6 * Address space accounting code <alan@lxorguk.ukuu.org.uk>
9 #include <linux/slab.h>
10 #include <linux/backing-dev.h>
12 #include <linux/shm.h>
13 #include <linux/mman.h>
14 #include <linux/pagemap.h>
15 #include <linux/swap.h>
16 #include <linux/syscalls.h>
17 #include <linux/capability.h>
18 #include <linux/init.h>
19 #include <linux/file.h>
21 #include <linux/personality.h>
22 #include <linux/security.h>
23 #include <linux/hugetlb.h>
24 #include <linux/profile.h>
25 #include <linux/module.h>
26 #include <linux/mount.h>
27 #include <linux/mempolicy.h>
28 #include <linux/rmap.h>
29 #include <linux/mmu_notifier.h>
31 #include <asm/uaccess.h>
32 #include <asm/cacheflush.h>
34 #include <asm/mmu_context.h>
38 #ifndef arch_mmap_check
39 #define arch_mmap_check(addr, len, flags) (0)
42 #ifndef arch_rebalance_pgtables
43 #define arch_rebalance_pgtables(addr, len) (addr)
46 static void unmap_region(struct mm_struct
*mm
,
47 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
48 unsigned long start
, unsigned long end
);
51 * WARNING: the debugging will use recursive algorithms so never enable this
52 * unless you know what you are doing.
56 /* description of effects of mapping type and prot in current implementation.
57 * this is due to the limited x86 page protection hardware. The expected
58 * behavior is in parens:
61 * PROT_NONE PROT_READ PROT_WRITE PROT_EXEC
62 * MAP_SHARED r: (no) no r: (yes) yes r: (no) yes r: (no) yes
63 * w: (no) no w: (no) no w: (yes) yes w: (no) no
64 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
66 * MAP_PRIVATE r: (no) no r: (yes) yes r: (no) yes r: (no) yes
67 * w: (no) no w: (no) no w: (copy) copy w: (no) no
68 * x: (no) no x: (no) yes x: (no) yes x: (yes) yes
71 pgprot_t protection_map
[16] = {
72 __P000
, __P001
, __P010
, __P011
, __P100
, __P101
, __P110
, __P111
,
73 __S000
, __S001
, __S010
, __S011
, __S100
, __S101
, __S110
, __S111
76 pgprot_t
vm_get_page_prot(unsigned long vm_flags
)
78 return __pgprot(pgprot_val(protection_map
[vm_flags
&
79 (VM_READ
|VM_WRITE
|VM_EXEC
|VM_SHARED
)]) |
80 pgprot_val(arch_vm_get_page_prot(vm_flags
)));
82 EXPORT_SYMBOL(vm_get_page_prot
);
84 int sysctl_overcommit_memory
= OVERCOMMIT_GUESS
; /* heuristic overcommit */
85 int sysctl_overcommit_ratio
= 50; /* default is 50% */
86 int sysctl_max_map_count __read_mostly
= DEFAULT_MAX_MAP_COUNT
;
87 struct percpu_counter vm_committed_as
;
90 * Check that a process has enough memory to allocate a new virtual
91 * mapping. 0 means there is enough memory for the allocation to
92 * succeed and -ENOMEM implies there is not.
94 * We currently support three overcommit policies, which are set via the
95 * vm.overcommit_memory sysctl. See Documentation/vm/overcommit-accounting
97 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
98 * Additional code 2002 Jul 20 by Robert Love.
100 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
102 * Note this is a helper function intended to be used by LSMs which
103 * wish to use this logic.
105 int __vm_enough_memory(struct mm_struct
*mm
, long pages
, int cap_sys_admin
)
107 unsigned long free
, allowed
;
109 vm_acct_memory(pages
);
112 * Sometimes we want to use more memory than we have
114 if (sysctl_overcommit_memory
== OVERCOMMIT_ALWAYS
)
117 if (sysctl_overcommit_memory
== OVERCOMMIT_GUESS
) {
120 free
= global_page_state(NR_FILE_PAGES
);
121 free
+= nr_swap_pages
;
124 * Any slabs which are created with the
125 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
126 * which are reclaimable, under pressure. The dentry
127 * cache and most inode caches should fall into this
129 free
+= global_page_state(NR_SLAB_RECLAIMABLE
);
132 * Leave the last 3% for root
141 * nr_free_pages() is very expensive on large systems,
142 * only call if we're about to fail.
147 * Leave reserved pages. The pages are not for anonymous pages.
149 if (n
<= totalreserve_pages
)
152 n
-= totalreserve_pages
;
155 * Leave the last 3% for root
167 allowed
= (totalram_pages
- hugetlb_total_pages())
168 * sysctl_overcommit_ratio
/ 100;
170 * Leave the last 3% for root
173 allowed
-= allowed
/ 32;
174 allowed
+= total_swap_pages
;
176 /* Don't let a single process grow too big:
177 leave 3% of the size of this process for other processes */
179 allowed
-= mm
->total_vm
/ 32;
181 if (percpu_counter_read_positive(&vm_committed_as
) < allowed
)
184 vm_unacct_memory(pages
);
190 * Requires inode->i_mapping->i_mmap_lock
192 static void __remove_shared_vm_struct(struct vm_area_struct
*vma
,
193 struct file
*file
, struct address_space
*mapping
)
195 if (vma
->vm_flags
& VM_DENYWRITE
)
196 atomic_inc(&file
->f_path
.dentry
->d_inode
->i_writecount
);
197 if (vma
->vm_flags
& VM_SHARED
)
198 mapping
->i_mmap_writable
--;
200 flush_dcache_mmap_lock(mapping
);
201 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
202 list_del_init(&vma
->shared
.vm_set
.list
);
204 vma_prio_tree_remove(vma
, &mapping
->i_mmap
);
205 flush_dcache_mmap_unlock(mapping
);
209 * Unlink a file-based vm structure from its prio_tree, to hide
210 * vma from rmap and vmtruncate before freeing its page tables.
212 void unlink_file_vma(struct vm_area_struct
*vma
)
214 struct file
*file
= vma
->vm_file
;
217 struct address_space
*mapping
= file
->f_mapping
;
218 spin_lock(&mapping
->i_mmap_lock
);
219 __remove_shared_vm_struct(vma
, file
, mapping
);
220 spin_unlock(&mapping
->i_mmap_lock
);
225 * Close a vm structure and free it, returning the next.
227 static struct vm_area_struct
*remove_vma(struct vm_area_struct
*vma
)
229 struct vm_area_struct
*next
= vma
->vm_next
;
232 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
233 vma
->vm_ops
->close(vma
);
236 if (vma
->vm_flags
& VM_EXECUTABLE
)
237 removed_exe_file_vma(vma
->vm_mm
);
239 mpol_put(vma_policy(vma
));
240 kmem_cache_free(vm_area_cachep
, vma
);
244 SYSCALL_DEFINE1(brk
, unsigned long, brk
)
246 unsigned long rlim
, retval
;
247 unsigned long newbrk
, oldbrk
;
248 struct mm_struct
*mm
= current
->mm
;
249 unsigned long min_brk
;
251 down_write(&mm
->mmap_sem
);
253 #ifdef CONFIG_COMPAT_BRK
254 min_brk
= mm
->end_code
;
256 min_brk
= mm
->start_brk
;
262 * Check against rlimit here. If this check is done later after the test
263 * of oldbrk with newbrk then it can escape the test and let the data
264 * segment grow beyond its set limit the in case where the limit is
265 * not page aligned -Ram Gupta
267 rlim
= current
->signal
->rlim
[RLIMIT_DATA
].rlim_cur
;
268 if (rlim
< RLIM_INFINITY
&& (brk
- mm
->start_brk
) +
269 (mm
->end_data
- mm
->start_data
) > rlim
)
272 newbrk
= PAGE_ALIGN(brk
);
273 oldbrk
= PAGE_ALIGN(mm
->brk
);
274 if (oldbrk
== newbrk
)
277 /* Always allow shrinking brk. */
278 if (brk
<= mm
->brk
) {
279 if (!do_munmap(mm
, newbrk
, oldbrk
-newbrk
))
284 /* Check against existing mmap mappings. */
285 if (find_vma_intersection(mm
, oldbrk
, newbrk
+PAGE_SIZE
))
288 /* Ok, looks good - let it rip. */
289 if (do_brk(oldbrk
, newbrk
-oldbrk
) != oldbrk
)
295 up_write(&mm
->mmap_sem
);
300 static int browse_rb(struct rb_root
*root
)
303 struct rb_node
*nd
, *pn
= NULL
;
304 unsigned long prev
= 0, pend
= 0;
306 for (nd
= rb_first(root
); nd
; nd
= rb_next(nd
)) {
307 struct vm_area_struct
*vma
;
308 vma
= rb_entry(nd
, struct vm_area_struct
, vm_rb
);
309 if (vma
->vm_start
< prev
)
310 printk("vm_start %lx prev %lx\n", vma
->vm_start
, prev
), i
= -1;
311 if (vma
->vm_start
< pend
)
312 printk("vm_start %lx pend %lx\n", vma
->vm_start
, pend
);
313 if (vma
->vm_start
> vma
->vm_end
)
314 printk("vm_end %lx < vm_start %lx\n", vma
->vm_end
, vma
->vm_start
);
317 prev
= vma
->vm_start
;
321 for (nd
= pn
; nd
; nd
= rb_prev(nd
)) {
