ipv4: Add ip_defrag() agent IP_DEFRAG_AF_PACKET.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / net / sock.h
blobebbc0bafe661b7d99071c9ebd2e44355876d3531
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/hardirq.h>
44 #include <linux/kernel.h>
45 #include <linux/list.h>
46 #include <linux/list_nulls.h>
47 #include <linux/timer.h>
48 #include <linux/cache.h>
49 #include <linux/module.h>
50 #include <linux/lockdep.h>
51 #include <linux/netdevice.h>
52 #include <linux/skbuff.h> /* struct sk_buff */
53 #include <linux/mm.h>
54 #include <linux/security.h>
55 #include <linux/slab.h>
56 #include <linux/uaccess.h>
58 #include <linux/filter.h>
59 #include <linux/rculist_nulls.h>
60 #include <linux/poll.h>
62 #include <linux/atomic.h>
63 #include <net/dst.h>
64 #include <net/checksum.h>
67 * This structure really needs to be cleaned up.
68 * Most of it is for TCP, and not used by any of
69 * the other protocols.
72 /* Define this to get the SOCK_DBG debugging facility. */
73 #define SOCK_DEBUGGING
74 #ifdef SOCK_DEBUGGING
75 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
76 printk(KERN_DEBUG msg); } while (0)
77 #else
78 /* Validate arguments and do nothing */
79 static inline void __attribute__ ((format (printf, 2, 3)))
80 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
83 #endif
85 /* This is the per-socket lock. The spinlock provides a synchronization
86 * between user contexts and software interrupt processing, whereas the
87 * mini-semaphore synchronizes multiple users amongst themselves.
89 typedef struct {
90 spinlock_t slock;
91 int owned;
92 wait_queue_head_t wq;
94 * We express the mutex-alike socket_lock semantics
95 * to the lock validator by explicitly managing
96 * the slock as a lock variant (in addition to
97 * the slock itself):
99 #ifdef CONFIG_DEBUG_LOCK_ALLOC
100 struct lockdep_map dep_map;
101 #endif
102 } socket_lock_t;
104 struct sock;
105 struct proto;
106 struct net;
109 * struct sock_common - minimal network layer representation of sockets
110 * @skc_daddr: Foreign IPv4 addr
111 * @skc_rcv_saddr: Bound local IPv4 addr
112 * @skc_hash: hash value used with various protocol lookup tables
113 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
114 * @skc_family: network address family
115 * @skc_state: Connection state
116 * @skc_reuse: %SO_REUSEADDR setting
117 * @skc_bound_dev_if: bound device index if != 0
118 * @skc_bind_node: bind hash linkage for various protocol lookup tables
119 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
120 * @skc_prot: protocol handlers inside a network family
121 * @skc_net: reference to the network namespace of this socket
122 * @skc_node: main hash linkage for various protocol lookup tables
123 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
124 * @skc_tx_queue_mapping: tx queue number for this connection
125 * @skc_refcnt: reference count
127 * This is the minimal network layer representation of sockets, the header
128 * for struct sock and struct inet_timewait_sock.
130 struct sock_common {
131 /* skc_daddr and skc_rcv_saddr must be grouped :
132 * cf INET_MATCH() and INET_TW_MATCH()
134 __be32 skc_daddr;
135 __be32 skc_rcv_saddr;
137 union {
138 unsigned int skc_hash;
139 __u16 skc_u16hashes[2];
141 unsigned short skc_family;
142 volatile unsigned char skc_state;
143 unsigned char skc_reuse;
144 int skc_bound_dev_if;
145 union {
146 struct hlist_node skc_bind_node;
147 struct hlist_nulls_node skc_portaddr_node;
149 struct proto *skc_prot;
150 #ifdef CONFIG_NET_NS
151 struct net *skc_net;
152 #endif
154 * fields between dontcopy_begin/dontcopy_end
155 * are not copied in sock_copy()
157 /* private: */
158 int skc_dontcopy_begin[0];
159 /* public: */
160 union {
161 struct hlist_node skc_node;
162 struct hlist_nulls_node skc_nulls_node;
164 int skc_tx_queue_mapping;
165 atomic_t skc_refcnt;
166 /* private: */
167 int skc_dontcopy_end[0];
168 /* public: */
172 * struct sock - network layer representation of sockets
173 * @__sk_common: shared layout with inet_timewait_sock
174 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
175 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
176 * @sk_lock: synchronizer
177 * @sk_rcvbuf: size of receive buffer in bytes
178 * @sk_wq: sock wait queue and async head
179 * @sk_dst_cache: destination cache
180 * @sk_dst_lock: destination cache lock
181 * @sk_policy: flow policy
182 * @sk_rmem_alloc: receive queue bytes committed
183 * @sk_receive_queue: incoming packets
184 * @sk_wmem_alloc: transmit queue bytes committed
185 * @sk_write_queue: Packet sending queue
186 * @sk_async_wait_queue: DMA copied packets
187 * @sk_omem_alloc: "o" is "option" or "other"
188 * @sk_wmem_queued: persistent queue size
189 * @sk_forward_alloc: space allocated forward
190 * @sk_allocation: allocation mode
191 * @sk_sndbuf: size of send buffer in bytes
192 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
193 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
194 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
195 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
196 * @sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
197 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
198 * @sk_gso_max_size: Maximum GSO segment size to build
199 * @sk_lingertime: %SO_LINGER l_linger setting
200 * @sk_backlog: always used with the per-socket spinlock held
201 * @sk_callback_lock: used with the callbacks in the end of this struct
202 * @sk_error_queue: rarely used
203 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
204 * IPV6_ADDRFORM for instance)
205 * @sk_err: last error
206 * @sk_err_soft: errors that don't cause failure but are the cause of a
207 * persistent failure not just 'timed out'
