drm/i915: use shmem_read_mapping_page
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / i915_gem.c
blobfa560ceba667c4483e38c64cbeeb33248b2b141d
1 /*
2 * Copyright © 2008 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
39 static __must_check int i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj);
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj);
42 static __must_check int i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj,
43 bool write);
44 static __must_check int i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
45 uint64_t offset,
46 uint64_t size);
47 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj);
48 static __must_check int i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
49 unsigned alignment,
50 bool map_and_fenceable);
51 static void i915_gem_clear_fence_reg(struct drm_device *dev,
52 struct drm_i915_fence_reg *reg);
53 static int i915_gem_phys_pwrite(struct drm_device *dev,
54 struct drm_i915_gem_object *obj,
55 struct drm_i915_gem_pwrite *args,
56 struct drm_file *file);
57 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj);
59 static int i915_gem_inactive_shrink(struct shrinker *shrinker,
60 struct shrink_control *sc);
62 /* some bookkeeping */
63 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
64 size_t size)
66 dev_priv->mm.object_count++;
67 dev_priv->mm.object_memory += size;
70 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
71 size_t size)
73 dev_priv->mm.object_count--;
74 dev_priv->mm.object_memory -= size;
77 static int
78 i915_gem_wait_for_error(struct drm_device *dev)
80 struct drm_i915_private *dev_priv = dev->dev_private;
81 struct completion *x = &dev_priv->error_completion;
82 unsigned long flags;
83 int ret;
85 if (!atomic_read(&dev_priv->mm.wedged))
86 return 0;
88 ret = wait_for_completion_interruptible(x);
89 if (ret)
90 return ret;
92 if (atomic_read(&dev_priv->mm.wedged)) {
93 /* GPU is hung, bump the completion count to account for
94 * the token we just consumed so that we never hit zero and
95 * end up waiting upon a subsequent completion event that
96 * will never happen.
98 spin_lock_irqsave(&x->wait.lock, flags);
99 x->done++;
100 spin_unlock_irqrestore(&x->wait.lock, flags);
102 return 0;
105 int i915_mutex_lock_interruptible(struct drm_device *dev)
107 int ret;
109 ret = i915_gem_wait_for_error(dev);
110 if (ret)
111 return ret;
113 ret = mutex_lock_interruptible(&dev->struct_mutex);
114 if (ret)
115 return ret;
117 WARN_ON(i915_verify_lists(dev));
118 return 0;
121 static inline bool
122 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
124 return obj->gtt_space && !obj->active && obj->pin_count == 0;
127 void i915_gem_do_init(struct drm_device *dev,
128 unsigned long start,
129 unsigned long mappable_end,
130 unsigned long end)
132 drm_i915_private_t *dev_priv = dev->dev_private;
134 drm_mm_init(&dev_priv->mm.gtt_space, start, end - start);
136 dev_priv->mm.gtt_start = start;
137 dev_priv->mm.gtt_mappable_end = mappable_end;
138 dev_priv->mm.gtt_end = end;
139 dev_priv->mm.gtt_total = end - start;
140 dev_priv->mm.mappable_gtt_total = min(end, mappable_end) - start;
142 /* Take over this portion of the GTT */
143 intel_gtt_clear_range(start / PAGE_SIZE, (end-start) / PAGE_SIZE);
147 i915_gem_init_ioctl(struct drm_device *dev, void *data,
148 struct drm_file *file)
150 struct drm_i915_gem_init *args = data;
152 if (args->gtt_start >= args->gtt_end ||
153 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
154 return -EINVAL;
156 mutex_lock(&dev->struct_mutex);
157 i915_gem_do_init(dev, args->gtt_start, args->gtt_end, args->gtt_end);
158 mutex_unlock(&dev->struct_mutex);
160 return 0;
164 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_get_aperture *args = data;
169 struct drm_i915_gem_object *obj;
170 size_t pinned;
172 if (!(dev->driver->driver_features & DRIVER_GEM))
173 return -ENODEV;
175 pinned = 0;
176 mutex_lock(&dev->struct_mutex);
177 list_for_each_entry(obj, &dev_priv->mm.pinned_list, mm_list)
178 pinned += obj->gtt_space->size;
179 mutex_unlock(&dev->struct_mutex);
181 args->aper_size = dev_priv->mm.gtt_total;
182 args->aper_available_size = args->aper_size -pinned;
184 return 0;
187 static int
188 i915_gem_create(struct drm_file *file,
189 struct drm_device *dev,
190 uint64_t size,
191 uint32_t *handle_p)
193 struct drm_i915_gem_object *obj;
194 int ret;
195 u32 handle;
197 size = roundup(size, PAGE_SIZE);
199 /* Allocate the new object */
200 obj = i915_gem_alloc_object(dev, size);
201 if (obj == NULL)
202 return -ENOMEM;
204 ret = drm_gem_handle_create(file, &obj->base, &handle);
205 if (ret) {
206 drm_gem_object_release(&obj->base);
207 i915_gem_info_remove_obj(dev->dev_private, obj->base.size);
208 kfree(obj);
209 return ret;
212 /* drop reference from allocate - handle holds it now */
213 drm_gem_object_unreference(&obj->base);
214 trace_i915_gem_object_create(obj);
216 *handle_p = handle;
217 return 0;
221 i915_gem_dumb_create(struct drm_file *file,
222 struct drm_device *dev,
223 struct drm_mode_create_dumb *args)
225 /* have to work out size/pitch and return them */
226 args->pitch = ALIGN(args->width * ((args->bpp + 7) / 8), 64);
227 args->size = args->pitch * args->height;
228 return i915_gem_create(file, dev,
229 args->size, &args->handle);
232 int i915_gem_dumb_destroy(struct drm_file *file,
233 struct drm_device *dev,
234 uint32_t handle)
236 return drm_gem_handle_delete(file, handle);
240 * Creates a new mm object and returns a handle to it.
243 i915_gem_create_ioctl(struct drm_device *dev, void *data,
244 struct drm_file *file)
246 struct drm_i915_gem_create *args = data;
247 return i915_gem_create(file, dev,
248 args->size, &args->handle);
251 static int i915_gem_object_needs_bit17_swizzle(struct drm_i915_gem_object *obj)
253 drm_i915_private_t *dev_priv = obj->base.dev->dev_private;
255 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
256 obj->tiling_mode != I915_TILING_NONE;
259 static inline void
260 slow_shmem_copy(struct page *dst_page,
261 int dst_offset,
262 struct page *src_page,
263 int src_offset,
264 int length)
266 char *dst_vaddr, *src_vaddr;
268 dst_vaddr = kmap(dst_page);
269 src_vaddr = kmap(src_page);
271 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
273 kunmap(src_page);
274 kunmap(dst_page);
277 static inline void
278 slow_shmem_bit17_copy(struct page *gpu_page,
279 int gpu_offset,
280 struct page *cpu_page,
281 int cpu_offset,
282 int length,
283 int is_read)
285 char *gpu_vaddr, *cpu_vaddr;
287 /* Use the unswizzled path if this page isn't affected. */
288 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
289 if (is_read)
290 return slow_shmem_copy(cpu_page, cpu_offset,
291 gpu_page, gpu_offset, length);
292 else
293 return slow_shmem_copy(gpu_page, gpu_offset,
294 cpu_page, cpu_offset, length);
297 gpu_vaddr = kmap(gpu_page);
298 cpu_vaddr = kmap(cpu_page);
300 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
301 * XORing with the other bits (A9 for Y, A9 and A10 for X)
303 while (length > 0) {
304 int cacheline_end = ALIGN(gpu_offset + 1, 64);
305 int this_length = min(cacheline_end - gpu_offset, length);
306 int swizzled_gpu_offset = gpu_offset ^ 64;
308 if (is_read) {
309 memcpy(cpu_vaddr + cpu_offset,
310 gpu_vaddr + swizzled_gpu_offset,
311 this_length);
312 } else {
313 memcpy(gpu_vaddr + swizzled_gpu_offset,
314 cpu_vaddr + cpu_offset,
315 this_length);
317 cpu_offset += this_length;
318 gpu_offset += this_length;
319 length -= this_length;
322 kunmap(cpu_page);
323 kunmap(gpu_page);
327 * This is the fast shmem pread path, which attempts to copy_from_user directly
328 * from the backing pages of the object to the user's address space. On a
329 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
331 static int
332 i915_gem_shmem_pread_fast(struct drm_device *dev,
333 struct drm_i915_gem_object *obj,
334 struct drm_i915_gem_pread *args,
335 struct drm_file *file)
337 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
338 ssize_t remain;
339 loff_t offset;
340 char __user *user_data;
341 int page_offset, page_length;
343 user_data = (char __user *) (uintptr_t) args->data_ptr;
344 remain = args->size;
346 offset = args->offset;
348 while (remain > 0) {
349 struct page *page;
350 char *vaddr;
351 int ret;
353 /* Operation in this page
355 * page_offset = offset within page
356 * page_length = bytes to copy for this page
358 page_offset = offset_in_page(offset);
359 page_length = remain;
360 if ((page_offset + remain) > PAGE_SIZE)
361 page_length = PAGE_SIZE - page_offset;
363 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
364 if (IS_ERR(page))
365 return PTR_ERR(page);
367 vaddr = kmap_atomic(page);
368 ret = __copy_to_user_inatomic(user_data,
369 vaddr + page_offset,
370 page_length);
371 kunmap_atomic(vaddr);
373 mark_page_accessed(page);
374 page_cache_release(page);
375 if (ret)
376 return -EFAULT;
378 remain -= page_length;
379 user_data += page_length;
380 offset += page_length;
383 return 0;
387 * This is the fallback shmem pread path, which allocates temporary storage
388 * in kernel space to copy_to_user into outside of the struct_mutex, so we
389 * can copy out of the object's backing pages while holding the struct mutex
390 * and not take page faults.
392 static int
393 i915_gem_shmem_pread_slow(struct drm_device *dev,
394 struct drm_i915_gem_object *obj,
395 struct drm_i915_gem_pread *args,
396 struct drm_file *file)
398 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
399 struct mm_struct *mm = current->mm;
400 struct page **user_pages;
401 ssize_t remain;
402 loff_t offset, pinned_pages, i;
403 loff_t first_data_page, last_data_page, num_pages;
404 int shmem_page_offset;
405 int data_page_index, data_page_offset;
406 int page_length;
407 int ret;
408 uint64_t data_ptr = args->data_ptr;
409 int do_bit17_swizzling;
411 remain = args->size;
413 /* Pin the user pages containing the data. We can't fault while
414 * holding the struct mutex, yet we want to hold it while
415 * dereferencing the user data.
417 first_data_page = data_ptr / PAGE_SIZE;
418 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
419 num_pages = last_data_page - first_data_page + 1;
421 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
422 if (user_pages == NULL)
423 return -ENOMEM;
425 mutex_unlock(&dev->struct_mutex);
426 down_read(&mm->mmap_sem);
427 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
428 num_pages, 1, 0, user_pages, NULL);
429 up_read(&mm->mmap_sem);
430 mutex_lock(&dev->struct_mutex);
431 if (pinned_pages < num_pages) {
432 ret = -EFAULT;
433 goto out;
436 ret = i915_gem_object_set_cpu_read_domain_range(obj,
437 args->offset,
438 args->size);
439 if (ret)
440 goto out;
442 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
444 offset = args->offset;
446 while (remain > 0) {
447 struct page *page;
449 /* Operation in this page
451 * shmem_page_offset = offset within page in shmem file
452 * data_page_index = page number in get_user_pages return
453 * data_page_offset = offset with data_page_index page.
454 * page_length = bytes to copy for this page
456 shmem_page_offset = offset_in_page(offset);
457 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
458 data_page_offset = offset_in_page(data_ptr);
460 page_length = remain;
461 if ((shmem_page_offset + page_length) > PAGE_SIZE)
462 page_length = PAGE_SIZE - shmem_page_offset;
463 if ((data_page_offset + page_length) > PAGE_SIZE)
464 page_length = PAGE_SIZE - data_page_offset;
466 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
467 if (IS_ERR(page)) {
468 ret = PTR_ERR(page);
469 goto out;
472 if (do_bit17_swizzling) {
473 slow_shmem_bit17_copy(page,
474 shmem_page_offset,
475 user_pages[data_page_index],
476 data_page_offset,
477 page_length,
479 } else {
480 slow_shmem_copy(user_pages[data_page_index],
481 data_page_offset,
482 page,
483 shmem_page_offset,
484 page_length);
487 mark_page_accessed(page);
488 page_cache_release(page);
490 remain -= page_length;
491 data_ptr += page_length;
492 offset += page_length;
495 out:
496 for (i = 0; i < pinned_pages; i++) {
497 SetPageDirty(user_pages[i]);
498 mark_page_accessed(user_pages[i]);
499 page_cache_release(user_pages[i]);
501 drm_free_large(user_pages);
503 return ret;
507 * Reads data from the object referenced by handle.
509 * On error, the contents of *data are undefined.
512 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
513 struct drm_file *file)
515 struct drm_i915_gem_pread *args = data;
516 struct drm_i915_gem_object *obj;
517 int ret = 0;
519 if (args->size == 0)
520 return 0;
522 if (!access_ok(VERIFY_WRITE,
523 (char __user *)(uintptr_t)args->data_ptr,
524 args->size))
525 return -EFAULT;
527 ret = fault_in_pages_writeable((char __user *)(uintptr_t)args->data_ptr,
528 args->size);
529 if (ret)
530 return -EFAULT;
532 ret = i915_mutex_lock_interruptible(dev);
533 if (ret)
534 return ret;
536 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
537 if (&obj->base == NULL) {
538 ret = -ENOENT;
539 goto unlock;
542 /* Bounds check source. */
543 if (args->offset > obj->base.size ||
544 args->size > obj->base.size - args->offset) {
545 ret = -EINVAL;
546 goto out;
549 trace_i915_gem_object_pread(obj, args->offset, args->size);
551 ret = i915_gem_object_set_cpu_read_domain_range(obj,
552 args->offset,
553 args->size);
554 if (ret)
555 goto out;
557 ret = -EFAULT;
558 if (!i915_gem_object_needs_bit17_swizzle(obj))
559 ret = i915_gem_shmem_pread_fast(dev, obj, args, file);
560 if (ret == -EFAULT)
561 ret = i915_gem_shmem_pread_slow(dev, obj, args, file);
563 out:
564 drm_gem_object_unreference(&obj->base);
565 unlock:
566 mutex_unlock(&dev->struct_mutex);
567 return ret;
570 /* This is the fast write path which cannot handle
571 * page faults in the source data
574 static inline int
575 fast_user_write(struct io_mapping *mapping,
576 loff_t page_base, int page_offset,
577 char __user *user_data,
578 int length)
580 char *vaddr_atomic;
581 unsigned long unwritten;
583 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
584 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
585 user_data, length);
586 io_mapping_unmap_atomic(vaddr_atomic);
587 return unwritten;
590 /* Here's the write path which can sleep for
591 * page faults
594 static inline void
595 slow_kernel_write(struct io_mapping *mapping,
596 loff_t gtt_base, int gtt_offset,
597 struct page *user_page, int user_offset,
598 int length)
600 char __iomem *dst_vaddr;
601 char *src_vaddr;
603 dst_vaddr = io_mapping_map_wc(mapping, gtt_base);
604 src_vaddr = kmap(user_page);
606 memcpy_toio(dst_vaddr + gtt_offset,
607 src_vaddr + user_offset,
608 length);
610 kunmap(user_page);
611 io_mapping_unmap(dst_vaddr);
615 * This is the fast pwrite path, where we copy the data directly from the
616 * user into the GTT, uncached.
