vfs: Fix sys_sync() and fsync_super() reliability (version 4)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blob18d159dc1e406cc117378a6f122950ad0e31c298
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h> /* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h> /* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <asm/uaccess.h>
42 #include "internal.h"
45 LIST_HEAD(super_blocks);
46 DEFINE_SPINLOCK(sb_lock);
48 /**
49 * alloc_super - create new superblock
50 * @type: filesystem type superblock should belong to
52 * Allocates and initializes a new &struct super_block. alloc_super()
53 * returns a pointer new superblock or %NULL if allocation had failed.
55 static struct super_block *alloc_super(struct file_system_type *type)
57 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
58 static struct super_operations default_op;
60 if (s) {
61 if (security_sb_alloc(s)) {
62 kfree(s);
63 s = NULL;
64 goto out;
66 INIT_LIST_HEAD(&s->s_dirty);
67 INIT_LIST_HEAD(&s->s_io);
68 INIT_LIST_HEAD(&s->s_more_io);
69 INIT_LIST_HEAD(&s->s_files);
70 INIT_LIST_HEAD(&s->s_instances);
71 INIT_HLIST_HEAD(&s->s_anon);
72 INIT_LIST_HEAD(&s->s_inodes);
73 INIT_LIST_HEAD(&s->s_dentry_lru);
74 init_rwsem(&s->s_umount);
75 mutex_init(&s->s_lock);
76 lockdep_set_class(&s->s_umount, &type->s_umount_key);
78 * The locking rules for s_lock are up to the
79 * filesystem. For example ext3fs has different
80 * lock ordering than usbfs:
82 lockdep_set_class(&s->s_lock, &type->s_lock_key);
84 * sget() can have s_umount recursion.
86 * When it cannot find a suitable sb, it allocates a new
87 * one (this one), and tries again to find a suitable old
88 * one.
90 * In case that succeeds, it will acquire the s_umount
91 * lock of the old one. Since these are clearly distrinct
92 * locks, and this object isn't exposed yet, there's no
93 * risk of deadlocks.
95 * Annotate this by putting this lock in a different
96 * subclass.
98 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
99 s->s_count = S_BIAS;
100 atomic_set(&s->s_active, 1);
101 mutex_init(&s->s_vfs_rename_mutex);
102 mutex_init(&s->s_dquot.dqio_mutex);
103 mutex_init(&s->s_dquot.dqonoff_mutex);
104 init_rwsem(&s->s_dquot.dqptr_sem);
105 init_waitqueue_head(&s->s_wait_unfrozen);
106 s->s_maxbytes = MAX_NON_LFS;
107 s->dq_op = sb_dquot_ops;
108 s->s_qcop = sb_quotactl_ops;
109 s->s_op = &default_op;
110 s->s_time_gran = 1000000000;
112 out:
113 return s;
117 * destroy_super - frees a superblock
118 * @s: superblock to free
120 * Frees a superblock.
122 static inline void destroy_super(struct super_block *s)
124 security_sb_free(s);
125 kfree(s->s_subtype);
126 kfree(s->s_options);
127 kfree(s);
130 /* Superblock refcounting */
133 * Drop a superblock's refcount. Returns non-zero if the superblock was
134 * destroyed. The caller must hold sb_lock.
136 static int __put_super(struct super_block *sb)
138 int ret = 0;
140 if (!--sb->s_count) {
141 destroy_super(sb);
142 ret = 1;
144 return ret;
148 * Drop a superblock's refcount.
149 * Returns non-zero if the superblock is about to be destroyed and
150 * at least is already removed from super_blocks list, so if we are
151 * making a loop through super blocks then we need to restart.
152 * The caller must hold sb_lock.
154 int __put_super_and_need_restart(struct super_block *sb)
156 /* check for race with generic_shutdown_super() */
157 if (list_empty(&sb->s_list)) {
158 /* super block is removed, need to restart... */
159 __put_super(sb);
160 return 1;
162 /* can't be the last, since s_list is still in use */
163 sb->s_count--;
164 BUG_ON(sb->s_count == 0);
165 return 0;
169 * put_super - drop a temporary reference to superblock
170 * @sb: superblock in question
172 * Drops a temporary reference, frees superblock if there's no
173 * references left.