208 * @sk_drops: raw/udp drops counter
209 * @sk_ack_backlog: current listen backlog
210 * @sk_max_ack_backlog: listen backlog set in listen()
211 * @sk_priority: %SO_PRIORITY setting
212 * @sk_type: socket type (%SOCK_STREAM, etc)
213 * @sk_protocol: which protocol this socket belongs in this network family
214 * @sk_peer_pid: &struct pid for this socket's peer
215 * @sk_peer_cred: %SO_PEERCRED setting
216 * @sk_rcvlowat: %SO_RCVLOWAT setting
217 * @sk_rcvtimeo: %SO_RCVTIMEO setting
218 * @sk_sndtimeo: %SO_SNDTIMEO setting
219 * @sk_rxhash: flow hash received from netif layer
220 * @sk_filter: socket filtering instructions
221 * @sk_protinfo: private area, net family specific, when not using slab
222 * @sk_timer: sock cleanup timer
223 * @sk_stamp: time stamp of last packet received
224 * @sk_socket: Identd and reporting IO signals
225 * @sk_user_data: RPC layer private data
226 * @sk_sndmsg_page: cached page for sendmsg
227 * @sk_sndmsg_off: cached offset for sendmsg
228 * @sk_send_head: front of stuff to transmit
229 * @sk_security: used by security modules
230 * @sk_mark: generic packet mark
231 * @sk_classid: this socket's cgroup classid
232 * @sk_write_pending: a write to stream socket waits to start
233 * @sk_state_change: callback to indicate change in the state of the sock
234 * @sk_data_ready: callback to indicate there is data to be processed
235 * @sk_write_space: callback to indicate there is bf sending space available
236 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
237 * @sk_backlog_rcv: callback to process the backlog
238 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
240 struct sock {
242 * Now struct inet_timewait_sock also uses sock_common, so please just
243 * don't add nothing before this first member (__sk_common) --acme
245 struct sock_common __sk_common;
246 #define sk_node __sk_common.skc_node
247 #define sk_nulls_node __sk_common.skc_nulls_node
248 #define sk_refcnt __sk_common.skc_refcnt
249 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
251 #define sk_dontcopy_begin __sk_common.skc_dontcopy_begin
252 #define sk_dontcopy_end __sk_common.skc_dontcopy_end
253 #define sk_hash __sk_common.skc_hash
254 #define sk_family __sk_common.skc_family
255 #define sk_state __sk_common.skc_state
256 #define sk_reuse __sk_common.skc_reuse
257 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
258 #define sk_bind_node __sk_common.skc_bind_node
259 #define sk_prot __sk_common.skc_prot
260 #define sk_net __sk_common.skc_net
261 socket_lock_t sk_lock;
262 struct sk_buff_head sk_receive_queue;
264 * The backlog queue is special, it is always used with
265 * the per-socket spinlock held and requires low latency
266 * access. Therefore we special case it's implementation.
267 * Note : rmem_alloc is in this structure to fill a hole
268 * on 64bit arches, not because its logically part of
269 * backlog.
271 struct {
272 atomic_t rmem_alloc;
273 int len;
274 struct sk_buff *head;
275 struct sk_buff *tail;
276 } sk_backlog;
277 #define sk_rmem_alloc sk_backlog.rmem_alloc
278 int sk_forward_alloc;
279 #ifdef CONFIG_RPS
280 __u32 sk_rxhash;
281 #endif
282 atomic_t sk_drops;
283 int sk_rcvbuf;
285 struct sk_filter __rcu *sk_filter;
286 struct socket_wq __rcu *sk_wq;
288 #ifdef CONFIG_NET_DMA
289 struct sk_buff_head sk_async_wait_queue;
290 #endif
292 #ifdef CONFIG_XFRM
293 struct xfrm_policy *sk_policy[2];
294 #endif
295 unsigned long sk_flags;
296 struct dst_entry *sk_dst_cache;
297 spinlock_t sk_dst_lock;
298 atomic_t sk_wmem_alloc;
299 atomic_t sk_omem_alloc;
300 int sk_sndbuf;
301 struct sk_buff_head sk_write_queue;
302 kmemcheck_bitfield_begin(flags);
303 unsigned int sk_shutdown : 2,
304 sk_no_check : 2,
305 sk_userlocks : 4,
306 sk_protocol : 8,
307 sk_type : 16;
308 kmemcheck_bitfield_end(flags);
309 int sk_wmem_queued;
310 gfp_t sk_allocation;
311 int sk_route_caps;
312 int sk_route_nocaps;
313 int sk_gso_type;
314 unsigned int sk_gso_max_size;
315 int sk_rcvlowat;
316 unsigned long sk_lingertime;
317 struct sk_buff_head sk_error_queue;
318 struct proto *sk_prot_creator;
319 rwlock_t sk_callback_lock;
320 int sk_err,
321 sk_err_soft;
322 unsigned short sk_ack_backlog;
323 unsigned short sk_max_ack_backlog;
324 __u32 sk_priority;
325 struct pid *sk_peer_pid;
326 const struct cred *sk_peer_cred;
327 long sk_rcvtimeo;
328 long sk_sndtimeo;
329 void *sk_protinfo;
330 struct timer_list sk_timer;
331 ktime_t sk_stamp;
332 struct socket *sk_socket;
333 void *sk_user_data;
334 struct page *sk_sndmsg_page;
335 struct sk_buff *sk_send_head;
336 __u32 sk_sndmsg_off;
337 int sk_write_pending;
338 #ifdef CONFIG_SECURITY
339 void *sk_security;
340 #endif
341 __u32 sk_mark;
342 u32 sk_classid;
343 void (*sk_state_change)(struct sock *sk);
344 void (*sk_data_ready)(struct sock *sk, int bytes);
345 void (*sk_write_space)(struct sock *sk);
346 void (*sk_error_report)(struct sock *sk);
347 int (*sk_backlog_rcv)(struct sock *sk,
348 struct sk_buff *skb);
349 void (*sk_destruct)(struct sock *sk);
353 * Hashed lists helper routines
355 static inline struct sock *sk_entry(const struct hlist_node *node)
357 return hlist_entry(node, struct sock, sk_node);
360 static inline struct sock *__sk_head(const struct hlist_head *head)
362 return hlist_entry(head->first, struct sock, sk_node);
365 static inline struct sock *sk_head(const struct hlist_head *head)
367 return hlist_empty(head) ? NULL : __sk_head(head);
370 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
372 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
375 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
377 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
380 static inline struct sock *sk_next(const struct sock *sk)
382 return sk->sk_node.next ?