618 static int
619 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
620 struct drm_i915_gem_object *obj,
621 struct drm_i915_gem_pwrite *args,
622 struct drm_file *file)
624 drm_i915_private_t *dev_priv = dev->dev_private;
625 ssize_t remain;
626 loff_t offset, page_base;
627 char __user *user_data;
628 int page_offset, page_length;
630 user_data = (char __user *) (uintptr_t) args->data_ptr;
631 remain = args->size;
633 offset = obj->gtt_offset + args->offset;
635 while (remain > 0) {
636 /* Operation in this page
638 * page_base = page offset within aperture
639 * page_offset = offset within page
640 * page_length = bytes to copy for this page
642 page_base = offset & PAGE_MASK;
643 page_offset = offset_in_page(offset);
644 page_length = remain;
645 if ((page_offset + remain) > PAGE_SIZE)
646 page_length = PAGE_SIZE - page_offset;
648 /* If we get a fault while copying data, then (presumably) our
649 * source page isn't available. Return the error and we'll
650 * retry in the slow path.
652 if (fast_user_write(dev_priv->mm.gtt_mapping, page_base,
653 page_offset, user_data, page_length))
654 return -EFAULT;
656 remain -= page_length;
657 user_data += page_length;
658 offset += page_length;
661 return 0;
665 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
666 * the memory and maps it using kmap_atomic for copying.
668 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
669 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
671 static int
672 i915_gem_gtt_pwrite_slow(struct drm_device *dev,
673 struct drm_i915_gem_object *obj,
674 struct drm_i915_gem_pwrite *args,
675 struct drm_file *file)
677 drm_i915_private_t *dev_priv = dev->dev_private;
678 ssize_t remain;
679 loff_t gtt_page_base, offset;
680 loff_t first_data_page, last_data_page, num_pages;
681 loff_t pinned_pages, i;
682 struct page **user_pages;
683 struct mm_struct *mm = current->mm;
684 int gtt_page_offset, data_page_offset, data_page_index, page_length;
685 int ret;
686 uint64_t data_ptr = args->data_ptr;
688 remain = args->size;
690 /* Pin the user pages containing the data. We can't fault while
691 * holding the struct mutex, and all of the pwrite implementations
692 * want to hold it while dereferencing the user data.
694 first_data_page = data_ptr / PAGE_SIZE;
695 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
696 num_pages = last_data_page - first_data_page + 1;
698 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
699 if (user_pages == NULL)
700 return -ENOMEM;
702 mutex_unlock(&dev->struct_mutex);
703 down_read(&mm->mmap_sem);
704 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
705 num_pages, 0, 0, user_pages, NULL);
706 up_read(&mm->mmap_sem);
707 mutex_lock(&dev->struct_mutex);
708 if (pinned_pages < num_pages) {
709 ret = -EFAULT;
710 goto out_unpin_pages;
713 ret = i915_gem_object_set_to_gtt_domain(obj, true);
714 if (ret)
715 goto out_unpin_pages;
717 ret = i915_gem_object_put_fence(obj);
718 if (ret)
719 goto out_unpin_pages;
721 offset = obj->gtt_offset + args->offset;
723 while (remain > 0) {
724 /* Operation in this page
726 * gtt_page_base = page offset within aperture
727 * gtt_page_offset = offset within page in aperture
728 * data_page_index = page number in get_user_pages return
729 * data_page_offset = offset with data_page_index page.
730 * page_length = bytes to copy for this page
732 gtt_page_base = offset & PAGE_MASK;
733 gtt_page_offset = offset_in_page(offset);
734 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
735 data_page_offset = offset_in_page(data_ptr);
737 page_length = remain;
738 if ((gtt_page_offset + page_length) > PAGE_SIZE)
739 page_length = PAGE_SIZE - gtt_page_offset;
740 if ((data_page_offset + page_length) > PAGE_SIZE)
741 page_length = PAGE_SIZE - data_page_offset;
743 slow_kernel_write(dev_priv->mm.gtt_mapping,
744 gtt_page_base, gtt_page_offset,
745 user_pages[data_page_index],
746 data_page_offset,
747 page_length);
749 remain -= page_length;
750 offset += page_length;
751 data_ptr += page_length;
754 out_unpin_pages:
755 for (i = 0; i < pinned_pages; i++)
756 page_cache_release(user_pages[i]);
757 drm_free_large(user_pages);
759 return ret;
763 * This is the fast shmem pwrite path, which attempts to directly
764 * copy_from_user into the kmapped pages backing the object.
766 static int
767 i915_gem_shmem_pwrite_fast(struct drm_device *dev,
768 struct drm_i915_gem_object *obj,
769 struct drm_i915_gem_pwrite *args,
770 struct drm_file *file)
772 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
773 ssize_t remain;
774 loff_t offset;
775 char __user *user_data;
776 int page_offset, page_length;
778 user_data = (char __user *) (uintptr_t) args->data_ptr;
779 remain = args->size;
781 offset = args->offset;
782 obj->dirty = 1;
784 while (remain > 0) {
785 struct page *page;
786 char *vaddr;
787 int ret;
789 /* Operation in this page
791 * page_offset = offset within page
792 * page_length = bytes to copy for this page
794 page_offset = offset_in_page(offset);
795 page_length = remain;
796 if ((page_offset + remain) > PAGE_SIZE)
797 page_length = PAGE_SIZE - page_offset;
799 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
800 if (IS_ERR(page))
801 return PTR_ERR(page);
803 vaddr = kmap_atomic(page, KM_USER0);
804 ret = __copy_from_user_inatomic(vaddr + page_offset,
805 user_data,
806 page_length);
807 kunmap_atomic(vaddr, KM_USER0);
809 set_page_dirty(page);
810 mark_page_accessed(page);
811 page_cache_release(page);
813 /* If we get a fault while copying data, then (presumably) our
814 * source page isn't available. Return the error and we'll
815 * retry in the slow path.
817 if (ret)
818 return -EFAULT;
820 remain -= page_length;
821 user_data += page_length;
822 offset += page_length;
825 return 0;
829 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
830 * the memory and maps it using kmap_atomic for copying.
832 * This avoids taking mmap_sem for faulting on the user's address while the
833 * struct_mutex is held.
835 static int
836 i915_gem_shmem_pwrite_slow(struct drm_device *dev,
837 struct drm_i915_gem_object *obj,
838 struct drm_i915_gem_pwrite *args,
839 struct drm_file *file)
841 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
842 struct mm_struct *mm = current->mm;
843 struct page **user_pages;
844 ssize_t remain;
845 loff_t offset, pinned_pages, i;
846 loff_t first_data_page, last_data_page, num_pages;
847 int shmem_page_offset;
848 int data_page_index, data_page_offset;
849 int page_length;
850 int ret;
851 uint64_t data_ptr = args->data_ptr;
852 int do_bit17_swizzling;
854 remain = args->size;
856 /* Pin the user pages containing the data. We can't fault while
857 * holding the struct mutex, and all of the pwrite implementations
858 * want to hold it while dereferencing the user data.
860 first_data_page = data_ptr / PAGE_SIZE;
861 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
862 num_pages = last_data_page - first_data_page + 1;
864 user_pages = drm_malloc_ab(num_pages, sizeof(struct page *));
865 if (user_pages == NULL)
866 return -ENOMEM;
868 mutex_unlock(&dev->struct_mutex);
869 down_read(&mm->mmap_sem);
870 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
871 num_pages, 0, 0, user_pages, NULL);
872 up_read(&mm->mmap_sem);
873 mutex_lock(&dev->struct_mutex);
874 if (pinned_pages < num_pages) {
875 ret = -EFAULT;
876 goto out;
879 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
880 if (ret)
881 goto out;
883 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
885 offset = args->offset;
886 obj->dirty = 1;
888 while (remain > 0) {
889 struct page *page;
891 /* Operation in this page
893 * shmem_page_offset = offset within page in shmem file
894 * data_page_index = page number in get_user_pages return
895 * data_page_offset = offset with data_page_index page.
896 * page_length = bytes to copy for this page
898 shmem_page_offset = offset_in_page(offset);
899 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
900 data_page_offset = offset_in_page(data_ptr);
902 page_length = remain;
903 if ((shmem_page_offset + page_length) > PAGE_SIZE)
904 page_length = PAGE_SIZE - shmem_page_offset;
905 if ((data_page_offset + page_length) > PAGE_SIZE)
906 page_length = PAGE_SIZE - data_page_offset;
908 page = shmem_read_mapping_page(mapping, offset >> PAGE_SHIFT);
909 if (IS_ERR(page)) {
910 ret = PTR_ERR(page);
911 goto out;
914 if (do_bit17_swizzling) {
915 slow_shmem_bit17_copy(page,
916 shmem_page_offset,
917 user_pages[data_page_index],
918 data_page_offset,
919 page_length,
921 } else {
922 slow_shmem_copy(page,
923 shmem_page_offset,
924 user_pages[data_page_index],
925 data_page_offset,
926 page_length);
929 set_page_dirty(page);
930 mark_page_accessed(page);
931 page_cache_release(page);
933 remain -= page_length;
934 data_ptr += page_length;
935 offset += page_length;
938 out:
939 for (i = 0; i < pinned_pages; i++)
940 page_cache_release(user_pages[i]);
941 drm_free_large(user_pages);
943 return ret;
947 * Writes data to the object referenced by handle.
949 * On error, the contents of the buffer that were to be modified are undefined.
952 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
953 struct drm_file *file)
955 struct drm_i915_gem_pwrite *args = data;
956 struct drm_i915_gem_object *obj;
957 int ret;
959 if (args->size == 0)
960 return 0;
962 if (!access_ok(VERIFY_READ,
963 (char __user *)(uintptr_t)args->data_ptr,
964 args->size))
965 return -EFAULT;
967 ret = fault_in_pages_readable((char __user *)(uintptr_t)args->data_ptr,
968 args->size);
969 if (ret)
970 return -EFAULT;
972 ret = i915_mutex_lock_interruptible(dev);
973 if (ret)
974 return ret;
976 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
977 if (&obj->base == NULL) {
978 ret = -ENOENT;
979 goto unlock;
982 /* Bounds check destination. */
983 if (args->offset > obj->base.size ||
984 args->size > obj->base.size - args->offset) {
985 ret = -EINVAL;
986 goto out;
989 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
991 /* We can only do the GTT pwrite on untiled buffers, as otherwise
992 * it would end up going through the fenced access, and we'll get
993 * different detiling behavior between reading and writing.
994 * pread/pwrite currently are reading and writing from the CPU
995 * perspective, requiring manual detiling by the client.
997 if (obj->phys_obj)
998 ret = i915_gem_phys_pwrite(dev, obj, args, file);
999 else if (obj->gtt_space &&
1000 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
1001 ret = i915_gem_object_pin(obj, 0, true);
1002 if (ret)
1003 goto out;
1005 ret = i915_gem_object_set_to_gtt_domain(obj, true);
1006 if (ret)
1007 goto out_unpin;
1009 ret = i915_gem_object_put_fence(obj);
1010 if (ret)
1011 goto out_unpin;
1013 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1014 if (ret == -EFAULT)
1015 ret = i915_gem_gtt_pwrite_slow(dev, obj, args, file);
1017 out_unpin:
1018 i915_gem_object_unpin(obj);
1019 } else {
1020 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1021 if (ret)
1022 goto out;
1024 ret = -EFAULT;
1025 if (!i915_gem_object_needs_bit17_swizzle(obj))
1026 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file);
1027 if (ret == -EFAULT)
1028 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file);
1031 out:
1032 drm_gem_object_unreference(&obj->base);
1033 unlock:
1034 mutex_unlock(&dev->struct_mutex);
1035 return ret;
1039 * Called when user space prepares to use an object with the CPU, either
1040 * through the mmap ioctl's mapping or a GTT mapping.
1043 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1044 struct drm_file *file)
1046 struct drm_i915_gem_set_domain *args = data;
1047 struct drm_i915_gem_object *obj;
1048 uint32_t read_domains = args->read_domains;
1049 uint32_t write_domain = args->write_domain;
1050 int ret;
1052 if (!(dev->driver->driver_features & DRIVER_GEM))
1053 return -ENODEV;
1055 /* Only handle setting domains to types used by the CPU. */
1056 if (write_domain & I915_GEM_GPU_DOMAINS)
1057 return -EINVAL;
1059 if (read_domains & I915_GEM_GPU_DOMAINS)
1060 return -EINVAL;
1062 /* Having something in the write domain implies it's in the read
1063 * domain, and only that read domain. Enforce that in the request.
1065 if (write_domain != 0 && read_domains != write_domain)
1066 return -EINVAL;
1068 ret = i915_mutex_lock_interruptible(dev);
1069 if (ret)
1070 return ret;
1072 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1073 if (&obj->base == NULL) {
1074 ret = -ENOENT;
1075 goto unlock;
1078 if (read_domains & I915_GEM_DOMAIN_GTT) {
1079 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1081 /* Silently promote "you're not bound, there was nothing to do"
1082 * to success, since the client was just asking us to
1083 * make sure everything was done.
1085 if (ret == -EINVAL)
1086 ret = 0;
1087 } else {
1088 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1091 drm_gem_object_unreference(&obj->base);
1092 unlock:
1093 mutex_unlock(&dev->struct_mutex);
1094 return ret;
1098 * Called when user space has done writes to this buffer
1101 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1102 struct drm_file *file)
1104 struct drm_i915_gem_sw_finish *args = data;
1105 struct drm_i915_gem_object *obj;
1106 int ret = 0;
1108 if (!(dev->driver->driver_features & DRIVER_GEM))
1109 return -ENODEV;
1111 ret = i915_mutex_lock_interruptible(dev);
1112 if (ret)
1113 return ret;
1115 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1116 if (&obj->base == NULL) {
1117 ret = -ENOENT;
1118 goto unlock;
1121 /* Pinned buffers may be scanout, so flush the cache */
1122 if (obj->pin_count)
1123 i915_gem_object_flush_cpu_write_domain(obj);
1125 drm_gem_object_unreference(&obj->base);
1126 unlock:
1127 mutex_unlock(&dev->struct_mutex);
1128 return ret;
1132 * Maps the contents of an object, returning the address it is mapped
1133 * into.
1135 * While the mapping holds a reference on the contents of the object, it doesn't
1136 * imply a ref on the object itself.
