mx3/kzm_arm11_01: define and use board specific IO_ADDRESS macro
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memory-failure.c
blob17299fd4577c6fc903b5fcb15e52f7fba4f2149d
1 /*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
9 * High level machine check handler. Handles pages reported by the
10 * hardware as being corrupted usually due to a 2bit ECC memory or cache
11 * failure.
13 * Handles page cache pages in various states. The tricky part
14 * here is that we can access any page asynchronous to other VM
15 * users, because memory failures could happen anytime and anywhere,
16 * possibly violating some of their assumptions. This is why this code
17 * has to be extremely careful. Generally it tries to use normal locking
18 * rules, as in get the standard locks, even if that means the
19 * error handling takes potentially a long time.
21 * The operation to map back from RMAP chains to processes has to walk
22 * the complete process list and has non linear complexity with the number
23 * mappings. In short it can be quite slow. But since memory corruptions
24 * are rare we hope to get away with this.
28 * Notebook:
29 * - hugetlb needs more code
30 * - kcore/oldmem/vmcore/mem/kmem check for hwpoison pages
31 * - pass bad pages to kdump next kernel
33 #define DEBUG 1 /* remove me in 2.6.34 */
34 #include <linux/kernel.h>
35 #include <linux/mm.h>
36 #include <linux/page-flags.h>
37 #include <linux/kernel-page-flags.h>
38 #include <linux/sched.h>
39 #include <linux/ksm.h>
40 #include <linux/rmap.h>
41 #include <linux/pagemap.h>
42 #include <linux/swap.h>
43 #include <linux/backing-dev.h>
44 #include <linux/migrate.h>
45 #include <linux/page-isolation.h>
46 #include <linux/suspend.h>
47 #include "internal.h"
49 int sysctl_memory_failure_early_kill __read_mostly = 0;
51 int sysctl_memory_failure_recovery __read_mostly = 1;
53 atomic_long_t mce_bad_pages __read_mostly = ATOMIC_LONG_INIT(0);
55 #if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
57 u32 hwpoison_filter_enable = 0;
58 u32 hwpoison_filter_dev_major = ~0U;
59 u32 hwpoison_filter_dev_minor = ~0U;
60 u64 hwpoison_filter_flags_mask;
61 u64 hwpoison_filter_flags_value;
62 EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
63 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
64 EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
65 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
66 EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
68 static int hwpoison_filter_dev(struct page *p)
70 struct address_space *mapping;
71 dev_t dev;
73 if (hwpoison_filter_dev_major == ~0U &&
74 hwpoison_filter_dev_minor == ~0U)
75 return 0;
78 * page_mapping() does not accept slab page
80 if (PageSlab(p))
81 return -EINVAL;
83 mapping = page_mapping(p);
84 if (mapping == NULL || mapping->host == NULL)
85 return -EINVAL;
87 dev = mapping->host->i_sb->s_dev;
88 if (hwpoison_filter_dev_major != ~0U &&
89 hwpoison_filter_dev_major != MAJOR(dev))
90 return -EINVAL;
91 if (hwpoison_filter_dev_minor != ~0U &&
92 hwpoison_filter_dev_minor != MINOR(dev))
93 return -EINVAL;
95 return 0;
98 static int hwpoison_filter_flags(struct page *p)
100 if (!hwpoison_filter_flags_mask)
101 return 0;
103 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
104 hwpoison_filter_flags_value)
105 return 0;
106 else
107 return -EINVAL;
111 * This allows stress tests to limit test scope to a collection of tasks
112 * by putting them under some memcg. This prevents killing unrelated/important
113 * processes such as /sbin/init. Note that the target task may share clean
114 * pages with init (eg. libc text), which is harmless. If the target task
115 * share _dirty_ pages with another task B, the test scheme must make sure B
116 * is also included in the memcg. At last, due to race conditions this filter
117 * can only guarantee that the page either belongs to the memcg tasks, or is
118 * a freed page.
120 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
121 u64 hwpoison_filter_memcg;
122 EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
123 static int hwpoison_filter_task(struct page *p)
125 struct mem_cgroup *mem;
126 struct cgroup_subsys_state *css;
127 unsigned long ino;
129 if (!hwpoison_filter_memcg)
130 return 0;
132 mem = try_get_mem_cgroup_from_page(p);
133 if (!mem)
134 return -EINVAL;
136 css = mem_cgroup_css(mem);
137 /* root_mem_cgroup has NULL dentries */
138 if (!css->cgroup->dentry)
139 return -EINVAL;
141 ino = css->cgroup->dentry->d_inode->i_ino;
142 css_put(css);
144 if (ino != hwpoison_filter_memcg)
145 return -EINVAL;
147 return 0;
149 #else
150 static int hwpoison_filter_task(struct page *p) { return 0; }
151 #endif
153 int hwpoison_filter(struct page *p)
155 if (!hwpoison_filter_enable)
156 return 0;
158 if (hwpoison_filter_dev(p))
159 return -EINVAL;
161 if (hwpoison_filter_flags(p))
162 return -EINVAL;
164 if (hwpoison_filter_task(p))
165 return -EINVAL;
167 return 0;
169 #else
170 int hwpoison_filter(struct page *p)
172 return 0;
174 #endif
176 EXPORT_SYMBOL_GPL(hwpoison_filter);
179 * Send all the processes who have the page mapped an ``action optional''
180 * signal.