383 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
386 static inline struct sock *sk_nulls_next(const struct sock *sk)
388 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
389 hlist_nulls_entry(sk->sk_nulls_node.next,
390 struct sock, sk_nulls_node) :
391 NULL;
394 static inline int sk_unhashed(const struct sock *sk)
396 return hlist_unhashed(&sk->sk_node);
399 static inline int sk_hashed(const struct sock *sk)
401 return !sk_unhashed(sk);
404 static __inline__ void sk_node_init(struct hlist_node *node)
406 node->pprev = NULL;
409 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
411 node->pprev = NULL;
414 static __inline__ void __sk_del_node(struct sock *sk)
416 __hlist_del(&sk->sk_node);
419 /* NB: equivalent to hlist_del_init_rcu */
420 static __inline__ int __sk_del_node_init(struct sock *sk)
422 if (sk_hashed(sk)) {
423 __sk_del_node(sk);
424 sk_node_init(&sk->sk_node);
425 return 1;
427 return 0;
430 /* Grab socket reference count. This operation is valid only
431 when sk is ALREADY grabbed f.e. it is found in hash table
432 or a list and the lookup is made under lock preventing hash table
433 modifications.
436 static inline void sock_hold(struct sock *sk)
438 atomic_inc(&sk->sk_refcnt);
441 /* Ungrab socket in the context, which assumes that socket refcnt
442 cannot hit zero, f.e. it is true in context of any socketcall.
444 static inline void __sock_put(struct sock *sk)
446 atomic_dec(&sk->sk_refcnt);
449 static __inline__ int sk_del_node_init(struct sock *sk)
451 int rc = __sk_del_node_init(sk);
453 if (rc) {
454 /* paranoid for a while -acme */
455 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
456 __sock_put(sk);
458 return rc;
460 #define sk_del_node_init_rcu(sk) sk_del_node_init(sk)
462 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
464 if (sk_hashed(sk)) {
465 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
466 return 1;
468 return 0;
471 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
473 int rc = __sk_nulls_del_node_init_rcu(sk);
475 if (rc) {
476 /* paranoid for a while -acme */
477 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
478 __sock_put(sk);
480 return rc;
483 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
485 hlist_add_head(&sk->sk_node, list);
488 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
490 sock_hold(sk);
491 __sk_add_node(sk, list);
494 static __inline__ void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
496 sock_hold(sk);
497 hlist_add_head_rcu(&sk->sk_node, list);
500 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
502 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
505 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
507 sock_hold(sk);
508 __sk_nulls_add_node_rcu(sk, list);
511 static __inline__ void __sk_del_bind_node(struct sock *sk)
513 __hlist_del(&sk->sk_bind_node);
516 static __inline__ void sk_add_bind_node(struct sock *sk,
517 struct hlist_head *list)
519 hlist_add_head(&sk->sk_bind_node, list);
522 #define sk_for_each(__sk, node, list) \
523 hlist_for_each_entry(__sk, node, list, sk_node)
524 #define sk_for_each_rcu(__sk, node, list) \
525 hlist_for_each_entry_rcu(__sk, node, list, sk_node)
526 #define sk_nulls_for_each(__sk, node, list) \
527 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
528 #define sk_nulls_for_each_rcu(__sk, node, list) \
529 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
530 #define sk_for_each_from(__sk, node) \
531 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
532 hlist_for_each_entry_from(__sk, node, sk_node)
533 #define sk_nulls_for_each_from(__sk, node) \
534 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
535 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
536 #define sk_for_each_safe(__sk, node, tmp, list) \
537 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
538 #define sk_for_each_bound(__sk, node, list) \
539 hlist_for_each_entry(__sk, node, list, sk_bind_node)
541 /* Sock flags */
542 enum sock_flags {
543 SOCK_DEAD,
544 SOCK_DONE,
545 SOCK_URGINLINE,
546 SOCK_KEEPOPEN,
547 SOCK_LINGER,
548 SOCK_DESTROY,
549 SOCK_BROADCAST,
550 SOCK_TIMESTAMP,
551 SOCK_ZAPPED,
552 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
553 SOCK_DBG, /* %SO_DEBUG setting */
554 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
555 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
556 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
557 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
558 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
559 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
560 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
561 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
562 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
563 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
564 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
565 SOCK_FASYNC, /* fasync() active */
566 SOCK_RXQ_OVFL,
569 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
571 nsk->sk_flags = osk->sk_flags;
574 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
576 __set_bit(flag, &sk->sk_flags);
579 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
581 __clear_bit(flag, &sk->sk_flags);
584 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
586 return test_bit(flag, &sk->sk_flags);
589 static inline void sk_acceptq_removed(struct sock *sk)
591 sk->sk_ack_backlog--;
594 static inline void sk_acceptq_added(struct sock *sk)
596 sk->sk_ack_backlog++;
599 static inline int sk_acceptq_is_full(struct sock *sk)
601 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
605 * Compute minimal free write space needed to queue new packets.
607 static inline int sk_stream_min_wspace(struct sock *sk)
609 return sk->sk_wmem_queued >> 1;
612 static inline int sk_stream_wspace(struct sock *sk)
614 return sk->sk_sndbuf - sk->sk_wmem_queued;
617 extern void sk_stream_write_space(struct sock *sk);
619 static inline int sk_stream_memory_free(struct sock *sk)
621 return sk->sk_wmem_queued < sk->sk_sndbuf;
624 /* OOB backlog add */
625 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
627 /* dont let skb dst not refcounted, we are going to leave rcu lock */
628 skb_dst_force(skb);
630 if (!sk->sk_backlog.tail)
631 sk->sk_backlog.head = skb;
632 else
633 sk->sk_backlog.tail->next = skb;
635 sk->sk_backlog.tail = skb;
636 skb->next = NULL;
640 * Take into account size of receive queue and backlog queue
642 static inline bool sk_rcvqueues_full(const struct sock *sk, const struct sk_buff *skb)
644 unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
646 return qsize + skb->truesize > sk->sk_rcvbuf;
649 /* The per-socket spinlock must be held here. */
650 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
652 if (sk_rcvqueues_full(sk, skb))
653 return -ENOBUFS;
655 __sk_add_backlog(sk, skb);
656 sk->sk_backlog.len += skb->truesize;
657 return 0;
660 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
662 return sk->sk_backlog_rcv(sk, skb);
665 static inline void sock_rps_record_flow(const struct sock *sk)
667 #ifdef CONFIG_RPS
668 struct rps_sock_flow_table *sock_flow_table;
670 rcu_read_lock();
671 sock_flow_table = rcu_dereference(rps_sock_flow_table);
672 rps_record_sock_flow(sock_flow_table, sk->sk_rxhash);
673 rcu_read_unlock();
674 #endif
677 static inline void sock_rps_reset_flow(const struct sock *sk)
679 #ifdef CONFIG_RPS
680 struct rps_sock_flow_table *sock_flow_table;
682 rcu_read_lock();
683 sock_flow_table = rcu_dereference(rps_sock_flow_table);
684 rps_reset_sock_flow(sock_flow_table, sk->sk_rxhash);
685 rcu_read_unlock();
686 #endif
689 static inline void sock_rps_save_rxhash(struct sock *sk, u32 rxhash)
691 #ifdef CONFIG_RPS
692 if (unlikely(sk->sk_rxhash != rxhash)) {
693 sock_rps_reset_flow(sk);
694 sk->sk_rxhash = rxhash;
696 #endif
699 #define sk_wait_event(__sk, __timeo, __condition) \
700 ({ int __rc; \
701 release_sock(__sk); \
702 __rc = __condition; \
703 if (!__rc) { \
704 *(__timeo) = schedule_timeout(*(__timeo)); \
706 lock_sock(__sk); \
707 __rc = __condition; \
708 __rc; \
711 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
712 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
713 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
714 extern int sk_stream_error(struct sock *sk, int flags, int err);
715 extern void sk_stream_kill_queues(struct sock *sk);
717 extern int sk_wait_data(struct sock *sk, long *timeo);
719 struct request_sock_ops;
720 struct timewait_sock_ops;
721 struct inet_hashinfo;
722 struct raw_hashinfo;
724 /* Networking protocol blocks we attach to sockets.