1139 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1140 struct drm_file *file)
1142 struct drm_i915_private *dev_priv = dev->dev_private;
1143 struct drm_i915_gem_mmap *args = data;
1144 struct drm_gem_object *obj;
1145 unsigned long addr;
1147 if (!(dev->driver->driver_features & DRIVER_GEM))
1148 return -ENODEV;
1150 obj = drm_gem_object_lookup(dev, file, args->handle);
1151 if (obj == NULL)
1152 return -ENOENT;
1154 if (obj->size > dev_priv->mm.gtt_mappable_end) {
1155 drm_gem_object_unreference_unlocked(obj);
1156 return -E2BIG;
1159 down_write(&current->mm->mmap_sem);
1160 addr = do_mmap(obj->filp, 0, args->size,
1161 PROT_READ | PROT_WRITE, MAP_SHARED,
1162 args->offset);
1163 up_write(&current->mm->mmap_sem);
1164 drm_gem_object_unreference_unlocked(obj);
1165 if (IS_ERR((void *)addr))
1166 return addr;
1168 args->addr_ptr = (uint64_t) addr;
1170 return 0;
1174 * i915_gem_fault - fault a page into the GTT
1175 * vma: VMA in question
1176 * vmf: fault info
1178 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1179 * from userspace. The fault handler takes care of binding the object to
1180 * the GTT (if needed), allocating and programming a fence register (again,
1181 * only if needed based on whether the old reg is still valid or the object
1182 * is tiled) and inserting a new PTE into the faulting process.
1184 * Note that the faulting process may involve evicting existing objects
1185 * from the GTT and/or fence registers to make room. So performance may
1186 * suffer if the GTT working set is large or there are few fence registers
1187 * left.
1189 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1191 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1192 struct drm_device *dev = obj->base.dev;
1193 drm_i915_private_t *dev_priv = dev->dev_private;
1194 pgoff_t page_offset;
1195 unsigned long pfn;
1196 int ret = 0;
1197 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1199 /* We don't use vmf->pgoff since that has the fake offset */
1200 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1201 PAGE_SHIFT;
1203 ret = i915_mutex_lock_interruptible(dev);
1204 if (ret)
1205 goto out;
1207 trace_i915_gem_object_fault(obj, page_offset, true, write);
1209 /* Now bind it into the GTT if needed */
1210 if (!obj->map_and_fenceable) {
1211 ret = i915_gem_object_unbind(obj);
1212 if (ret)
1213 goto unlock;
1215 if (!obj->gtt_space) {
1216 ret = i915_gem_object_bind_to_gtt(obj, 0, true);
1217 if (ret)
1218 goto unlock;
1220 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1221 if (ret)
1222 goto unlock;
1225 if (obj->tiling_mode == I915_TILING_NONE)
1226 ret = i915_gem_object_put_fence(obj);
1227 else
1228 ret = i915_gem_object_get_fence(obj, NULL);
1229 if (ret)
1230 goto unlock;
1232 if (i915_gem_object_is_inactive(obj))
1233 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1235 obj->fault_mappable = true;
1237 pfn = ((dev->agp->base + obj->gtt_offset) >> PAGE_SHIFT) +
1238 page_offset;
1240 /* Finally, remap it using the new GTT offset */
1241 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1242 unlock:
1243 mutex_unlock(&dev->struct_mutex);
1244 out:
1245 switch (ret) {
1246 case -EIO:
1247 case -EAGAIN:
1248 /* Give the error handler a chance to run and move the
1249 * objects off the GPU active list. Next time we service the
1250 * fault, we should be able to transition the page into the
1251 * GTT without touching the GPU (and so avoid further
1252 * EIO/EGAIN). If the GPU is wedged, then there is no issue
1253 * with coherency, just lost writes.
1255 set_need_resched();
1256 case 0:
1257 case -ERESTARTSYS:
1258 case -EINTR:
1259 return VM_FAULT_NOPAGE;
1260 case -ENOMEM:
1261 return VM_FAULT_OOM;
1262 default:
1263 return VM_FAULT_SIGBUS;
1268 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1269 * @obj: obj in question
1271 * GEM memory mapping works by handing back to userspace a fake mmap offset
1272 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1273 * up the object based on the offset and sets up the various memory mapping
1274 * structures.
1276 * This routine allocates and attaches a fake offset for @obj.
1278 static int
1279 i915_gem_create_mmap_offset(struct drm_i915_gem_object *obj)
1281 struct drm_device *dev = obj->base.dev;
1282 struct drm_gem_mm *mm = dev->mm_private;
1283 struct drm_map_list *list;
1284 struct drm_local_map *map;
1285 int ret = 0;
1287 /* Set the object up for mmap'ing */
1288 list = &obj->base.map_list;
1289 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1290 if (!list->map)
1291 return -ENOMEM;
1293 map = list->map;
1294 map->type = _DRM_GEM;
1295 map->size = obj->base.size;
1296 map->handle = obj;
1298 /* Get a DRM GEM mmap offset allocated... */
1299 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1300 obj->base.size / PAGE_SIZE,
1301 0, 0);
1302 if (!list->file_offset_node) {
1303 DRM_ERROR("failed to allocate offset for bo %d\n",
1304 obj->base.name);
1305 ret = -ENOSPC;
1306 goto out_free_list;
1309 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1310 obj->base.size / PAGE_SIZE,
1312 if (!list->file_offset_node) {
1313 ret = -ENOMEM;
1314 goto out_free_list;
1317 list->hash.key = list->file_offset_node->start;
1318 ret = drm_ht_insert_item(&mm->offset_hash, &list->hash);
1319 if (ret) {
1320 DRM_ERROR("failed to add to map hash\n");
1321 goto out_free_mm;
1324 return 0;
1326 out_free_mm:
1327 drm_mm_put_block(list->file_offset_node);
1328 out_free_list:
1329 kfree(list->map);
1330 list->map = NULL;
1332 return ret;
1336 * i915_gem_release_mmap - remove physical page mappings
1337 * @obj: obj in question
1339 * Preserve the reservation of the mmapping with the DRM core code, but
1340 * relinquish ownership of the pages back to the system.
1342 * It is vital that we remove the page mapping if we have mapped a tiled
1343 * object through the GTT and then lose the fence register due to
1344 * resource pressure. Similarly if the object has been moved out of the
1345 * aperture, than pages mapped into userspace must be revoked. Removing the
1346 * mapping will then trigger a page fault on the next user access, allowing
1347 * fixup by i915_gem_fault().
1349 void
1350 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1352 if (!obj->fault_mappable)
1353 return;
1355 if (obj->base.dev->dev_mapping)
1356 unmap_mapping_range(obj->base.dev->dev_mapping,
1357 (loff_t)obj->base.map_list.hash.key<<PAGE_SHIFT,
1358 obj->base.size, 1);
1360 obj->fault_mappable = false;
1363 static void
1364 i915_gem_free_mmap_offset(struct drm_i915_gem_object *obj)
1366 struct drm_device *dev = obj->base.dev;
1367 struct drm_gem_mm *mm = dev->mm_private;
1368 struct drm_map_list *list = &obj->base.map_list;
1370 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1371 drm_mm_put_block(list->file_offset_node);
1372 kfree(list->map);
1373 list->map = NULL;
1376 static uint32_t
1377 i915_gem_get_gtt_size(struct drm_i915_gem_object *obj)
1379 struct drm_device *dev = obj->base.dev;
1380 uint32_t size;
1382 if (INTEL_INFO(dev)->gen >= 4 ||
1383 obj->tiling_mode == I915_TILING_NONE)
1384 return obj->base.size;
1386 /* Previous chips need a power-of-two fence region when tiling */
1387 if (INTEL_INFO(dev)->gen == 3)
1388 size = 1024*1024;
1389 else
1390 size = 512*1024;
1392 while (size < obj->base.size)
1393 size <<= 1;
1395 return size;
1399 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1400 * @obj: object to check
1402 * Return the required GTT alignment for an object, taking into account
1403 * potential fence register mapping.
1405 static uint32_t
1406 i915_gem_get_gtt_alignment(struct drm_i915_gem_object *obj)
1408 struct drm_device *dev = obj->base.dev;
1411 * Minimum alignment is 4k (GTT page size), but might be greater
1412 * if a fence register is needed for the object.
1414 if (INTEL_INFO(dev)->gen >= 4 ||
1415 obj->tiling_mode == I915_TILING_NONE)
1416 return 4096;
1419 * Previous chips need to be aligned to the size of the smallest
1420 * fence register that can contain the object.
1422 return i915_gem_get_gtt_size(obj);
1426 * i915_gem_get_unfenced_gtt_alignment - return required GTT alignment for an
1427 * unfenced object
1428 * @obj: object to check
1430 * Return the required GTT alignment for an object, only taking into account
1431 * unfenced tiled surface requirements.
1433 uint32_t
1434 i915_gem_get_unfenced_gtt_alignment(struct drm_i915_gem_object *obj)
1436 struct drm_device *dev = obj->base.dev;
1437 int tile_height;
1440 * Minimum alignment is 4k (GTT page size) for sane hw.
1442 if (INTEL_INFO(dev)->gen >= 4 || IS_G33(dev) ||
1443 obj->tiling_mode == I915_TILING_NONE)
1444 return 4096;
1447 * Older chips need unfenced tiled buffers to be aligned to the left
1448 * edge of an even tile row (where tile rows are counted as if the bo is
1449 * placed in a fenced gtt region).
1451 if (IS_GEN2(dev))
1452 tile_height = 16;
1453 else if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
1454 tile_height = 32;
1455 else
1456 tile_height = 8;
1458 return tile_height * obj->stride * 2;
1462 i915_gem_mmap_gtt(struct drm_file *file,
1463 struct drm_device *dev,
1464 uint32_t handle,
1465 uint64_t *offset)
1467 struct drm_i915_private *dev_priv = dev->dev_private;
1468 struct drm_i915_gem_object *obj;
1469 int ret;
1471 if (!(dev->driver->driver_features & DRIVER_GEM))
1472 return -ENODEV;
1474 ret = i915_mutex_lock_interruptible(dev);
1475 if (ret)
1476 return ret;
1478 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1479 if (&obj->base == NULL) {
1480 ret = -ENOENT;
1481 goto unlock;
1484 if (obj->base.size > dev_priv->mm.gtt_mappable_end) {
1485 ret = -E2BIG;
1486 goto unlock;
1489 if (obj->madv != I915_MADV_WILLNEED) {
1490 DRM_ERROR("Attempting to mmap a purgeable buffer\n");
1491 ret = -EINVAL;
1492 goto out;
1495 if (!obj->base.map_list.map) {
1496 ret = i915_gem_create_mmap_offset(obj);
1497 if (ret)
1498 goto out;
1501 *offset = (u64)obj->base.map_list.hash.key << PAGE_SHIFT;
1503 out:
1504 drm_gem_object_unreference(&obj->base);
1505 unlock:
1506 mutex_unlock(&dev->struct_mutex);
1507 return ret;
1511 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1512 * @dev: DRM device
1513 * @data: GTT mapping ioctl data
1514 * @file: GEM object info
1516 * Simply returns the fake offset to userspace so it can mmap it.
1517 * The mmap call will end up in drm_gem_mmap(), which will set things
1518 * up so we can get faults in the handler above.
1520 * The fault handler will take care of binding the object into the GTT
1521 * (since it may have been evicted to make room for something), allocating
1522 * a fence register, and mapping the appropriate aperture address into
1523 * userspace.
1526 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1527 struct drm_file *file)
1529 struct drm_i915_gem_mmap_gtt *args = data;
1531 if (!(dev->driver->driver_features & DRIVER_GEM))
1532 return -ENODEV;
1534 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1538 static int
1539 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj,
1540 gfp_t gfpmask)
1542 int page_count, i;
1543 struct address_space *mapping;
1544 struct inode *inode;
1545 struct page *page;
1547 /* Get the list of pages out of our struct file. They'll be pinned
1548 * at this point until we release them.
1550 page_count = obj->base.size / PAGE_SIZE;
1551 BUG_ON(obj->pages != NULL);
1552 obj->pages = drm_malloc_ab(page_count, sizeof(struct page *));
1553 if (obj->pages == NULL)
1554 return -ENOMEM;
1556 inode = obj->base.filp->f_path.dentry->d_inode;
1557 mapping = inode->i_mapping;
1558 gfpmask |= mapping_gfp_mask(mapping);
1560 for (i = 0; i < page_count; i++) {
1561 page = shmem_read_mapping_page_gfp(mapping, i, gfpmask);
1562 if (IS_ERR(page))
1563 goto err_pages;
1565 obj->pages[i] = page;
1568 if (obj->tiling_mode != I915_TILING_NONE)
1569 i915_gem_object_do_bit_17_swizzle(obj);
1571 return 0;
1573 err_pages:
1574 while (i--)
1575 page_cache_release(obj->pages[i]);
1577 drm_free_large(obj->pages);
1578 obj->pages = NULL;
1579 return PTR_ERR(page);
1582 static void
1583 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1585 int page_count = obj->base.size / PAGE_SIZE;
1586 int i;
1588 BUG_ON(obj->madv == __I915_MADV_PURGED);
1590 if (obj->tiling_mode != I915_TILING_NONE)
1591 i915_gem_object_save_bit_17_swizzle(obj);
1593 if (obj->madv == I915_MADV_DONTNEED)
1594 obj->dirty = 0;
1596 for (i = 0; i < page_count; i++) {
1597 if (obj->dirty)
1598 set_page_dirty(obj->pages[i]);
1600 if (obj->madv == I915_MADV_WILLNEED)
1601 mark_page_accessed(obj->pages[i]);
1603 page_cache_release(obj->pages[i]);
1605 obj->dirty = 0;
1607 drm_free_large(obj->pages);
1608 obj->pages = NULL;
1611 void
1612 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
1613 struct intel_ring_buffer *ring,
1614 u32 seqno)
1616 struct drm_device *dev = obj->base.dev;
1617 struct drm_i915_private *dev_priv = dev->dev_private;
1619 BUG_ON(ring == NULL);
1620 obj->ring = ring;
1622 /* Add a reference if we're newly entering the active list. */
1623 if (!obj->active) {
1624 drm_gem_object_reference(&obj->base);
1625 obj->active = 1;
1628 /* Move from whatever list we were on to the tail of execution. */
1629 list_move_tail(&obj->mm_list, &dev_priv->mm.active_list);
1630 list_move_tail(&obj->ring_list, &ring->active_list);
1632 obj->last_rendering_seqno = seqno;
1633 if (obj->fenced_gpu_access) {
1634 struct drm_i915_fence_reg *reg;
1636 BUG_ON(obj->fence_reg == I915_FENCE_REG_NONE);
1638 obj->last_fenced_seqno = seqno;
1639 obj->last_fenced_ring = ring;
1641 reg = &dev_priv->fence_regs[obj->fence_reg];
1642 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
1646 static void
1647 i915_gem_object_move_off_active(struct drm_i915_gem_object *obj)
1649 list_del_init(&obj->ring_list);
1650 obj->last_rendering_seqno = 0;
1653 static void
1654 i915_gem_object_move_to_flushing(struct drm_i915_gem_object *obj)
1656 struct drm_device *dev = obj->base.dev;
1657 drm_i915_private_t *dev_priv = dev->dev_private;
1659 BUG_ON(!obj->active);
1660 list_move_tail(&obj->mm_list, &dev_priv->mm.flushing_list);
1662 i915_gem_object_move_off_active(obj);
1665 static void
1666 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
1668 struct drm_device *dev = obj->base.dev;
1669 struct drm_i915_private *dev_priv = dev->dev_private;
1671 if (obj->pin_count != 0)
1672 list_move_tail(&obj->mm_list, &dev_priv->mm.pinned_list);
1673 else
1674 list_move_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
1676 BUG_ON(!list_empty(&obj->gpu_write_list));
1677 BUG_ON(!obj->active);
1678 obj->ring = NULL;
1680 i915_gem_object_move_off_active(obj);
1681 obj->fenced_gpu_access = false;
1683 obj->active = 0;
1684 obj->pending_gpu_write = false;
1685 drm_gem_object_unreference(&obj->base);
1687 WARN_ON(i915_verify_lists(dev));
1690 /* Immediately discard the backing storage */
1691 static void
1692 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1694 struct inode *inode;
1696 /* Our goal here is to return as much of the memory as
1697 * is possible back to the system as we are called from OOM.