182 static int kill_proc_ao(struct task_struct *t, unsigned long addr, int trapno,
183 unsigned long pfn)
185 struct siginfo si;
186 int ret;
188 printk(KERN_ERR
189 "MCE %#lx: Killing %s:%d early due to hardware memory corruption\n",
190 pfn, t->comm, t->pid);
191 si.si_signo = SIGBUS;
192 si.si_errno = 0;
193 si.si_code = BUS_MCEERR_AO;
194 si.si_addr = (void *)addr;
195 #ifdef __ARCH_SI_TRAPNO
196 si.si_trapno = trapno;
197 #endif
198 si.si_addr_lsb = PAGE_SHIFT;
200 * Don't use force here, it's convenient if the signal
201 * can be temporarily blocked.
202 * This could cause a loop when the user sets SIGBUS
203 * to SIG_IGN, but hopefully noone will do that?
205 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
206 if (ret < 0)
207 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
208 t->comm, t->pid, ret);
209 return ret;
213 * When a unknown page type is encountered drain as many buffers as possible
214 * in the hope to turn the page into a LRU or free page, which we can handle.
216 void shake_page(struct page *p, int access)
218 if (!PageSlab(p)) {
219 lru_add_drain_all();
220 if (PageLRU(p))
221 return;
222 drain_all_pages();
223 if (PageLRU(p) || is_free_buddy_page(p))
224 return;
228 * Only all shrink_slab here (which would also
229 * shrink other caches) if access is not potentially fatal.
231 if (access) {
232 int nr;
233 do {
234 nr = shrink_slab(1000, GFP_KERNEL, 1000);
235 if (page_count(p) == 0)
236 break;
237 } while (nr > 10);
240 EXPORT_SYMBOL_GPL(shake_page);
243 * Kill all processes that have a poisoned page mapped and then isolate
244 * the page.
246 * General strategy:
247 * Find all processes having the page mapped and kill them.
248 * But we keep a page reference around so that the page is not
249 * actually freed yet.
250 * Then stash the page away
252 * There's no convenient way to get back to mapped processes
253 * from the VMAs. So do a brute-force search over all
254 * running processes.
256 * Remember that machine checks are not common (or rather
257 * if they are common you have other problems), so this shouldn't
258 * be a performance issue.
260 * Also there are some races possible while we get from the
261 * error detection to actually handle it.
264 struct to_kill {
265 struct list_head nd;
266 struct task_struct *tsk;
267 unsigned long addr;
268 unsigned addr_valid:1;
272 * Failure handling: if we can't find or can't kill a process there's
273 * not much we can do. We just print a message and ignore otherwise.
277 * Schedule a process for later kill.
278 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
279 * TBD would GFP_NOIO be enough?
281 static void add_to_kill(struct task_struct *tsk, struct page *p,
282 struct vm_area_struct *vma,
283 struct list_head *to_kill,
284 struct to_kill **tkc)
286 struct to_kill *tk;
288 if (*tkc) {
289 tk = *tkc;
290 *tkc = NULL;
291 } else {
292 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
293 if (!tk) {
294 printk(KERN_ERR
295 "MCE: Out of memory while machine check handling\n");
296 return;
299 tk->addr = page_address_in_vma(p, vma);
300 tk->addr_valid = 1;
303 * In theory we don't have to kill when the page was
304 * munmaped. But it could be also a mremap. Since that's
305 * likely very rare kill anyways just out of paranoia, but use
306 * a SIGKILL because the error is not contained anymore.
308 if (tk->addr == -EFAULT) {
309 pr_debug("MCE: Unable to find user space address %lx in %s\n",
310 page_to_pfn(p), tsk->comm);
311 tk->addr_valid = 0;
313 get_task_struct(tsk);
314 tk->tsk = tsk;
315 list_add_tail(&tk->nd, to_kill);
319 * Kill the processes that have been collected earlier.
321 * Only do anything when DOIT is set, otherwise just free the list
322 * (this is used for clean pages which do not need killing)
323 * Also when FAIL is set do a force kill because something went
324 * wrong earlier.