325 printk("backwards %d, forwards %d\n", j
, i
), i
= 0;
329 void validate_mm(struct mm_struct
*mm
)
333 struct vm_area_struct
*tmp
= mm
->mmap
;
338 if (i
!= mm
->map_count
)
339 printk("map_count %d vm_next %d\n", mm
->map_count
, i
), bug
= 1;
340 i
= browse_rb(&mm
->mm_rb
);
341 if (i
!= mm
->map_count
)
342 printk("map_count %d rb %d\n", mm
->map_count
, i
), bug
= 1;
346 #define validate_mm(mm) do { } while (0)
349 static struct vm_area_struct
*
350 find_vma_prepare(struct mm_struct
*mm
, unsigned long addr
,
351 struct vm_area_struct
**pprev
, struct rb_node
***rb_link
,
352 struct rb_node
** rb_parent
)
354 struct vm_area_struct
* vma
;
355 struct rb_node
** __rb_link
, * __rb_parent
, * rb_prev
;
357 __rb_link
= &mm
->mm_rb
.rb_node
;
358 rb_prev
= __rb_parent
= NULL
;
362 struct vm_area_struct
*vma_tmp
;
364 __rb_parent
= *__rb_link
;
365 vma_tmp
= rb_entry(__rb_parent
, struct vm_area_struct
, vm_rb
);
367 if (vma_tmp
->vm_end
> addr
) {
369 if (vma_tmp
->vm_start
<= addr
)
371 __rb_link
= &__rb_parent
->rb_left
;
373 rb_prev
= __rb_parent
;
374 __rb_link
= &__rb_parent
->rb_right
;
380 *pprev
= rb_entry(rb_prev
, struct vm_area_struct
, vm_rb
);
381 *rb_link
= __rb_link
;
382 *rb_parent
= __rb_parent
;
387 __vma_link_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
388 struct vm_area_struct
*prev
, struct rb_node
*rb_parent
)
391 vma
->vm_next
= prev
->vm_next
;
396 vma
->vm_next
= rb_entry(rb_parent
,
397 struct vm_area_struct
, vm_rb
);
403 void __vma_link_rb(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
404 struct rb_node
**rb_link
, struct rb_node
*rb_parent
)
406 rb_link_node(&vma
->vm_rb
, rb_parent
, rb_link
);
407 rb_insert_color(&vma
->vm_rb
, &mm
->mm_rb
);
410 static void __vma_link_file(struct vm_area_struct
*vma
)
416 struct address_space
*mapping
= file
->f_mapping
;
418 if (vma
->vm_flags
& VM_DENYWRITE
)
419 atomic_dec(&file
->f_path
.dentry
->d_inode
->i_writecount
);
420 if (vma
->vm_flags
& VM_SHARED
)
421 mapping
->i_mmap_writable
++;
423 flush_dcache_mmap_lock(mapping
);
424 if (unlikely(vma
->vm_flags
& VM_NONLINEAR
))
425 vma_nonlinear_insert(vma
, &mapping
->i_mmap_nonlinear
);
427 vma_prio_tree_insert(vma
, &mapping
->i_mmap
);
428 flush_dcache_mmap_unlock(mapping
);
433 __vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
434 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
435 struct rb_node
*rb_parent
)
437 __vma_link_list(mm
, vma
, prev
, rb_parent
);
438 __vma_link_rb(mm
, vma
, rb_link
, rb_parent
);
439 __anon_vma_link(vma
);
442 static void vma_link(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
443 struct vm_area_struct
*prev
, struct rb_node
**rb_link
,
444 struct rb_node
*rb_parent
)
446 struct address_space
*mapping
= NULL
;
449 mapping
= vma
->vm_file
->f_mapping
;
452 spin_lock(&mapping
->i_mmap_lock
);
453 vma
->vm_truncate_count
= mapping
->truncate_count
;
457 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
458 __vma_link_file(vma
);
460 anon_vma_unlock(vma
);
462 spin_unlock(&mapping
->i_mmap_lock
);
469 * Helper for vma_adjust in the split_vma insert case:
470 * insert vm structure into list and rbtree and anon_vma,
471 * but it has already been inserted into prio_tree earlier.
473 static void __insert_vm_struct(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
475 struct vm_area_struct
*__vma
, *prev
;
476 struct rb_node
**rb_link
, *rb_parent
;
478 __vma
= find_vma_prepare(mm
, vma
->vm_start
,&prev
, &rb_link
, &rb_parent
);
479 BUG_ON(__vma
&& __vma
->vm_start
< vma
->vm_end
);
480 __vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
485 __vma_unlink(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
486 struct vm_area_struct
*prev
)
488 prev
->vm_next
= vma
->vm_next
;
489 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
490 if (mm
->mmap_cache
== vma
)
491 mm
->mmap_cache
= prev
;
495 * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
496 * is already present in an i_mmap tree without adjusting the tree.
497 * The following helper function should be used when such adjustments
498 * are necessary. The "insert" vma (if any) is to be inserted
499 * before we drop the necessary locks.
501 void vma_adjust(struct vm_area_struct
*vma
, unsigned long start
,
502 unsigned long end
, pgoff_t pgoff
, struct vm_area_struct
*insert
)
504 struct mm_struct
*mm
= vma
->vm_mm
;
505 struct vm_area_struct
*next
= vma
->vm_next
;
506 struct vm_area_struct
*importer
= NULL
;
507 struct address_space
*mapping
= NULL
;
508 struct prio_tree_root
*root
= NULL
;
509 struct file
*file
= vma
->vm_file
;
510 struct anon_vma
*anon_vma
= NULL
;
511 long adjust_next
= 0;
514 if (next
&& !insert
) {
515 if (end
>= next
->vm_end
) {
517 * vma expands, overlapping all the next, and
518 * perhaps the one after too (mprotect case 6).
520 again
: remove_next
= 1 + (end
> next
->vm_end
);
522 anon_vma
= next
->anon_vma
;
524 } else if (end
> next
->vm_start
) {
526 * vma expands, overlapping part of the next:
527 * mprotect case 5 shifting the boundary up.
529 adjust_next
= (end
- next
->vm_start
) >> PAGE_SHIFT
;
530 anon_vma
= next
->anon_vma
;
532 } else if (end
< vma
->vm_end
) {
534 * vma shrinks, and !insert tells it's not
535 * split_vma inserting another: so it must be
536 * mprotect case 4 shifting the boundary down.
538 adjust_next
= - ((vma
->vm_end
- end
) >> PAGE_SHIFT
);
539 anon_vma
= next
->anon_vma
;
545 mapping
= file
->f_mapping
;
546 if (!(vma
->vm_flags
& VM_NONLINEAR
))
547 root
= &mapping
->i_mmap
;
548 spin_lock(&mapping
->i_mmap_lock
);
550 vma
->vm_truncate_count
!= next
->vm_truncate_count
) {
552 * unmap_mapping_range might be in progress:
553 * ensure that the expanding vma is rescanned.
555 importer
->vm_truncate_count
= 0;
558 insert
->vm_truncate_count
= vma
->vm_truncate_count
;
560 * Put into prio_tree now, so instantiated pages
561 * are visible to arm/parisc __flush_dcache_page
562 * throughout; but we cannot insert into address
563 * space until vma start or end is updated.
565 __vma_link_file(insert
);
570 * When changing only vma->vm_end, we don't really need
571 * anon_vma lock: but is that case worth optimizing out?
574 anon_vma
= vma
->anon_vma
;
576 spin_lock(&anon_vma
->lock
);
578 * Easily overlooked: when mprotect shifts the boundary,
579 * make sure the expanding vma has anon_vma set if the
580 * shrinking vma had, to cover any anon pages imported.
582 if (importer
&& !importer
->anon_vma
) {
583 importer
->anon_vma
= anon_vma
;
584 __anon_vma_link(importer
);
589 flush_dcache_mmap_lock(mapping
);
590 vma_prio_tree_remove(vma
, root
);
592 vma_prio_tree_remove(next
, root
);
595 vma
->vm_start
= start
;
597 vma
->vm_pgoff
= pgoff
;
599 next
->vm_start
+= adjust_next
<< PAGE_SHIFT
;
600 next
->vm_pgoff
+= adjust_next
;
605 vma_prio_tree_insert(next
, root
);
606 vma_prio_tree_insert(vma
, root
);
607 flush_dcache_mmap_unlock(mapping
);
612 * vma_merge has merged next into vma, and needs
613 * us to remove next before dropping the locks.
615 __vma_unlink(mm
, next
, vma
);
617 __remove_shared_vm_struct(next
, file
, mapping
);
619 __anon_vma_merge(vma
, next
);
622 * split_vma has split insert from vma, and needs
623 * us to insert it before dropping the locks
624 * (it may either follow vma or precede it).
626 __insert_vm_struct(mm
, insert
);
630 spin_unlock(&anon_vma
->lock
);
632 spin_unlock(&mapping
->i_mmap_lock
);
637 if (next
->vm_flags
& VM_EXECUTABLE
)
638 removed_exe_file_vma(mm
);
641 mpol_put(vma_policy(next
));
642 kmem_cache_free(vm_area_cachep
, next
);
644 * In mprotect's case 6 (see comments on vma_merge),
645 * we must remove another next too. It would clutter
646 * up the code too much to do both in one go.