1698 * To do this we must instruct the shmfs to drop all of its
1699 * backing pages, *now*. Here we mirror the actions taken
1700 * when by shmem_delete_inode() to release the backing store.
1702 inode = obj->base.filp->f_path.dentry->d_inode;
1703 truncate_inode_pages(inode->i_mapping, 0);
1704 if (inode->i_op->truncate_range)
1705 inode->i_op->truncate_range(inode, 0, (loff_t)-1);
1707 obj->madv = __I915_MADV_PURGED;
1710 static inline int
1711 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1713 return obj->madv == I915_MADV_DONTNEED;
1716 static void
1717 i915_gem_process_flushing_list(struct intel_ring_buffer *ring,
1718 uint32_t flush_domains)
1720 struct drm_i915_gem_object *obj, *next;
1722 list_for_each_entry_safe(obj, next,
1723 &ring->gpu_write_list,
1724 gpu_write_list) {
1725 if (obj->base.write_domain & flush_domains) {
1726 uint32_t old_write_domain = obj->base.write_domain;
1728 obj->base.write_domain = 0;
1729 list_del_init(&obj->gpu_write_list);
1730 i915_gem_object_move_to_active(obj, ring,
1731 i915_gem_next_request_seqno(ring));
1733 trace_i915_gem_object_change_domain(obj,
1734 obj->base.read_domains,
1735 old_write_domain);
1741 i915_add_request(struct intel_ring_buffer *ring,
1742 struct drm_file *file,
1743 struct drm_i915_gem_request *request)
1745 drm_i915_private_t *dev_priv = ring->dev->dev_private;
1746 uint32_t seqno;
1747 int was_empty;
1748 int ret;
1750 BUG_ON(request == NULL);
1752 ret = ring->add_request(ring, &seqno);
1753 if (ret)
1754 return ret;
1756 trace_i915_gem_request_add(ring, seqno);
1758 request->seqno = seqno;
1759 request->ring = ring;
1760 request->emitted_jiffies = jiffies;
1761 was_empty = list_empty(&ring->request_list);
1762 list_add_tail(&request->list, &ring->request_list);
1764 if (file) {
1765 struct drm_i915_file_private *file_priv = file->driver_priv;
1767 spin_lock(&file_priv->mm.lock);
1768 request->file_priv = file_priv;
1769 list_add_tail(&request->client_list,
1770 &file_priv->mm.request_list);
1771 spin_unlock(&file_priv->mm.lock);
1774 ring->outstanding_lazy_request = false;
1776 if (!dev_priv->mm.suspended) {
1777 mod_timer(&dev_priv->hangcheck_timer,
1778 jiffies + msecs_to_jiffies(DRM_I915_HANGCHECK_PERIOD));
1779 if (was_empty)
1780 queue_delayed_work(dev_priv->wq,
1781 &dev_priv->mm.retire_work, HZ);
1783 return 0;
1786 static inline void
1787 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
1789 struct drm_i915_file_private *file_priv = request->file_priv;
1791 if (!file_priv)
1792 return;
1794 spin_lock(&file_priv->mm.lock);
1795 if (request->file_priv) {
1796 list_del(&request->client_list);
1797 request->file_priv = NULL;
1799 spin_unlock(&file_priv->mm.lock);
1802 static void i915_gem_reset_ring_lists(struct drm_i915_private *dev_priv,
1803 struct intel_ring_buffer *ring)
1805 while (!list_empty(&ring->request_list)) {
1806 struct drm_i915_gem_request *request;
1808 request = list_first_entry(&ring->request_list,
1809 struct drm_i915_gem_request,
1810 list);
1812 list_del(&request->list);
1813 i915_gem_request_remove_from_client(request);
1814 kfree(request);
1817 while (!list_empty(&ring->active_list)) {
1818 struct drm_i915_gem_object *obj;
1820 obj = list_first_entry(&ring->active_list,
1821 struct drm_i915_gem_object,
1822 ring_list);
1824 obj->base.write_domain = 0;
1825 list_del_init(&obj->gpu_write_list);
1826 i915_gem_object_move_to_inactive(obj);
1830 static void i915_gem_reset_fences(struct drm_device *dev)
1832 struct drm_i915_private *dev_priv = dev->dev_private;
1833 int i;
1835 for (i = 0; i < 16; i++) {
1836 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
1837 struct drm_i915_gem_object *obj = reg->obj;
1839 if (!obj)
1840 continue;
1842 if (obj->tiling_mode)
1843 i915_gem_release_mmap(obj);
1845 reg->obj->fence_reg = I915_FENCE_REG_NONE;
1846 reg->obj->fenced_gpu_access = false;
1847 reg->obj->last_fenced_seqno = 0;
1848 reg->obj->last_fenced_ring = NULL;
1849 i915_gem_clear_fence_reg(dev, reg);
1853 void i915_gem_reset(struct drm_device *dev)
1855 struct drm_i915_private *dev_priv = dev->dev_private;
1856 struct drm_i915_gem_object *obj;
1857 int i;
1859 for (i = 0; i < I915_NUM_RINGS; i++)
1860 i915_gem_reset_ring_lists(dev_priv, &dev_priv->ring[i]);
1862 /* Remove anything from the flushing lists. The GPU cache is likely
1863 * to be lost on reset along with the data, so simply move the
1864 * lost bo to the inactive list.
1866 while (!list_empty(&dev_priv->mm.flushing_list)) {
1867 obj= list_first_entry(&dev_priv->mm.flushing_list,
1868 struct drm_i915_gem_object,
1869 mm_list);
1871 obj->base.write_domain = 0;
1872 list_del_init(&obj->gpu_write_list);
1873 i915_gem_object_move_to_inactive(obj);
1876 /* Move everything out of the GPU domains to ensure we do any
1877 * necessary invalidation upon reuse.
1879 list_for_each_entry(obj,
1880 &dev_priv->mm.inactive_list,
1881 mm_list)
1883 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
1886 /* The fence registers are invalidated so clear them out */
1887 i915_gem_reset_fences(dev);
1891 * This function clears the request list as sequence numbers are passed.
1893 static void
1894 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
1896 uint32_t seqno;
1897 int i;
1899 if (list_empty(&ring->request_list))
1900 return;
1902 WARN_ON(i915_verify_lists(ring->dev));
1904 seqno = ring->get_seqno(ring);
1906 for (i = 0; i < ARRAY_SIZE(ring->sync_seqno); i++)
1907 if (seqno >= ring->sync_seqno[i])
1908 ring->sync_seqno[i] = 0;
1910 while (!list_empty(&ring->request_list)) {
1911 struct drm_i915_gem_request *request;
1913 request = list_first_entry(&ring->request_list,
1914 struct drm_i915_gem_request,
1915 list);
1917 if (!i915_seqno_passed(seqno, request->seqno))
1918 break;
1920 trace_i915_gem_request_retire(ring, request->seqno);
1922 list_del(&request->list);
1923 i915_gem_request_remove_from_client(request);
1924 kfree(request);
1927 /* Move any buffers on the active list that are no longer referenced
1928 * by the ringbuffer to the flushing/inactive lists as appropriate.
1930 while (!list_empty(&ring->active_list)) {
1931 struct drm_i915_gem_object *obj;
1933 obj= list_first_entry(&ring->active_list,
1934 struct drm_i915_gem_object,
1935 ring_list);
1937 if (!i915_seqno_passed(seqno, obj->last_rendering_seqno))
1938 break;
1940 if (obj->base.write_domain != 0)
1941 i915_gem_object_move_to_flushing(obj);
1942 else
1943 i915_gem_object_move_to_inactive(obj);
1946 if (unlikely(ring->trace_irq_seqno &&
1947 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
1948 ring->irq_put(ring);
1949 ring->trace_irq_seqno = 0;
1952 WARN_ON(i915_verify_lists(ring->dev));
1955 void
1956 i915_gem_retire_requests(struct drm_device *dev)
1958 drm_i915_private_t *dev_priv = dev->dev_private;
1959 int i;
1961 if (!list_empty(&dev_priv->mm.deferred_free_list)) {
1962 struct drm_i915_gem_object *obj, *next;
1964 /* We must be careful that during unbind() we do not
1965 * accidentally infinitely recurse into retire requests.
1966 * Currently:
1967 * retire -> free -> unbind -> wait -> retire_ring
1969 list_for_each_entry_safe(obj, next,
1970 &dev_priv->mm.deferred_free_list,
1971 mm_list)
1972 i915_gem_free_object_tail(obj);
1975 for (i = 0; i < I915_NUM_RINGS; i++)
1976 i915_gem_retire_requests_ring(&dev_priv->ring[i]);
1979 static void
1980 i915_gem_retire_work_handler(struct work_struct *work)
1982 drm_i915_private_t *dev_priv;
1983 struct drm_device *dev;
1984 bool idle;
1985 int i;
1987 dev_priv = container_of(work, drm_i915_private_t,
1988 mm.retire_work.work);
1989 dev = dev_priv->dev;
1991 /* Come back later if the device is busy... */
1992 if (!mutex_trylock(&dev->struct_mutex)) {
1993 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1994 return;
1997 i915_gem_retire_requests(dev);
1999 /* Send a periodic flush down the ring so we don't hold onto GEM
2000 * objects indefinitely.
2002 idle = true;
2003 for (i = 0; i < I915_NUM_RINGS; i++) {
2004 struct intel_ring_buffer *ring = &dev_priv->ring[i];
2006 if (!list_empty(&ring->gpu_write_list)) {
2007 struct drm_i915_gem_request *request;
2008 int ret;
2010 ret = i915_gem_flush_ring(ring,
2011 0, I915_GEM_GPU_DOMAINS);
2012 request = kzalloc(sizeof(*request), GFP_KERNEL);
2013 if (ret || request == NULL ||
2014 i915_add_request(ring, NULL, request))
2015 kfree(request);
2018 idle &= list_empty(&ring->request_list);
2021 if (!dev_priv->mm.suspended && !idle)
2022 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
2024 mutex_unlock(&dev->struct_mutex);
2028 * Waits for a sequence number to be signaled, and cleans up the
2029 * request and object lists appropriately for that event.
2032 i915_wait_request(struct intel_ring_buffer *ring,
2033 uint32_t seqno)
2035 drm_i915_private_t *dev_priv = ring->dev->dev_private;
2036 u32 ier;
2037 int ret = 0;
2039 BUG_ON(seqno == 0);
2041 if (atomic_read(&dev_priv->mm.wedged)) {
2042 struct completion *x = &dev_priv->error_completion;
2043 bool recovery_complete;
2044 unsigned long flags;
2046 /* Give the error handler a chance to run. */
2047 spin_lock_irqsave(&x->wait.lock, flags);
2048 recovery_complete = x->done > 0;
2049 spin_unlock_irqrestore(&x->wait.lock, flags);
2051 return recovery_complete ? -EIO : -EAGAIN;
2054 if (seqno == ring->outstanding_lazy_request) {
2055 struct drm_i915_gem_request *request;
2057 request = kzalloc(sizeof(*request), GFP_KERNEL);
2058 if (request == NULL)
2059 return -ENOMEM;
2061 ret = i915_add_request(ring, NULL, request);
2062 if (ret) {
2063 kfree(request);
2064 return ret;
2067 seqno = request->seqno;
2070 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
2071 if (HAS_PCH_SPLIT(ring->dev))
2072 ier = I915_READ(DEIER) | I915_READ(GTIER);
2073 else
2074 ier = I915_READ(IER);
2075 if (!ier) {
2076 DRM_ERROR("something (likely vbetool) disabled "
2077 "interrupts, re-enabling\n");
2078 i915_driver_irq_preinstall(ring->dev);
2079 i915_driver_irq_postinstall(ring->dev);
2082 trace_i915_gem_request_wait_begin(ring, seqno);
2084 ring->waiting_seqno = seqno;
2085 if (ring->irq_get(ring)) {
2086 if (dev_priv->mm.interruptible)
2087 ret = wait_event_interruptible(ring->irq_queue,
2088 i915_seqno_passed(ring->get_seqno(ring), seqno)
2089 || atomic_read(&dev_priv->mm.wedged));
2090 else
2091 wait_event(ring->irq_queue,
2092 i915_seqno_passed(ring->get_seqno(ring), seqno)
2093 || atomic_read(&dev_priv->mm.wedged));
2095 ring->irq_put(ring);
2096 } else if (wait_for(i915_seqno_passed(ring->get_seqno(ring),
2097 seqno) ||
2098 atomic_read(&dev_priv->mm.wedged), 3000))
2099 ret = -EBUSY;
2100 ring->waiting_seqno = 0;
2102 trace_i915_gem_request_wait_end(ring, seqno);
2104 if (atomic_read(&dev_priv->mm.wedged))
2105 ret = -EAGAIN;
2107 if (ret && ret != -ERESTARTSYS)
2108 DRM_ERROR("%s returns %d (awaiting %d at %d, next %d)\n",
2109 __func__, ret, seqno, ring->get_seqno(ring),
2110 dev_priv->next_seqno);
2112 /* Directly dispatch request retiring. While we have the work queue
2113 * to handle this, the waiter on a request often wants an associated
2114 * buffer to have made it to the inactive list, and we would need
2115 * a separate wait queue to handle that.
2117 if (ret == 0)
2118 i915_gem_retire_requests_ring(ring);
2120 return ret;
2124 * Ensures that all rendering to the object has completed and the object is
2125 * safe to unbind from the GTT or access from the CPU.