326 static void kill_procs_ao(struct list_head *to_kill, int doit, int trapno,
327 int fail, unsigned long pfn)
329 struct to_kill *tk, *next;
331 list_for_each_entry_safe (tk, next, to_kill, nd) {
332 if (doit) {
334 * In case something went wrong with munmapping
335 * make sure the process doesn't catch the
336 * signal and then access the memory. Just kill it.
338 if (fail || tk->addr_valid == 0) {
339 printk(KERN_ERR
340 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
341 pfn, tk->tsk->comm, tk->tsk->pid);
342 force_sig(SIGKILL, tk->tsk);
346 * In theory the process could have mapped
347 * something else on the address in-between. We could
348 * check for that, but we need to tell the
349 * process anyways.
351 else if (kill_proc_ao(tk->tsk, tk->addr, trapno,
352 pfn) < 0)
353 printk(KERN_ERR
354 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
355 pfn, tk->tsk->comm, tk->tsk->pid);
357 put_task_struct(tk->tsk);
358 kfree(tk);
362 static int task_early_kill(struct task_struct *tsk)
364 if (!tsk->mm)
365 return 0;
366 if (tsk->flags & PF_MCE_PROCESS)
367 return !!(tsk->flags & PF_MCE_EARLY);
368 return sysctl_memory_failure_early_kill;
372 * Collect processes when the error hit an anonymous page.
374 static void collect_procs_anon(struct page *page, struct list_head *to_kill,
375 struct to_kill **tkc)
377 struct vm_area_struct *vma;
378 struct task_struct *tsk;
379 struct anon_vma *av;
381 read_lock(&tasklist_lock);
382 av = page_lock_anon_vma(page);
383 if (av == NULL) /* Not actually mapped anymore */
384 goto out;
385 for_each_process (tsk) {
386 if (!task_early_kill(tsk))
387 continue;
388 list_for_each_entry (vma, &av->head, anon_vma_node) {
389 if (!page_mapped_in_vma(page, vma))
390 continue;
391 if (vma->vm_mm == tsk->mm)
392 add_to_kill(tsk, page, vma, to_kill, tkc);
395 page_unlock_anon_vma(av);
396 out:
397 read_unlock(&tasklist_lock);
401 * Collect processes when the error hit a file mapped page.
403 static void collect_procs_file(struct page *page, struct list_head *to_kill,
404 struct to_kill **tkc)
406 struct vm_area_struct *vma;
407 struct task_struct *tsk;
408 struct prio_tree_iter iter;
409 struct address_space *mapping = page->mapping;
412 * A note on the locking order between the two locks.
413 * We don't rely on this particular order.
414 * If you have some other code that needs a different order
415 * feel free to switch them around. Or add a reverse link
416 * from mm_struct to task_struct, then this could be all
417 * done without taking tasklist_lock and looping over all tasks.
420 read_lock(&tasklist_lock);
421 spin_lock(&mapping->i_mmap_lock);
422 for_each_process(tsk) {
423 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
425 if (!task_early_kill(tsk))
426 continue;
428 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff,
429 pgoff) {
431 * Send early kill signal to tasks where a vma covers
432 * the page but the corrupted page is not necessarily
433 * mapped it in its pte.
434 * Assume applications who requested early kill want
435 * to be informed of all such data corruptions.
437 if (vma->vm_mm == tsk->mm)
438 add_to_kill(tsk, page, vma, to_kill, tkc);
441 spin_unlock(&mapping->i_mmap_lock);
442 read_unlock(&tasklist_lock);
446 * Collect the processes who have the corrupted page mapped to kill.
447 * This is done in two steps for locking reasons.
448 * First preallocate one tokill structure outside the spin locks,
449 * so that we can kill at least one process reasonably reliable.
451 static void collect_procs(struct page *page, struct list_head *tokill)
453 struct to_kill *tk;
455 if (!page->mapping)
456 return;
458 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
459 if (!tk)
460 return;
461 if (PageAnon(page))
462 collect_procs_anon(page, tokill, &tk);
463 else
464 collect_procs_file(page, tokill, &tk);
465 kfree(tk);
469 * Error handlers for various types of pages.
472 enum outcome {
473 IGNORED, /* Error: cannot be handled */
474 FAILED, /* Error: handling failed */
475 DELAYED, /* Will be handled later */
476 RECOVERED, /* Successfully recovered */
479 static const char *action_name[] = {
480 [IGNORED] = "Ignored",
481 [FAILED] = "Failed",
482 [DELAYED] = "Delayed",
483 [RECOVERED] = "Recovered",
487 * XXX: It is possible that a page is isolated from LRU cache,
488 * and then kept in swap cache or failed to remove from page cache.