648 if (remove_next
== 2) {
657 /* Flags that can be inherited from an existing mapping when merging */
658 #define VM_MERGEABLE_FLAGS (VM_CAN_NONLINEAR)
661 * If the vma has a ->close operation then the driver probably needs to release
662 * per-vma resources, so we don't attempt to merge those.
664 static inline int is_mergeable_vma(struct vm_area_struct
*vma
,
665 struct file
*file
, unsigned long vm_flags
)
667 if ((vma
->vm_flags
^ vm_flags
) & ~VM_MERGEABLE_FLAGS
)
669 if (vma
->vm_file
!= file
)
671 if (vma
->vm_ops
&& vma
->vm_ops
->close
)
676 static inline int is_mergeable_anon_vma(struct anon_vma
*anon_vma1
,
677 struct anon_vma
*anon_vma2
)
679 return !anon_vma1
|| !anon_vma2
|| (anon_vma1
== anon_vma2
);
683 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
684 * in front of (at a lower virtual address and file offset than) the vma.
686 * We cannot merge two vmas if they have differently assigned (non-NULL)
687 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
689 * We don't check here for the merged mmap wrapping around the end of pagecache
690 * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
691 * wrap, nor mmaps which cover the final page at index -1UL.
694 can_vma_merge_before(struct vm_area_struct
*vma
, unsigned long vm_flags
,
695 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
697 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
698 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
699 if (vma
->vm_pgoff
== vm_pgoff
)
706 * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
707 * beyond (at a higher virtual address and file offset than) the vma.
709 * We cannot merge two vmas if they have differently assigned (non-NULL)
710 * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713 can_vma_merge_after(struct vm_area_struct
*vma
, unsigned long vm_flags
,
714 struct anon_vma
*anon_vma
, struct file
*file
, pgoff_t vm_pgoff
)
716 if (is_mergeable_vma(vma
, file
, vm_flags
) &&
717 is_mergeable_anon_vma(anon_vma
, vma
->anon_vma
)) {
719 vm_pglen
= (vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
;
720 if (vma
->vm_pgoff
+ vm_pglen
== vm_pgoff
)
727 * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
728 * whether that can be merged with its predecessor or its successor.
729 * Or both (it neatly fills a hole).
731 * In most cases - when called for mmap, brk or mremap - [addr,end) is
732 * certain not to be mapped by the time vma_merge is called; but when
733 * called for mprotect, it is certain to be already mapped (either at
734 * an offset within prev, or at the start of next), and the flags of
735 * this area are about to be changed to vm_flags - and the no-change
736 * case has already been eliminated.
738 * The following mprotect cases have to be considered, where AAAA is
739 * the area passed down from mprotect_fixup, never extending beyond one
740 * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
742 * AAAA AAAA AAAA AAAA
743 * PPPPPPNNNNNN PPPPPPNNNNNN PPPPPPNNNNNN PPPPNNNNXXXX
744 * cannot merge might become might become might become
745 * PPNNNNNNNNNN PPPPPPPPPPNN PPPPPPPPPPPP 6 or
746 * mmap, brk or case 4 below case 5 below PPPPPPPPXXXX 7 or
747 * mremap move: PPPPNNNNNNNN 8
749 * PPPP NNNN PPPPPPPPPPPP PPPPPPPPNNNN PPPPNNNNNNNN
750 * might become case 1 below case 2 below case 3 below
752 * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
753 * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
755 struct vm_area_struct
*vma_merge(struct mm_struct
*mm
,
756 struct vm_area_struct
*prev
, unsigned long addr
,
757 unsigned long end
, unsigned long vm_flags
,
758 struct anon_vma
*anon_vma
, struct file
*file
,
759 pgoff_t pgoff
, struct mempolicy
*policy
)
761 pgoff_t pglen
= (end
- addr
) >> PAGE_SHIFT
;
762 struct vm_area_struct
*area
, *next
;
765 * We later require that vma->vm_flags == vm_flags,
766 * so this tests vma->vm_flags & VM_SPECIAL, too.
768 if (vm_flags
& VM_SPECIAL
)
772 next
= prev
->vm_next
;
776 if (next
&& next
->vm_end
== end
) /* cases 6, 7, 8 */
777 next
= next
->vm_next
;
780 * Can it merge with the predecessor?
782 if (prev
&& prev
->vm_end
== addr
&&
783 mpol_equal(vma_policy(prev
), policy
) &&
784 can_vma_merge_after(prev
, vm_flags
,
785 anon_vma
, file
, pgoff
)) {
787 * OK, it can. Can we now merge in the successor as well?
789 if (next
&& end
== next
->vm_start
&&
790 mpol_equal(policy
, vma_policy(next
)) &&
791 can_vma_merge_before(next
, vm_flags
,
792 anon_vma
, file
, pgoff
+pglen
) &&
793 is_mergeable_anon_vma(prev
->anon_vma
,
796 vma_adjust(prev
, prev
->vm_start
,
797 next
->vm_end
, prev
->vm_pgoff
, NULL
);
798 } else /* cases 2, 5, 7 */
799 vma_adjust(prev
, prev
->vm_start
,
800 end
, prev
->vm_pgoff
, NULL
);
805 * Can this new request be merged in front of next?
807 if (next
&& end
== next
->vm_start
&&
808 mpol_equal(policy
, vma_policy(next
)) &&
809 can_vma_merge_before(next
, vm_flags
,
810 anon_vma
, file
, pgoff
+pglen
)) {
811 if (prev
&& addr
< prev
->vm_end
) /* case 4 */
812 vma_adjust(prev
, prev
->vm_start
,
813 addr
, prev
->vm_pgoff
, NULL
);
814 else /* cases 3, 8 */
815 vma_adjust(area
, addr
, next
->vm_end
,
816 next
->vm_pgoff
- pglen
, NULL
);
824 * find_mergeable_anon_vma is used by anon_vma_prepare, to check
825 * neighbouring vmas for a suitable anon_vma, before it goes off
826 * to allocate a new anon_vma. It checks because a repetitive
827 * sequence of mprotects and faults may otherwise lead to distinct
828 * anon_vmas being allocated, preventing vma merge in subsequent
831 struct anon_vma
*find_mergeable_anon_vma(struct vm_area_struct
*vma
)
833 struct vm_area_struct
*near
;
834 unsigned long vm_flags
;
841 * Since only mprotect tries to remerge vmas, match flags
842 * which might be mprotected into each other later on.
843 * Neither mlock nor madvise tries to remerge at present,
844 * so leave their flags as obstructing a merge.
846 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
847 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
849 if (near
->anon_vma
&& vma
->vm_end
== near
->vm_start
&&
850 mpol_equal(vma_policy(vma
), vma_policy(near
)) &&
851 can_vma_merge_before(near
, vm_flags
,
852 NULL
, vma
->vm_file
, vma
->vm_pgoff
+
853 ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
)))
854 return near
->anon_vma
;
857 * It is potentially slow to have to call find_vma_prev here.
858 * But it's only on the first write fault on the vma, not
859 * every time, and we could devise a way to avoid it later
860 * (e.g. stash info in next's anon_vma_node when assigning
861 * an anon_vma, or when trying vma_merge). Another time.
863 BUG_ON(find_vma_prev(vma
->vm_mm
, vma
->vm_start
, &near
) != vma
);
867 vm_flags
= vma
->vm_flags
& ~(VM_READ
|VM_WRITE
|VM_EXEC
);
868 vm_flags
|= near
->vm_flags
& (VM_READ
|VM_WRITE
|VM_EXEC
);
870 if (near
->anon_vma
&& near
->vm_end
== vma
->vm_start
&&
871 mpol_equal(vma_policy(near
), vma_policy(vma
)) &&
872 can_vma_merge_after(near
, vm_flags
,
873 NULL
, vma
->vm_file
, vma
->vm_pgoff
))
874 return near
->anon_vma
;
877 * There's no absolute need to look only at touching neighbours:
878 * we could search further afield for "compatible" anon_vmas.
879 * But it would probably just be a waste of time searching,
880 * or lead to too many vmas hanging off the same anon_vma.
881 * We're trying to allow mprotect remerging later on,
882 * not trying to minimize memory used for anon_vmas.
887 #ifdef CONFIG_PROC_FS
888 void vm_stat_account(struct mm_struct
*mm
, unsigned long flags
,
889 struct file
*file
, long pages
)
891 const unsigned long stack_flags
892 = VM_STACK_FLAGS
& (VM_GROWSUP
|VM_GROWSDOWN
);
895 mm
->shared_vm
+= pages
;
896 if ((flags
& (VM_EXEC
|VM_WRITE
)) == VM_EXEC
)
897 mm
->exec_vm
+= pages
;
898 } else if (flags
& stack_flags
)
899 mm
->stack_vm
+= pages
;
900 if (flags
& (VM_RESERVED
|VM_IO
))
901 mm
->reserved_vm
+= pages
;
903 #endif /* CONFIG_PROC_FS */
906 * The caller must hold down_write(current->mm->mmap_sem).
909 unsigned long do_mmap_pgoff(struct file
*file
, unsigned long addr
,
910 unsigned long len
, unsigned long prot
,
911 unsigned long flags
, unsigned long pgoff
)
913 struct mm_struct
* mm
= current
->mm
;
915 unsigned int vm_flags
;
917 unsigned long reqprot
= prot
;
920 * Does the application expect PROT_READ to imply PROT_EXEC?