175 static void put_super(struct super_block *sb)
177 spin_lock(&sb_lock);
178 __put_super(sb);
179 spin_unlock(&sb_lock);
184 * deactivate_super - drop an active reference to superblock
185 * @s: superblock to deactivate
187 * Drops an active reference to superblock, acquiring a temprory one if
188 * there is no active references left. In that case we lock superblock,
189 * tell fs driver to shut it down and drop the temporary reference we
190 * had just acquired.
192 void deactivate_super(struct super_block *s)
194 struct file_system_type *fs = s->s_type;
195 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
196 s->s_count -= S_BIAS-1;
197 spin_unlock(&sb_lock);
198 vfs_dq_off(s, 0);
199 down_write(&s->s_umount);
200 fs->kill_sb(s);
201 put_filesystem(fs);
202 put_super(s);
206 EXPORT_SYMBOL(deactivate_super);
209 * deactivate_locked_super - drop an active reference to superblock
210 * @s: superblock to deactivate
212 * Equivalent of up_write(&s->s_umount); deactivate_super(s);, except that
213 * it does not unlock it until it's all over. As the result, it's safe to
214 * use to dispose of new superblock on ->get_sb() failure exits - nobody
215 * will see the sucker until it's all over. Equivalent using up_write +
216 * deactivate_super is safe for that purpose only if superblock is either
217 * safe to use or has NULL ->s_root when we unlock.
219 void deactivate_locked_super(struct super_block *s)
221 struct file_system_type *fs = s->s_type;
222 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
223 s->s_count -= S_BIAS-1;
224 spin_unlock(&sb_lock);
225 vfs_dq_off(s, 0);
226 fs->kill_sb(s);
227 put_filesystem(fs);
228 put_super(s);
229 } else {
230 up_write(&s->s_umount);
234 EXPORT_SYMBOL(deactivate_locked_super);
237 * grab_super - acquire an active reference
238 * @s: reference we are trying to make active
240 * Tries to acquire an active reference. grab_super() is used when we
241 * had just found a superblock in super_blocks or fs_type->fs_supers
242 * and want to turn it into a full-blown active reference. grab_super()
243 * is called with sb_lock held and drops it. Returns 1 in case of
244 * success, 0 if we had failed (superblock contents was already dead or
245 * dying when grab_super() had been called).
247 static int grab_super(struct super_block *s) __releases(sb_lock)
249 s->s_count++;
250 spin_unlock(&sb_lock);
251 down_write(&s->s_umount);
252 if (s->s_root) {
253 spin_lock(&sb_lock);
254 if (s->s_count > S_BIAS) {
255 atomic_inc(&s->s_active);
256 s->s_count--;
257 spin_unlock(&sb_lock);
258 return 1;
260 spin_unlock(&sb_lock);
262 up_write(&s->s_umount);
263 put_super(s);
264 yield();
265 return 0;
269 * Superblock locking. We really ought to get rid of these two.
271 void lock_super(struct super_block * sb)
273 get_fs_excl();
274 mutex_lock(&sb->s_lock);
277 void unlock_super(struct super_block * sb)
279 put_fs_excl();
280 mutex_unlock(&sb->s_lock);
283 EXPORT_SYMBOL(lock_super);
284 EXPORT_SYMBOL(unlock_super);
287 * Write out and wait upon all dirty data associated with this
288 * superblock. Filesystem data as well as the underlying block
289 * device. Takes the superblock lock. Requires a second blkdev
290 * flush by the caller to complete the operation.
292 void __fsync_super(struct super_block *sb)
294 sync_inodes_sb(sb, 0);
295 vfs_dq_sync(sb);
296 sync_inodes_sb(sb, 1);
297 lock_super(sb);
298 if (sb->s_dirt && sb->s_op->write_super)
299 sb->s_op->write_super(sb);
300 unlock_super(sb);
301 if (sb->s_op->sync_fs)
302 sb->s_op->sync_fs(sb, 1);
303 sync_blockdev(sb->s_bdev);
307 * Write out and wait upon all dirty data associated with this
308 * superblock. Filesystem data as well as the underlying block
309 * device. Takes the superblock lock.
