUG_ON(!d_unhashed(entry));
2074 hlist_bl_lock(b);
2075 entry->d_flags |= DCACHE_RCUACCESS;
2076 hlist_bl_add_head_rcu(&entry->d_hash, b);
2077 hlist_bl_unlock(b);
2080 static void _d_rehash(struct dentry * entry)
2082 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2086 * d_rehash - add an entry back to the hash
2087 * @entry: dentry to add to the hash
2089 * Adds a dentry to the hash according to its name.
2092 void d_rehash(struct dentry * entry)
2094 spin_lock(&entry->d_lock);
2095 _d_rehash(entry);
2096 spin_unlock(&entry->d_lock);
2098 EXPORT_SYMBOL(d_rehash);
2101 * dentry_update_name_case - update case insensitive dentry with a new name
2102 * @dentry: dentry to be updated
2103 * @name: new name
2105 * Update a case insensitive dentry with new case of name.
2107 * dentry must have been returned by d_lookup with name @name. Old and new
2108 * name lengths must match (ie. no d_compare which allows mismatched name
2109 * lengths).
2111 * Parent inode i_mutex must be held over d_lookup and into this call (to
2112 * keep renames and concurrent inserts, and readdir(2) away).
2114 void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2116 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
2117 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2119 spin_lock(&dentry->d_lock);
2120 write_seqcount_begin(&dentry->d_seq);
2121 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
2122 write_seqcount_end(&dentry->d_seq);
2123 spin_unlock(&dentry->d_lock);
2125 EXPORT_SYMBOL(dentry_update_name_case);
2127 static void switch_names(struct dentry *dentry, struct dentry *target)
2129 if (dname_external(target)) {
2130 if (dname_external(dentry)) {
2132 * Both external: swap the pointers
2134 swap(target->d_name.name, dentry->d_name.name);
2135 } else {
2137 * dentry:internal, target:external. Steal target's
2138 * storage and make target internal.
2140 memcpy(target->d_iname, dentry->d_name.name,
2141 dentry->d_name.len + 1);
2142 dentry->d_name.name = target->d_name.name;
2143 target->d_name.name = target->d_iname;
2145 } else {
2146 if (dname_external(dentry)) {
2148 * dentry:external, target:internal. Give dentry's
2149 * storage to target and make dentry internal
2151 memcpy(dentry->d_iname, target->d_name.name,
2152 target->d_name.len + 1);
2153 target->d_name.name = dentry->d_name.name;
2154 dentry->d_name.name = dentry->d_iname;
2155 } else {
2157 * Both are internal. Just copy target to dentry
2159 memcpy(dentry->d_iname, target->d_name.name,
2160 target->d_name.len + 1);
2161 dentry->d_name.len = target->d_name.len;
2162 return;
2165 swap(dentry->d_name.len, target->d_name.len);
2168 static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2171 * XXXX: do we really need to take target->d_lock?
2173 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2174 spin_lock(&target->d_parent->d_lock);
2175 else {
2176 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2177 spin_lock(&dentry->d_parent->d_lock);
2178 spin_lock_nested(&target->d_parent->d_lock,
2179 DENTRY_D_LOCK_NESTED);
2180 } else {
2181 spin_lock(&target->d_parent->d_lock);
2182 spin_lock_nested(&dentry->d_parent->d_lock,
2183 DENTRY_D_LOCK_NESTED);
2186 if (target < dentry) {
2187 spin_lock_nested(&target->d_lock, 2);
2188 spin_lock_nested(&dentry->d_lock, 3);
2189 } else {
2190 spin_lock_nested(&dentry->d_lock, 2);
2191 spin_lock_nested(&target->d_lock, 3);
2195 static void dentry_unlock_parents_for_move(struct dentry *dentry,
2196 struct dentry *target)
2198 if (target->d_parent != dentry->d_parent)
2199 spin_unlock(&dentry->d_parent->d_lock);
2200 if (target->d_parent != target)
2201 spin_unlock(&target->d_parent->d_lock);
2205 * When switching names, the actual string doesn't strictly have to
2206 * be preserved in the target - because we're dropping the target
2207 * anyway. As such, we can just do a simple memcpy() to copy over
2208 * the new name before we switch.
