termios: Termios defines for other platforms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / affs / file.c
blob6eac7bdeec94dc320924d7be0892fb89a23cde72
1 /*
2 * linux/fs/affs/file.c
4 * (c) 1996 Hans-Joachim Widmaier - Rewritten
6 * (C) 1993 Ray Burr - Modified for Amiga FFS filesystem.
8 * (C) 1992 Eric Youngdale Modified for ISO 9660 filesystem.
10 * (C) 1991 Linus Torvalds - minix filesystem
12 * affs regular file handling primitives
15 #include "affs.h"
17 #if PAGE_SIZE < 4096
18 #error PAGE_SIZE must be at least 4096
19 #endif
21 static int affs_grow_extcache(struct inode *inode, u32 lc_idx);
22 static struct buffer_head *affs_alloc_extblock(struct inode *inode, struct buffer_head *bh, u32 ext);
23 static inline struct buffer_head *affs_get_extblock(struct inode *inode, u32 ext);
24 static struct buffer_head *affs_get_extblock_slow(struct inode *inode, u32 ext);
25 static int affs_file_open(struct inode *inode, struct file *filp);
26 static int affs_file_release(struct inode *inode, struct file *filp);
28 const struct file_operations affs_file_operations = {
29 .llseek = generic_file_llseek,
30 .read = do_sync_read,
31 .aio_read = generic_file_aio_read,
32 .write = do_sync_write,
33 .aio_write = generic_file_aio_write,
34 .mmap = generic_file_mmap,
35 .open = affs_file_open,
36 .release = affs_file_release,
37 .fsync = file_fsync,
38 .splice_read = generic_file_splice_read,
41 const struct inode_operations affs_file_inode_operations = {
42 .truncate = affs_truncate,
43 .setattr = affs_notify_change,
46 static int
47 affs_file_open(struct inode *inode, struct file *filp)
49 if (atomic_read(&filp->f_count) != 1)
50 return 0;
51 pr_debug("AFFS: open(%lu,%d)\n",
52 inode->i_ino, atomic_read(&AFFS_I(inode)->i_opencnt));
53 atomic_inc(&AFFS_I(inode)->i_opencnt);
54 return 0;
57 static int
58 affs_file_release(struct inode *inode, struct file *filp)
60 if (atomic_read(&filp->f_count) != 0)
61 return 0;
62 pr_debug("AFFS: release(%lu, %d)\n",
63 inode->i_ino, atomic_read(&AFFS_I(inode)->i_opencnt));
65 if (atomic_dec_and_test(&AFFS_I(inode)->i_opencnt)) {
66 mutex_lock(&inode->i_mutex);
67 if (inode->i_size != AFFS_I(inode)->mmu_private)
68 affs_truncate(inode);
69 affs_free_prealloc(inode);
70 mutex_unlock(&inode->i_mutex);
73 return 0;
76 static int
77 affs_grow_extcache(struct inode *inode, u32 lc_idx)
79 struct super_block *sb = inode->i_sb;
80 struct buffer_head *bh;
81 u32 lc_max;
82 int i, j, key;
84 if (!AFFS_I(inode)->i_lc) {
85 char *ptr = (char *)get_zeroed_page(GFP_NOFS);
86 if (!ptr)
87 return -ENOMEM;
88 AFFS_I(inode)->i_lc = (u32 *)ptr;
89 AFFS_I(inode)->i_ac = (struct affs_ext_key *)(ptr + AFFS_CACHE_SIZE / 2);
92 lc_max = AFFS_LC_SIZE << AFFS_I(inode)->i_lc_shift;