311 int fsync_super(struct super_block *sb)
313 __fsync_super(sb);
314 return sync_blockdev(sb->s_bdev);
316 EXPORT_SYMBOL_GPL(fsync_super);
319 * generic_shutdown_super - common helper for ->kill_sb()
320 * @sb: superblock to kill
322 * generic_shutdown_super() does all fs-independent work on superblock
323 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
324 * that need destruction out of superblock, call generic_shutdown_super()
325 * and release aforementioned objects. Note: dentries and inodes _are_
326 * taken care of and do not need specific handling.
328 * Upon calling this function, the filesystem may no longer alter or
329 * rearrange the set of dentries belonging to this super_block, nor may it
330 * change the attachments of dentries to inodes.
332 void generic_shutdown_super(struct super_block *sb)
334 const struct super_operations *sop = sb->s_op;
337 if (sb->s_root) {
338 shrink_dcache_for_umount(sb);
339 fsync_super(sb);
340 lock_super(sb);
341 sb->s_flags &= ~MS_ACTIVE;
343 /* bad name - it should be evict_inodes() */
344 invalidate_inodes(sb);
345 lock_kernel();
347 if (sop->write_super && sb->s_dirt)
348 sop->write_super(sb);
349 if (sop->put_super)
350 sop->put_super(sb);
352 /* Forget any remaining inodes */
353 if (invalidate_inodes(sb)) {
354 printk("VFS: Busy inodes after unmount of %s. "
355 "Self-destruct in 5 seconds. Have a nice day...\n",
356 sb->s_id);
359 unlock_kernel();
360 unlock_super(sb);
362 spin_lock(&sb_lock);
363 /* should be initialized for __put_super_and_need_restart() */
364 list_del_init(&sb->s_list);
365 list_del(&sb->s_instances);
366 spin_unlock(&sb_lock);
367 up_write(&sb->s_umount);
370 EXPORT_SYMBOL(generic_shutdown_super);
373 * sget - find or create a superblock
374 * @type: filesystem type superblock should belong to
375 * @test: comparison callback
376 * @set: setup callback
377 * @data: argument to each of them
379 struct super_block *sget(struct file_system_type *type,
380 int (*test)(struct super_block *,void *),
381 int (*set)(struct super_block *,void *),
382 void *data)
384 struct super_block *s = NULL;
385 struct super_block *old;
386 int err;
388 retry:
389 spin_lock(&sb_lock);
390 if (test) {
391 list_for_each_entry(old, &type->fs_supers, s_instances) {
392 if (!test(old, data))
393 continue;
394 if (!grab_super(old))
395 goto retry;
396 if (s) {
397 up_write(&s->s_umount);
398 destroy_super(s);
400 return old;
403 if (!s) {
404 spin_unlock(&sb_lock);
405 s = alloc_super(type);
406 if (!s)
407 return ERR_PTR(-ENOMEM);
408 goto retry;
411 err = set(s, data);
412 if (err) {
413 spin_unlock(&sb_lock);
414 up_write(&s->s_umount);
415 destroy_super(s);
416 return ERR_PTR(err);
418 s->s_type = type;
419 strlcpy(s->s_id, type->name, sizeof(s->s_id));
420 list_add_tail(&s->s_list, &super_blocks);
421 list_add(&s->s_instances, &type->fs_supers);
422 spin_unlock(&sb_lock);
423 get_filesystem(type);
424 return s;
427 EXPORT_SYMBOL(sget);
429 void drop_super(struct super_block *sb)
431 up_read(&sb->s_umount);
432 put_super(sb);
435 EXPORT_SYMBOL(drop_super);
437 static inline void write_super(struct super_block *sb)
439 lock_super(sb);
440 if (sb->s_root && sb->s_dirt)
441 if (sb->s_op->write_super)
442 sb->s_op->write_super(sb);
443 unlock_super(sb);
447 * Note: check the dirty flag before waiting, so we don't
448 * hold up the sync while mounting a device. (The newly
449 * mounted device won't need syncing.)