725 * socket layer -> transport layer interface
726 * transport -> network interface is defined by struct inet_proto
728 struct proto {
729 void (*close)(struct sock *sk,
730 long timeout);
731 int (*connect)(struct sock *sk,
732 struct sockaddr *uaddr,
733 int addr_len);
734 int (*disconnect)(struct sock *sk, int flags);
736 struct sock * (*accept) (struct sock *sk, int flags, int *err);
738 int (*ioctl)(struct sock *sk, int cmd,
739 unsigned long arg);
740 int (*init)(struct sock *sk);
741 void (*destroy)(struct sock *sk);
742 void (*shutdown)(struct sock *sk, int how);
743 int (*setsockopt)(struct sock *sk, int level,
744 int optname, char __user *optval,
745 unsigned int optlen);
746 int (*getsockopt)(struct sock *sk, int level,
747 int optname, char __user *optval,
748 int __user *option);
749 #ifdef CONFIG_COMPAT
750 int (*compat_setsockopt)(struct sock *sk,
751 int level,
752 int optname, char __user *optval,
753 unsigned int optlen);
754 int (*compat_getsockopt)(struct sock *sk,
755 int level,
756 int optname, char __user *optval,
757 int __user *option);
758 int (*compat_ioctl)(struct sock *sk,
759 unsigned int cmd, unsigned long arg);
760 #endif
761 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
762 struct msghdr *msg, size_t len);
763 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
764 struct msghdr *msg,
765 size_t len, int noblock, int flags,
766 int *addr_len);
767 int (*sendpage)(struct sock *sk, struct page *page,
768 int offset, size_t size, int flags);
769 int (*bind)(struct sock *sk,
770 struct sockaddr *uaddr, int addr_len);
772 int (*backlog_rcv) (struct sock *sk,
773 struct sk_buff *skb);
775 /* Keeping track of sk's, looking them up, and port selection methods. */
776 void (*hash)(struct sock *sk);
777 void (*unhash)(struct sock *sk);
778 void (*rehash)(struct sock *sk);
779 int (*get_port)(struct sock *sk, unsigned short snum);
780 void (*clear_sk)(struct sock *sk, int size);
782 /* Keeping track of sockets in use */
783 #ifdef CONFIG_PROC_FS
784 unsigned int inuse_idx;
785 #endif
787 /* Memory pressure */
788 void (*enter_memory_pressure)(struct sock *sk);
789 atomic_long_t *memory_allocated; /* Current allocated memory. */
790 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
792 * Pressure flag: try to collapse.
793 * Technical note: it is used by multiple contexts non atomically.
794 * All the __sk_mem_schedule() is of this nature: accounting
795 * is strict, actions are advisory and have some latency.
797 int *memory_pressure;
798 long *sysctl_mem;
799 int *sysctl_wmem;
800 int *sysctl_rmem;
801 int max_header;
802 bool no_autobind;
804 struct kmem_cache *slab;
805 unsigned int obj_size;
806 int slab_flags;
808 struct percpu_counter *orphan_count;
810 struct request_sock_ops *rsk_prot;
811 struct timewait_sock_ops *twsk_prot;
813 union {
814 struct inet_hashinfo *hashinfo;
815 struct udp_table *udp_table;
816 struct raw_hashinfo *raw_hash;
817 } h;
819 struct module *owner;
821 char name[32];
823 struct list_head node;
824 #ifdef SOCK_REFCNT_DEBUG
825 atomic_t socks;
826 #endif
829 extern int proto_register(struct proto *prot, int alloc_slab);
830 extern void proto_unregister(struct proto *prot);
832 #ifdef SOCK_REFCNT_DEBUG
833 static inline void sk_refcnt_debug_inc(struct sock *sk)
835 atomic_inc(&sk->sk_prot->socks);
838 static inline void sk_refcnt_debug_dec(struct sock *sk)
840 atomic_dec(&sk->sk_prot->socks);
841 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
842 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
845 static inline void sk_refcnt_debug_release(const struct sock *sk)
847 if (atomic_read(&sk->sk_refcnt) != 1)
848 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
849 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
851 #else /* SOCK_REFCNT_DEBUG */
852 #define sk_refcnt_debug_inc(sk) do { } while (0)
853 #define sk_refcnt_debug_dec(sk) do { } while (0)
854 #define sk_refcnt_debug_release(sk) do { } while (0)
855 #endif /* SOCK_REFCNT_DEBUG */
858 #ifdef CONFIG_PROC_FS
859 /* Called with local bh disabled */
860 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
861 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
862 #else
863 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
864 int inc)
867 #endif
870 /* With per-bucket locks this operation is not-atomic, so that
871 * this version is not worse.