489 * The page count will stop it from being freed by unpoison.
490 * Stress tests should be aware of this memory leak problem.
492 static int delete_from_lru_cache(struct page *p)
494 if (!isolate_lru_page(p)) {
496 * Clear sensible page flags, so that the buddy system won't
497 * complain when the page is unpoison-and-freed.
499 ClearPageActive(p);
500 ClearPageUnevictable(p);
502 * drop the page count elevated by isolate_lru_page()
504 page_cache_release(p);
505 return 0;
507 return -EIO;
511 * Error hit kernel page.
512 * Do nothing, try to be lucky and not touch this instead. For a few cases we
513 * could be more sophisticated.
515 static int me_kernel(struct page *p, unsigned long pfn)
517 return IGNORED;
521 * Page in unknown state. Do nothing.
523 static int me_unknown(struct page *p, unsigned long pfn)
525 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
526 return FAILED;
530 * Clean (or cleaned) page cache page.
532 static int me_pagecache_clean(struct page *p, unsigned long pfn)
534 int err;
535 int ret = FAILED;
536 struct address_space *mapping;
538 delete_from_lru_cache(p);
541 * For anonymous pages we're done the only reference left
542 * should be the one m_f() holds.
544 if (PageAnon(p))
545 return RECOVERED;
548 * Now truncate the page in the page cache. This is really
549 * more like a "temporary hole punch"
550 * Don't do this for block devices when someone else
551 * has a reference, because it could be file system metadata
552 * and that's not safe to truncate.
554 mapping = page_mapping(p);
555 if (!mapping) {
557 * Page has been teared down in the meanwhile
559 return FAILED;
563 * Truncation is a bit tricky. Enable it per file system for now.
565 * Open: to take i_mutex or not for this? Right now we don't.
567 if (mapping->a_ops->error_remove_page) {
568 err = mapping->a_ops->error_remove_page(mapping, p);
569 if (err != 0) {
570 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
571 pfn, err);
572 } else if (page_has_private(p) &&
573 !try_to_release_page(p, GFP_NOIO)) {
574 pr_debug("MCE %#lx: failed to release buffers\n", pfn);
575 } else {
576 ret = RECOVERED;
578 } else {
580 * If the file system doesn't support it just invalidate
581 * This fails on dirty or anything with private pages
583 if (invalidate_inode_page(p))
584 ret = RECOVERED;
585 else
586 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
587 pfn);
589 return ret;
593 * Dirty cache page page
594 * Issues: when the error hit a hole page the error is not properly
595 * propagated.
597 static int me_pagecache_dirty(struct page *p, unsigned long pfn)
599 struct address_space *mapping = page_mapping(p);
601 SetPageError(p);
602 /* TBD: print more information about the file. */
603 if (mapping) {
605 * IO error will be reported by write(), fsync(), etc.
606 * who check the mapping.
607 * This way the application knows that something went
608 * wrong with its dirty file data.
610 * There's one open issue:
612 * The EIO will be only reported on the next IO
613 * operation and then cleared through the IO map.
614 * Normally Linux has two mechanisms to pass IO error
615 * first through the AS_EIO flag in the address space
616 * and then through the PageError flag in the page.
617 * Since we drop pages on memory failure handling the
618 * only mechanism open to use is through AS_AIO.
620 * This has the disadvantage that it gets cleared on
621 * the first operation that returns an error, while
622 * the PageError bit is more sticky and only cleared
623 * when the page is reread or dropped. If an
624 * application assumes it will always get error on
625 * fsync, but does other operations on the fd before
626 * and the page is dropped inbetween then the error
627 * will not be properly reported.
629 * This can already happen even without hwpoisoned
630 * pages: first on metadata IO errors (which only
631 * report through AS_EIO) or when the page is dropped
632 * at the wrong time.
634 * So right now we assume that the application DTRT on
635 * the first EIO, but we're not worse than other parts
636 * of the kernel.
638 mapping_set_error(mapping, EIO);
641 return me_pagecache_clean(p, pfn);
645 * Clean and dirty swap cache.
647 * Dirty swap cache page is tricky to handle. The page could live both in page
648 * cache and swap cache(ie. page is freshly swapped in). So it could be
649 * referenced concurrently by 2 types of PTEs:
650 * normal PTEs and swap PTEs. We try to handle them consistently by calling
651 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
652 * and then
653 * - clear dirty bit to prevent IO
654 * - remove from LRU
655 * - but keep in the swap cache, so that when we return to it on
656 * a later page fault, we know the application is accessing
657 * corrupted data and shall be killed (we installed simple
658 * interception code in do_swap_page to catch it).
660 * Clean swap cache pages can be directly isolated. A later page fault will
661 * bring in the known good data from disk.