451 void sync_supers(void)
453 struct super_block *sb;
455 spin_lock(&sb_lock);
456 restart:
457 list_for_each_entry(sb, &super_blocks, s_list) {
458 if (sb->s_dirt) {
459 sb->s_count++;
460 spin_unlock(&sb_lock);
461 down_read(&sb->s_umount);
462 write_super(sb);
463 up_read(&sb->s_umount);
464 spin_lock(&sb_lock);
465 if (__put_super_and_need_restart(sb))
466 goto restart;
469 spin_unlock(&sb_lock);
473 * Call the ->sync_fs super_op against all filesystems which are r/w and
474 * which implement it.
476 * This operation is careful to avoid the livelock which could easily happen
477 * if two or more filesystems are being continuously dirtied. s_need_sync_fs
478 * is used only here. We set it against all filesystems and then clear it as
479 * we sync them. So redirtied filesystems are skipped.
481 * But if process A is currently running sync_filesystems and then process B
482 * calls sync_filesystems as well, process B will set all the s_need_sync_fs
483 * flags again, which will cause process A to resync everything. Fix that with
484 * a local mutex.
486 * (Fabian) Avoid sync_fs with clean fs & wait mode 0
488 void sync_filesystems(int wait)
490 struct super_block *sb;
491 static DEFINE_MUTEX(mutex);
493 mutex_lock(&mutex); /* Could be down_interruptible */
494 spin_lock(&sb_lock);
495 list_for_each_entry(sb, &super_blocks, s_list) {
496 if (!sb->s_op->sync_fs)
497 continue;
498 if (sb->s_flags & MS_RDONLY)
499 continue;
500 sb->s_need_sync_fs = 1;
503 restart:
504 list_for_each_entry(sb, &super_blocks, s_list) {
505 if (!sb->s_need_sync_fs)
506 continue;
507 sb->s_need_sync_fs = 0;
508 if (sb->s_flags & MS_RDONLY)
509 continue; /* hm. Was remounted r/o meanwhile */
510 sb->s_count++;
511 spin_unlock(&sb_lock);
512 down_read(&sb->s_umount);
513 if (sb->s_root && (wait || sb->s_dirt))
514 sb->s_op->sync_fs(sb, wait);
515 up_read(&sb->s_umount);
516 /* restart only when sb is no longer on the list */
517 spin_lock(&sb_lock);
518 if (__put_super_and_need_restart(sb))
519 goto restart;
521 spin_unlock(&sb_lock);
522 mutex_unlock(&mutex);
525 #ifdef CONFIG_BLOCK
527 * Sync all block devices underlying some superblock
529 void sync_blockdevs(void)
531 struct super_block *sb;
533 spin_lock(&sb_lock);
534 restart:
535 list_for_each_entry(sb, &super_blocks, s_list) {
536 if (!sb->s_bdev)
537 continue;
538 sb->s_count++;
539 spin_unlock(&sb_lock);
540 down_read(&sb->s_umount);
541 if (sb->s_root)
542 sync_blockdev(sb->s_bdev);
543 up_read(&sb->s_umount);
544 spin_lock(&sb_lock);
545 if (__put_super_and_need_restart(sb))
546 goto restart;
548 spin_unlock(&sb_lock);
550 #endif
553 * get_super - get the superblock of a device
554 * @bdev: device to get the superblock for
556 * Scans the superblock list and finds the superblock of the file system
557 * mounted on the device given. %NULL is returned if no match is found.