922 * (the exception is when the underlying filesystem is noexec
923 * mounted, in which case we dont add PROT_EXEC.)
925 if ((prot
& PROT_READ
) && (current
->personality
& READ_IMPLIES_EXEC
))
926 if (!(file
&& (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
)))
932 if (!(flags
& MAP_FIXED
))
933 addr
= round_hint_to_min(addr
);
935 error
= arch_mmap_check(addr
, len
, flags
);
939 /* Careful about overflows.. */
940 len
= PAGE_ALIGN(len
);
941 if (!len
|| len
> TASK_SIZE
)
944 /* offset overflow? */
945 if ((pgoff
+ (len
>> PAGE_SHIFT
)) < pgoff
)
948 /* Too many mappings? */
949 if (mm
->map_count
> sysctl_max_map_count
)
952 /* Obtain the address to map to. we verify (or select) it and ensure
953 * that it represents a valid section of the address space.
955 addr
= get_unmapped_area(file
, addr
, len
, pgoff
, flags
);
956 if (addr
& ~PAGE_MASK
)
959 /* Do simple checking here so the lower-level routines won't have
960 * to. we assume access permissions have been handled by the open
961 * of the memory object, so we don't do any here.
963 vm_flags
= calc_vm_prot_bits(prot
) | calc_vm_flag_bits(flags
) |
964 mm
->def_flags
| VM_MAYREAD
| VM_MAYWRITE
| VM_MAYEXEC
;
966 if (flags
& MAP_LOCKED
) {
969 vm_flags
|= VM_LOCKED
;
972 /* mlock MCL_FUTURE? */
973 if (vm_flags
& VM_LOCKED
) {
974 unsigned long locked
, lock_limit
;
975 locked
= len
>> PAGE_SHIFT
;
976 locked
+= mm
->locked_vm
;
977 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
978 lock_limit
>>= PAGE_SHIFT
;
979 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
983 inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
986 switch (flags
& MAP_TYPE
) {
988 if ((prot
&PROT_WRITE
) && !(file
->f_mode
&FMODE_WRITE
))
992 * Make sure we don't allow writing to an append-only
995 if (IS_APPEND(inode
) && (file
->f_mode
& FMODE_WRITE
))
999 * Make sure there are no mandatory locks on the file.
1001 if (locks_verify_locked(inode
))
1004 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1005 if (!(file
->f_mode
& FMODE_WRITE
))
1006 vm_flags
&= ~(VM_MAYWRITE
| VM_SHARED
);
1010 if (!(file
->f_mode
& FMODE_READ
))
1012 if (file
->f_path
.mnt
->mnt_flags
& MNT_NOEXEC
) {
1013 if (vm_flags
& VM_EXEC
)
1015 vm_flags
&= ~VM_MAYEXEC
;
1018 if (!file
->f_op
|| !file
->f_op
->mmap
)
1026 switch (flags
& MAP_TYPE
) {
1032 vm_flags
|= VM_SHARED
| VM_MAYSHARE
;
1036 * Set pgoff according to addr for anon_vma.
1038 pgoff
= addr
>> PAGE_SHIFT
;
1045 error
= security_file_mmap(file
, reqprot
, prot
, flags
, addr
, 0);
1049 return mmap_region(file
, addr
, len
, flags
, vm_flags
, pgoff
);
1051 EXPORT_SYMBOL(do_mmap_pgoff
);
1054 * Some shared mappigns will want the pages marked read-only
1055 * to track write events. If so, we'll downgrade vm_page_prot
1056 * to the private version (using protection_map[] without the
1059 int vma_wants_writenotify(struct vm_area_struct
*vma
)
1061 unsigned int vm_flags
= vma
->vm_flags
;
1063 /* If it was private or non-writable, the write bit is already clear */
1064 if ((vm_flags
& (VM_WRITE
|VM_SHARED
)) != ((VM_WRITE
|VM_SHARED
)))
1067 /* The backer wishes to know when pages are first written to? */
1068 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
)
1071 /* The open routine did something to the protections already? */
1072 if (pgprot_val(vma
->vm_page_prot
) !=
1073 pgprot_val(vm_get_page_prot(vm_flags
)))
1076 /* Specialty mapping? */
1077 if (vm_flags
& (VM_PFNMAP
|VM_INSERTPAGE
))
1080 /* Can the mapping track the dirty pages? */
1081 return vma
->vm_file
&& vma
->vm_file
->f_mapping
&&
1082 mapping_cap_account_dirty(vma
->vm_file
->f_mapping
);
1086 * We account for memory if it's a private writeable mapping,
1087 * not hugepages and VM_NORESERVE wasn't set.
1089 static inline int accountable_mapping(struct file
*file
, unsigned int vm_flags
)
1092 * hugetlb has its own accounting separate from the core VM
1093 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1095 if (file
&& is_file_hugepages(file
))
1098 return (vm_flags
& (VM_NORESERVE
| VM_SHARED
| VM_WRITE
)) == VM_WRITE
;
1101 unsigned long mmap_region(struct file
*file
, unsigned long addr
,
1102 unsigned long len
, unsigned long flags
,
1103 unsigned int vm_flags
, unsigned long pgoff
)
1105 struct mm_struct
*mm
= current
->mm
;
1106 struct vm_area_struct
*vma
, *prev
;
1107 int correct_wcount
= 0;
1109 struct rb_node
**rb_link
, *rb_parent
;
1110 unsigned long charged
= 0;
1111 struct inode
*inode
= file
? file
->f_path
.dentry
->d_inode
: NULL
;
1113 /* Clear old maps */
1116 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
1117 if (vma
&& vma
->vm_start
< addr
+ len
) {
1118 if (do_munmap(mm
, addr
, len
))
1123 /* Check against address space limit. */
1124 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
1128 * Set 'VM_NORESERVE' if we should not account for the
1129 * memory use of this mapping.
1131 if ((flags
& MAP_NORESERVE
)) {
1132 /* We honor MAP_NORESERVE if allowed to overcommit */
1133 if (sysctl_overcommit_memory
!= OVERCOMMIT_NEVER
)
1134 vm_flags
|= VM_NORESERVE
;
1136 /* hugetlb applies strict overcommit unless MAP_NORESERVE */
1137 if (file
&& is_file_hugepages(file
))
1138 vm_flags
|= VM_NORESERVE
;
1142 * Private writable mapping: check memory availability
1144 if (accountable_mapping(file
, vm_flags
)) {
1145 charged
= len
>> PAGE_SHIFT
;
1146 if (security_vm_enough_memory(charged
))
1148 vm_flags
|= VM_ACCOUNT
;
1152 * Can we just expand an old mapping?
1154 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vm_flags
, NULL
, file
, pgoff
, NULL
);
1159 * Determine the object being mapped and call the appropriate
1160 * specific mapper. the address has already been validated, but
1161 * not unmapped, but the maps are removed from the list.
1163 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
1170 vma
->vm_start
= addr
;
1171 vma
->vm_end
= addr
+ len
;
1172 vma
->vm_flags
= vm_flags
;
1173 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
);
1174 vma
->vm_pgoff
= pgoff
;
1178 if (vm_flags
& (VM_GROWSDOWN
|VM_GROWSUP
))
1180 if (vm_flags
& VM_DENYWRITE
) {
1181 error
= deny_write_access(file
);
1186 vma
->vm_file
= file
;
1188 error
= file
->f_op
->mmap(file
, vma
);
1190 goto unmap_and_free_vma
;
1191 if (vm_flags
& VM_EXECUTABLE
)
1192 added_exe_file_vma(mm
);
1193 } else if (vm_flags
& VM_SHARED
) {
1194 error
= shmem_zero_setup(vma
);
1199 /* Can addr have changed??
1201 * Answer: Yes, several device drivers can do it in their
1202 * f_op->mmap method. -DaveM
1204 addr
= vma
->vm_start
;
1205 pgoff
= vma
->vm_pgoff
;
1206 vm_flags
= vma
->vm_flags
;
1208 if (vma_wants_writenotify(vma
))
1209 vma
->vm_page_prot
= vm_get_page_prot(vm_flags
& ~VM_SHARED
);
1211 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
1212 file
= vma
->vm_file
;
1214 /* Once vma denies write, undo our temporary denial count */
1216 atomic_inc(&inode
->i_writecount
);
1218 mm
->total_vm
+= len
>> PAGE_SHIFT
;
1219 vm_stat_account(mm
, vm_flags
, file
, len
>> PAGE_SHIFT
);
1220 if (vm_flags
& VM_LOCKED
) {
1222 * makes pages present; downgrades, drops, reacquires mmap_sem
1224 long nr_pages
= mlock_vma_pages_range(vma
, addr
, addr
+ len
);
1226 return nr_pages
; /* vma gone! */
1227 mm
->locked_vm
+= (len
>> PAGE_SHIFT
) - nr_pages
;
1228 } else if ((flags
& MAP_POPULATE
) && !(flags
& MAP_NONBLOCK
))
1229 make_pages_present(addr
, addr
+ len
);
1234 atomic_inc(&inode
->i_writecount
);
1235 vma
->vm_file
= NULL
;
1238 /* Undo any partial mapping done by a device driver. */
1239 unmap_region(mm
, vma
, prev
, vma
->vm_start
, vma
->vm_end
);
1242 kmem_cache_free(vm_area_cachep
, vma
);
1245 vm_unacct_memory(charged
);
1249 /* Get an address range which is currently unmapped.