663 static int me_swapcache_dirty(struct page *p, unsigned long pfn)
665 ClearPageDirty(p);
666 /* Trigger EIO in shmem: */
667 ClearPageUptodate(p);
669 if (!delete_from_lru_cache(p))
670 return DELAYED;
671 else
672 return FAILED;
675 static int me_swapcache_clean(struct page *p, unsigned long pfn)
677 delete_from_swap_cache(p);
679 if (!delete_from_lru_cache(p))
680 return RECOVERED;
681 else
682 return FAILED;
686 * Huge pages. Needs work.
687 * Issues:
688 * No rmap support so we cannot find the original mapper. In theory could walk
689 * all MMs and look for the mappings, but that would be non atomic and racy.
690 * Need rmap for hugepages for this. Alternatively we could employ a heuristic,
691 * like just walking the current process and hoping it has it mapped (that
692 * should be usually true for the common "shared database cache" case)
693 * Should handle free huge pages and dequeue them too, but this needs to
694 * handle huge page accounting correctly.
696 static int me_huge_page(struct page *p, unsigned long pfn)
698 return FAILED;
702 * Various page states we can handle.
704 * A page state is defined by its current page->flags bits.
705 * The table matches them in order and calls the right handler.
707 * This is quite tricky because we can access page at any time
708 * in its live cycle, so all accesses have to be extremly careful.
710 * This is not complete. More states could be added.
711 * For any missing state don't attempt recovery.
714 #define dirty (1UL << PG_dirty)
715 #define sc (1UL << PG_swapcache)
716 #define unevict (1UL << PG_unevictable)
717 #define mlock (1UL << PG_mlocked)
718 #define writeback (1UL << PG_writeback)
719 #define lru (1UL << PG_lru)
720 #define swapbacked (1UL << PG_swapbacked)
721 #define head (1UL << PG_head)
722 #define tail (1UL << PG_tail)
723 #define compound (1UL << PG_compound)
724 #define slab (1UL << PG_slab)
725 #define reserved (1UL << PG_reserved)
727 static struct page_state {
728 unsigned long mask;
729 unsigned long res;
730 char *msg;
731 int (*action)(struct page *p, unsigned long pfn);
732 } error_states[] = {
733 { reserved, reserved, "reserved kernel", me_kernel },
735 * free pages are specially detected outside this table:
736 * PG_buddy pages only make a small fraction of all free pages.
740 * Could in theory check if slab page is free or if we can drop
741 * currently unused objects without touching them. But just
742 * treat it as standard kernel for now.
744 { slab, slab, "kernel slab", me_kernel },
746 #ifdef CONFIG_PAGEFLAGS_EXTENDED
747 { head, head, "huge", me_huge_page },
748 { tail, tail, "huge", me_huge_page },
749 #else
750 { compound, compound, "huge", me_huge_page },
751 #endif
753 { sc|dirty, sc|dirty, "swapcache", me_swapcache_dirty },
754 { sc|dirty, sc, "swapcache", me_swapcache_clean },
756 { unevict|dirty, unevict|dirty, "unevictable LRU", me_pagecache_dirty},
757 { unevict, unevict, "unevictable LRU", me_pagecache_clean},
759 { mlock|dirty, mlock|dirty, "mlocked LRU", me_pagecache_dirty },
760 { mlock, mlock, "mlocked LRU", me_pagecache_clean },
762 { lru|dirty, lru|dirty, "LRU", me_pagecache_dirty },
763 { lru|dirty, lru, "clean LRU", me_pagecache_clean },
766 * Catchall entry: must be at end.
768 { 0, 0, "unknown page state", me_unknown },
771 #undef dirty
772 #undef sc
773 #undef unevict
774 #undef mlock
775 #undef writeback
776 #undef lru
777 #undef swapbacked
778 #undef head
779 #undef tail
780 #undef compound
781 #undef slab
782 #undef reserved
784 static void action_result(unsigned long pfn, char *msg, int result)
786 struct page *page = pfn_to_page(pfn);
788 printk(KERN_ERR "MCE %#lx: %s%s page recovery: %s\n",
789 pfn,
790 PageDirty(page) ? "dirty " : "",
791 msg, action_name[result]);
794 static int page_action(struct page_state *ps, struct page *p,
795 unsigned long pfn)
797 int result;
798 int count;
800 result = ps->action(p, pfn);
801 action_result(pfn, ps->msg, result);
803 count = page_count(p) - 1;
804 if (ps->action == me_swapcache_dirty && result == DELAYED)
805 count--;
806 if (count != 0) {
807 printk(KERN_ERR
808 "MCE %#lx: %s page still referenced by %d users\n",
809 pfn, ps->msg, count);
810 result = FAILED;
813 /* Could do more checks here if page looks ok */
815 * Could adjust zone counters here to correct for the missing page.