2210 * Note that we have to be a lot more careful about getting the hash
2211 * switched - we have to switch the hash value properly even if it
2212 * then no longer matches the actual (corrupted) string of the target.
2213 * The hash value has to match the hash queue that the dentry is on..
2216 * d_move - move a dentry
2217 * @dentry: entry to move
2218 * @target: new dentry
2220 * Update the dcache to reflect the move of a file name. Negative
2221 * dcache entries should not be moved in this way.
2223 void d_move(struct dentry * dentry, struct dentry * target)
2225 if (!dentry->d_inode)
2226 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2228 BUG_ON(d_ancestor(dentry, target));
2229 BUG_ON(d_ancestor(target, dentry));
2231 write_seqlock(&rename_lock);
2233 dentry_lock_for_move(dentry, target);
2235 write_seqcount_begin(&dentry->d_seq);
2236 write_seqcount_begin(&target->d_seq);
2238 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2241 * Move the dentry to the target hash queue. Don't bother checking
2242 * for the same hash queue because of how unlikely it is.
2244 __d_drop(dentry);
2245 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
2247 /* Unhash the target: dput() will then get rid of it */
2248 __d_drop(target);
2250 list_del(&dentry->d_u.d_child);
2251 list_del(&target->d_u.d_child);
2253 /* Switch the names.. */
2254 switch_names(dentry, target);
2255 swap(dentry->d_name.hash, target->d_name.hash);
2257 /* ... and switch the parents */
2258 if (IS_ROOT(dentry)) {
2259 dentry->d_parent = target->d_parent;
2260 target->d_parent = target;
2261 INIT_LIST_HEAD(&target->d_u.d_child);
2262 } else {
2263 swap(dentry->d_parent, target->d_parent);
2265 /* And add them back to the (new) parent lists */
2266 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
2269 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2271 write_seqcount_end(&target->d_seq);
2272 write_seqcount_end(&dentry->d_seq);
2274 dentry_unlock_parents_for_move(dentry, target);
2275 spin_unlock(&target->d_lock);
2276 fsnotify_d_move(dentry);
2277 spin_unlock(&dentry->d_lock);
2278 write_sequnlock(&rename_lock);
2280 EXPORT_SYMBOL(d_move);
2283 * d_ancestor - search for an ancestor
2284 * @p1: ancestor dentry
2285 * @p2: child dentry
2287 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2288 * an ancestor of p2, else NULL.
2290 struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
2292 struct dentry *p;
2294 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
2295 if (p->d_parent == p1)
2296 return p;
2298 return NULL;
2302 * This helper attempts to cope with remotely renamed directories
2304 * It assumes that the caller is already holding
2305 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
2307 * Note: If ever the locking in lock_rename() changes, then please
2308 * remember to update this too...
2310 static struct dentry *__d_unalias(struct inode *inode,
2311 struct dentry *dentry, struct dentry *alias)
2313 struct mutex *m1 = NULL, *m2 = NULL;
2314 struct dentry *ret;
2316 /* If alias and dentry share a parent, then no extra locks required */
2317 if (alias->d_parent == dentry->d_parent)
2318 goto out_unalias;
2320 /* Check for loops */
2321 ret = ERR_PTR(-ELOOP);
2322 if (d_ancestor(alias, dentry))
2323 goto out_err;
2325 /* See lock_rename() */
2326 ret = ERR_PTR(-EBUSY);
2327 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2328 goto out_err;
2329 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2330 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2331 goto out_err;
2332 m2 = &alias->d_parent->d_inode->i_mutex;
2333 out_unalias:
2334 d_move(alias, dentry);
2335 ret = alias;
2336 out_err:
2337 spin_unlock(&inode->i_lock);
2338 if (m2)
2339 mutex_unlock(m2);
2340 if (m1)
2341 mutex_unlock(m1);
2342 return ret;
2346 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2347 * named dentry in place of the dentry to be replaced.
2348 * returns with anon->d_lock held!