2128 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj)
2130 int ret;
2132 /* This function only exists to support waiting for existing rendering,
2133 * not for emitting required flushes.
2135 BUG_ON((obj->base.write_domain & I915_GEM_GPU_DOMAINS) != 0);
2137 /* If there is rendering queued on the buffer being evicted, wait for
2138 * it.
2140 if (obj->active) {
2141 ret = i915_wait_request(obj->ring, obj->last_rendering_seqno);
2142 if (ret)
2143 return ret;
2146 return 0;
2150 * Unbinds an object from the GTT aperture.
2153 i915_gem_object_unbind(struct drm_i915_gem_object *obj)
2155 int ret = 0;
2157 if (obj->gtt_space == NULL)
2158 return 0;
2160 if (obj->pin_count != 0) {
2161 DRM_ERROR("Attempting to unbind pinned buffer\n");
2162 return -EINVAL;
2165 /* blow away mappings if mapped through GTT */
2166 i915_gem_release_mmap(obj);
2168 /* Move the object to the CPU domain to ensure that
2169 * any possible CPU writes while it's not in the GTT
2170 * are flushed when we go to remap it. This will
2171 * also ensure that all pending GPU writes are finished
2172 * before we unbind.
2174 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
2175 if (ret == -ERESTARTSYS)
2176 return ret;
2177 /* Continue on if we fail due to EIO, the GPU is hung so we
2178 * should be safe and we need to cleanup or else we might
2179 * cause memory corruption through use-after-free.
2181 if (ret) {
2182 i915_gem_clflush_object(obj);
2183 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
2186 /* release the fence reg _after_ flushing */
2187 ret = i915_gem_object_put_fence(obj);
2188 if (ret == -ERESTARTSYS)
2189 return ret;
2191 trace_i915_gem_object_unbind(obj);
2193 i915_gem_gtt_unbind_object(obj);
2194 i915_gem_object_put_pages_gtt(obj);
2196 list_del_init(&obj->gtt_list);
2197 list_del_init(&obj->mm_list);
2198 /* Avoid an unnecessary call to unbind on rebind. */
2199 obj->map_and_fenceable = true;
2201 drm_mm_put_block(obj->gtt_space);
2202 obj->gtt_space = NULL;
2203 obj->gtt_offset = 0;
2205 if (i915_gem_object_is_purgeable(obj))
2206 i915_gem_object_truncate(obj);
2208 return ret;
2212 i915_gem_flush_ring(struct intel_ring_buffer *ring,
2213 uint32_t invalidate_domains,
2214 uint32_t flush_domains)
2216 int ret;
2218 if (((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) == 0)
2219 return 0;
2221 trace_i915_gem_ring_flush(ring, invalidate_domains, flush_domains);
2223 ret = ring->flush(ring, invalidate_domains, flush_domains);
2224 if (ret)
2225 return ret;
2227 if (flush_domains & I915_GEM_GPU_DOMAINS)
2228 i915_gem_process_flushing_list(ring, flush_domains);
2230 return 0;
2233 static int i915_ring_idle(struct intel_ring_buffer *ring)
2235 int ret;
2237 if (list_empty(&ring->gpu_write_list) && list_empty(&ring->active_list))
2238 return 0;
2240 if (!list_empty(&ring->gpu_write_list)) {
2241 ret = i915_gem_flush_ring(ring,
2242 I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
2243 if (ret)
2244 return ret;
2247 return i915_wait_request(ring, i915_gem_next_request_seqno(ring));
2251 i915_gpu_idle(struct drm_device *dev)
2253 drm_i915_private_t *dev_priv = dev->dev_private;
2254 bool lists_empty;
2255 int ret, i;
2257 lists_empty = (list_empty(&dev_priv->mm.flushing_list) &&
2258 list_empty(&dev_priv->mm.active_list));
2259 if (lists_empty)
2260 return 0;
2262 /* Flush everything onto the inactive list. */
2263 for (i = 0; i < I915_NUM_RINGS; i++) {
2264 ret = i915_ring_idle(&dev_priv->ring[i]);
2265 if (ret)
2266 return ret;
2269 return 0;
2272 static int sandybridge_write_fence_reg(struct drm_i915_gem_object *obj,
2273 struct intel_ring_buffer *pipelined)
2275 struct drm_device *dev = obj->base.dev;
2276 drm_i915_private_t *dev_priv = dev->dev_private;
2277 u32 size = obj->gtt_space->size;
2278 int regnum = obj->fence_reg;
2279 uint64_t val;
2281 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2282 0xfffff000) << 32;
2283 val |= obj->gtt_offset & 0xfffff000;
2284 val |= (uint64_t)((obj->stride / 128) - 1) <<
2285 SANDYBRIDGE_FENCE_PITCH_SHIFT;
2287 if (obj->tiling_mode == I915_TILING_Y)
2288 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2289 val |= I965_FENCE_REG_VALID;
2291 if (pipelined) {
2292 int ret = intel_ring_begin(pipelined, 6);
2293 if (ret)
2294 return ret;
2296 intel_ring_emit(pipelined, MI_NOOP);
2297 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2298 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8);
2299 intel_ring_emit(pipelined, (u32)val);
2300 intel_ring_emit(pipelined, FENCE_REG_SANDYBRIDGE_0 + regnum*8 + 4);
2301 intel_ring_emit(pipelined, (u32)(val >> 32));
2302 intel_ring_advance(pipelined);
2303 } else
2304 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + regnum * 8, val);
2306 return 0;
2309 static int i965_write_fence_reg(struct drm_i915_gem_object *obj,
2310 struct intel_ring_buffer *pipelined)
2312 struct drm_device *dev = obj->base.dev;
2313 drm_i915_private_t *dev_priv = dev->dev_private;
2314 u32 size = obj->gtt_space->size;
2315 int regnum = obj->fence_reg;
2316 uint64_t val;
2318 val = (uint64_t)((obj->gtt_offset + size - 4096) &
2319 0xfffff000) << 32;
2320 val |= obj->gtt_offset & 0xfffff000;
2321 val |= ((obj->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2322 if (obj->tiling_mode == I915_TILING_Y)
2323 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2324 val |= I965_FENCE_REG_VALID;
2326 if (pipelined) {
2327 int ret = intel_ring_begin(pipelined, 6);
2328 if (ret)
2329 return ret;
2331 intel_ring_emit(pipelined, MI_NOOP);
2332 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(2));
2333 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8);
2334 intel_ring_emit(pipelined, (u32)val);
2335 intel_ring_emit(pipelined, FENCE_REG_965_0 + regnum*8 + 4);
2336 intel_ring_emit(pipelined, (u32)(val >> 32));
2337 intel_ring_advance(pipelined);
2338 } else
2339 I915_WRITE64(FENCE_REG_965_0 + regnum * 8, val);
2341 return 0;
2344 static int i915_write_fence_reg(struct drm_i915_gem_object *obj,
2345 struct intel_ring_buffer *pipelined)
2347 struct drm_device *dev = obj->base.dev;
2348 drm_i915_private_t *dev_priv = dev->dev_private;
2349 u32 size = obj->gtt_space->size;
2350 u32 fence_reg, val, pitch_val;
2351 int tile_width;
2353 if (WARN((obj->gtt_offset & ~I915_FENCE_START_MASK) ||
2354 (size & -size) != size ||
2355 (obj->gtt_offset & (size - 1)),
2356 "object 0x%08x [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2357 obj->gtt_offset, obj->map_and_fenceable, size))
2358 return -EINVAL;
2360 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2361 tile_width = 128;
2362 else
2363 tile_width = 512;
2365 /* Note: pitch better be a power of two tile widths */
2366 pitch_val = obj->stride / tile_width;
2367 pitch_val = ffs(pitch_val) - 1;
2369 val = obj->gtt_offset;
2370 if (obj->tiling_mode == I915_TILING_Y)
2371 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2372 val |= I915_FENCE_SIZE_BITS(size);
2373 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2374 val |= I830_FENCE_REG_VALID;
2376 fence_reg = obj->fence_reg;
2377 if (fence_reg < 8)
2378 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2379 else
2380 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2382 if (pipelined) {
2383 int ret = intel_ring_begin(pipelined, 4);
2384 if (ret)
2385 return ret;
2387 intel_ring_emit(pipelined, MI_NOOP);
2388 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2389 intel_ring_emit(pipelined, fence_reg);
2390 intel_ring_emit(pipelined, val);
2391 intel_ring_advance(pipelined);
2392 } else
2393 I915_WRITE(fence_reg, val);
2395 return 0;
2398 static int i830_write_fence_reg(struct drm_i915_gem_object *obj,
2399 struct intel_ring_buffer *pipelined)
2401 struct drm_device *dev = obj->base.dev;
2402 drm_i915_private_t *dev_priv = dev->dev_private;
2403 u32 size = obj->gtt_space->size;
2404 int regnum = obj->fence_reg;
2405 uint32_t val;
2406 uint32_t pitch_val;
2408 if (WARN((obj->gtt_offset & ~I830_FENCE_START_MASK) ||
2409 (size & -size) != size ||
2410 (obj->gtt_offset & (size - 1)),
2411 "object 0x%08x not 512K or pot-size 0x%08x aligned\n",
2412 obj->gtt_offset, size))
2413 return -EINVAL;
2415 pitch_val = obj->stride / 128;
2416 pitch_val = ffs(pitch_val) - 1;
2418 val = obj->gtt_offset;
2419 if (obj->tiling_mode == I915_TILING_Y)
2420 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2421 val |= I830_FENCE_SIZE_BITS(size);
2422 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2423 val |= I830_FENCE_REG_VALID;
2425 if (pipelined) {
2426 int ret = intel_ring_begin(pipelined, 4);
2427 if (ret)
2428 return ret;
2430 intel_ring_emit(pipelined, MI_NOOP);
2431 intel_ring_emit(pipelined, MI_LOAD_REGISTER_IMM(1));
2432 intel_ring_emit(pipelined, FENCE_REG_830_0 + regnum*4);
2433 intel_ring_emit(pipelined, val);
2434 intel_ring_advance(pipelined);
2435 } else
2436 I915_WRITE(FENCE_REG_830_0 + regnum * 4, val);
2438 return 0;
2441 static bool ring_passed_seqno(struct intel_ring_buffer *ring, u32 seqno)
2443 return i915_seqno_passed(ring->get_seqno(ring), seqno);
2446 static int
2447 i915_gem_object_flush_fence(struct drm_i915_gem_object *obj,
2448 struct intel_ring_buffer *pipelined)
2450 int ret;
2452 if (obj->fenced_gpu_access) {
2453 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
2454 ret = i915_gem_flush_ring(obj->last_fenced_ring,
2455 0, obj->base.write_domain);
2456 if (ret)
2457 return ret;
2460 obj->fenced_gpu_access = false;
2463 if (obj->last_fenced_seqno && pipelined != obj->last_fenced_ring) {
2464 if (!ring_passed_seqno(obj->last_fenced_ring,
2465 obj->last_fenced_seqno)) {
2466 ret = i915_wait_request(obj->last_fenced_ring,
2467 obj->last_fenced_seqno);
2468 if (ret)
2469 return ret;
2472 obj->last_fenced_seqno = 0;
2473 obj->last_fenced_ring = NULL;
2476 /* Ensure that all CPU reads are completed before installing a fence
2477 * and all writes before removing the fence.
2479 if (obj->base.read_domains & I915_GEM_DOMAIN_GTT)
2480 mb();
2482 return 0;
2486 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
2488 int ret;
2490 if (obj->tiling_mode)
2491 i915_gem_release_mmap(obj);
2493 ret = i915_gem_object_flush_fence(obj, NULL);
2494 if (ret)
2495 return ret;
2497 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2498 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2499 i915_gem_clear_fence_reg(obj->base.dev,
2500 &dev_priv->fence_regs[obj->fence_reg]);
2502 obj->fence_reg = I915_FENCE_REG_NONE;
2505 return 0;
2508 static struct drm_i915_fence_reg *
2509 i915_find_fence_reg(struct drm_device *dev,
2510 struct intel_ring_buffer *pipelined)
2512 struct drm_i915_private *dev_priv = dev->dev_private;
2513 struct drm_i915_fence_reg *reg, *first, *avail;
2514 int i;
2516 /* First try to find a free reg */
2517 avail = NULL;
2518 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2519 reg = &dev_priv->fence_regs[i];
2520 if (!reg->obj)
2521 return reg;
2523 if (!reg->obj->pin_count)
2524 avail = reg;
2527 if (avail == NULL)
2528 return NULL;
2530 /* None available, try to steal one or wait for a user to finish */
2531 avail = first = NULL;
2532 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
2533 if (reg->obj->pin_count)
2534 continue;
2536 if (first == NULL)
2537 first = reg;
2539 if (!pipelined ||
2540 !reg->obj->last_fenced_ring ||
2541 reg->obj->last_fenced_ring == pipelined) {
2542 avail = reg;
2543 break;
2547 if (avail == NULL)
2548 avail = first;
2550 return avail;
2554 * i915_gem_object_get_fence - set up a fence reg for an object
2555 * @obj: object to map through a fence reg
2556 * @pipelined: ring on which to queue the change, or NULL for CPU access
2557 * @interruptible: must we wait uninterruptibly for the register to retire?
2559 * When mapping objects through the GTT, userspace wants to be able to write
2560 * to them without having to worry about swizzling if the object is tiled.
2562 * This function walks the fence regs looking for a free one for @obj,
2563 * stealing one if it can't find any.
2565 * It then sets up the reg based on the object's properties: address, pitch
2566 * and tiling format.