94 if (AFFS_I(inode)->i_extcnt > lc_max) {
95 u32 lc_shift, lc_mask, tmp, off;
97 /* need to recalculate linear cache, start from old size */
98 lc_shift = AFFS_I(inode)->i_lc_shift;
99 tmp = (AFFS_I(inode)->i_extcnt / AFFS_LC_SIZE) >> lc_shift;
100 for (; tmp; tmp >>= 1)
101 lc_shift++;
102 lc_mask = (1 << lc_shift) - 1;
104 /* fix idx and old size to new shift */
105 lc_idx >>= (lc_shift - AFFS_I(inode)->i_lc_shift);
106 AFFS_I(inode)->i_lc_size >>= (lc_shift - AFFS_I(inode)->i_lc_shift);
108 /* first shrink old cache to make more space */
109 off = 1 << (lc_shift - AFFS_I(inode)->i_lc_shift);
110 for (i = 1, j = off; j < AFFS_LC_SIZE; i++, j += off)
111 AFFS_I(inode)->i_ac[i] = AFFS_I(inode)->i_ac[j];
113 AFFS_I(inode)->i_lc_shift = lc_shift;
114 AFFS_I(inode)->i_lc_mask = lc_mask;
117 /* fill cache to the needed index */
118 i = AFFS_I(inode)->i_lc_size;
119 AFFS_I(inode)->i_lc_size = lc_idx + 1;
120 for (; i <= lc_idx; i++) {
121 if (!i) {
122 AFFS_I(inode)->i_lc[0] = inode->i_ino;
123 continue;
125 key = AFFS_I(inode)->i_lc[i - 1];
126 j = AFFS_I(inode)->i_lc_mask + 1;
127 // unlock cache
128 for (; j > 0; j--) {
129 bh = affs_bread(sb, key);
130 if (!bh)
131 goto err;
132 key = be32_to_cpu(AFFS_TAIL(sb, bh)->extension);
133 affs_brelse(bh);
135 // lock cache
136 AFFS_I(inode)->i_lc[i] = key;
139 return 0;
141 err:
142 // lock cache
143 return -EIO;
146 static struct buffer_head *
147 affs_alloc_extblock(struct inode *inode, struct buffer_head *bh, u32 ext)
149 struct super_block *sb = inode->i_sb;
150 struct buffer_head *new_bh;
151 u32 blocknr, tmp;
153 blocknr = affs_alloc_block(inode, bh->b_blocknr);
154 if (!blocknr)
155 return ERR_PTR(-ENOSPC);
157 new_bh = affs_getzeroblk(sb, blocknr);
158 if (!new_bh) {
159 affs_free_block(sb, blocknr);
160 return ERR_PTR(-EIO);
163 AFFS_HEAD(new_bh)->ptype = cpu_to_be32(T_LIST);
164 AFFS_HEAD(new_bh)->key = cpu_to_be32(blocknr);
165 AFFS_TAIL(sb, new_bh)->stype = cpu_to_be32(ST_FILE);
166 AFFS_TAIL(sb, new_bh)->parent = cpu_to_be32(inode->i_ino);
167 affs_fix_checksum(sb, new_bh);
169 mark_buffer_dirty_inode(new_bh, inode);
171 tmp = be32_to_cpu(AFFS_TAIL(sb, bh)->extension);
172 if (tmp)
173 affs_warning(sb, "alloc_ext", "previous extension set (%x)", tmp);
174 AFFS_TAIL(sb, bh)->extension = cpu_to_be32(blocknr);
175 affs_adjust_checksum(bh, blocknr - tmp);
176 mark_buffer_dirty_inode(bh, inode);
178 AFFS_I(inode)->i_extcnt++;
179 mark_inode_dirty(inode);
181 return new_bh;
184 static inline struct buffer_head *
185 affs_get_extblock(struct inode *inode, u32 ext)
187 /* inline the simplest case: same extended block as last time */
188 struct buffer_head *bh = AFFS_I(inode)->i_ext_bh;
189 if (ext == AFFS_I(inode)->i_ext_last)