2350 static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2352 struct dentry *dparent, *aparent;
2354 dentry_lock_for_move(anon, dentry);
2356 write_seqcount_begin(&dentry->d_seq);
2357 write_seqcount_begin(&anon->d_seq);
2359 dparent = dentry->d_parent;
2360 aparent = anon->d_parent;
2362 switch_names(dentry, anon);
2363 swap(dentry->d_name.hash, anon->d_name.hash);
2365 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2366 list_del(&dentry->d_u.d_child);
2367 if (!IS_ROOT(dentry))
2368 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2369 else
2370 INIT_LIST_HEAD(&dentry->d_u.d_child);
2372 anon->d_parent = (dparent == dentry) ? anon : dparent;
2373 list_del(&anon->d_u.d_child);
2374 if (!IS_ROOT(anon))
2375 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2376 else
2377 INIT_LIST_HEAD(&anon->d_u.d_child);
2379 write_seqcount_end(&dentry->d_seq);
2380 write_seqcount_end(&anon->d_seq);
2382 dentry_unlock_parents_for_move(anon, dentry);
2383 spin_unlock(&dentry->d_lock);
2385 /* anon->d_lock still locked, returns locked */
2386 anon->d_flags &= ~DCACHE_DISCONNECTED;
2390 * d_materialise_unique - introduce an inode into the tree
2391 * @dentry: candidate dentry
2392 * @inode: inode to bind to the dentry, to which aliases may be attached
2394 * Introduces an dentry into the tree, substituting an extant disconnected
2395 * root directory alias in its place if there is one
2397 struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2399 struct dentry *actual;
2401 BUG_ON(!d_unhashed(dentry));
2403 if (!inode) {
2404 actual = dentry;
2405 __d_instantiate(dentry, NULL);
2406 d_rehash(actual);
2407 goto out_nolock;
2410 spin_lock(&inode->i_lock);
2412 if (S_ISDIR(inode->i_mode)) {
2413 struct dentry *alias;
2415 /* Does an aliased dentry already exist? */
2416 alias = __d_find_alias(inode, 0);
2417 if (alias) {
2418 actual = alias;
2419 /* Is this an anonymous mountpoint that we could splice
2420 * into our tree? */
2421 if (IS_ROOT(alias)) {
2422 __d_materialise_dentry(dentry, alias);
2423 __d_drop(alias);
2424 goto found;
2426 /* Nope, but we must(!) avoid directory aliasing */
2427 actual = __d_unalias(inode, dentry, alias);
2428 if (IS_ERR(actual))
2429 dput(alias);
2430 goto out_nolock;
2434 /* Add a unique reference */
2435 actual = __d_instantiate_unique(dentry, inode);
2436 if (!actual)
2437 actual = dentry;
2438 else
2439 BUG_ON(!d_unhashed(actual));
2441 spin_lock(&actual->d_lock);
2442 found:
2443 _d_rehash(actual);
2444 spin_unlock(&actual->d_lock);
2445 spin_unlock(&inode->i_lock);
2446 out_nolock:
2447 if (actual == dentry) {
2448 security_d_instantiate(dentry, inode);
2449 return NULL;
2452 iput(inode);
2453 return actual;
2455 EXPORT_SYMBOL_GPL(d_materialise_unique);
2457 static int prepend(char **buffer, int *buflen, const char *str, int namelen)
2459 *buflen -= namelen;
2460 if (*buflen < 0)
2461 return -ENAMETOOLONG;
2462 *buffer -= namelen;
2463 memcpy(*buffer, str, namelen);
2464 return 0;
2467 static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2469 return prepend(buffer, buflen, name->name, name->len);
2473 * prepend_path - Prepend path string to a buffer
2474 * @path: the dentry/vfsmount to report
2475 * @root: root vfsmnt/dentry (may be modified by this function)
2476 * @buffer: pointer to the end of the buffer
2477 * @buflen: pointer to buffer length
2479 * Caller holds the rename_lock.
2481 * If path is not reachable from the supplied root, then the value of
2482 * root is changed (without modifying refcounts).