818 return (result == RECOVERED || result == DELAYED) ? 0 : -EBUSY;
821 #define N_UNMAP_TRIES 5
824 * Do all that is necessary to remove user space mappings. Unmap
825 * the pages and send SIGBUS to the processes if the data was dirty.
827 static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
828 int trapno)
830 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
831 struct address_space *mapping;
832 LIST_HEAD(tokill);
833 int ret;
834 int i;
835 int kill = 1;
837 if (PageReserved(p) || PageSlab(p))
838 return SWAP_SUCCESS;
841 * This check implies we don't kill processes if their pages
842 * are in the swap cache early. Those are always late kills.
844 if (!page_mapped(p))
845 return SWAP_SUCCESS;
847 if (PageCompound(p) || PageKsm(p))
848 return SWAP_FAIL;
850 if (PageSwapCache(p)) {
851 printk(KERN_ERR
852 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
853 ttu |= TTU_IGNORE_HWPOISON;
857 * Propagate the dirty bit from PTEs to struct page first, because we
858 * need this to decide if we should kill or just drop the page.
859 * XXX: the dirty test could be racy: set_page_dirty() may not always
860 * be called inside page lock (it's recommended but not enforced).
862 mapping = page_mapping(p);
863 if (!PageDirty(p) && mapping && mapping_cap_writeback_dirty(mapping)) {
864 if (page_mkclean(p)) {
865 SetPageDirty(p);
866 } else {
867 kill = 0;
868 ttu |= TTU_IGNORE_HWPOISON;
869 printk(KERN_INFO
870 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
871 pfn);
876 * First collect all the processes that have the page
877 * mapped in dirty form. This has to be done before try_to_unmap,
878 * because ttu takes the rmap data structures down.
880 * Error handling: We ignore errors here because
881 * there's nothing that can be done.
883 if (kill)
884 collect_procs(p, &tokill);
887 * try_to_unmap can fail temporarily due to races.
888 * Try a few times (RED-PEN better strategy?)
890 for (i = 0; i < N_UNMAP_TRIES; i++) {
891 ret = try_to_unmap(p, ttu);
892 if (ret == SWAP_SUCCESS)
893 break;
894 pr_debug("MCE %#lx: try_to_unmap retry needed %d\n", pfn, ret);
897 if (ret != SWAP_SUCCESS)
898 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
899 pfn, page_mapcount(p));
902 * Now that the dirty bit has been propagated to the
903 * struct page and all unmaps done we can decide if
904 * killing is needed or not. Only kill when the page
905 * was dirty, otherwise the tokill list is merely
906 * freed. When there was a problem unmapping earlier
907 * use a more force-full uncatchable kill to prevent
908 * any accesses to the poisoned memory.
910 kill_procs_ao(&tokill, !!PageDirty(p), trapno,
911 ret != SWAP_SUCCESS, pfn);
913 return ret;
916 int __memory_failure(unsigned long pfn, int trapno, int flags)
918 struct page_state *ps;
919 struct page *p;
920 int res;
922 if (!sysctl_memory_failure_recovery)
923 panic("Memory failure from trap %d on page %lx", trapno, pfn);
925 if (!pfn_valid(pfn)) {
926 printk(KERN_ERR
927 "MCE %#lx: memory outside kernel control\n",
928 pfn);
929 return -ENXIO;
932 p = pfn_to_page(pfn);
933 if (TestSetPageHWPoison(p)) {
934 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
935 return 0;
938 atomic_long_add(1, &mce_bad_pages);
941 * We need/can do nothing about count=0 pages.
942 * 1) it's a free page, and therefore in safe hand:
943 * prep_new_page() will be the gate keeper.
944 * 2) it's part of a non-compound high order page.
945 * Implies some kernel user: cannot stop them from
946 * R/W the page; let's pray that the page has been
947 * used and will be freed some time later.
948 * In fact it's dangerous to directly bump up page count from 0,
949 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
951 if (!(flags & MF_COUNT_INCREASED) &&
952 !get_page_unless_zero(compound_head(p))) {
953 if (is_free_buddy_page(p)) {
954 action_result(pfn, "free buddy", DELAYED);
955 return 0;
956 } else {
957 action_result(pfn, "high order kernel", IGNORED);
958 return -EBUSY;
963 * We ignore non-LRU pages for good reasons.
964 * - PG_locked is only well defined for LRU pages and a few others
965 * - to avoid races with __set_page_locked()
966 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
967 * The check (unnecessarily) ignores LRU pages being isolated and
968 * walked by the page reclaim code, however that's not a big loss.