190 get_bh(bh);
191 else
192 /* we have to do more (not inlined) */
193 bh = affs_get_extblock_slow(inode, ext);
195 return bh;
198 static struct buffer_head *
199 affs_get_extblock_slow(struct inode *inode, u32 ext)
201 struct super_block *sb = inode->i_sb;
202 struct buffer_head *bh;
203 u32 ext_key;
204 u32 lc_idx, lc_off, ac_idx;
205 u32 tmp, idx;
207 if (ext == AFFS_I(inode)->i_ext_last + 1) {
208 /* read the next extended block from the current one */
209 bh = AFFS_I(inode)->i_ext_bh;
210 ext_key = be32_to_cpu(AFFS_TAIL(sb, bh)->extension);
211 if (ext < AFFS_I(inode)->i_extcnt)
212 goto read_ext;
213 if (ext > AFFS_I(inode)->i_extcnt)
214 BUG();
215 bh = affs_alloc_extblock(inode, bh, ext);
216 if (IS_ERR(bh))
217 return bh;
218 goto store_ext;
221 if (ext == 0) {
222 /* we seek back to the file header block */
223 ext_key = inode->i_ino;
224 goto read_ext;
227 if (ext >= AFFS_I(inode)->i_extcnt) {
228 struct buffer_head *prev_bh;
230 /* allocate a new extended block */
231 if (ext > AFFS_I(inode)->i_extcnt)
232 BUG();
234 /* get previous extended block */
235 prev_bh = affs_get_extblock(inode, ext - 1);
236 if (IS_ERR(prev_bh))
237 return prev_bh;
238 bh = affs_alloc_extblock(inode, prev_bh, ext);
239 affs_brelse(prev_bh);
240 if (IS_ERR(bh))
241 return bh;
242 goto store_ext;
245 again:
246 /* check if there is an extended cache and whether it's large enough */
247 lc_idx = ext >> AFFS_I(inode)->i_lc_shift;
248 lc_off = ext & AFFS_I(inode)->i_lc_mask;
250 if (lc_idx >= AFFS_I(inode)->i_lc_size) {
251 int err;
253 err = affs_grow_extcache(inode, lc_idx);
254 if (err)
255 return ERR_PTR(err);
256 goto again;
259 /* every n'th key we find in the linear cache */
260 if (!lc_off) {
261 ext_key = AFFS_I(inode)->i_lc[lc_idx];
262 goto read_ext;
265 /* maybe it's still in the associative cache */
266 ac_idx = (ext - lc_idx - 1) & AFFS_AC_MASK;
267 if (AFFS_I(inode)->i_ac[ac_idx].ext == ext) {
268 ext_key = AFFS_I(inode)->i_ac[ac_idx].key;
269 goto read_ext;
272 /* try to find one of the previous extended blocks */
273 tmp = ext;
274 idx = ac_idx;
275 while (--tmp, --lc_off > 0) {
276 idx = (idx - 1) & AFFS_AC_MASK;
277 if (AFFS_I(inode)->i_ac[idx].ext == tmp) {
278 ext_key = AFFS_I(inode)->i_ac[idx].key;
279 goto find_ext;
283 /* fall back to the linear cache */
284 ext_key = AFFS_I(inode)->i_lc[lc_idx];
285 find_ext:
286 /* read all extended blocks until we find the one we need */
287 //unlock cache
288 do {
289 bh = affs_bread(sb, ext_key);
290 if (!bh)
291 goto err_bread;
292 ext_key = be32_to_cpu(AFFS_TAIL(sb, bh)->extension);
293 affs_brelse(bh);
294 tmp++;
295 } while (tmp < ext);
296 //lock cache
298 /* store it in the associative cache */
299 // recalculate ac_idx?