2484 static int prepend_path(const struct path *path, struct path *root,
2485 char **buffer, int *buflen)
2487 struct dentry *dentry = path->dentry;
2488 struct vfsmount *vfsmnt = path->mnt;
2489 bool slash = false;
2490 int error = 0;
2492 br_read_lock(vfsmount_lock);
2493 while (dentry != root->dentry || vfsmnt != root->mnt) {
2494 struct dentry * parent;
2496 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
2497 /* Global root? */
2498 if (vfsmnt->mnt_parent == vfsmnt) {
2499 goto global_root;
2501 dentry = vfsmnt->mnt_mountpoint;
2502 vfsmnt = vfsmnt->mnt_parent;
2503 continue;
2505 parent = dentry->d_parent;
2506 prefetch(parent);
2507 spin_lock(&dentry->d_lock);
2508 error = prepend_name(buffer, buflen, &dentry->d_name);
2509 spin_unlock(&dentry->d_lock);
2510 if (!error)
2511 error = prepend(buffer, buflen, "/", 1);
2512 if (error)
2513 break;
2515 slash = true;
2516 dentry = parent;
2519 out:
2520 if (!error && !slash)
2521 error = prepend(buffer, buflen, "/", 1);
2523 br_read_unlock(vfsmount_lock);
2524 return error;
2526 global_root:
2528 * Filesystems needing to implement special "root names"
2529 * should do so with ->d_dname()
2531 if (IS_ROOT(dentry) &&
2532 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2533 WARN(1, "Root dentry has weird name <%.*s>\n",
2534 (int) dentry->d_name.len, dentry->d_name.name);
2536 root->mnt = vfsmnt;
2537 root->dentry = dentry;
2538 goto out;
2542 * __d_path - return the path of a dentry
2543 * @path: the dentry/vfsmount to report
2544 * @root: root vfsmnt/dentry (may be modified by this function)
2545 * @buf: buffer to return value in
2546 * @buflen: buffer length
2548 * Convert a dentry into an ASCII path name.
2550 * Returns a pointer into the buffer or an error code if the
2551 * path was too long.
2553 * "buflen" should be positive.
2555 * If path is not reachable from the supplied root, then the value of
2556 * root is changed (without modifying refcounts).
2558 char *__d_path(const struct path *path, struct path *root,
2559 char *buf, int buflen)
2561 char *res = buf + buflen;
2562 int error;
2564 prepend(&res, &buflen, "\0", 1);
2565 write_seqlock(&rename_lock);
2566 error = prepend_path(path, root, &res, &buflen);
2567 write_sequnlock(&rename_lock);
2569 if (error)
2570 return ERR_PTR(error);
2571 return res;
2575 * same as __d_path but appends "(deleted)" for unlinked files.
2577 static int path_with_deleted(const struct path *path, struct path *root,
2578 char **buf, int *buflen)
2580 prepend(buf, buflen, "\0", 1);
2581 if (d_unlinked(path->dentry)) {
2582 int error = prepend(buf, buflen, " (deleted)", 10);
2583 if (error)
2584 return error;
2587 return prepend_path(path, root, buf, buflen);
2590 static int prepend_unreachable(char **buffer, int *buflen)
2592 return prepend(buffer, buflen, "(unreachable)", 13);
2596 * d_path - return the path of a dentry
2597 * @path: path to report
2598 * @buf: buffer to return value in
2599 * @buflen: buffer length
2601 * Convert a dentry into an ASCII path name. If the entry has been deleted
2602 * the string " (deleted)" is appended. Note that this is ambiguous.
2604 * Returns a pointer into the buffer or an error code if the path was
2605 * too long. Note: Callers should use the returned pointer, not the passed
2606 * in buffer, to use the name! The implementation often starts at an offset
2607 * into the buffer, and may leave 0 bytes at the start.
2609 * "buflen" should be positive.