873 static inline void __sk_prot_rehash(struct sock *sk)
875 sk->sk_prot->unhash(sk);
876 sk->sk_prot->hash(sk);
879 void sk_prot_clear_portaddr_nulls(struct sock *sk, int size);
881 /* About 10 seconds */
882 #define SOCK_DESTROY_TIME (10*HZ)
884 /* Sockets 0-1023 can't be bound to unless you are superuser */
885 #define PROT_SOCK 1024
887 #define SHUTDOWN_MASK 3
888 #define RCV_SHUTDOWN 1
889 #define SEND_SHUTDOWN 2
891 #define SOCK_SNDBUF_LOCK 1
892 #define SOCK_RCVBUF_LOCK 2
893 #define SOCK_BINDADDR_LOCK 4
894 #define SOCK_BINDPORT_LOCK 8
896 /* sock_iocb: used to kick off async processing of socket ios */
897 struct sock_iocb {
898 struct list_head list;
900 int flags;
901 int size;
902 struct socket *sock;
903 struct sock *sk;
904 struct scm_cookie *scm;
905 struct msghdr *msg, async_msg;
906 struct kiocb *kiocb;
909 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
911 return (struct sock_iocb *)iocb->private;
914 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
916 return si->kiocb;
919 struct socket_alloc {
920 struct socket socket;
921 struct inode vfs_inode;
924 static inline struct socket *SOCKET_I(struct inode *inode)
926 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
929 static inline struct inode *SOCK_INODE(struct socket *socket)
931 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
935 * Functions for memory accounting
937 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
938 extern void __sk_mem_reclaim(struct sock *sk);
940 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
941 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
942 #define SK_MEM_SEND 0
943 #define SK_MEM_RECV 1
945 static inline int sk_mem_pages(int amt)
947 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
950 static inline int sk_has_account(struct sock *sk)
952 /* return true if protocol supports memory accounting */
953 return !!sk->sk_prot->memory_allocated;
956 static inline int sk_wmem_schedule(struct sock *sk, int size)
958 if (!sk_has_account(sk))
959 return 1;
960 return size <= sk->sk_forward_alloc ||
961 __sk_mem_schedule(sk, size, SK_MEM_SEND);
964 static inline int sk_rmem_schedule(struct sock *sk, int size)
966 if (!sk_has_account(sk))
967 return 1;
968 return size <= sk->sk_forward_alloc ||
969 __sk_mem_schedule(sk, size, SK_MEM_RECV);
972 static inline void sk_mem_reclaim(struct sock *sk)
974 if (!sk_has_account(sk))
975 return;
976 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
977 __sk_mem_reclaim(sk);
980 static inline void sk_mem_reclaim_partial(struct sock *sk)
982 if (!sk_has_account(sk))
983 return;
984 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
985 __sk_mem_reclaim(sk);
988 static inline void sk_mem_charge(struct sock *sk, int size)
990 if (!sk_has_account(sk))
991 return;
992 sk->sk_forward_alloc -= size;
995 static inline void sk_mem_uncharge(struct sock *sk, int size)
997 if (!sk_has_account(sk))
998 return;
999 sk->sk_forward_alloc += size;
1002 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1004 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
1005 sk->sk_wmem_queued -= skb->truesize;
1006 sk_mem_uncharge(sk, skb->truesize);
1007 __kfree_skb(skb);
1010 /* Used by processes to "lock" a socket state, so that
1011 * interrupts and bottom half handlers won't change it
1012 * from under us. It essentially blocks any incoming
1013 * packets, so that we won't get any new data or any
1014 * packets that change the state of the socket.
1016 * While locked, BH processing will add new packets to
1017 * the backlog queue. This queue is processed by the
1018 * owner of the socket lock right before it is released.
1020 * Since ~2.3.5 it is also exclusive sleep lock serializing
1021 * accesses from user process context.
1023 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
1026 * Macro so as to not evaluate some arguments when
1027 * lockdep is not enabled.
1029 * Mark both the sk_lock and the sk_lock.slock as a
1030 * per-address-family lock class.
1032 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
1033 do { \
1034 sk->sk_lock.owned = 0; \
1035 init_waitqueue_head(&sk->sk_lock.wq); \
1036 spin_lock_init(&(sk)->sk_lock.slock); \
1037 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
1038 sizeof((sk)->sk_lock)); \
1039 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
1040 (skey), (sname)); \
1041 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
1042 } while (0)
1044 extern void lock_sock_nested(struct sock *sk, int subclass);
1046 static inline void lock_sock(struct sock *sk)
1048 lock_sock_nested(sk, 0);
1051 extern void release_sock(struct sock *sk);
1053 /* BH context may only use the following locking interface. */
1054 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
1055 #define bh_lock_sock_nested(__sk) \
1056 spin_lock_nested(&((__sk)->sk_lock.slock), \
1057 SINGLE_DEPTH_NESTING)
1058 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
1060 extern bool lock_sock_fast(struct sock *sk);
1062 * unlock_sock_fast - complement of lock_sock_fast
1063 * @sk: socket
1064 * @slow: slow mode
1066 * fast unlock socket for user context.
1067 * If slow mode is on, we call regular release_sock()
1069 static inline void unlock_sock_fast(struct sock *sk, bool slow)
1071 if (slow)
1072 release_sock(sk);
1073 else
1074 spin_unlock_bh(&sk->sk_lock.slock);
1078 extern struct sock *sk_alloc(struct net *net, int family,
1079 gfp_t priority,
1080 struct proto *prot);
1081 extern void sk_free(struct sock *sk);
1082 extern void sk_release_kernel(struct sock *sk);
1083 extern struct sock *sk_clone(const struct sock *sk,
1084 const gfp_t priority);
1086 extern struct sk_buff *sock_wmalloc(struct sock *sk,
1087 unsigned long size, int force,
1088 gfp_t priority);
1089 extern struct sk_buff *sock_rmalloc(struct sock *sk,
1090 unsigned long size, int force,
1091 gfp_t priority);
1092 extern void sock_wfree(struct sk_buff *skb);
1093 extern void sock_rfree(struct sk_buff *skb);
1095 extern int sock_setsockopt(struct socket *sock, int level,
1096 int op, char __user *optval,
1097 unsigned int optlen);
1099 extern int sock_getsockopt(struct socket *sock, int level,
1100 int op, char __user *optval,
1101 int __user *optlen);
1102 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
1103 unsigned long size,
1104 int noblock,
1105 int *errcode);
1106 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
1107 unsigned long header_len,
1108 unsigned long data_len,
1109 int noblock,
1110 int *errcode);
1111 extern void *sock_kmalloc(struct sock *sk, int size,
1112 gfp_t priority);
1113 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
1114 extern void sk_send_sigurg(struct sock *sk);
1116 #ifdef CONFIG_CGROUPS
1117 extern void sock_update_classid(struct sock *sk);
1118 #else
1119 static inline void sock_update_classid(struct sock *sk)
1122 #endif
1125 * Functions to fill in entries in struct proto_ops when a protocol
1126 * does not implement a particular function.