970 if (!PageLRU(p))
971 shake_page(p, 0);
972 if (!PageLRU(p)) {
974 * shake_page could have turned it free.
976 if (is_free_buddy_page(p)) {
977 action_result(pfn, "free buddy, 2nd try", DELAYED);
978 return 0;
980 action_result(pfn, "non LRU", IGNORED);
981 put_page(p);
982 return -EBUSY;
986 * Lock the page and wait for writeback to finish.
987 * It's very difficult to mess with pages currently under IO
988 * and in many cases impossible, so we just avoid it here.
990 lock_page_nosync(p);
993 * unpoison always clear PG_hwpoison inside page lock
995 if (!PageHWPoison(p)) {
996 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
997 res = 0;
998 goto out;
1000 if (hwpoison_filter(p)) {
1001 if (TestClearPageHWPoison(p))
1002 atomic_long_dec(&mce_bad_pages);
1003 unlock_page(p);
1004 put_page(p);
1005 return 0;
1008 wait_on_page_writeback(p);
1011 * Now take care of user space mappings.
1012 * Abort on fail: __remove_from_page_cache() assumes unmapped page.
1014 if (hwpoison_user_mappings(p, pfn, trapno) != SWAP_SUCCESS) {
1015 printk(KERN_ERR "MCE %#lx: cannot unmap page, give up\n", pfn);
1016 res = -EBUSY;
1017 goto out;
1021 * Torn down by someone else?
1023 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
1024 action_result(pfn, "already truncated LRU", IGNORED);
1025 res = -EBUSY;
1026 goto out;
1029 res = -EBUSY;
1030 for (ps = error_states;; ps++) {
1031 if ((p->flags & ps->mask) == ps->res) {
1032 res = page_action(ps, p, pfn);
1033 break;
1036 out:
1037 unlock_page(p);
1038 return res;
1040 EXPORT_SYMBOL_GPL(__memory_failure);
1043 * memory_failure - Handle memory failure of a page.
1044 * @pfn: Page Number of the corrupted page
1045 * @trapno: Trap number reported in the signal to user space.
1047 * This function is called by the low level machine check code
1048 * of an architecture when it detects hardware memory corruption
1049 * of a page. It tries its best to recover, which includes
1050 * dropping pages, killing processes etc.
1052 * The function is primarily of use for corruptions that
1053 * happen outside the current execution context (e.g. when
1054 * detected by a background scrubber)
1056 * Must run in process context (e.g. a work queue) with interrupts
1057 * enabled and no spinlocks hold.
1059 void memory_failure(unsigned long pfn, int trapno)
1061 __memory_failure(pfn, trapno, 0);
1065 * unpoison_memory - Unpoison a previously poisoned page
1066 * @pfn: Page number of the to be unpoisoned page
1068 * Software-unpoison a page that has been poisoned by
1069 * memory_failure() earlier.
1071 * This is only done on the software-level, so it only works
1072 * for linux injected failures, not real hardware failures
1074 * Returns 0 for success, otherwise -errno.
1076 int unpoison_memory(unsigned long pfn)
1078 struct page *page;
1079 struct page *p;
1080 int freeit = 0;
1082 if (!pfn_valid(pfn))
1083 return -ENXIO;
1085 p = pfn_to_page(pfn);
1086 page = compound_head(p);
1088 if (!PageHWPoison(p)) {
1089 pr_debug("MCE: Page was already unpoisoned %#lx\n", pfn);
1090 return 0;
1093 if (!get_page_unless_zero(page)) {
1094 if (TestClearPageHWPoison(p))
1095 atomic_long_dec(&mce_bad_pages);
1096 pr_debug("MCE: Software-unpoisoned free page %#lx\n", pfn);
1097 return 0;
1100 lock_page_nosync(page);
1102 * This test is racy because PG_hwpoison is set outside of page lock.
1103 * That's acceptable because that won't trigger kernel panic. Instead,
1104 * the PG_hwpoison page will be caught and isolated on the entrance to
1105 * the free buddy page pool.
1107 if (TestClearPageHWPoison(p)) {
1108 pr_debug("MCE: Software-unpoisoned page %#lx\n", pfn);
1109 atomic_long_dec(&mce_bad_pages);
1110 freeit = 1;
1112 unlock_page(page);
1114 put_page(page);
1115 if (freeit)
1116 put_page(page);
1118 return 0;
1120 EXPORT_SYMBOL(unpoison_memory);
1122 static struct page *new_page(struct page *p, unsigned long private, int **x)
1124 int nid = page_to_nid(p);
1125 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
1129 * Safely get reference count of an arbitrary page.
1130 * Returns 0 for a free page, -EIO for a zero refcount page
1131 * that is not free, and 1 for any other page type.