2611 char *d_path(const struct path *path, char *buf, int buflen)
2613 char *res = buf + buflen;
2614 struct path root;
2615 struct path tmp;
2616 int error;
2619 * We have various synthetic filesystems that never get mounted. On
2620 * these filesystems dentries are never used for lookup purposes, and
2621 * thus don't need to be hashed. They also don't need a name until a
2622 * user wants to identify the object in /proc/pid/fd/. The little hack
2623 * below allows us to generate a name for these objects on demand:
2625 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2626 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2628 get_fs_root(current->fs, &root);
2629 write_seqlock(&rename_lock);
2630 tmp = root;
2631 error = path_with_deleted(path, &tmp, &res, &buflen);
2632 if (error)
2633 res = ERR_PTR(error);
2634 write_sequnlock(&rename_lock);
2635 path_put(&root);
2636 return res;
2638 EXPORT_SYMBOL(d_path);
2641 * d_path_with_unreachable - return the path of a dentry
2642 * @path: path to report
2643 * @buf: buffer to return value in
2644 * @buflen: buffer length
2646 * The difference from d_path() is that this prepends "(unreachable)"
2647 * to paths which are unreachable from the current process' root.
2649 char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2651 char *res = buf + buflen;
2652 struct path root;
2653 struct path tmp;
2654 int error;
2656 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2657 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2659 get_fs_root(current->fs, &root);
2660 write_seqlock(&rename_lock);
2661 tmp = root;
2662 error = path_with_deleted(path, &tmp, &res, &buflen);
2663 if (!error && !path_equal(&tmp, &root))
2664 error = prepend_unreachable(&res, &buflen);
2665 write_sequnlock(&rename_lock);
2666 path_put(&root);
2667 if (error)
2668 res = ERR_PTR(error);
2670 return res;
2674 * Helper function for dentry_operations.d_dname() members
2676 char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2677 const char *fmt, ...)
2679 va_list args;
2680 char temp[64];
2681 int sz;
2683 va_start(args, fmt);
2684 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2685 va_end(args);
2687 if (sz > sizeof(temp) || sz > buflen)
2688 return ERR_PTR(-ENAMETOOLONG);
2690 buffer += buflen - sz;
2691 return memcpy(buffer, temp, sz);
2695 * Write full pathname from the root of the filesystem into the buffer.
2697 static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
2699 char *end = buf + buflen;
2700 char *retval;
2702 prepend(&end, &buflen, "\0", 1);
2703 if (buflen < 1)
2704 goto Elong;
2705 /* Get '/' right */
2706 retval = end-1;
2707 *retval = '/';
2709 while (!IS_ROOT(dentry)) {
2710 struct dentry *parent = dentry->d_parent;
2711 int error;
2713 prefetch(parent);
2714 spin_lock(&dentry->d_lock);
2715 error = prepend_name(&end, &buflen, &dentry->d_name);
2716 spin_unlock(&dentry->d_lock);
2717 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
2718 goto Elong;
2720 retval = end;
2721 dentry = parent;
2723 return retval;
2724 Elong:
2725 return ERR_PTR(-ENAMETOOLONG);
2728 char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2730 char *retval;
2732 write_seqlock(&rename_lock);
2733 retval = __dentry_path(dentry, buf, buflen);
2734 write_sequnlock(&rename_lock);
2736 return retval;
2738 EXPORT_SYMBOL(dentry_path_raw);
2740 char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2742 char *p = NULL;
2743 char *retval;
2745 write_seqlock(&rename_lock);
2746 if (d_unlinked(dentry)) {
2747 p = buf + buflen;
2748 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2749 goto Elong;
2750 buflen++;
2752 retval = __dentry_path(dentry, buf, buflen);
2753 write_sequnlock(&rename_lock);
2754 if (!IS_ERR(retval) && p)
2755 *p = '/'; /* restore '/' overriden with '\0' */
2756 return retval;
2757 Elong:
2758 return ERR_PTR(-ENAMETOOLONG);
2762 * NOTE! The user-level library version returns a
2763 * character pointer. The kernel system call just
2764 * returns the length of the buffer filled (which
2765 * includes the ending '\0' character), or a negative
2766 * error value. So libc would do something like
2768 * char *getcwd(char * buf, size_t size)
2770 * int retval;
2772 * retval = sys_getcwd(buf, size);
2773 * if (retval >= 0)
2774 * return buf;
2775 * errno = -retval;
2776 * return NULL;
2779 SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