1128 extern int sock_no_bind(struct socket *,
1129 struct sockaddr *, int);
1130 extern int sock_no_connect(struct socket *,
1131 struct sockaddr *, int, int);
1132 extern int sock_no_socketpair(struct socket *,
1133 struct socket *);
1134 extern int sock_no_accept(struct socket *,
1135 struct socket *, int);
1136 extern int sock_no_getname(struct socket *,
1137 struct sockaddr *, int *, int);
1138 extern unsigned int sock_no_poll(struct file *, struct socket *,
1139 struct poll_table_struct *);
1140 extern int sock_no_ioctl(struct socket *, unsigned int,
1141 unsigned long);
1142 extern int sock_no_listen(struct socket *, int);
1143 extern int sock_no_shutdown(struct socket *, int);
1144 extern int sock_no_getsockopt(struct socket *, int , int,
1145 char __user *, int __user *);
1146 extern int sock_no_setsockopt(struct socket *, int, int,
1147 char __user *, unsigned int);
1148 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1149 struct msghdr *, size_t);
1150 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1151 struct msghdr *, size_t, int);
1152 extern int sock_no_mmap(struct file *file,
1153 struct socket *sock,
1154 struct vm_area_struct *vma);
1155 extern ssize_t sock_no_sendpage(struct socket *sock,
1156 struct page *page,
1157 int offset, size_t size,
1158 int flags);
1161 * Functions to fill in entries in struct proto_ops when a protocol
1162 * uses the inet style.
1164 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1165 char __user *optval, int __user *optlen);
1166 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1167 struct msghdr *msg, size_t size, int flags);
1168 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1169 char __user *optval, unsigned int optlen);
1170 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1171 int optname, char __user *optval, int __user *optlen);
1172 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1173 int optname, char __user *optval, unsigned int optlen);
1175 extern void sk_common_release(struct sock *sk);
1178 * Default socket callbacks and setup code
1181 /* Initialise core socket variables */
1182 extern void sock_init_data(struct socket *sock, struct sock *sk);
1184 extern void sk_filter_release_rcu(struct rcu_head *rcu);
1187 * sk_filter_release - release a socket filter
1188 * @fp: filter to remove
1190 * Remove a filter from a socket and release its resources.
1193 static inline void sk_filter_release(struct sk_filter *fp)
1195 if (atomic_dec_and_test(&fp->refcnt))
1196 call_rcu(&fp->rcu, sk_filter_release_rcu);
1199 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1201 unsigned int size = sk_filter_len(fp);
1203 atomic_sub(size, &sk->sk_omem_alloc);
1204 sk_filter_release(fp);
1207 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1209 atomic_inc(&fp->refcnt);
1210 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1214 * Socket reference counting postulates.
1216 * * Each user of socket SHOULD hold a reference count.
1217 * * Each access point to socket (an hash table bucket, reference from a list,
1218 * running timer, skb in flight MUST hold a reference count.
1219 * * When reference count hits 0, it means it will never increase back.
1220 * * When reference count hits 0, it means that no references from
1221 * outside exist to this socket and current process on current CPU
1222 * is last user and may/should destroy this socket.
1223 * * sk_free is called from any context: process, BH, IRQ. When
1224 * it is called, socket has no references from outside -> sk_free
1225 * may release descendant resources allocated by the socket, but
1226 * to the time when it is called, socket is NOT referenced by any
1227 * hash tables, lists etc.
1228 * * Packets, delivered from outside (from network or from another process)
1229 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1230 * when they sit in queue. Otherwise, packets will leak to hole, when
1231 * socket is looked up by one cpu and unhasing is made by another CPU.
1232 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1233 * (leak to backlog). Packet socket does all the processing inside
1234 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1235 * use separate SMP lock, so that they are prone too.
1238 /* Ungrab socket and destroy it, if it was the last reference. */
1239 static inline void sock_put(struct sock *sk)
1241 if (atomic_dec_and_test(&sk->sk_refcnt))
1242 sk_free(sk);
1245 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1246 const int nested);
1248 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1250 sk->sk_tx_queue_mapping = tx_queue;
1253 static inline void sk_tx_queue_clear(struct sock *sk)
1255 sk->sk_tx_queue_mapping = -1;
1258 static inline int sk_tx_queue_get(const struct sock *sk)
1260 return sk ? sk->sk_tx_queue_mapping : -1;
1263 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1265 sk_tx_queue_clear(sk);
1266 sk->sk_socket = sock;
1269 static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1271 BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1272 return &rcu_dereference_raw(sk->sk_wq)->wait;
1274 /* Detach socket from process context.
1275 * Announce socket dead, detach it from wait queue and inode.
1276 * Note that parent inode held reference count on this struct sock,
1277 * we do not release it in this function, because protocol
1278 * probably wants some additional cleanups or even continuing
1279 * to work with this socket (TCP).