300 AFFS_I(inode)->i_ac[ac_idx].ext = ext;
301 AFFS_I(inode)->i_ac[ac_idx].key = ext_key;
303 read_ext:
304 /* finally read the right extended block */
305 //unlock cache
306 bh = affs_bread(sb, ext_key);
307 if (!bh)
308 goto err_bread;
309 //lock cache
311 store_ext:
312 /* release old cached extended block and store the new one */
313 affs_brelse(AFFS_I(inode)->i_ext_bh);
314 AFFS_I(inode)->i_ext_last = ext;
315 AFFS_I(inode)->i_ext_bh = bh;
316 get_bh(bh);
318 return bh;
320 err_bread:
321 affs_brelse(bh);
322 return ERR_PTR(-EIO);
325 static int
326 affs_get_block(struct inode *inode, sector_t block, struct buffer_head *bh_result, int create)
328 struct super_block *sb = inode->i_sb;
329 struct buffer_head *ext_bh;
330 u32 ext;
332 pr_debug("AFFS: get_block(%u, %lu)\n", (u32)inode->i_ino, (unsigned long)block);
334 BUG_ON(block > (sector_t)0x7fffffffUL);
336 if (block >= AFFS_I(inode)->i_blkcnt) {
337 if (block > AFFS_I(inode)->i_blkcnt || !create)
338 goto err_big;
339 } else
340 create = 0;
342 //lock cache
343 affs_lock_ext(inode);
345 ext = (u32)block / AFFS_SB(sb)->s_hashsize;
346 block -= ext * AFFS_SB(sb)->s_hashsize;
347 ext_bh = affs_get_extblock(inode, ext);
348 if (IS_ERR(ext_bh))
349 goto err_ext;
350 map_bh(bh_result, sb, (sector_t)be32_to_cpu(AFFS_BLOCK(sb, ext_bh, block)));
352 if (create) {
353 u32 blocknr = affs_alloc_block(inode, ext_bh->b_blocknr);
354 if (!blocknr)
355 goto err_alloc;
356 set_buffer_new(bh_result);
357 AFFS_I(inode)->mmu_private += AFFS_SB(sb)->s_data_blksize;
358 AFFS_I(inode)->i_blkcnt++;
360 /* store new block */
361 if (bh_result->b_blocknr)
362 affs_warning(sb, "get_block", "block already set (%x)", bh_result->b_blocknr);
363 AFFS_BLOCK(sb, ext_bh, block) = cpu_to_be32(blocknr);
364 AFFS_HEAD(ext_bh)->block_count = cpu_to_be32(block + 1);
365 affs_adjust_checksum(ext_bh, blocknr - bh_result->b_blocknr + 1);
366 bh_result->b_blocknr = blocknr;
368 if (!block) {
369 /* insert first block into header block */
370 u32 tmp = be32_to_cpu(AFFS_HEAD(ext_bh)->first_data);
371 if (tmp)
372 affs_warning(sb, "get_block", "first block already set (%d)", tmp);
373 AFFS_HEAD(ext_bh)->first_data = cpu_to_be32(blocknr);
374 affs_adjust_checksum(ext_bh, blocknr - tmp);
378 affs_brelse(ext_bh);
379 //unlock cache
380 affs_unlock_ext(inode);
381 return 0;
383 err_big:
384 affs_error(inode->i_sb,"get_block","strange block request %d", block);
385 return -EIO;
386 err_ext:
387 // unlock cache
388 affs_unlock_ext(inode);
389 return PTR_ERR(ext_bh);
390 err_alloc:
391 brelse(ext_bh);
392 clear_buffer_mapped(bh_result);
393 bh_result->b_bdev = NULL;
394 // unlock cache
395 affs_unlock_ext(inode);
396 return -ENOSPC;
399 static int affs_writepage(struct page *page, struct writeback_control *wbc)
401 return block_write_full_page(page, affs_get_block, wbc);
404 static int affs_readpage(struct file *file, struct page *page)
406 return block_read_full_page(page, affs_get_block);
409 static int affs_write_begin(struct file *file, struct address_space *mapping,
410 loff_t pos, unsigned len, unsigned flags,
411 struct page **pagep, void **fsdata)
413 *pagep = NULL;
414 return cont_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
415 affs_get_block,
416 &AFFS_I(mapping->host)->mmu_private);
419 static sector_t _affs_bmap(struct address_space *mapping, sector_t block)
421 return generic_block_bmap(mapping,block,affs_get_block);
424 const struct address_space_operations affs_aops = {
425 .readpage = affs_readpage,