2569 i915_gem_object_get_fence(struct drm_i915_gem_object *obj,
2570 struct intel_ring_buffer *pipelined)
2572 struct drm_device *dev = obj->base.dev;
2573 struct drm_i915_private *dev_priv = dev->dev_private;
2574 struct drm_i915_fence_reg *reg;
2575 int ret;
2577 /* XXX disable pipelining. There are bugs. Shocking. */
2578 pipelined = NULL;
2580 /* Just update our place in the LRU if our fence is getting reused. */
2581 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2582 reg = &dev_priv->fence_regs[obj->fence_reg];
2583 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2585 if (obj->tiling_changed) {
2586 ret = i915_gem_object_flush_fence(obj, pipelined);
2587 if (ret)
2588 return ret;
2590 if (!obj->fenced_gpu_access && !obj->last_fenced_seqno)
2591 pipelined = NULL;
2593 if (pipelined) {
2594 reg->setup_seqno =
2595 i915_gem_next_request_seqno(pipelined);
2596 obj->last_fenced_seqno = reg->setup_seqno;
2597 obj->last_fenced_ring = pipelined;
2600 goto update;
2603 if (!pipelined) {
2604 if (reg->setup_seqno) {
2605 if (!ring_passed_seqno(obj->last_fenced_ring,
2606 reg->setup_seqno)) {
2607 ret = i915_wait_request(obj->last_fenced_ring,
2608 reg->setup_seqno);
2609 if (ret)
2610 return ret;
2613 reg->setup_seqno = 0;
2615 } else if (obj->last_fenced_ring &&
2616 obj->last_fenced_ring != pipelined) {
2617 ret = i915_gem_object_flush_fence(obj, pipelined);
2618 if (ret)
2619 return ret;
2622 return 0;
2625 reg = i915_find_fence_reg(dev, pipelined);
2626 if (reg == NULL)
2627 return -ENOSPC;
2629 ret = i915_gem_object_flush_fence(obj, pipelined);
2630 if (ret)
2631 return ret;
2633 if (reg->obj) {
2634 struct drm_i915_gem_object *old = reg->obj;
2636 drm_gem_object_reference(&old->base);
2638 if (old->tiling_mode)
2639 i915_gem_release_mmap(old);
2641 ret = i915_gem_object_flush_fence(old, pipelined);
2642 if (ret) {
2643 drm_gem_object_unreference(&old->base);
2644 return ret;
2647 if (old->last_fenced_seqno == 0 && obj->last_fenced_seqno == 0)
2648 pipelined = NULL;
2650 old->fence_reg = I915_FENCE_REG_NONE;
2651 old->last_fenced_ring = pipelined;
2652 old->last_fenced_seqno =
2653 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2655 drm_gem_object_unreference(&old->base);
2656 } else if (obj->last_fenced_seqno == 0)
2657 pipelined = NULL;
2659 reg->obj = obj;
2660 list_move_tail(&reg->lru_list, &dev_priv->mm.fence_list);
2661 obj->fence_reg = reg - dev_priv->fence_regs;
2662 obj->last_fenced_ring = pipelined;
2664 reg->setup_seqno =
2665 pipelined ? i915_gem_next_request_seqno(pipelined) : 0;
2666 obj->last_fenced_seqno = reg->setup_seqno;
2668 update:
2669 obj->tiling_changed = false;
2670 switch (INTEL_INFO(dev)->gen) {
2671 case 7:
2672 case 6:
2673 ret = sandybridge_write_fence_reg(obj, pipelined);
2674 break;
2675 case 5:
2676 case 4:
2677 ret = i965_write_fence_reg(obj, pipelined);
2678 break;
2679 case 3:
2680 ret = i915_write_fence_reg(obj, pipelined);
2681 break;
2682 case 2:
2683 ret = i830_write_fence_reg(obj, pipelined);
2684 break;
2687 return ret;
2691 * i915_gem_clear_fence_reg - clear out fence register info
2692 * @obj: object to clear
2694 * Zeroes out the fence register itself and clears out the associated
2695 * data structures in dev_priv and obj.
2697 static void
2698 i915_gem_clear_fence_reg(struct drm_device *dev,
2699 struct drm_i915_fence_reg *reg)
2701 drm_i915_private_t *dev_priv = dev->dev_private;
2702 uint32_t fence_reg = reg - dev_priv->fence_regs;
2704 switch (INTEL_INFO(dev)->gen) {
2705 case 7:
2706 case 6:
2707 I915_WRITE64(FENCE_REG_SANDYBRIDGE_0 + fence_reg*8, 0);
2708 break;
2709 case 5:
2710 case 4:
2711 I915_WRITE64(FENCE_REG_965_0 + fence_reg*8, 0);
2712 break;
2713 case 3:
2714 if (fence_reg >= 8)
2715 fence_reg = FENCE_REG_945_8 + (fence_reg - 8) * 4;
2716 else
2717 case 2:
2718 fence_reg = FENCE_REG_830_0 + fence_reg * 4;
2720 I915_WRITE(fence_reg, 0);
2721 break;
2724 list_del_init(&reg->lru_list);
2725 reg->obj = NULL;
2726 reg->setup_seqno = 0;
2730 * Finds free space in the GTT aperture and binds the object there.
2732 static int
2733 i915_gem_object_bind_to_gtt(struct drm_i915_gem_object *obj,
2734 unsigned alignment,
2735 bool map_and_fenceable)
2737 struct drm_device *dev = obj->base.dev;
2738 drm_i915_private_t *dev_priv = dev->dev_private;
2739 struct drm_mm_node *free_space;
2740 gfp_t gfpmask = __GFP_NORETRY | __GFP_NOWARN;
2741 u32 size, fence_size, fence_alignment, unfenced_alignment;
2742 bool mappable, fenceable;
2743 int ret;
2745 if (obj->madv != I915_MADV_WILLNEED) {
2746 DRM_ERROR("Attempting to bind a purgeable object\n");
2747 return -EINVAL;
2750 fence_size = i915_gem_get_gtt_size(obj);
2751 fence_alignment = i915_gem_get_gtt_alignment(obj);
2752 unfenced_alignment = i915_gem_get_unfenced_gtt_alignment(obj);
2754 if (alignment == 0)
2755 alignment = map_and_fenceable ? fence_alignment :
2756 unfenced_alignment;
2757 if (map_and_fenceable && alignment & (fence_alignment - 1)) {
2758 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2759 return -EINVAL;
2762 size = map_and_fenceable ? fence_size : obj->base.size;
2764 /* If the object is bigger than the entire aperture, reject it early
2765 * before evicting everything in a vain attempt to find space.
2767 if (obj->base.size >
2768 (map_and_fenceable ? dev_priv->mm.gtt_mappable_end : dev_priv->mm.gtt_total)) {
2769 DRM_ERROR("Attempting to bind an object larger than the aperture\n");
2770 return -E2BIG;
2773 search_free:
2774 if (map_and_fenceable)
2775 free_space =
2776 drm_mm_search_free_in_range(&dev_priv->mm.gtt_space,
2777 size, alignment, 0,
2778 dev_priv->mm.gtt_mappable_end,
2780 else
2781 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2782 size, alignment, 0);
2784 if (free_space != NULL) {
2785 if (map_and_fenceable)
2786 obj->gtt_space =
2787 drm_mm_get_block_range_generic(free_space,
2788 size, alignment, 0,
2789 dev_priv->mm.gtt_mappable_end,
2791 else
2792 obj->gtt_space =
2793 drm_mm_get_block(free_space, size, alignment);
2795 if (obj->gtt_space == NULL) {
2796 /* If the gtt is empty and we're still having trouble
2797 * fitting our object in, we're out of memory.
2799 ret = i915_gem_evict_something(dev, size, alignment,
2800 map_and_fenceable);
2801 if (ret)
2802 return ret;
2804 goto search_free;
2807 ret = i915_gem_object_get_pages_gtt(obj, gfpmask);
2808 if (ret) {
2809 drm_mm_put_block(obj->gtt_space);
2810 obj->gtt_space = NULL;
2812 if (ret == -ENOMEM) {
2813 /* first try to reclaim some memory by clearing the GTT */
2814 ret = i915_gem_evict_everything(dev, false);
2815 if (ret) {
2816 /* now try to shrink everyone else */
2817 if (gfpmask) {
2818 gfpmask = 0;
2819 goto search_free;
2822 return -ENOMEM;
2825 goto search_free;
2828 return ret;
2831 ret = i915_gem_gtt_bind_object(obj);
2832 if (ret) {
2833 i915_gem_object_put_pages_gtt(obj);
2834 drm_mm_put_block(obj->gtt_space);
2835 obj->gtt_space = NULL;
2837 if (i915_gem_evict_everything(dev, false))
2838 return ret;
2840 goto search_free;
2843 list_add_tail(&obj->gtt_list, &dev_priv->mm.gtt_list);
2844 list_add_tail(&obj->mm_list, &dev_priv->mm.inactive_list);
2846 /* Assert that the object is not currently in any GPU domain. As it
2847 * wasn't in the GTT, there shouldn't be any way it could have been in
2848 * a GPU cache
2850 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2851 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2853 obj->gtt_offset = obj->gtt_space->start;
2855 fenceable =
2856 obj->gtt_space->size == fence_size &&
2857 (obj->gtt_space->start & (fence_alignment -1)) == 0;
2859 mappable =
2860 obj->gtt_offset + obj->base.size <= dev_priv->mm.gtt_mappable_end;
2862 obj->map_and_fenceable = mappable && fenceable;
2864 trace_i915_gem_object_bind(obj, map_and_fenceable);
2865 return 0;
2868 void
2869 i915_gem_clflush_object(struct drm_i915_gem_object *obj)
2871 /* If we don't have a page list set up, then we're not pinned
2872 * to GPU, and we can ignore the cache flush because it'll happen
2873 * again at bind time.
2875 if (obj->pages == NULL)
2876 return;
2878 /* If the GPU is snooping the contents of the CPU cache,
2879 * we do not need to manually clear the CPU cache lines. However,
2880 * the caches are only snooped when the render cache is
2881 * flushed/invalidated. As we always have to emit invalidations
2882 * and flushes when moving into and out of the RENDER domain, correct
2883 * snooping behaviour occurs naturally as the result of our domain
2884 * tracking.
2886 if (obj->cache_level != I915_CACHE_NONE)
2887 return;
2889 trace_i915_gem_object_clflush(obj);
2891 drm_clflush_pages(obj->pages, obj->base.size / PAGE_SIZE);
2894 /** Flushes any GPU write domain for the object if it's dirty. */
2895 static int
2896 i915_gem_object_flush_gpu_write_domain(struct drm_i915_gem_object *obj)
2898 if ((obj->base.write_domain & I915_GEM_GPU_DOMAINS) == 0)
2899 return 0;
2901 /* Queue the GPU write cache flushing we need. */
2902 return i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
2905 /** Flushes the GTT write domain for the object if it's dirty. */
2906 static void
2907 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
2909 uint32_t old_write_domain;
2911 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
2912 return;
2914 /* No actual flushing is required for the GTT write domain. Writes
2915 * to it immediately go to main memory as far as we know, so there's
2916 * no chipset flush. It also doesn't land in render cache.
2918 * However, we do have to enforce the order so that all writes through
2919 * the GTT land before any writes to the device, such as updates to
2920 * the GATT itself.
2922 wmb();
2924 old_write_domain = obj->base.write_domain;
2925 obj->base.write_domain = 0;
2927 trace_i915_gem_object_change_domain(obj,
2928 obj->base.read_domains,
2929 old_write_domain);
2932 /** Flushes the CPU write domain for the object if it's dirty. */
2933 static void
2934 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj)
2936 uint32_t old_write_domain;
2938 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
2939 return;
2941 i915_gem_clflush_object(obj);
2942 intel_gtt_chipset_flush();
2943 old_write_domain = obj->base.write_domain;
2944 obj->base.write_domain = 0;
2946 trace_i915_gem_object_change_domain(obj,
2947 obj->base.read_domains,
2948 old_write_domain);
2952 * Moves a single object to the GTT read, and possibly write domain.
2954 * This function returns when the move is complete, including waiting on
2955 * flushes to occur.
2958 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
2960 uint32_t old_write_domain, old_read_domains;
2961 int ret;
2963 /* Not valid to be called on unbound objects. */
2964 if (obj->gtt_space == NULL)
2965 return -EINVAL;
2967 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
2968 return 0;
2970 ret = i915_gem_object_flush_gpu_write_domain(obj);
2971 if (ret)
2972 return ret;
2974 if (obj->pending_gpu_write || write) {
2975 ret = i915_gem_object_wait_rendering(obj);
2976 if (ret)
2977 return ret;
2980 i915_gem_object_flush_cpu_write_domain(obj);
2982 old_write_domain = obj->base.write_domain;
2983 old_read_domains = obj->base.read_domains;
2985 /* It should now be out of any other write domains, and we can update
2986 * the domain values for our changes.
2988 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2989 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
2990 if (write) {
2991 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
2992 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
2993 obj->dirty = 1;
2996 trace_i915_gem_object_change_domain(obj,
2997 old_read_domains,
2998 old_write_domain);
3000 return 0;
3004 * Prepare buffer for display plane. Use uninterruptible for possible flush
3005 * wait, as in modesetting process we're not supposed to be interrupted.
3008 i915_gem_object_set_to_display_plane(struct drm_i915_gem_object *obj,
3009 struct intel_ring_buffer *pipelined)
3011 uint32_t old_read_domains;
3012 int ret;
3014 /* Not valid to be called on unbound objects. */
3015 if (obj->gtt_space == NULL)
3016 return -EINVAL;
3018 ret = i915_gem_object_flush_gpu_write_domain(obj);
3019 if (ret)
3020 return ret;
3023 /* Currently, we are always called from an non-interruptible context. */
3024 if (pipelined != obj->ring) {
3025 ret = i915_gem_object_wait_rendering(obj);
3026 if (ret)
3027 return ret;
3030 i915_gem_object_flush_cpu_write_domain(obj);
3032 old_read_domains = obj->base.read_domains;
3033 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3035 trace_i915_gem_object_change_domain(obj,
3036 old_read_domains,
3037 obj->base.write_domain);
3039 return 0;
3043 i915_gem_object_flush_gpu(struct drm_i915_gem_object *obj)
3045 int ret;
3047 if (!obj->active)
3048 return 0;
3050 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3051 ret = i915_gem_flush_ring(obj->ring, 0, obj->base.write_domain);
3052 if (ret)
3053 return ret;
3056 return i915_gem_object_wait_rendering(obj);
3060 * Moves a single object to the CPU read, and possibly write domain.
3062 * This function returns when the move is complete, including waiting on
3063 * flushes to occur.
3065 static int
3066 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3068 uint32_t old_write_domain, old_read_domains;
3069 int ret;
3071 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3072 return 0;
3074 ret = i915_gem_object_flush_gpu_write_domain(obj);
3075 if (ret)
3076 return ret;
3078 ret = i915_gem_object_wait_rendering(obj);
3079 if (ret)
3080 return ret;
3082 i915_gem_object_flush_gtt_write_domain(obj);
3084 /* If we have a partially-valid cache of the object in the CPU,
3085 * finish invalidating it and free the per-page flags.
3087 i915_gem_object_set_to_full_cpu_read_domain(obj);
3089 old_write_domain = obj->base.write_domain;
3090 old_read_domains = obj->base.read_domains;
3092 /* Flush the CPU cache if it's still invalid. */
3093 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3094 i915_gem_clflush_object(obj);
3096 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3099 /* It should now be out of any other write domains, and we can update
3100 * the domain values for our changes.
3102 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3104 /* If we're writing through the CPU, then the GPU read domains will
3105 * need to be invalidated at next use.
3107 if (write) {
3108 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3109 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3112 trace_i915_gem_object_change_domain(obj,
3113 old_read_domains,
3114 old_write_domain);
3116 return 0;
3120 * Moves the object from a partially CPU read to a full one.
3122 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
3123 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
3125 static void
3126 i915_gem_object_set_to_full_cpu_read_domain(struct drm_i915_gem_object *obj)
3128 if (!obj->page_cpu_valid)
3129 return;
3131 /* If we're partially in the CPU read domain, finish moving it in.