1281 static inline void sock_orphan(struct sock *sk)
1283 write_lock_bh(&sk->sk_callback_lock);
1284 sock_set_flag(sk, SOCK_DEAD);
1285 sk_set_socket(sk, NULL);
1286 sk->sk_wq = NULL;
1287 write_unlock_bh(&sk->sk_callback_lock);
1290 static inline void sock_graft(struct sock *sk, struct socket *parent)
1292 write_lock_bh(&sk->sk_callback_lock);
1293 sk->sk_wq = parent->wq;
1294 parent->sk = sk;
1295 sk_set_socket(sk, parent);
1296 security_sock_graft(sk, parent);
1297 write_unlock_bh(&sk->sk_callback_lock);
1300 extern int sock_i_uid(struct sock *sk);
1301 extern unsigned long sock_i_ino(struct sock *sk);
1303 static inline struct dst_entry *
1304 __sk_dst_get(struct sock *sk)
1306 return rcu_dereference_check(sk->sk_dst_cache, rcu_read_lock_held() ||
1307 sock_owned_by_user(sk) ||
1308 lockdep_is_held(&sk->sk_lock.slock));
1311 static inline struct dst_entry *
1312 sk_dst_get(struct sock *sk)
1314 struct dst_entry *dst;
1316 rcu_read_lock();
1317 dst = rcu_dereference(sk->sk_dst_cache);
1318 if (dst)
1319 dst_hold(dst);
1320 rcu_read_unlock();
1321 return dst;
1324 extern void sk_reset_txq(struct sock *sk);
1326 static inline void dst_negative_advice(struct sock *sk)
1328 struct dst_entry *ndst, *dst = __sk_dst_get(sk);
1330 if (dst && dst->ops->negative_advice) {
1331 ndst = dst->ops->negative_advice(dst);
1333 if (ndst != dst) {
1334 rcu_assign_pointer(sk->sk_dst_cache, ndst);
1335 sk_reset_txq(sk);
1340 static inline void
1341 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1343 struct dst_entry *old_dst;
1345 sk_tx_queue_clear(sk);
1347 * This can be called while sk is owned by the caller only,
1348 * with no state that can be checked in a rcu_dereference_check() cond
1350 old_dst = rcu_dereference_raw(sk->sk_dst_cache);
1351 rcu_assign_pointer(sk->sk_dst_cache, dst);
1352 dst_release(old_dst);
1355 static inline void
1356 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1358 spin_lock(&sk->sk_dst_lock);
1359 __sk_dst_set(sk, dst);
1360 spin_unlock(&sk->sk_dst_lock);
1363 static inline void
1364 __sk_dst_reset(struct sock *sk)
1366 __sk_dst_set(sk, NULL);
1369 static inline void
1370 sk_dst_reset(struct sock *sk)
1372 spin_lock(&sk->sk_dst_lock);
1373 __sk_dst_reset(sk);
1374 spin_unlock(&sk->sk_dst_lock);
1377 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1379 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1381 static inline int sk_can_gso(const struct sock *sk)
1383 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1386 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1388 static inline void sk_nocaps_add(struct sock *sk, int flags)
1390 sk->sk_route_nocaps |= flags;
1391 sk->sk_route_caps &= ~flags;
1394 static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
1395 char __user *from, char *to,
1396 int copy, int offset)
1398 if (skb->ip_summed == CHECKSUM_NONE) {
1399 int err = 0;
1400 __wsum csum = csum_and_copy_from_user(from, to, copy, 0, &err);
1401 if (err)
1402 return err;
1403 skb->csum = csum_block_add(skb->csum, csum, offset);
1404 } else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
1405 if (!access_ok(VERIFY_READ, from, copy) ||
1406 __copy_from_user_nocache(to, from, copy))
1407 return -EFAULT;
1408 } else if (copy_from_user(to, from, copy))
1409 return -EFAULT;
1411 return 0;
1414 static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
1415 char __user *from, int copy)
1417 int err, offset = skb->len;
1419 err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
1420 copy, offset);
1421 if (err)
1422 __skb_trim(skb, offset);
1424 return err;
1427 static inline int skb_copy_to_page_nocache(struct sock *sk, char __user *from,
1428 struct sk_buff *skb,
1429 struct page *page,
1430 int off, int copy)
1432 int err;
1434 err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
1435 copy, skb->len);
1436 if (err)
1437 return err;
1439 skb->len += copy;
1440 skb->data_len += copy;
1441 skb->truesize += copy;
1442 sk->sk_wmem_queued += copy;
1443 sk_mem_charge(sk, copy);
1444 return 0;
1447 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1448 struct sk_buff *skb, struct page *page,
1449 int off, int copy)
1451 if (skb->ip_summed == CHECKSUM_NONE) {
1452 int err = 0;
1453 __wsum csum = csum_and_copy_from_user(from,
1454 page_address(page) + off,
1455 copy, 0, &err);
1456 if (err)
1457 return err;
1458 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1459 } else if (copy_from_user(page_address(page) + off, from, copy))
1460 return -EFAULT;
1462 skb->len += copy;
1463 skb->data_len += copy;
1464 skb->truesize += copy;
1465 sk->sk_wmem_queued += copy;
1466 sk_mem_charge(sk, copy);
1467 return 0;
1471 * sk_wmem_alloc_get - returns write allocations
1472 * @sk: socket
1474 * Returns sk_wmem_alloc minus initial offset of one
1476 static inline int sk_wmem_alloc_get(const struct sock *sk)
1478 return atomic_read(&sk->sk_wmem_alloc) - 1;
1482 * sk_rmem_alloc_get - returns read allocations
1483 * @sk: socket
1485 * Returns sk_rmem_alloc
1487 static inline int sk_rmem_alloc_get(const struct sock *sk)
1489 return atomic_read(&sk->sk_rmem_alloc);
1493 * sk_has_allocations - check if allocations are outstanding
1494 * @sk: socket
1496 * Returns true if socket has write or read allocations
1498 static inline int sk_has_allocations(const struct sock *sk)
1500 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1504 * wq_has_sleeper - check if there are any waiting processes
1505 * @wq: struct socket_wq
1507 * Returns true if socket_wq has waiting processes
1509 * The purpose of the wq_has_sleeper and sock_poll_wait is to wrap the memory
1510 * barrier call. They were added due to the race found within the tcp code.
1512 * Consider following tcp code paths:
1514 * CPU1 CPU2
1516 * sys_select receive packet
1517 * ... ...
1518 * __add_wait_queue update tp->rcv_nxt
1519 * ... ...
1520 * tp->rcv_nxt check sock_def_readable
1521 * ... {
1522 * schedule rcu_read_lock();
1523 * wq = rcu_dereference(sk->sk_wq);
1524 * if (wq && waitqueue_active(&wq->wait))
1525 * wake_up_interruptible(&wq->wait)
1526 * ...
1529 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1530 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1531 * could then endup calling schedule and sleep forever if there are no more
1532 * data on the socket.
1535 static inline bool wq_has_sleeper(struct socket_wq *wq)
1539 * We need to be sure we are in sync with the
1540 * add_wait_queue modifications to the wait queue.
1542 * This memory barrier is paired in the sock_poll_wait.
1544 smp_mb();
1545 return wq && waitqueue_active(&wq->wait);
1549 * sock_poll_wait - place memory barrier behind the poll_wait call.
1550 * @filp: file
1551 * @wait_address: socket wait queue
1552 * @p: poll_table
1554 * See the comments in the wq_has_sleeper function.
1556 static inline void sock_poll_wait(struct file *filp,
1557 wait_queue_head_t *wait_address, poll_table *p)
1559 if (p && wait_address) {
1560 poll_wait(filp, wait_address, p);
1562 * We need to be sure we are in sync with the
1563 * socket flags modification.