2781 int error;
2782 struct path pwd, root;
2783 char *page = (char *) __get_free_page(GFP_USER);
2785 if (!page)
2786 return -ENOMEM;
2788 get_fs_root_and_pwd(current->fs, &root, &pwd);
2790 error = -ENOENT;
2791 write_seqlock(&rename_lock);
2792 if (!d_unlinked(pwd.dentry)) {
2793 unsigned long len;
2794 struct path tmp = root;
2795 char *cwd = page + PAGE_SIZE;
2796 int buflen = PAGE_SIZE;
2798 prepend(&cwd, &buflen, "\0", 1);
2799 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
2800 write_sequnlock(&rename_lock);
2802 if (error)
2803 goto out;
2805 /* Unreachable from current root */
2806 if (!path_equal(&tmp, &root)) {
2807 error = prepend_unreachable(&cwd, &buflen);
2808 if (error)
2809 goto out;
2812 error = -ERANGE;
2813 len = PAGE_SIZE + page - cwd;
2814 if (len <= size) {
2815 error = len;
2816 if (copy_to_user(buf, cwd, len))
2817 error = -EFAULT;
2819 } else {
2820 write_sequnlock(&rename_lock);
2823 out:
2824 path_put(&pwd);
2825 path_put(&root);
2826 free_page((unsigned long) page);
2827 return error;
2831 * Test whether new_dentry is a subdirectory of old_dentry.
2833 * Trivially implemented using the dcache structure
2837 * is_subdir - is new dentry a subdirectory of old_dentry
2838 * @new_dentry: new dentry
2839 * @old_dentry: old dentry
2841 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2842 * Returns 0 otherwise.
2843 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2846 int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
2848 int result;
2849 unsigned seq;
2851 if (new_dentry == old_dentry)
2852 return 1;
2854 do {
2855 /* for restarting inner loop in case of seq retry */
2856 seq = read_seqbegin(&rename_lock);
2858 * Need rcu_readlock to protect against the d_parent trashing
2859 * due to d_move
2861 rcu_read_lock();
2862 if (d_ancestor(old_dentry, new_dentry))
2863 result = 1;
2864 else
2865 result = 0;
2866 rcu_read_unlock();
2867 } while (read_seqretry(&rename_lock, seq));
2869 return result;
2872 int path_is_under(struct path *path1, struct path *path2)
2874 struct vfsmount *mnt = path1->mnt;
2875 struct dentry *dentry = path1->dentry;
2876 int res;
2878 br_read_lock(vfsmount_lock);
2879 if (mnt != path2->mnt) {
2880 for (;;) {
2881 if (mnt->mnt_parent == mnt) {
2882 br_read_unlock(vfsmount_lock);
2883 return 0;
2885 if (mnt->mnt_parent == path2->mnt)
2886 break;
2887 mnt = mnt->mnt_parent;
2889 dentry = mnt->mnt_mountpoint;
2891 res = is_subdir(dentry, path2->dentry);
2892 br_read_unlock(vfsmount_lock);
2893 return res;
2895 EXPORT_SYMBOL(path_is_under);
2897 void d_genocide(struct dentry *root)
2899 struct dentry *this_parent;
2900 struct list_head *next;
2901 unsigned seq;
2902 int locked = 0;
2904 seq = read_seqbegin(&rename_lock);
2905 again:
2906 this_parent = root;
2907 spin_lock(&this_parent->d_lock);
2908 repeat:
2909 next = this_parent->d_subdirs.next;
2910 resume:
2911 while (next != &this_parent->d_subdirs) {
2912 struct list_head *tmp = next;
2913 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
2914 next = tmp->next;
2916 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2917 if (d_unhashed(dentry) || !dentry->d_inode) {
2918 spin_unlock(&dentry->d_lock);
2919 continue;
2921 if (!list_empty(&dentry->d_subdirs)) {
2922 spin_unlock(&this_parent->d_lock);
2923 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
2924 this_parent = dentry;
2925 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
2926 goto repeat;
2928 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2929 dentry->d_flags |= DCACHE_GENOCIDE;
2930 dentry->d_count--;
2932 spin_unlock(&dentry->d_lock);
2934 if (this_parent != root) {
2935 struct dentry *child = this_parent;
2936 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2937 this_parent->d_flags |= DCACHE_GENOCIDE;
2938 this_parent->d_count--;
2940 this_parent = try_to_ascend(this_parent, locked, seq);
2941 if (!this_parent)
2942 goto rename_retry;
2943 next = child->d_u.d_child.next;
2944 goto resume;
2946 spin_unlock(&this_parent->d_lock);
2947 if (!locked && read_seqretry(&rename_lock, seq))
2948 goto rename_retry;
2949 if (locked)
2950 write_sequnlock(&rename_lock);
2951 return;
2953 rename_retry:
2954 locked = 1;
2955 write_seqlock(&rename_lock);
2956 goto again;
2960 * find_inode_number - check for dentry with name
2961 * @dir: directory to check
2962 * @name: Name to find.