1250 * For shmat() with addr=0.
1252 * Ugly calling convention alert:
1253 * Return value with the low bits set means error value,
1255 * if (ret & ~PAGE_MASK)
1258 * This function "knows" that -ENOMEM has the bits set.
1260 #ifndef HAVE_ARCH_UNMAPPED_AREA
1262 arch_get_unmapped_area(struct file
*filp
, unsigned long addr
,
1263 unsigned long len
, unsigned long pgoff
, unsigned long flags
)
1265 struct mm_struct
*mm
= current
->mm
;
1266 struct vm_area_struct
*vma
;
1267 unsigned long start_addr
;
1269 if (len
> TASK_SIZE
)
1272 if (flags
& MAP_FIXED
)
1276 addr
= PAGE_ALIGN(addr
);
1277 vma
= find_vma(mm
, addr
);
1278 if (TASK_SIZE
- len
>= addr
&&
1279 (!vma
|| addr
+ len
<= vma
->vm_start
))
1282 if (len
> mm
->cached_hole_size
) {
1283 start_addr
= addr
= mm
->free_area_cache
;
1285 start_addr
= addr
= TASK_UNMAPPED_BASE
;
1286 mm
->cached_hole_size
= 0;
1290 for (vma
= find_vma(mm
, addr
); ; vma
= vma
->vm_next
) {
1291 /* At this point: (!vma || addr < vma->vm_end). */
1292 if (TASK_SIZE
- len
< addr
) {
1294 * Start a new search - just in case we missed
1297 if (start_addr
!= TASK_UNMAPPED_BASE
) {
1298 addr
= TASK_UNMAPPED_BASE
;
1300 mm
->cached_hole_size
= 0;
1305 if (!vma
|| addr
+ len
<= vma
->vm_start
) {
1307 * Remember the place where we stopped the search:
1309 mm
->free_area_cache
= addr
+ len
;
1312 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1313 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1319 void arch_unmap_area(struct mm_struct
*mm
, unsigned long addr
)
1322 * Is this a new hole at the lowest possible address?
1324 if (addr
>= TASK_UNMAPPED_BASE
&& addr
< mm
->free_area_cache
) {
1325 mm
->free_area_cache
= addr
;
1326 mm
->cached_hole_size
= ~0UL;
1331 * This mmap-allocator allocates new areas top-down from below the
1332 * stack's low limit (the base):
1334 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1336 arch_get_unmapped_area_topdown(struct file
*filp
, const unsigned long addr0
,
1337 const unsigned long len
, const unsigned long pgoff
,
1338 const unsigned long flags
)
1340 struct vm_area_struct
*vma
;
1341 struct mm_struct
*mm
= current
->mm
;
1342 unsigned long addr
= addr0
;
1344 /* requested length too big for entire address space */
1345 if (len
> TASK_SIZE
)
1348 if (flags
& MAP_FIXED
)
1351 /* requesting a specific address */
1353 addr
= PAGE_ALIGN(addr
);
1354 vma
= find_vma(mm
, addr
);
1355 if (TASK_SIZE
- len
>= addr
&&
1356 (!vma
|| addr
+ len
<= vma
->vm_start
))
1360 /* check if free_area_cache is useful for us */
1361 if (len
<= mm
->cached_hole_size
) {
1362 mm
->cached_hole_size
= 0;
1363 mm
->free_area_cache
= mm
->mmap_base
;
1366 /* either no address requested or can't fit in requested address hole */
1367 addr
= mm
->free_area_cache
;
1369 /* make sure it can fit in the remaining address space */
1371 vma
= find_vma(mm
, addr
-len
);
1372 if (!vma
|| addr
<= vma
->vm_start
)
1373 /* remember the address as a hint for next time */
1374 return (mm
->free_area_cache
= addr
-len
);
1377 if (mm
->mmap_base
< len
)
1380 addr
= mm
->mmap_base
-len
;
1384 * Lookup failure means no vma is above this address,
1385 * else if new region fits below vma->vm_start,
1386 * return with success:
1388 vma
= find_vma(mm
, addr
);
1389 if (!vma
|| addr
+len
<= vma
->vm_start
)
1390 /* remember the address as a hint for next time */
1391 return (mm
->free_area_cache
= addr
);
1393 /* remember the largest hole we saw so far */
1394 if (addr
+ mm
->cached_hole_size
< vma
->vm_start
)
1395 mm
->cached_hole_size
= vma
->vm_start
- addr
;
1397 /* try just below the current vma->vm_start */
1398 addr
= vma
->vm_start
-len
;
1399 } while (len
< vma
->vm_start
);
1403 * A failed mmap() very likely causes application failure,
1404 * so fall back to the bottom-up function here. This scenario
1405 * can happen with large stack limits and large mmap()
1408 mm
->cached_hole_size
= ~0UL;
1409 mm
->free_area_cache
= TASK_UNMAPPED_BASE
;
1410 addr
= arch_get_unmapped_area(filp
, addr0
, len
, pgoff
, flags
);
1412 * Restore the topdown base:
1414 mm
->free_area_cache
= mm
->mmap_base
;
1415 mm
->cached_hole_size
= ~0UL;
1421 void arch_unmap_area_topdown(struct mm_struct
*mm
, unsigned long addr
)
1424 * Is this a new hole at the highest possible address?
1426 if (addr
> mm
->free_area_cache
)
1427 mm
->free_area_cache
= addr
;
1429 /* dont allow allocations above current base */
1430 if (mm
->free_area_cache
> mm
->mmap_base
)
1431 mm
->free_area_cache
= mm
->mmap_base
;
1435 get_unmapped_area(struct file
*file
, unsigned long addr
, unsigned long len
,
1436 unsigned long pgoff
, unsigned long flags
)
1438 unsigned long (*get_area
)(struct file
*, unsigned long,
1439 unsigned long, unsigned long, unsigned long);
1441 get_area
= current
->mm
->get_unmapped_area
;
1442 if (file
&& file
->f_op
&& file
->f_op
->get_unmapped_area
)
1443 get_area
= file
->f_op
->get_unmapped_area
;
1444 addr
= get_area(file
, addr
, len
, pgoff
, flags
);
1445 if (IS_ERR_VALUE(addr
))
1448 if (addr
> TASK_SIZE
- len
)
1450 if (addr
& ~PAGE_MASK
)
1453 return arch_rebalance_pgtables(addr
, len
);
1456 EXPORT_SYMBOL(get_unmapped_area
);
1458 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1459 struct vm_area_struct
*find_vma(struct mm_struct
*mm
, unsigned long addr
)
1461 struct vm_area_struct
*vma
= NULL
;
1464 /* Check the cache first. */
1465 /* (Cache hit rate is typically around 35%.) */
1466 vma
= mm
->mmap_cache
;
1467 if (!(vma
&& vma
->vm_end
> addr
&& vma
->vm_start
<= addr
)) {
1468 struct rb_node
* rb_node
;
1470 rb_node
= mm
->mm_rb
.rb_node
;
1474 struct vm_area_struct
* vma_tmp
;
1476 vma_tmp
= rb_entry(rb_node
,
1477 struct vm_area_struct
, vm_rb
);
1479 if (vma_tmp
->vm_end
> addr
) {
1481 if (vma_tmp
->vm_start
<= addr
)
1483 rb_node
= rb_node
->rb_left
;
1485 rb_node
= rb_node
->rb_right
;
1488 mm
->mmap_cache
= vma
;
1494 EXPORT_SYMBOL(find_vma
);
1496 /* Same as find_vma, but also return a pointer to the previous VMA in *pprev. */
1497 struct vm_area_struct
*
1498 find_vma_prev(struct mm_struct
*mm
, unsigned long addr
,
1499 struct vm_area_struct
**pprev
)
1501 struct vm_area_struct
*vma
= NULL
, *prev
= NULL
;
1502 struct rb_node
*rb_node
;
1506 /* Guard against addr being lower than the first VMA */
1509 /* Go through the RB tree quickly. */
1510 rb_node
= mm
->mm_rb
.rb_node
;
1513 struct vm_area_struct
*vma_tmp
;
1514 vma_tmp
= rb_entry(rb_node
, struct vm_area_struct
, vm_rb
);
1516 if (addr
< vma_tmp
->vm_end
) {
1517 rb_node
= rb_node
->rb_left
;
1520 if (!prev
->vm_next
|| (addr
< prev
->vm_next
->vm_end
))
1522 rb_node
= rb_node
->rb_right
;
1528 return prev
? prev
->vm_next
: vma
;
1532 * Verify that the stack growth is acceptable and
1533 * update accounting. This is shared with both the
1534 * grow-up and grow-down cases.
1536 static int acct_stack_growth(struct vm_area_struct
*vma
, unsigned long size
, unsigned long grow
)
1538 struct mm_struct
*mm
= vma
->vm_mm
;
1539 struct rlimit
*rlim
= current
->signal
->rlim
;
1540 unsigned long new_start
;
1542 /* address space limit tests */
1543 if (!may_expand_vm(mm
, grow
))
1546 /* Stack limit test */
1547 if (size
> rlim
[RLIMIT_STACK
].rlim_cur
)
1550 /* mlock limit tests */
1551 if (vma
->vm_flags
& VM_LOCKED
) {
1552 unsigned long locked
;
1553 unsigned long limit
;
1554 locked
= mm
->locked_vm
+ grow
;
1555 limit
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
1556 if (locked
> limit
&& !capable(CAP_IPC_LOCK
))
1560 /* Check to ensure the stack will not grow into a hugetlb-only region */
1561 new_start
= (vma
->vm_flags
& VM_GROWSUP
) ? vma
->vm_start
:
1563 if (is_hugepage_only_range(vma
->vm_mm
, new_start
, size
))
1567 * Overcommit.. This must be the final test, as it will
1568 * update security statistics.