1565 * This memory barrier is paired in the wq_has_sleeper.
1567 smp_mb();
1572 * Queue a received datagram if it will fit. Stream and sequenced
1573 * protocols can't normally use this as they need to fit buffers in
1574 * and play with them.
1576 * Inlined as it's very short and called for pretty much every
1577 * packet ever received.
1580 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1582 skb_orphan(skb);
1583 skb->sk = sk;
1584 skb->destructor = sock_wfree;
1586 * We used to take a refcount on sk, but following operation
1587 * is enough to guarantee sk_free() wont free this sock until
1588 * all in-flight packets are completed
1590 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1593 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1595 skb_orphan(skb);
1596 skb->sk = sk;
1597 skb->destructor = sock_rfree;
1598 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1599 sk_mem_charge(sk, skb->truesize);
1602 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1603 unsigned long expires);
1605 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1607 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1609 extern int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
1612 * Recover an error report and clear atomically
1615 static inline int sock_error(struct sock *sk)
1617 int err;
1618 if (likely(!sk->sk_err))
1619 return 0;
1620 err = xchg(&sk->sk_err, 0);
1621 return -err;
1624 static inline unsigned long sock_wspace(struct sock *sk)
1626 int amt = 0;
1628 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1629 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1630 if (amt < 0)
1631 amt = 0;
1633 return amt;
1636 static inline void sk_wake_async(struct sock *sk, int how, int band)
1638 if (sock_flag(sk, SOCK_FASYNC))
1639 sock_wake_async(sk->sk_socket, how, band);
1642 #define SOCK_MIN_SNDBUF 2048
1644 * Since sk_rmem_alloc sums skb->truesize, even a small frame might need
1645 * sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak
1647 #define SOCK_MIN_RCVBUF (2048 + sizeof(struct sk_buff))
1649 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1651 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1652 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1653 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1657 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1659 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1661 struct page *page = NULL;
1663 page = alloc_pages(sk->sk_allocation, 0);
1664 if (!page) {
1665 sk->sk_prot->enter_memory_pressure(sk);
1666 sk_stream_moderate_sndbuf(sk);
1668 return page;
1672 * Default write policy as shown to user space via poll/select/SIGIO
1674 static inline int sock_writeable(const struct sock *sk)
1676 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1679 static inline gfp_t gfp_any(void)
1681 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1684 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1686 return noblock ? 0 : sk->sk_rcvtimeo;
1689 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1691 return noblock ? 0 : sk->sk_sndtimeo;
1694 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1696 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1699 /* Alas, with timeout socket operations are not restartable.
1700 * Compare this to poll().
1702 static inline int sock_intr_errno(long timeo)
1704 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1707 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1708 struct sk_buff *skb);
1710 static __inline__ void
1711 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1713 ktime_t kt = skb->tstamp;
1714 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1717 * generate control messages if
1718 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1719 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1720 * - software time stamp available and wanted
1721 * (SOCK_TIMESTAMPING_SOFTWARE)
1722 * - hardware time stamps available and wanted
1723 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1724 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1726 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1727 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1728 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1729 (hwtstamps->hwtstamp.tv64 &&
1730 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1731 (hwtstamps->syststamp.tv64 &&
1732 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1733 __sock_recv_timestamp(msg, sk, skb);
1734 else
1735 sk->sk_stamp = kt;
1738 extern void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1739 struct sk_buff *skb);
1741 static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
1742 struct sk_buff *skb)
1744 #define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL) | \
1745 (1UL << SOCK_RCVTSTAMP) | \
1746 (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE) | \
1747 (1UL << SOCK_TIMESTAMPING_SOFTWARE) | \
1748 (1UL << SOCK_TIMESTAMPING_RAW_HARDWARE) | \
1749 (1UL << SOCK_TIMESTAMPING_SYS_HARDWARE))
1751 if (sk->sk_flags & FLAGS_TS_OR_DROPS)
1752 __sock_recv_ts_and_drops(msg, sk, skb);
1753 else
1754 sk->sk_stamp = skb->tstamp;
1758 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1759 * @sk: socket sending this packet
1760 * @tx_flags: filled with instructions for time stamping
1762 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1763 * parameters are invalid.
1765 extern int sock_tx_timestamp(struct sock *sk, __u8 *tx_flags);
1768 * sk_eat_skb - Release a skb if it is no longer needed
1769 * @sk: socket to eat this skb from
1770 * @skb: socket buffer to eat
1771 * @copied_early: flag indicating whether DMA operations copied this data early
1773 * This routine must be called with interrupts disabled or with the socket
1774 * locked so that the sk_buff queue operation is ok.
1776 #ifdef CONFIG_NET_DMA
1777 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1779 __skb_unlink(skb, &sk->sk_receive_queue);
1780 if (!copied_early)
1781 __kfree_skb(skb);
1782 else
1783 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1785 #else
1786 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1788 __skb_unlink(skb, &sk->sk_receive_queue);
1789 __kfree_skb(skb);
1791 #endif
1793 static inline
1794 struct net *sock_net(const struct sock *sk)
1796 return read_pnet(&sk->sk_net);
1799 static inline
1800 void sock_net_set(struct sock *sk, struct net *net)
1802 write_pnet(&sk->sk_net, net);
1806 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1807 * They should not hold a reference to a namespace in order to allow
1808 * to stop it.
1809 * Sockets after sk_change_net should be released using sk_release_kernel
1811 static inline void sk_change_net(struct sock *sk, struct net *net)
1813 put_net(sock_net(sk));
1814 sock_net_set(sk, hold_net(net));
1817 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1819 if (unlikely(skb->sk)) {
1820 struct sock *sk = skb->sk;
1822 skb->destructor = NULL;
1823 skb->sk = NULL;
1824 return sk;
1826 return NULL;
1829 extern void sock_enable_timestamp(struct sock *sk, int flag);
1830 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1831 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1834 * Enable debug/info messages
1836 extern int net_msg_warn;
1837 #define NETDEBUG(fmt, args...) \
1838 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1840 #define LIMIT_NETDEBUG(fmt, args...) \
1841 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1843 extern __u32 sysctl_wmem_max;
1844 extern __u32 sysctl_rmem_max;
1846 extern void sk_init(void);
1848 extern int sysctl_optmem_max;
1850 extern __u32 sysctl_wmem_default;
1851 extern __u32 sysctl_rmem_default;
1853 #endif /* _SOCK_H */