2964 * Check whether a dentry already exists for the given name,
2965 * and return the inode number if it has an inode. Otherwise
2966 * 0 is returned.
2968 * This routine is used to post-process directory listings for
2969 * filesystems using synthetic inode numbers, and is necessary
2970 * to keep getcwd() working.
2973 ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2975 struct dentry * dentry;
2976 ino_t ino = 0;
2978 dentry = d_hash_and_lookup(dir, name);
2979 if (dentry) {
2980 if (dentry->d_inode)
2981 ino = dentry->d_inode->i_ino;
2982 dput(dentry);
2984 return ino;
2986 EXPORT_SYMBOL(find_inode_number);
2988 static __initdata unsigned long dhash_entries;
2989 static int __init set_dhash_entries(char *str)
2991 if (!str)
2992 return 0;
2993 dhash_entries = simple_strtoul(str, &str, 0);
2994 return 1;
2996 __setup("dhash_entries=", set_dhash_entries);
2998 static void __init dcache_init_early(void)
3000 int loop;
3002 /* If hashes are distributed across NUMA nodes, defer
3003 * hash allocation until vmalloc space is available.
3005 if (hashdist)
3006 return;
3008 dentry_hashtable =
3009 alloc_large_system_hash("Dentry cache",
3010 sizeof(struct hlist_bl_head),
3011 dhash_entries,
3013 HASH_EARLY,
3014 &d_hash_shift,
3015 &d_hash_mask,
3018 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3019 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3022 static void __init dcache_init(void)
3024 int loop;
3027 * A constructor could be added for stable state like the lists,
3028 * but it is probably not worth it because of the cache nature
3029 * of the dcache.
3031 dentry_cache = KMEM_CACHE(dentry,
3032 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3034 register_shrinker(&dcache_shrinker);
3036 /* Hash may have been set up in dcache_init_early */
3037 if (!hashdist)
3038 return;
3040 dentry_hashtable =
3041 alloc_large_system_hash("Dentry cache",
3042 sizeof(struct hlist_bl_head),
3043 dhash_entries,
3046 &d_hash_shift,
3047 &d_hash_mask,
3050 for (loop = 0; loop < (1 << d_hash_shift); loop++)
3051 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
3054 /* SLAB cache for __getname() consumers */
3055 struct kmem_cache *names_cachep __read_mostly;
3056 EXPORT_SYMBOL(names_cachep);
3058 EXPORT_SYMBOL(d_genocide);
3060 void __init vfs_caches_init_early(void)
3062 dcache_init_early();
3063 inode_init_early();
3066 void __init vfs_caches_init(unsigned long mempages)
3068 unsigned long reserve;
3070 /* Base hash sizes on available memory, with a reserve equal to
3071 150% of current kernel size */
3073 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3074 mempages -= reserve;
3076 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
3077 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
3079 dcache_init();
3080 inode_init();
3081 files_init(mempages);
3082 mnt_init();
3083 bdev_cache_init();
3084 chrdev_init();