1570 if (security_vm_enough_memory_mm(mm
, grow
))
1573 /* Ok, everything looks good - let it rip */
1574 mm
->total_vm
+= grow
;
1575 if (vma
->vm_flags
& VM_LOCKED
)
1576 mm
->locked_vm
+= grow
;
1577 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, grow
);
1581 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1583 * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1584 * vma is the last one with address > vma->vm_end. Have to extend vma.
1589 int expand_upwards(struct vm_area_struct
*vma
, unsigned long address
)
1593 if (!(vma
->vm_flags
& VM_GROWSUP
))
1597 * We must make sure the anon_vma is allocated
1598 * so that the anon_vma locking is not a noop.
1600 if (unlikely(anon_vma_prepare(vma
)))
1605 * vma->vm_start/vm_end cannot change under us because the caller
1606 * is required to hold the mmap_sem in read mode. We need the
1607 * anon_vma lock to serialize against concurrent expand_stacks.
1608 * Also guard against wrapping around to address 0.
1610 if (address
< PAGE_ALIGN(address
+4))
1611 address
= PAGE_ALIGN(address
+4);
1613 anon_vma_unlock(vma
);
1618 /* Somebody else might have raced and expanded it already */
1619 if (address
> vma
->vm_end
) {
1620 unsigned long size
, grow
;
1622 size
= address
- vma
->vm_start
;
1623 grow
= (address
- vma
->vm_end
) >> PAGE_SHIFT
;
1625 error
= acct_stack_growth(vma
, size
, grow
);
1627 vma
->vm_end
= address
;
1629 anon_vma_unlock(vma
);
1632 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1635 * vma is the first one with address < vma->vm_start. Have to extend vma.
1637 static int expand_downwards(struct vm_area_struct
*vma
,
1638 unsigned long address
)
1643 * We must make sure the anon_vma is allocated
1644 * so that the anon_vma locking is not a noop.
1646 if (unlikely(anon_vma_prepare(vma
)))
1649 address
&= PAGE_MASK
;
1650 error
= security_file_mmap(NULL
, 0, 0, 0, address
, 1);
1657 * vma->vm_start/vm_end cannot change under us because the caller
1658 * is required to hold the mmap_sem in read mode. We need the
1659 * anon_vma lock to serialize against concurrent expand_stacks.
1662 /* Somebody else might have raced and expanded it already */
1663 if (address
< vma
->vm_start
) {
1664 unsigned long size
, grow
;
1666 size
= vma
->vm_end
- address
;
1667 grow
= (vma
->vm_start
- address
) >> PAGE_SHIFT
;
1669 error
= acct_stack_growth(vma
, size
, grow
);
1671 vma
->vm_start
= address
;
1672 vma
->vm_pgoff
-= grow
;
1675 anon_vma_unlock(vma
);
1679 int expand_stack_downwards(struct vm_area_struct
*vma
, unsigned long address
)
1681 return expand_downwards(vma
, address
);
1684 #ifdef CONFIG_STACK_GROWSUP
1685 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1687 return expand_upwards(vma
, address
);
1690 struct vm_area_struct
*
1691 find_extend_vma(struct mm_struct
*mm
, unsigned long addr
)
1693 struct vm_area_struct
*vma
, *prev
;
1696 vma
= find_vma_prev(mm
, addr
, &prev
);
1697 if (vma
&& (vma
->vm_start
<= addr
))
1699 if (!prev
|| expand_stack(prev
, addr
))
1701 if (prev
->vm_flags
& VM_LOCKED
) {
1702 if (mlock_vma_pages_range(prev
, addr
, prev
->vm_end
) < 0)
1703 return NULL
; /* vma gone! */
1708 int expand_stack(struct vm_area_struct
*vma
, unsigned long address
)
1710 return expand_downwards(vma
, address
);
1713 struct vm_area_struct
*
1714 find_extend_vma(struct mm_struct
* mm
, unsigned long addr
)
1716 struct vm_area_struct
* vma
;
1717 unsigned long start
;
1720 vma
= find_vma(mm
,addr
);
1723 if (vma
->vm_start
<= addr
)
1725 if (!(vma
->vm_flags
& VM_GROWSDOWN
))
1727 start
= vma
->vm_start
;
1728 if (expand_stack(vma
, addr
))
1730 if (vma
->vm_flags
& VM_LOCKED
) {
1731 if (mlock_vma_pages_range(vma
, addr
, start
) < 0)
1732 return NULL
; /* vma gone! */
1739 * Ok - we have the memory areas we should free on the vma list,
1740 * so release them, and do the vma updates.
1742 * Called with the mm semaphore held.
1744 static void remove_vma_list(struct mm_struct
*mm
, struct vm_area_struct
*vma
)
1746 /* Update high watermark before we lower total_vm */
1747 update_hiwater_vm(mm
);
1749 long nrpages
= vma_pages(vma
);
1751 mm
->total_vm
-= nrpages
;
1752 vm_stat_account(mm
, vma
->vm_flags
, vma
->vm_file
, -nrpages
);
1753 vma
= remove_vma(vma
);
1759 * Get rid of page table information in the indicated region.
1761 * Called with the mm semaphore held.
1763 static void unmap_region(struct mm_struct
*mm
,
1764 struct vm_area_struct
*vma
, struct vm_area_struct
*prev
,
1765 unsigned long start
, unsigned long end
)
1767 struct vm_area_struct
*next
= prev
? prev
->vm_next
: mm
->mmap
;
1768 struct mmu_gather
*tlb
;
1769 unsigned long nr_accounted
= 0;
1772 tlb
= tlb_gather_mmu(mm
, 0);
1773 update_hiwater_rss(mm
);
1774 unmap_vmas(&tlb
, vma
, start
, end
, &nr_accounted
, NULL
);
1775 vm_unacct_memory(nr_accounted
);
1776 free_pgtables(tlb
, vma
, prev
? prev
->vm_end
: FIRST_USER_ADDRESS
,
1777 next
? next
->vm_start
: 0);
1778 tlb_finish_mmu(tlb
, start
, end
);
1782 * Create a list of vma's touched by the unmap, removing them from the mm's
1783 * vma list as we go..
1786 detach_vmas_to_be_unmapped(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
1787 struct vm_area_struct
*prev
, unsigned long end
)
1789 struct vm_area_struct
**insertion_point
;
1790 struct vm_area_struct
*tail_vma
= NULL
;
1793 insertion_point
= (prev
? &prev
->vm_next
: &mm
->mmap
);
1795 rb_erase(&vma
->vm_rb
, &mm
->mm_rb
);
1799 } while (vma
&& vma
->vm_start
< end
);
1800 *insertion_point
= vma
;
1801 tail_vma
->vm_next
= NULL
;
1802 if (mm
->unmap_area
== arch_unmap_area
)
1803 addr
= prev
? prev
->vm_end
: mm
->mmap_base
;
1805 addr
= vma
? vma
->vm_start
: mm
->mmap_base
;
1806 mm
->unmap_area(mm
, addr
);
1807 mm
->mmap_cache
= NULL
; /* Kill the cache. */
1811 * Split a vma into two pieces at address 'addr', a new vma is allocated
1812 * either for the first part or the tail.
1814 int split_vma(struct mm_struct
* mm
, struct vm_area_struct
* vma
,
1815 unsigned long addr
, int new_below
)
1817 struct mempolicy
*pol
;
1818 struct vm_area_struct
*new;
1820 if (is_vm_hugetlb_page(vma
) && (addr
&
1821 ~(huge_page_mask(hstate_vma(vma
)))))
1824 if (mm
->map_count
>= sysctl_max_map_count
)
1827 new = kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
1831 /* most fields are the same, copy all, and then fixup */
1837 new->vm_start
= addr
;
1838 new->vm_pgoff
+= ((addr
- vma
->vm_start
) >> PAGE_SHIFT
);
1841 pol
= mpol_dup(vma_policy(vma
));
1843 kmem_cache_free(vm_area_cachep
, new);
1844 return PTR_ERR(pol
);
1846 vma_set_policy(new, pol
);
1849 get_file(new->vm_file
);
1850 if (vma
->vm_flags
& VM_EXECUTABLE
)
1851 added_exe_file_vma(mm
);
1854 if (new->vm_ops
&& new->vm_ops
->open
)
1855 new->vm_ops
->open(new);
1858 vma_adjust(vma
, addr
, vma
->vm_end
, vma
->vm_pgoff
+
1859 ((addr
- new->vm_start
) >> PAGE_SHIFT
), new);
1861 vma_adjust(vma
, vma
->vm_start
, addr
, vma
->vm_pgoff
, new);
1866 /* Munmap is split into 2 main parts -- this part which finds
1867 * what needs doing, and the areas themselves, which do the
1868 * work. This now handles partial unmappings.