3133 if (obj->base.read_domains & I915_GEM_DOMAIN_CPU) {
3134 int i;
3136 for (i = 0; i <= (obj->base.size - 1) / PAGE_SIZE; i++) {
3137 if (obj->page_cpu_valid[i])
3138 continue;
3139 drm_clflush_pages(obj->pages + i, 1);
3143 /* Free the page_cpu_valid mappings which are now stale, whether
3144 * or not we've got I915_GEM_DOMAIN_CPU.
3146 kfree(obj->page_cpu_valid);
3147 obj->page_cpu_valid = NULL;
3151 * Set the CPU read domain on a range of the object.
3153 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
3154 * not entirely valid. The page_cpu_valid member of the object flags which
3155 * pages have been flushed, and will be respected by
3156 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
3157 * of the whole object.
3159 * This function returns when the move is complete, including waiting on
3160 * flushes to occur.
3162 static int
3163 i915_gem_object_set_cpu_read_domain_range(struct drm_i915_gem_object *obj,
3164 uint64_t offset, uint64_t size)
3166 uint32_t old_read_domains;
3167 int i, ret;
3169 if (offset == 0 && size == obj->base.size)
3170 return i915_gem_object_set_to_cpu_domain(obj, 0);
3172 ret = i915_gem_object_flush_gpu_write_domain(obj);
3173 if (ret)
3174 return ret;
3176 ret = i915_gem_object_wait_rendering(obj);
3177 if (ret)
3178 return ret;
3180 i915_gem_object_flush_gtt_write_domain(obj);
3182 /* If we're already fully in the CPU read domain, we're done. */
3183 if (obj->page_cpu_valid == NULL &&
3184 (obj->base.read_domains & I915_GEM_DOMAIN_CPU) != 0)
3185 return 0;
3187 /* Otherwise, create/clear the per-page CPU read domain flag if we're
3188 * newly adding I915_GEM_DOMAIN_CPU
3190 if (obj->page_cpu_valid == NULL) {
3191 obj->page_cpu_valid = kzalloc(obj->base.size / PAGE_SIZE,
3192 GFP_KERNEL);
3193 if (obj->page_cpu_valid == NULL)
3194 return -ENOMEM;
3195 } else if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
3196 memset(obj->page_cpu_valid, 0, obj->base.size / PAGE_SIZE);
3198 /* Flush the cache on any pages that are still invalid from the CPU's
3199 * perspective.
3201 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
3202 i++) {
3203 if (obj->page_cpu_valid[i])
3204 continue;
3206 drm_clflush_pages(obj->pages + i, 1);
3208 obj->page_cpu_valid[i] = 1;
3211 /* It should now be out of any other write domains, and we can update
3212 * the domain values for our changes.
3214 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3216 old_read_domains = obj->base.read_domains;
3217 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3219 trace_i915_gem_object_change_domain(obj,
3220 old_read_domains,
3221 obj->base.write_domain);
3223 return 0;
3226 /* Throttle our rendering by waiting until the ring has completed our requests
3227 * emitted over 20 msec ago.
3229 * Note that if we were to use the current jiffies each time around the loop,
3230 * we wouldn't escape the function with any frames outstanding if the time to
3231 * render a frame was over 20ms.
3233 * This should get us reasonable parallelism between CPU and GPU but also
3234 * relatively low latency when blocking on a particular request to finish.
3236 static int
3237 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3239 struct drm_i915_private *dev_priv = dev->dev_private;
3240 struct drm_i915_file_private *file_priv = file->driver_priv;
3241 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3242 struct drm_i915_gem_request *request;
3243 struct intel_ring_buffer *ring = NULL;
3244 u32 seqno = 0;
3245 int ret;
3247 if (atomic_read(&dev_priv->mm.wedged))
3248 return -EIO;
3250 spin_lock(&file_priv->mm.lock);
3251 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3252 if (time_after_eq(request->emitted_jiffies, recent_enough))
3253 break;
3255 ring = request->ring;
3256 seqno = request->seqno;
3258 spin_unlock(&file_priv->mm.lock);
3260 if (seqno == 0)
3261 return 0;
3263 ret = 0;
3264 if (!i915_seqno_passed(ring->get_seqno(ring), seqno)) {
3265 /* And wait for the seqno passing without holding any locks and
3266 * causing extra latency for others. This is safe as the irq
3267 * generation is designed to be run atomically and so is
3268 * lockless.
3270 if (ring->irq_get(ring)) {
3271 ret = wait_event_interruptible(ring->irq_queue,
3272 i915_seqno_passed(ring->get_seqno(ring), seqno)
3273 || atomic_read(&dev_priv->mm.wedged));
3274 ring->irq_put(ring);
3276 if (ret == 0 && atomic_read(&dev_priv->mm.wedged))
3277 ret = -EIO;
3281 if (ret == 0)
3282 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3284 return ret;
3288 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3289 uint32_t alignment,
3290 bool map_and_fenceable)
3292 struct drm_device *dev = obj->base.dev;
3293 struct drm_i915_private *dev_priv = dev->dev_private;
3294 int ret;
3296 BUG_ON(obj->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT);
3297 WARN_ON(i915_verify_lists(dev));
3299 if (obj->gtt_space != NULL) {
3300 if ((alignment && obj->gtt_offset & (alignment - 1)) ||
3301 (map_and_fenceable && !obj->map_and_fenceable)) {
3302 WARN(obj->pin_count,
3303 "bo is already pinned with incorrect alignment:"
3304 " offset=%x, req.alignment=%x, req.map_and_fenceable=%d,"
3305 " obj->map_and_fenceable=%d\n",
3306 obj->gtt_offset, alignment,
3307 map_and_fenceable,
3308 obj->map_and_fenceable);
3309 ret = i915_gem_object_unbind(obj);
3310 if (ret)
3311 return ret;
3315 if (obj->gtt_space == NULL) {
3316 ret = i915_gem_object_bind_to_gtt(obj, alignment,
3317 map_and_fenceable);
3318 if (ret)
3319 return ret;
3322 if (obj->pin_count++ == 0) {
3323 if (!obj->active)
3324 list_move_tail(&obj->mm_list,
3325 &dev_priv->mm.pinned_list);
3327 obj->pin_mappable |= map_and_fenceable;
3329 WARN_ON(i915_verify_lists(dev));
3330 return 0;
3333 void
3334 i915_gem_object_unpin(struct drm_i915_gem_object *obj)
3336 struct drm_device *dev = obj->base.dev;
3337 drm_i915_private_t *dev_priv = dev->dev_private;
3339 WARN_ON(i915_verify_lists(dev));
3340 BUG_ON(obj->pin_count == 0);
3341 BUG_ON(obj->gtt_space == NULL);
3343 if (--obj->pin_count == 0) {
3344 if (!obj->active)
3345 list_move_tail(&obj->mm_list,
3346 &dev_priv->mm.inactive_list);
3347 obj->pin_mappable = false;
3349 WARN_ON(i915_verify_lists(dev));
3353 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3354 struct drm_file *file)
3356 struct drm_i915_gem_pin *args = data;
3357 struct drm_i915_gem_object *obj;
3358 int ret;
3360 ret = i915_mutex_lock_interruptible(dev);
3361 if (ret)
3362 return ret;
3364 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3365 if (&obj->base == NULL) {
3366 ret = -ENOENT;
3367 goto unlock;
3370 if (obj->madv != I915_MADV_WILLNEED) {
3371 DRM_ERROR("Attempting to pin a purgeable buffer\n");
3372 ret = -EINVAL;
3373 goto out;
3376 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3377 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3378 args->handle);
3379 ret = -EINVAL;
3380 goto out;
3383 obj->user_pin_count++;
3384 obj->pin_filp = file;
3385 if (obj->user_pin_count == 1) {
3386 ret = i915_gem_object_pin(obj, args->alignment, true);
3387 if (ret)
3388 goto out;
3391 /* XXX - flush the CPU caches for pinned objects
3392 * as the X server doesn't manage domains yet
3394 i915_gem_object_flush_cpu_write_domain(obj);
3395 args->offset = obj->gtt_offset;
3396 out:
3397 drm_gem_object_unreference(&obj->base);
3398 unlock:
3399 mutex_unlock(&dev->struct_mutex);
3400 return ret;
3404 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3405 struct drm_file *file)
3407 struct drm_i915_gem_pin *args = data;
3408 struct drm_i915_gem_object *obj;
3409 int ret;
3411 ret = i915_mutex_lock_interruptible(dev);
3412 if (ret)
3413 return ret;
3415 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3416 if (&obj->base == NULL) {
3417 ret = -ENOENT;
3418 goto unlock;
3421 if (obj->pin_filp != file) {
3422 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3423 args->handle);
3424 ret = -EINVAL;
3425 goto out;
3427 obj->user_pin_count--;
3428 if (obj->user_pin_count == 0) {
3429 obj->pin_filp = NULL;
3430 i915_gem_object_unpin(obj);
3433 out:
3434 drm_gem_object_unreference(&obj->base);
3435 unlock:
3436 mutex_unlock(&dev->struct_mutex);
3437 return ret;
3441 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3442 struct drm_file *file)
3444 struct drm_i915_gem_busy *args = data;
3445 struct drm_i915_gem_object *obj;
3446 int ret;
3448 ret = i915_mutex_lock_interruptible(dev);
3449 if (ret)
3450 return ret;
3452 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3453 if (&obj->base == NULL) {
3454 ret = -ENOENT;
3455 goto unlock;
3458 /* Count all active objects as busy, even if they are currently not used
3459 * by the gpu. Users of this interface expect objects to eventually
3460 * become non-busy without any further actions, therefore emit any
3461 * necessary flushes here.
3463 args->busy = obj->active;
3464 if (args->busy) {
3465 /* Unconditionally flush objects, even when the gpu still uses this
3466 * object. Userspace calling this function indicates that it wants to
3467 * use this buffer rather sooner than later, so issuing the required
3468 * flush earlier is beneficial.
3470 if (obj->base.write_domain & I915_GEM_GPU_DOMAINS) {
3471 ret = i915_gem_flush_ring(obj->ring,
3472 0, obj->base.write_domain);
3473 } else if (obj->ring->outstanding_lazy_request ==
3474 obj->last_rendering_seqno) {
3475 struct drm_i915_gem_request *request;
3477 /* This ring is not being cleared by active usage,
3478 * so emit a request to do so.
3480 request = kzalloc(sizeof(*request), GFP_KERNEL);
3481 if (request)
3482 ret = i915_add_request(obj->ring, NULL,request);
3483 else
3484 ret = -ENOMEM;
3487 /* Update the active list for the hardware's current position.
3488 * Otherwise this only updates on a delayed timer or when irqs
3489 * are actually unmasked, and our working set ends up being
3490 * larger than required.
3492 i915_gem_retire_requests_ring(obj->ring);
3494 args->busy = obj->active;
3497 drm_gem_object_unreference(&obj->base);
3498 unlock:
3499 mutex_unlock(&dev->struct_mutex);
3500 return ret;
3504 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3505 struct drm_file *file_priv)
3507 return i915_gem_ring_throttle(dev, file_priv);
3511 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
3512 struct drm_file *file_priv)
3514 struct drm_i915_gem_madvise *args = data;
3515 struct drm_i915_gem_object *obj;
3516 int ret;
3518 switch (args->madv) {
3519 case I915_MADV_DONTNEED:
3520 case I915_MADV_WILLNEED:
3521 break;
3522 default:
3523 return -EINVAL;
3526 ret = i915_mutex_lock_interruptible(dev);
3527 if (ret)
3528 return ret;
3530 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
3531 if (&obj->base == NULL) {
3532 ret = -ENOENT;
3533 goto unlock;
3536 if (obj->pin_count) {
3537 ret = -EINVAL;
3538 goto out;
3541 if (obj->madv != __I915_MADV_PURGED)
3542 obj->madv = args->madv;
3544 /* if the object is no longer bound, discard its backing storage */
3545 if (i915_gem_object_is_purgeable(obj) &&
3546 obj->gtt_space == NULL)
3547 i915_gem_object_truncate(obj);
3549 args->retained = obj->madv != __I915_MADV_PURGED;
3551 out:
3552 drm_gem_object_unreference(&obj->base);
3553 unlock:
3554 mutex_unlock(&dev->struct_mutex);
3555 return ret;
3558 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
3559 size_t size)
3561 struct drm_i915_private *dev_priv = dev->dev_private;
3562 struct drm_i915_gem_object *obj;
3563 struct address_space *mapping;
3565 obj = kzalloc(sizeof(*obj), GFP_KERNEL);
3566 if (obj == NULL)
3567 return NULL;
3569 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
3570 kfree(obj);
3571 return NULL;
3574 mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3575 mapping_set_gfp_mask(mapping, GFP_HIGHUSER | __GFP_RECLAIMABLE);
3577 i915_gem_info_add_obj(dev_priv, size);
3579 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3580 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3582 obj->cache_level = I915_CACHE_NONE;
3583 obj->base.driver_private = NULL;
3584 obj->fence_reg = I915_FENCE_REG_NONE;
3585 INIT_LIST_HEAD(&obj->mm_list);
3586 INIT_LIST_HEAD(&obj->gtt_list);
3587 INIT_LIST_HEAD(&obj->ring_list);
3588 INIT_LIST_HEAD(&obj->exec_list);
3589 INIT_LIST_HEAD(&obj->gpu_write_list);
3590 obj->madv = I915_MADV_WILLNEED;
3591 /* Avoid an unnecessary call to unbind on the first bind. */
3592 obj->map_and_fenceable = true;
3594 return obj;
3597 int i915_gem_init_object(struct drm_gem_object *obj)
3599 BUG();
3601 return 0;
3604 static void i915_gem_free_object_tail(struct drm_i915_gem_object *obj)
3606 struct drm_device *dev = obj->base.dev;
3607 drm_i915_private_t *dev_priv = dev->dev_private;
3608 int ret;
3610 ret = i915_gem_object_unbind(obj);
3611 if (ret == -ERESTARTSYS) {
3612 list_move(&obj->mm_list,
3613 &dev_priv->mm.deferred_free_list);
3614 return;
3617 trace_i915_gem_object_destroy(obj);
3619 if (obj->base.map_list.map)
3620 i915_gem_free_mmap_offset(obj);
3622 drm_gem_object_release(&obj->base);
3623 i915_gem_info_remove_obj(dev_priv, obj->base.size);
3625 kfree(obj->page_cpu_valid);
3626 kfree(obj->bit_17);
3627 kfree(obj);
3630 void i915_gem_free_object(struct drm_gem_object *gem_obj)
3632 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
3633 struct drm_device *dev = obj->base.dev;
3635 while (obj->pin_count > 0)
3636 i915_gem_object_unpin(obj);
3638 if (obj->phys_obj)
3639 i915_gem_detach_phys_object(dev, obj);
3641 i915_gem_free_object_tail(obj);
3645 i915_gem_idle(struct drm_device *dev)
3647 drm_i915_private_t *dev_priv = dev->dev_private;
3648 int ret;
3650 mutex_lock(&dev->struct_mutex);
3652 if (dev_priv->mm.suspended) {
3653 mutex_unlock(&dev->struct_mutex);
3654 return 0;
3657 ret = i915_gpu_idle(dev);
3658 if (ret) {
3659 mutex_unlock(&dev->struct_mutex);
3660 return ret;
3663 /* Under UMS, be paranoid and evict. */
3664 if (!drm_core_check_feature(dev, DRIVER_MODESET)) {
3665 ret = i915_gem_evict_inactive(dev, false);
3666 if (ret) {
3667 mutex_unlock(&dev->struct_mutex);
3668 return ret;
3672 i915_gem_reset_fences(dev);
3674 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3675 * We need to replace this with a semaphore, or something.