560 struct super_block * get_super(struct block_device *bdev)
562 struct super_block *sb;
564 if (!bdev)
565 return NULL;
567 spin_lock(&sb_lock);
568 rescan:
569 list_for_each_entry(sb, &super_blocks, s_list) {
570 if (sb->s_bdev == bdev) {
571 sb->s_count++;
572 spin_unlock(&sb_lock);
573 down_read(&sb->s_umount);
574 if (sb->s_root)
575 return sb;
576 up_read(&sb->s_umount);
577 /* restart only when sb is no longer on the list */
578 spin_lock(&sb_lock);
579 if (__put_super_and_need_restart(sb))
580 goto rescan;
583 spin_unlock(&sb_lock);
584 return NULL;
587 EXPORT_SYMBOL(get_super);
589 struct super_block * user_get_super(dev_t dev)
591 struct super_block *sb;
593 spin_lock(&sb_lock);
594 rescan:
595 list_for_each_entry(sb, &super_blocks, s_list) {
596 if (sb->s_dev == dev) {
597 sb->s_count++;
598 spin_unlock(&sb_lock);
599 down_read(&sb->s_umount);
600 if (sb->s_root)
601 return sb;
602 up_read(&sb->s_umount);
603 /* restart only when sb is no longer on the list */
604 spin_lock(&sb_lock);
605 if (__put_super_and_need_restart(sb))
606 goto rescan;
609 spin_unlock(&sb_lock);
610 return NULL;
613 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
615 struct super_block *s;
616 struct ustat tmp;
617 struct kstatfs sbuf;
618 int err = -EINVAL;
620 s = user_get_super(new_decode_dev(dev));
621 if (s == NULL)
622 goto out;
623 err = vfs_statfs(s->s_root, &sbuf);
624 drop_super(s);
625 if (err)
626 goto out;
628 memset(&tmp,0,sizeof(struct ustat));
629 tmp.f_tfree = sbuf.f_bfree;
630 tmp.f_tinode = sbuf.f_ffree;
632 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
633 out:
634 return err;
638 * do_remount_sb - asks filesystem to change mount options.
639 * @sb: superblock in question
640 * @flags: numeric part of options
641 * @data: the rest of options
642 * @force: whether or not to force the change
644 * Alters the mount options of a mounted file system.
646 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
648 int retval;
649 int remount_rw;
651 #ifdef CONFIG_BLOCK
652 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
653 return -EACCES;
654 #endif
655 if (flags & MS_RDONLY)
656 acct_auto_close(sb);
657 shrink_dcache_sb(sb);
658 fsync_super(sb);
660 /* If we are remounting RDONLY and current sb is read/write,
661 make sure there are no rw files opened */
662 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
663 if (force)
664 mark_files_ro(sb);
665 else if (!fs_may_remount_ro(sb))
666 return -EBUSY;
667 retval = vfs_dq_off(sb, 1);
668 if (retval < 0 && retval != -ENOSYS)
669 return -EBUSY;
671 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
673 if (sb->s_op->remount_fs) {
674 lock_super(sb);
675 retval = sb->s_op->remount_fs(sb, &flags, data);
676 unlock_super(sb);
677 if (retval)
678 return retval;
680 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
681 if (remount_rw)
682 vfs_dq_quota_on_remount(sb);
683 return 0;
686 static void do_emergency_remount(struct work_struct *work)
688 struct super_block *sb;
690 spin_lock(&sb_lock);
691 list_for_each_entry(sb, &super_blocks, s_list) {
692 sb->s_count++;
693 spin_unlock(&sb_lock);
694 down_read(&sb->s_umount);
695 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
697 * ->remount_fs needs lock_kernel().
699 * What lock protects sb->s_flags??