1869 * Jeremy Fitzhardinge <jeremy@goop.org>
1871 int do_munmap(struct mm_struct
*mm
, unsigned long start
, size_t len
)
1874 struct vm_area_struct
*vma
, *prev
, *last
;
1876 if ((start
& ~PAGE_MASK
) || start
> TASK_SIZE
|| len
> TASK_SIZE
-start
)
1879 if ((len
= PAGE_ALIGN(len
)) == 0)
1882 /* Find the first overlapping VMA */
1883 vma
= find_vma_prev(mm
, start
, &prev
);
1886 /* we have start < vma->vm_end */
1888 /* if it doesn't overlap, we have nothing.. */
1890 if (vma
->vm_start
>= end
)
1894 * If we need to split any vma, do it now to save pain later.
1896 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
1897 * unmapped vm_area_struct will remain in use: so lower split_vma
1898 * places tmp vma above, and higher split_vma places tmp vma below.
1900 if (start
> vma
->vm_start
) {
1901 int error
= split_vma(mm
, vma
, start
, 0);
1907 /* Does it split the last one? */
1908 last
= find_vma(mm
, end
);
1909 if (last
&& end
> last
->vm_start
) {
1910 int error
= split_vma(mm
, last
, end
, 1);
1914 vma
= prev
? prev
->vm_next
: mm
->mmap
;
1917 * unlock any mlock()ed ranges before detaching vmas
1919 if (mm
->locked_vm
) {
1920 struct vm_area_struct
*tmp
= vma
;
1921 while (tmp
&& tmp
->vm_start
< end
) {
1922 if (tmp
->vm_flags
& VM_LOCKED
) {
1923 mm
->locked_vm
-= vma_pages(tmp
);
1924 munlock_vma_pages_all(tmp
);
1931 * Remove the vma's, and unmap the actual pages
1933 detach_vmas_to_be_unmapped(mm
, vma
, prev
, end
);
1934 unmap_region(mm
, vma
, prev
, start
, end
);
1936 /* Fix up all other VM information */
1937 remove_vma_list(mm
, vma
);
1942 EXPORT_SYMBOL(do_munmap
);
1944 SYSCALL_DEFINE2(munmap
, unsigned long, addr
, size_t, len
)
1947 struct mm_struct
*mm
= current
->mm
;
1949 profile_munmap(addr
);
1951 down_write(&mm
->mmap_sem
);
1952 ret
= do_munmap(mm
, addr
, len
);
1953 up_write(&mm
->mmap_sem
);
1957 static inline void verify_mm_writelocked(struct mm_struct
*mm
)
1959 #ifdef CONFIG_DEBUG_VM
1960 if (unlikely(down_read_trylock(&mm
->mmap_sem
))) {
1962 up_read(&mm
->mmap_sem
);
1968 * this is really a simplified "do_mmap". it only handles
1969 * anonymous maps. eventually we may be able to do some
1970 * brk-specific accounting here.
1972 unsigned long do_brk(unsigned long addr
, unsigned long len
)
1974 struct mm_struct
* mm
= current
->mm
;
1975 struct vm_area_struct
* vma
, * prev
;
1976 unsigned long flags
;
1977 struct rb_node
** rb_link
, * rb_parent
;
1978 pgoff_t pgoff
= addr
>> PAGE_SHIFT
;
1981 len
= PAGE_ALIGN(len
);
1985 if ((addr
+ len
) > TASK_SIZE
|| (addr
+ len
) < addr
)
1988 if (is_hugepage_only_range(mm
, addr
, len
))
1991 error
= security_file_mmap(NULL
, 0, 0, 0, addr
, 1);
1995 flags
= VM_DATA_DEFAULT_FLAGS
| VM_ACCOUNT
| mm
->def_flags
;
1997 error
= arch_mmap_check(addr
, len
, flags
);
2004 if (mm
->def_flags
& VM_LOCKED
) {
2005 unsigned long locked
, lock_limit
;
2006 locked
= len
>> PAGE_SHIFT
;
2007 locked
+= mm
->locked_vm
;
2008 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
2009 lock_limit
>>= PAGE_SHIFT
;
2010 if (locked
> lock_limit
&& !capable(CAP_IPC_LOCK
))
2015 * mm->mmap_sem is required to protect against another thread
2016 * changing the mappings in case we sleep.
2018 verify_mm_writelocked(mm
);
2021 * Clear old maps. this also does some error checking for us
2024 vma
= find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2025 if (vma
&& vma
->vm_start
< addr
+ len
) {
2026 if (do_munmap(mm
, addr
, len
))
2031 /* Check against address space limits *after* clearing old maps... */
2032 if (!may_expand_vm(mm
, len
>> PAGE_SHIFT
))
2035 if (mm
->map_count
> sysctl_max_map_count
)
2038 if (security_vm_enough_memory(len
>> PAGE_SHIFT
))
2041 /* Can we just expand an old private anonymous mapping? */
2042 vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, flags
,
2043 NULL
, NULL
, pgoff
, NULL
);
2048 * create a vma struct for an anonymous mapping
2050 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2052 vm_unacct_memory(len
>> PAGE_SHIFT
);
2057 vma
->vm_start
= addr
;
2058 vma
->vm_end
= addr
+ len
;
2059 vma
->vm_pgoff
= pgoff
;
2060 vma
->vm_flags
= flags
;
2061 vma
->vm_page_prot
= vm_get_page_prot(flags
);
2062 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2064 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2065 if (flags
& VM_LOCKED
) {
2066 if (!mlock_vma_pages_range(vma
, addr
, addr
+ len
))
2067 mm
->locked_vm
+= (len
>> PAGE_SHIFT
);
2072 EXPORT_SYMBOL(do_brk
);
2074 /* Release all mmaps. */
2075 void exit_mmap(struct mm_struct
*mm
)
2077 struct mmu_gather
*tlb
;
2078 struct vm_area_struct
*vma
;
2079 unsigned long nr_accounted
= 0;
2082 /* mm's last user has gone, and its about to be pulled down */
2083 mmu_notifier_release(mm
);
2085 if (mm
->locked_vm
) {
2088 if (vma
->vm_flags
& VM_LOCKED
)
2089 munlock_vma_pages_all(vma
);
2097 if (!vma
) /* Can happen if dup_mmap() received an OOM */
2102 tlb
= tlb_gather_mmu(mm
, 1);
2103 /* update_hiwater_rss(mm) here? but nobody should be looking */
2104 /* Use -1 here to ensure all VMAs in the mm are unmapped */
2105 end
= unmap_vmas(&tlb
, vma
, 0, -1, &nr_accounted
, NULL
);
2106 vm_unacct_memory(nr_accounted
);
2107 free_pgtables(tlb
, vma
, FIRST_USER_ADDRESS
, 0);
2108 tlb_finish_mmu(tlb
, 0, end
);
2111 * Walk the list again, actually closing and freeing it,
2112 * with preemption enabled, without holding any MM locks.
2115 vma
= remove_vma(vma
);
2117 BUG_ON(mm
->nr_ptes
> (FIRST_USER_ADDRESS
+PMD_SIZE
-1)>>PMD_SHIFT
);
2120 /* Insert vm structure into process list sorted by address
2121 * and into the inode's i_mmap tree. If vm_file is non-NULL
2122 * then i_mmap_lock is taken here.
2124 int insert_vm_struct(struct mm_struct
* mm
, struct vm_area_struct
* vma
)
2126 struct vm_area_struct
* __vma
, * prev
;
2127 struct rb_node
** rb_link
, * rb_parent
;
2130 * The vm_pgoff of a purely anonymous vma should be irrelevant
2131 * until its first write fault, when page's anon_vma and index
2132 * are set. But now set the vm_pgoff it will almost certainly
2133 * end up with (unless mremap moves it elsewhere before that
2134 * first wfault), so /proc/pid/maps tells a consistent story.
2136 * By setting it to reflect the virtual start address of the
2137 * vma, merges and splits can happen in a seamless way, just
2138 * using the existing file pgoff checks and manipulations.
2139 * Similarly in do_mmap_pgoff and in do_brk.
2141 if (!vma
->vm_file
) {
2142 BUG_ON(vma
->anon_vma
);
2143 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2145 __vma
= find_vma_prepare(mm
,vma
->vm_start
,&prev
,&rb_link
,&rb_parent
);
2146 if (__vma
&& __vma
->vm_start
< vma
->vm_end
)
2148 if ((vma
->vm_flags
& VM_ACCOUNT
) &&
2149 security_vm_enough_memory_mm(mm
, vma_pages(vma
)))
2151 vma_link(mm
, vma
, prev
, rb_link
, rb_parent
);
2156 * Copy the vma structure to a new location in the same mm,
2157 * prior to moving page table entries, to effect an mremap move.
2159 struct vm_area_struct
*copy_vma(struct vm_area_struct
**vmap
,
2160 unsigned long addr
, unsigned long len
, pgoff_t pgoff
)
2162 struct vm_area_struct
*vma
= *vmap
;
2163 unsigned long vma_start
= vma
->vm_start
;
2164 struct mm_struct
*mm
= vma
->vm_mm
;
2165 struct vm_area_struct
*new_vma
, *prev
;
2166 struct rb_node
**rb_link
, *rb_parent
;
2167 struct mempolicy
*pol
;
2170 * If anonymous vma has not yet been faulted, update new pgoff
2171 * to match new location, to increase its chance of merging.