3676 * And not confound mm.suspended!
3678 dev_priv->mm.suspended = 1;
3679 del_timer_sync(&dev_priv->hangcheck_timer);
3681 i915_kernel_lost_context(dev);
3682 i915_gem_cleanup_ringbuffer(dev);
3684 mutex_unlock(&dev->struct_mutex);
3686 /* Cancel the retire work handler, which should be idle now. */
3687 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3689 return 0;
3693 i915_gem_init_ringbuffer(struct drm_device *dev)
3695 drm_i915_private_t *dev_priv = dev->dev_private;
3696 int ret;
3698 ret = intel_init_render_ring_buffer(dev);
3699 if (ret)
3700 return ret;
3702 if (HAS_BSD(dev)) {
3703 ret = intel_init_bsd_ring_buffer(dev);
3704 if (ret)
3705 goto cleanup_render_ring;
3708 if (HAS_BLT(dev)) {
3709 ret = intel_init_blt_ring_buffer(dev);
3710 if (ret)
3711 goto cleanup_bsd_ring;
3714 dev_priv->next_seqno = 1;
3716 return 0;
3718 cleanup_bsd_ring:
3719 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
3720 cleanup_render_ring:
3721 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
3722 return ret;
3725 void
3726 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
3728 drm_i915_private_t *dev_priv = dev->dev_private;
3729 int i;
3731 for (i = 0; i < I915_NUM_RINGS; i++)
3732 intel_cleanup_ring_buffer(&dev_priv->ring[i]);
3736 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
3737 struct drm_file *file_priv)
3739 drm_i915_private_t *dev_priv = dev->dev_private;
3740 int ret, i;
3742 if (drm_core_check_feature(dev, DRIVER_MODESET))
3743 return 0;
3745 if (atomic_read(&dev_priv->mm.wedged)) {
3746 DRM_ERROR("Reenabling wedged hardware, good luck\n");
3747 atomic_set(&dev_priv->mm.wedged, 0);
3750 mutex_lock(&dev->struct_mutex);
3751 dev_priv->mm.suspended = 0;
3753 ret = i915_gem_init_ringbuffer(dev);
3754 if (ret != 0) {
3755 mutex_unlock(&dev->struct_mutex);
3756 return ret;
3759 BUG_ON(!list_empty(&dev_priv->mm.active_list));
3760 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
3761 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
3762 for (i = 0; i < I915_NUM_RINGS; i++) {
3763 BUG_ON(!list_empty(&dev_priv->ring[i].active_list));
3764 BUG_ON(!list_empty(&dev_priv->ring[i].request_list));
3766 mutex_unlock(&dev->struct_mutex);
3768 ret = drm_irq_install(dev);
3769 if (ret)
3770 goto cleanup_ringbuffer;
3772 return 0;
3774 cleanup_ringbuffer:
3775 mutex_lock(&dev->struct_mutex);
3776 i915_gem_cleanup_ringbuffer(dev);
3777 dev_priv->mm.suspended = 1;
3778 mutex_unlock(&dev->struct_mutex);
3780 return ret;
3784 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
3785 struct drm_file *file_priv)
3787 if (drm_core_check_feature(dev, DRIVER_MODESET))
3788 return 0;
3790 drm_irq_uninstall(dev);
3791 return i915_gem_idle(dev);
3794 void
3795 i915_gem_lastclose(struct drm_device *dev)
3797 int ret;
3799 if (drm_core_check_feature(dev, DRIVER_MODESET))
3800 return;
3802 ret = i915_gem_idle(dev);
3803 if (ret)
3804 DRM_ERROR("failed to idle hardware: %d\n", ret);
3807 static void
3808 init_ring_lists(struct intel_ring_buffer *ring)
3810 INIT_LIST_HEAD(&ring->active_list);
3811 INIT_LIST_HEAD(&ring->request_list);
3812 INIT_LIST_HEAD(&ring->gpu_write_list);
3815 void
3816 i915_gem_load(struct drm_device *dev)
3818 int i;
3819 drm_i915_private_t *dev_priv = dev->dev_private;
3821 INIT_LIST_HEAD(&dev_priv->mm.active_list);
3822 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
3823 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
3824 INIT_LIST_HEAD(&dev_priv->mm.pinned_list);
3825 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
3826 INIT_LIST_HEAD(&dev_priv->mm.deferred_free_list);
3827 INIT_LIST_HEAD(&dev_priv->mm.gtt_list);
3828 for (i = 0; i < I915_NUM_RINGS; i++)
3829 init_ring_lists(&dev_priv->ring[i]);
3830 for (i = 0; i < 16; i++)
3831 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
3832 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
3833 i915_gem_retire_work_handler);
3834 init_completion(&dev_priv->error_completion);
3836 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
3837 if (IS_GEN3(dev)) {
3838 u32 tmp = I915_READ(MI_ARB_STATE);
3839 if (!(tmp & MI_ARB_C3_LP_WRITE_ENABLE)) {
3840 /* arb state is a masked write, so set bit + bit in mask */
3841 tmp = MI_ARB_C3_LP_WRITE_ENABLE | (MI_ARB_C3_LP_WRITE_ENABLE << MI_ARB_MASK_SHIFT);
3842 I915_WRITE(MI_ARB_STATE, tmp);
3846 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
3848 /* Old X drivers will take 0-2 for front, back, depth buffers */
3849 if (!drm_core_check_feature(dev, DRIVER_MODESET))
3850 dev_priv->fence_reg_start = 3;
3852 if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3853 dev_priv->num_fence_regs = 16;
3854 else
3855 dev_priv->num_fence_regs = 8;
3857 /* Initialize fence registers to zero */
3858 for (i = 0; i < dev_priv->num_fence_regs; i++) {
3859 i915_gem_clear_fence_reg(dev, &dev_priv->fence_regs[i]);
3862 i915_gem_detect_bit_6_swizzle(dev);
3863 init_waitqueue_head(&dev_priv->pending_flip_queue);
3865 dev_priv->mm.interruptible = true;
3867 dev_priv->mm.inactive_shrinker.shrink = i915_gem_inactive_shrink;
3868 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
3869 register_shrinker(&dev_priv->mm.inactive_shrinker);
3873 * Create a physically contiguous memory object for this object
3874 * e.g. for cursor + overlay regs
3876 static int i915_gem_init_phys_object(struct drm_device *dev,
3877 int id, int size, int align)
3879 drm_i915_private_t *dev_priv = dev->dev_private;
3880 struct drm_i915_gem_phys_object *phys_obj;
3881 int ret;
3883 if (dev_priv->mm.phys_objs[id - 1] || !size)
3884 return 0;
3886 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
3887 if (!phys_obj)
3888 return -ENOMEM;
3890 phys_obj->id = id;
3892 phys_obj->handle = drm_pci_alloc(dev, size, align);
3893 if (!phys_obj->handle) {
3894 ret = -ENOMEM;
3895 goto kfree_obj;
3897 #ifdef CONFIG_X86
3898 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3899 #endif
3901 dev_priv->mm.phys_objs[id - 1] = phys_obj;
3903 return 0;
3904 kfree_obj:
3905 kfree(phys_obj);
3906 return ret;
3909 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
3911 drm_i915_private_t *dev_priv = dev->dev_private;
3912 struct drm_i915_gem_phys_object *phys_obj;
3914 if (!dev_priv->mm.phys_objs[id - 1])
3915 return;
3917 phys_obj = dev_priv->mm.phys_objs[id - 1];
3918 if (phys_obj->cur_obj) {
3919 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
3922 #ifdef CONFIG_X86
3923 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
3924 #endif
3925 drm_pci_free(dev, phys_obj->handle);
3926 kfree(phys_obj);
3927 dev_priv->mm.phys_objs[id - 1] = NULL;
3930 void i915_gem_free_all_phys_object(struct drm_device *dev)
3932 int i;
3934 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
3935 i915_gem_free_phys_object(dev, i);
3938 void i915_gem_detach_phys_object(struct drm_device *dev,
3939 struct drm_i915_gem_object *obj)
3941 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3942 char *vaddr;
3943 int i;
3944 int page_count;
3946 if (!obj->phys_obj)
3947 return;
3948 vaddr = obj->phys_obj->handle->vaddr;
3950 page_count = obj->base.size / PAGE_SIZE;
3951 for (i = 0; i < page_count; i++) {
3952 struct page *page = shmem_read_mapping_page(mapping, i);
3953 if (!IS_ERR(page)) {
3954 char *dst = kmap_atomic(page);
3955 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
3956 kunmap_atomic(dst);
3958 drm_clflush_pages(&page, 1);
3960 set_page_dirty(page);
3961 mark_page_accessed(page);
3962 page_cache_release(page);
3965 intel_gtt_chipset_flush();
3967 obj->phys_obj->cur_obj = NULL;
3968 obj->phys_obj = NULL;
3972 i915_gem_attach_phys_object(struct drm_device *dev,
3973 struct drm_i915_gem_object *obj,
3974 int id,
3975 int align)
3977 struct address_space *mapping = obj->base.filp->f_path.dentry->d_inode->i_mapping;
3978 drm_i915_private_t *dev_priv = dev->dev_private;
3979 int ret = 0;
3980 int page_count;
3981 int i;
3983 if (id > I915_MAX_PHYS_OBJECT)
3984 return -EINVAL;
3986 if (obj->phys_obj) {
3987 if (obj->phys_obj->id == id)
3988 return 0;
3989 i915_gem_detach_phys_object(dev, obj);
3992 /* create a new object */
3993 if (!dev_priv->mm.phys_objs[id - 1]) {
3994 ret = i915_gem_init_phys_object(dev, id,
3995 obj->base.size, align);
3996 if (ret) {
3997 DRM_ERROR("failed to init phys object %d size: %zu\n",
3998 id, obj->base.size);
3999 return ret;
4003 /* bind to the object */
4004 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4005 obj->phys_obj->cur_obj = obj;
4007 page_count = obj->base.size / PAGE_SIZE;
4009 for (i = 0; i < page_count; i++) {
4010 struct page *page;
4011 char *dst, *src;
4013 page = shmem_read_mapping_page(mapping, i);
4014 if (IS_ERR(page))
4015 return PTR_ERR(page);
4017 src = kmap_atomic(page);
4018 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4019 memcpy(dst, src, PAGE_SIZE);
4020 kunmap_atomic(src);
4022 mark_page_accessed(page);
4023 page_cache_release(page);
4026 return 0;
4029 static int
4030 i915_gem_phys_pwrite(struct drm_device *dev,
4031 struct drm_i915_gem_object *obj,
4032 struct drm_i915_gem_pwrite *args,
4033 struct drm_file *file_priv)
4035 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4036 char __user *user_data = (char __user *) (uintptr_t) args->data_ptr;
4038 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4039 unsigned long unwritten;
4041 /* The physical object once assigned is fixed for the lifetime
4042 * of the obj, so we can safely drop the lock and continue
4043 * to access vaddr.
4045 mutex_unlock(&dev->struct_mutex);
4046 unwritten = copy_from_user(vaddr, user_data, args->size);
4047 mutex_lock(&dev->struct_mutex);
4048 if (unwritten)
4049 return -EFAULT;
4052 intel_gtt_chipset_flush();
4053 return 0;
4056 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4058 struct drm_i915_file_private *file_priv = file->driver_priv;
4060 /* Clean up our request list when the client is going away, so that
4061 * later retire_requests won't dereference our soon-to-be-gone
4062 * file_priv.
4064 spin_lock(&file_priv->mm.lock);
4065 while (!list_empty(&file_priv->mm.request_list)) {
4066 struct drm_i915_gem_request *request;
4068 request = list_first_entry(&file_priv->mm.request_list,
4069 struct drm_i915_gem_request,
4070 client_list);
4071 list_del(&request->client_list);
4072 request->file_priv = NULL;
4074 spin_unlock(&file_priv->mm.lock);
4077 static int
4078 i915_gpu_is_active(struct drm_device *dev)
4080 drm_i915_private_t *dev_priv = dev->dev_private;
4081 int lists_empty;
4083 lists_empty = list_empty(&dev_priv->mm.flushing_list) &&
4084 list_empty(&dev_priv->mm.active_list);
4086 return !lists_empty;
4089 static int
4090 i915_gem_inactive_shrink(struct shrinker *shrinker, struct shrink_control *sc)
4092 struct drm_i915_private *dev_priv =
4093 container_of(shrinker,
4094 struct drm_i915_private,
4095 mm.inactive_shrinker);
4096 struct drm_device *dev = dev_priv->dev;
4097 struct drm_i915_gem_object *obj, *next;
4098 int nr_to_scan = sc->nr_to_scan;
4099 int cnt;
4101 if (!mutex_trylock(&dev->struct_mutex))
4102 return 0;
4104 /* "fast-path" to count number of available objects */
4105 if (nr_to_scan == 0) {
4106 cnt = 0;
4107 list_for_each_entry(obj,
4108 &dev_priv->mm.inactive_list,
4109 mm_list)
4110 cnt++;
4111 mutex_unlock(&dev->struct_mutex);
4112 return cnt / 100 * sysctl_vfs_cache_pressure;
4115 rescan:
4116 /* first scan for clean buffers */
4117 i915_gem_retire_requests(dev);
4119 list_for_each_entry_safe(obj, next,
4120 &dev_priv->mm.inactive_list,
4121 mm_list) {
4122 if (i915_gem_object_is_purgeable(obj)) {
4123 if (i915_gem_object_unbind(obj) == 0 &&
4124 --nr_to_scan == 0)
4125 break;
4129 /* second pass, evict/count anything still on the inactive list */
4130 cnt = 0;
4131 list_for_each_entry_safe(obj, next,
4132 &dev_priv->mm.inactive_list,
4133 mm_list) {
4134 if (nr_to_scan &&
4135 i915_gem_object_unbind(obj) == 0)
4136 nr_to_scan--;
4137 else
4138 cnt++;
4141 if (nr_to_scan && i915_gpu_is_active(dev)) {
4143 * We are desperate for pages, so as a last resort, wait
4144 * for the GPU to finish and discard whatever we can.
4145 * This has a dramatic impact to reduce the number of
4146 * OOM-killer events whilst running the GPU aggressively.
4148 if (i915_gpu_idle(dev) == 0)
4149 goto rescan;
4151 mutex_unlock(&dev->struct_mutex);
4152 return cnt / 100 * sysctl_vfs_cache_pressure;