1132 * For 1 the page is returned with increased page count, otherwise not.
1134 static int get_any_page(struct page *p, unsigned long pfn, int flags)
1136 int ret;
1138 if (flags & MF_COUNT_INCREASED)
1139 return 1;
1142 * The lock_system_sleep prevents a race with memory hotplug,
1143 * because the isolation assumes there's only a single user.
1144 * This is a big hammer, a better would be nicer.
1146 lock_system_sleep();
1149 * Isolate the page, so that it doesn't get reallocated if it
1150 * was free.
1152 set_migratetype_isolate(p);
1153 if (!get_page_unless_zero(compound_head(p))) {
1154 if (is_free_buddy_page(p)) {
1155 pr_debug("get_any_page: %#lx free buddy page\n", pfn);
1156 /* Set hwpoison bit while page is still isolated */
1157 SetPageHWPoison(p);
1158 ret = 0;
1159 } else {
1160 pr_debug("get_any_page: %#lx: unknown zero refcount page type %lx\n",
1161 pfn, p->flags);
1162 ret = -EIO;
1164 } else {
1165 /* Not a free page */
1166 ret = 1;
1168 unset_migratetype_isolate(p);
1169 unlock_system_sleep();
1170 return ret;
1174 * soft_offline_page - Soft offline a page.
1175 * @page: page to offline
1176 * @flags: flags. Same as memory_failure().
1178 * Returns 0 on success, otherwise negated errno.
1180 * Soft offline a page, by migration or invalidation,
1181 * without killing anything. This is for the case when
1182 * a page is not corrupted yet (so it's still valid to access),
1183 * but has had a number of corrected errors and is better taken
1184 * out.
1186 * The actual policy on when to do that is maintained by
1187 * user space.
1189 * This should never impact any application or cause data loss,
1190 * however it might take some time.
1192 * This is not a 100% solution for all memory, but tries to be
1193 * ``good enough'' for the majority of memory.
1195 int soft_offline_page(struct page *page, int flags)
1197 int ret;
1198 unsigned long pfn = page_to_pfn(page);
1200 ret = get_any_page(page, pfn, flags);
1201 if (ret < 0)
1202 return ret;
1203 if (ret == 0)
1204 goto done;
1207 * Page cache page we can handle?
1209 if (!PageLRU(page)) {
1211 * Try to free it.
1213 put_page(page);
1214 shake_page(page, 1);
1217 * Did it turn free?
1219 ret = get_any_page(page, pfn, 0);
1220 if (ret < 0)
1221 return ret;
1222 if (ret == 0)
1223 goto done;
1225 if (!PageLRU(page)) {
1226 pr_debug("soft_offline: %#lx: unknown non LRU page type %lx\n",
1227 pfn, page->flags);
1228 return -EIO;
1231 lock_page(page);
1232 wait_on_page_writeback(page);
1235 * Synchronized using the page lock with memory_failure()
1237 if (PageHWPoison(page)) {
1238 unlock_page(page);
1239 put_page(page);
1240 pr_debug("soft offline: %#lx page already poisoned\n", pfn);
1241 return -EBUSY;
1245 * Try to invalidate first. This should work for
1246 * non dirty unmapped page cache pages.
1248 ret = invalidate_inode_page(page);
1249 unlock_page(page);
1252 * Drop count because page migration doesn't like raised
1253 * counts. The page could get re-allocated, but if it becomes
1254 * LRU the isolation will just fail.
1255 * RED-PEN would be better to keep it isolated here, but we
1256 * would need to fix isolation locking first.
1258 put_page(page);
1259 if (ret == 1) {
1260 ret = 0;
1261 pr_debug("soft_offline: %#lx: invalidated\n", pfn);
1262 goto done;
1266 * Simple invalidation didn't work.
1267 * Try to migrate to a new page instead. migrate.c
1268 * handles a large number of cases for us.
1270 ret = isolate_lru_page(page);
1271 if (!ret) {
1272 LIST_HEAD(pagelist);
1274 list_add(&page->lru, &pagelist);
1275 ret = migrate_pages(&pagelist, new_page, MPOL_MF_MOVE_ALL, 0);
1276 if (ret) {
1277 pr_debug("soft offline: %#lx: migration failed %d, type %lx\n",
1278 pfn, ret, page->flags);
1279 if (ret > 0)
1280 ret = -EIO;
1282 } else {
1283 pr_debug("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
1284 pfn, ret, page_count(page), page->flags);
1286 if (ret)
1287 return ret;
1289 done:
1290 atomic_long_add(1, &mce_bad_pages);
1291 SetPageHWPoison(page);
1292 /* keep elevated page count for bad page */
1293 return ret;