2173 if (!vma
->vm_file
&& !vma
->anon_vma
)
2174 pgoff
= addr
>> PAGE_SHIFT
;
2176 find_vma_prepare(mm
, addr
, &prev
, &rb_link
, &rb_parent
);
2177 new_vma
= vma_merge(mm
, prev
, addr
, addr
+ len
, vma
->vm_flags
,
2178 vma
->anon_vma
, vma
->vm_file
, pgoff
, vma_policy(vma
));
2181 * Source vma may have been merged into new_vma
2183 if (vma_start
>= new_vma
->vm_start
&&
2184 vma_start
< new_vma
->vm_end
)
2187 new_vma
= kmem_cache_alloc(vm_area_cachep
, GFP_KERNEL
);
2190 pol
= mpol_dup(vma_policy(vma
));
2192 kmem_cache_free(vm_area_cachep
, new_vma
);
2195 vma_set_policy(new_vma
, pol
);
2196 new_vma
->vm_start
= addr
;
2197 new_vma
->vm_end
= addr
+ len
;
2198 new_vma
->vm_pgoff
= pgoff
;
2199 if (new_vma
->vm_file
) {
2200 get_file(new_vma
->vm_file
);
2201 if (vma
->vm_flags
& VM_EXECUTABLE
)
2202 added_exe_file_vma(mm
);
2204 if (new_vma
->vm_ops
&& new_vma
->vm_ops
->open
)
2205 new_vma
->vm_ops
->open(new_vma
);
2206 vma_link(mm
, new_vma
, prev
, rb_link
, rb_parent
);
2213 * Return true if the calling process may expand its vm space by the passed
2216 int may_expand_vm(struct mm_struct
*mm
, unsigned long npages
)
2218 unsigned long cur
= mm
->total_vm
; /* pages */
2221 lim
= current
->signal
->rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
2223 if (cur
+ npages
> lim
)
2229 static int special_mapping_fault(struct vm_area_struct
*vma
,
2230 struct vm_fault
*vmf
)
2233 struct page
**pages
;
2236 * special mappings have no vm_file, and in that case, the mm
2237 * uses vm_pgoff internally. So we have to subtract it from here.
2238 * We are allowed to do this because we are the mm; do not copy
2239 * this code into drivers!
2241 pgoff
= vmf
->pgoff
- vma
->vm_pgoff
;
2243 for (pages
= vma
->vm_private_data
; pgoff
&& *pages
; ++pages
)
2247 struct page
*page
= *pages
;
2253 return VM_FAULT_SIGBUS
;
2257 * Having a close hook prevents vma merging regardless of flags.
2259 static void special_mapping_close(struct vm_area_struct
*vma
)
2263 static struct vm_operations_struct special_mapping_vmops
= {
2264 .close
= special_mapping_close
,
2265 .fault
= special_mapping_fault
,
2269 * Called with mm->mmap_sem held for writing.
2270 * Insert a new vma covering the given region, with the given flags.
2271 * Its pages are supplied by the given array of struct page *.
2272 * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2273 * The region past the last page supplied will always produce SIGBUS.
2274 * The array pointer and the pages it points to are assumed to stay alive
2275 * for as long as this mapping might exist.
2277 int install_special_mapping(struct mm_struct
*mm
,
2278 unsigned long addr
, unsigned long len
,
2279 unsigned long vm_flags
, struct page
**pages
)
2281 struct vm_area_struct
*vma
;
2283 vma
= kmem_cache_zalloc(vm_area_cachep
, GFP_KERNEL
);
2284 if (unlikely(vma
== NULL
))
2288 vma
->vm_start
= addr
;
2289 vma
->vm_end
= addr
+ len
;
2291 vma
->vm_flags
= vm_flags
| mm
->def_flags
| VM_DONTEXPAND
;
2292 vma
->vm_page_prot
= vm_get_page_prot(vma
->vm_flags
);
2294 vma
->vm_ops
= &special_mapping_vmops
;
2295 vma
->vm_private_data
= pages
;
2297 if (unlikely(insert_vm_struct(mm
, vma
))) {
2298 kmem_cache_free(vm_area_cachep
, vma
);
2302 mm
->total_vm
+= len
>> PAGE_SHIFT
;
2307 static DEFINE_MUTEX(mm_all_locks_mutex
);
2309 static void vm_lock_anon_vma(struct mm_struct
*mm
, struct anon_vma
*anon_vma
)
2311 if (!test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2313 * The LSB of head.next can't change from under us
2314 * because we hold the mm_all_locks_mutex.
2316 spin_lock_nest_lock(&anon_vma
->lock
, &mm
->mmap_sem
);
2318 * We can safely modify head.next after taking the
2319 * anon_vma->lock. If some other vma in this mm shares
2320 * the same anon_vma we won't take it again.
2322 * No need of atomic instructions here, head.next
2323 * can't change from under us thanks to the
2326 if (__test_and_set_bit(0, (unsigned long *)
2327 &anon_vma
->head
.next
))
2332 static void vm_lock_mapping(struct mm_struct
*mm
, struct address_space
*mapping
)
2334 if (!test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2336 * AS_MM_ALL_LOCKS can't change from under us because
2337 * we hold the mm_all_locks_mutex.
2339 * Operations on ->flags have to be atomic because
2340 * even if AS_MM_ALL_LOCKS is stable thanks to the
2341 * mm_all_locks_mutex, there may be other cpus
2342 * changing other bitflags in parallel to us.
2344 if (test_and_set_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
))
2346 spin_lock_nest_lock(&mapping
->i_mmap_lock
, &mm
->mmap_sem
);
2351 * This operation locks against the VM for all pte/vma/mm related
2352 * operations that could ever happen on a certain mm. This includes
2353 * vmtruncate, try_to_unmap, and all page faults.
2355 * The caller must take the mmap_sem in write mode before calling
2356 * mm_take_all_locks(). The caller isn't allowed to release the
2357 * mmap_sem until mm_drop_all_locks() returns.
2359 * mmap_sem in write mode is required in order to block all operations
2360 * that could modify pagetables and free pages without need of
2361 * altering the vma layout (for example populate_range() with
2362 * nonlinear vmas). It's also needed in write mode to avoid new
2363 * anon_vmas to be associated with existing vmas.
2365 * A single task can't take more than one mm_take_all_locks() in a row
2366 * or it would deadlock.
2368 * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2369 * mapping->flags avoid to take the same lock twice, if more than one
2370 * vma in this mm is backed by the same anon_vma or address_space.
2372 * We can take all the locks in random order because the VM code
2373 * taking i_mmap_lock or anon_vma->lock outside the mmap_sem never
2374 * takes more than one of them in a row. Secondly we're protected
2375 * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2377 * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2378 * that may have to take thousand of locks.
2380 * mm_take_all_locks() can fail if it's interrupted by signals.
2382 int mm_take_all_locks(struct mm_struct
*mm
)
2384 struct vm_area_struct
*vma
;
2387 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2389 mutex_lock(&mm_all_locks_mutex
);
2391 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2392 if (signal_pending(current
))
2394 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2395 vm_lock_mapping(mm
, vma
->vm_file
->f_mapping
);
2398 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2399 if (signal_pending(current
))
2402 vm_lock_anon_vma(mm
, vma
->anon_vma
);
2409 mm_drop_all_locks(mm
);
2414 static void vm_unlock_anon_vma(struct anon_vma
*anon_vma
)
2416 if (test_bit(0, (unsigned long *) &anon_vma
->head
.next
)) {
2418 * The LSB of head.next can't change to 0 from under
2419 * us because we hold the mm_all_locks_mutex.
2421 * We must however clear the bitflag before unlocking
2422 * the vma so the users using the anon_vma->head will
2423 * never see our bitflag.
2425 * No need of atomic instructions here, head.next
2426 * can't change from under us until we release the
2429 if (!__test_and_clear_bit(0, (unsigned long *)
2430 &anon_vma
->head
.next
))
2432 spin_unlock(&anon_vma
->lock
);
2436 static void vm_unlock_mapping(struct address_space
*mapping
)
2438 if (test_bit(AS_MM_ALL_LOCKS
, &mapping
->flags
)) {
2440 * AS_MM_ALL_LOCKS can't change to 0 from under us
2441 * because we hold the mm_all_locks_mutex.
2443 spin_unlock(&mapping
->i_mmap_lock
);
2444 if (!test_and_clear_bit(AS_MM_ALL_LOCKS
,
2451 * The mmap_sem cannot be released by the caller until
2452 * mm_drop_all_locks() returns.
2454 void mm_drop_all_locks(struct mm_struct
*mm
)
2456 struct vm_area_struct
*vma
;
2458 BUG_ON(down_read_trylock(&mm
->mmap_sem
));
2459 BUG_ON(!mutex_is_locked(&mm_all_locks_mutex
));
2461 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
2463 vm_unlock_anon_vma(vma
->anon_vma
);
2464 if (vma
->vm_file
&& vma
->vm_file
->f_mapping
)
2465 vm_unlock_mapping(vma
->vm_file
->f_mapping
);
2468 mutex_unlock(&mm_all_locks_mutex
);
2472 * initialise the VMA slab
2474 void __init
mmap_init(void)
2478 ret
= percpu_counter_init(&vm_committed_as
, 0);
2480 vm_area_cachep
= kmem_cache_create("vm_area_struct",
2481 sizeof(struct vm_area_struct
), 0,