701 lock_kernel();
702 do_remount_sb(sb, MS_RDONLY, NULL, 1);
703 unlock_kernel();
705 drop_super(sb);
706 spin_lock(&sb_lock);
708 spin_unlock(&sb_lock);
709 kfree(work);
710 printk("Emergency Remount complete\n");
713 void emergency_remount(void)
715 struct work_struct *work;
717 work = kmalloc(sizeof(*work), GFP_ATOMIC);
718 if (work) {
719 INIT_WORK(work, do_emergency_remount);
720 schedule_work(work);
725 * Unnamed block devices are dummy devices used by virtual
726 * filesystems which don't use real block-devices. -- jrs
729 static DEFINE_IDA(unnamed_dev_ida);
730 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
732 int set_anon_super(struct super_block *s, void *data)
734 int dev;
735 int error;
737 retry:
738 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
739 return -ENOMEM;
740 spin_lock(&unnamed_dev_lock);
741 error = ida_get_new(&unnamed_dev_ida, &dev);
742 spin_unlock(&unnamed_dev_lock);
743 if (error == -EAGAIN)
744 /* We raced and lost with another CPU. */
745 goto retry;
746 else if (error)
747 return -EAGAIN;
749 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
750 spin_lock(&unnamed_dev_lock);
751 ida_remove(&unnamed_dev_ida, dev);
752 spin_unlock(&unnamed_dev_lock);
753 return -EMFILE;
755 s->s_dev = MKDEV(0, dev & MINORMASK);
756 return 0;
759 EXPORT_SYMBOL(set_anon_super);
761 void kill_anon_super(struct super_block *sb)
763 int slot = MINOR(sb->s_dev);
765 generic_shutdown_super(sb);
766 spin_lock(&unnamed_dev_lock);
767 ida_remove(&unnamed_dev_ida, slot);
768 spin_unlock(&unnamed_dev_lock);
771 EXPORT_SYMBOL(kill_anon_super);
773 void kill_litter_super(struct super_block *sb)
775 if (sb->s_root)
776 d_genocide(sb->s_root);
777 kill_anon_super(sb);
780 EXPORT_SYMBOL(kill_litter_super);
782 static int ns_test_super(struct super_block *sb, void *data)
784 return sb->s_fs_info == data;
787 static int ns_set_super(struct super_block *sb, void *data)
789 sb->s_fs_info = data;
790 return set_anon_super(sb, NULL);
793 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
794 int (*fill_super)(struct super_block *, void *, int),
795 struct vfsmount *mnt)
797 struct super_block *sb;
799 sb = sget(fs_type, ns_test_super, ns_set_super, data);
800 if (IS_ERR(sb))
801 return PTR_ERR(sb);
803 if (!sb->s_root) {
804 int err;
805 sb->s_flags = flags;
806 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
807 if (err) {
808 deactivate_locked_super(sb);
809 return err;
812 sb->s_flags |= MS_ACTIVE;
815 simple_set_mnt(mnt, sb);
816 return 0;
819 EXPORT_SYMBOL(get_sb_ns);
821 #ifdef CONFIG_BLOCK
822 static int set_bdev_super(struct super_block *s, void *data)
824 s->s_bdev = data;
825 s->s_dev = s->s_bdev->bd_dev;
826 return 0;
829 static int test_bdev_super(struct super_block *s, void *data)
831 return (void *)s->s_bdev == data;
834 int get_sb_bdev(struct file_system_type *fs_type,
835 int flags, const char *dev_name, void *data,
836 int (*fill_super)(struct super_block *, void *, int),
837 struct vfsmount *mnt)
839 struct block_device *bdev;
840 struct super_block *s;
841 fmode_t mode = FMODE_READ;
842 int error = 0;
844 if (!(flags & MS_RDONLY))
845 mode |= FMODE_WRITE;
847 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
848 if (IS_ERR(bdev))
849 return PTR_ERR(bdev);
852 * once the super is inserted into the list by sget, s_umount
853 * will protect the lockfs code from trying to start a snapshot
854 * while we are mounting
856 down(&bdev->bd_mount_sem);
857 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
858 up(&bdev->bd_mount_sem);
859 if (IS_ERR(s))
860 goto error_s;
862 if (s->s_root) {
863 if ((flags ^ s->s_flags) & MS_RDONLY) {
864 deactivate_locked_super(s);
865 error = -EBUSY;
866 goto error_bdev;
869 close_bdev_exclusive(bdev, mode);
870 } else {
871 char b[BDEVNAME_SIZE];
873 s->s_flags = flags;
874 s->s_mode = mode;
875 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
876 sb_set_blocksize(s, block_size(bdev));
877 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
878 if (error) {
879 deactivate_locked_super(s);
880 goto error;
883 s->s_flags |= MS_ACTIVE;
884 bdev->bd_super = s;
887 simple_set_mnt(mnt, s);
888 return 0;
890 error_s:
891 error = PTR_ERR(s);
892 error_bdev:
893 close_bdev_exclusive(bdev, mode);
894 error:
895 return error;
898 EXPORT_SYMBOL(get_sb_bdev);
900 void kill_block_super(struct super_block *sb)
902 struct block_device *bdev = sb->s_bdev;
903 fmode_t mode = sb->s_mode;
905 bdev->bd_super = NULL;
906 generic_shutdown_super(sb);
907 sync_blockdev(bdev);
908 close_bdev_exclusive(bdev, mode);
911 EXPORT_SYMBOL(kill_block_super);
912 #endif
914 int get_sb_nodev(struct file_system_type *fs_type,
915 int flags, void *data,
916 int (*fill_super)(struct super_block *, void *, int),
917 struct vfsmount *mnt)
919 int error;
920 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
922 if (IS_ERR(s))
923 return PTR_ERR(s);
925 s->s_flags = flags;
927 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
928 if (error) {
929 deactivate_locked_super(s);
930 return error;
932 s->s_flags |= MS_ACTIVE;
933 simple_set_mnt(mnt, s);
934 return 0;
937 EXPORT_SYMBOL(get_sb_nodev);
939 static int compare_single(struct super_block *s, void *p)
941 return 1;
944 int get_sb_single(struct file_system_type *fs_type,
945 int flags, void *data,
946 int (*fill_super)(struct super_block *, void *, int),
947 struct vfsmount *mnt)
949 struct super_block *s;
950 int error;
952 s = sget(fs_type, compare_single, set_anon_super, NULL);
953 if (IS_ERR(s))
954 return PTR_ERR(s);
955 if (!s->s_root) {
956 s->s_flags = flags;
957 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
958 if (error) {
959 deactivate_locked_super(s);
960 return error;
962 s->s_flags |= MS_ACTIVE;
964 do_remount_sb(s, flags, data, 0);
965 simple_set_mnt(mnt, s);
966 return 0;
969 EXPORT_SYMBOL(get_sb_single);
971 struct vfsmount *
972 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
974 struct vfsmount *mnt;
975 char *secdata = NULL;
976 int error;
978 if (!type)
979 return ERR_PTR(-ENODEV);
981 error = -ENOMEM;
982 mnt = alloc_vfsmnt(name);
983 if (!mnt)
984 goto out;
986 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
987 secdata = alloc_secdata();
988 if (!secdata)
989 goto out_mnt;
991 error = security_sb_copy_data(data, secdata);
992 if (error)
993 goto out_free_secdata;
996 error = type->get_sb(type, flags, name, data, mnt);
997 if (error < 0)
998 goto out_free_secdata;
999 BUG_ON(!mnt->mnt_sb);
1001 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
1002 if (error)
1003 goto out_sb;
1005 mnt->mnt_mountpoint = mnt->mnt_root;
1006 mnt->mnt_parent = mnt;
1007 up_write(&mnt->mnt_sb->s_umount);
1008 free_secdata(secdata);
1009 return mnt;
1010 out_sb:
1011 dput(mnt->mnt_root);
1012 deactivate_locked_super(mnt->mnt_sb);
1013 out_free_secdata:
1014 free_secdata(secdata);
1015 out_mnt:
1016 free_vfsmnt(mnt);
1017 out:
1018 return ERR_PTR(error);
1021 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1023 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1025 int err;
1026 const char *subtype = strchr(fstype, '.');
1027 if (subtype) {
1028 subtype++;
1029 err = -EINVAL;
1030 if (!subtype[0])
1031 goto err;
1032 } else
1033 subtype = "";
1035 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1036 err = -ENOMEM;
1037 if (!mnt->mnt_sb->s_subtype)
1038 goto err;
1039 return mnt;
1041 err:
1042 mntput(mnt);
1043 return ERR_PTR(err);
1046 struct vfsmount *
1047 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1049 struct file_system_type *type = get_fs_type(fstype);
1050 struct vfsmount *mnt;
1051 if (!type)
1052 return ERR_PTR(-ENODEV);
1053 mnt = vfs_kern_mount(type, flags, name, data);
1054 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1055 !mnt->mnt_sb->s_subtype)
1056 mnt = fs_set_subtype(mnt, fstype);
1057 put_filesystem(type);
1058 return mnt;
1060 EXPORT_SYMBOL_GPL(do_kern_mount);
1062 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1064 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1067 EXPORT_SYMBOL_GPL(kern_mount_data);