426 .writepage = affs_writepage,
427 .sync_page = block_sync_page,
428 .write_begin = affs_write_begin,
429 .write_end = generic_write_end,
430 .bmap = _affs_bmap
433 static inline struct buffer_head *
434 affs_bread_ino(struct inode *inode, int block, int create)
436 struct buffer_head *bh, tmp_bh;
437 int err;
439 tmp_bh.b_state = 0;
440 err = affs_get_block(inode, block, &tmp_bh, create);
441 if (!err) {
442 bh = affs_bread(inode->i_sb, tmp_bh.b_blocknr);
443 if (bh) {
444 bh->b_state |= tmp_bh.b_state;
445 return bh;
447 err = -EIO;
449 return ERR_PTR(err);
452 static inline struct buffer_head *
453 affs_getzeroblk_ino(struct inode *inode, int block)
455 struct buffer_head *bh, tmp_bh;
456 int err;
458 tmp_bh.b_state = 0;
459 err = affs_get_block(inode, block, &tmp_bh, 1);
460 if (!err) {
461 bh = affs_getzeroblk(inode->i_sb, tmp_bh.b_blocknr);
462 if (bh) {
463 bh->b_state |= tmp_bh.b_state;
464 return bh;
466 err = -EIO;
468 return ERR_PTR(err);
471 static inline struct buffer_head *
472 affs_getemptyblk_ino(struct inode *inode, int block)
474 struct buffer_head *bh, tmp_bh;
475 int err;
477 tmp_bh.b_state = 0;
478 err = affs_get_block(inode, block, &tmp_bh, 1);
479 if (!err) {
480 bh = affs_getemptyblk(inode->i_sb, tmp_bh.b_blocknr);
481 if (bh) {
482 bh->b_state |= tmp_bh.b_state;
483 return bh;
485 err = -EIO;
487 return ERR_PTR(err);
490 static int
491 affs_do_readpage_ofs(struct file *file, struct page *page, unsigned from, unsigned to)
493 struct inode *inode = page->mapping->host;
494 struct super_block *sb = inode->i_sb;
495 struct buffer_head *bh;
496 char *data;
497 u32 bidx, boff, bsize;
498 u32 tmp;
500 pr_debug("AFFS: read_page(%u, %ld, %d, %d)\n", (u32)inode->i_ino, page->index, from, to);
501 BUG_ON(from > to || to > PAGE_CACHE_SIZE);
502 kmap(page);
503 data = page_address(page);
504 bsize = AFFS_SB(sb)->s_data_blksize;
505 tmp = (page->index << PAGE_CACHE_SHIFT) + from;
506 bidx = tmp / bsize;
507 boff = tmp % bsize;
509 while (from < to) {
510 bh = affs_bread_ino(inode, bidx, 0);
511 if (IS_ERR(bh))
512 return PTR_ERR(bh);
513 tmp = min(bsize - boff, to - from);
514 BUG_ON(from + tmp > to || tmp > bsize);
515 memcpy(data + from, AFFS_DATA(bh) + boff, tmp);
516 affs_brelse(bh);
517 bidx++;
518 from += tmp;
519 boff = 0;
521 flush_dcache_page(page);
522 kunmap(page);
523 return 0;
526 static int
527 affs_extent_file_ofs(struct inode *inode, u32 newsize)
529 struct super_block *sb = inode->i_sb;
530 struct buffer_head *bh, *prev_bh;
531 u32 bidx, boff;
532 u32 size, bsize;
533 u32 tmp;
535 pr_debug("AFFS: extent_file(%u, %d)\n", (u32)inode->i_ino, newsize);
536 bsize = AFFS_SB(sb)->s_data_blksize;
537 bh = NULL;
538 size = AFFS_I(inode)->mmu_private;
539 bidx = size / bsize;
540 boff = size % bsize;
541 if (boff) {
542 bh = affs_bread_ino(inode, bidx, 0);
543 if (IS_ERR(bh))
544 return PTR_ERR(bh);
545 tmp = min(bsize - boff, newsize - size);
546 BUG_ON(boff + tmp > bsize || tmp > bsize);
547 memset(AFFS_DATA(bh) + boff, 0, tmp);
548 be32_add_cpu(&AFFS_DATA_HEAD(bh)->size, tmp);
549 affs_fix_checksum(sb, bh);
550 mark_buffer_dirty_inode(bh, inode);
551 size += tmp;
552 bidx++;
553 } else if (bidx) {
554 bh = affs_bread_ino(inode, bidx - 1, 0);
555 if (IS_ERR(bh))
556 return PTR_ERR(bh);
559 while (size < newsize) {
560 prev_bh = bh;
561 bh = affs_getzeroblk_ino(inode, bidx);
562 if (IS_ERR(bh))
563 goto out;
564 tmp = min(bsize, newsize - size);
565 BUG_ON(tmp > bsize);
566 AFFS_DATA_HEAD(bh)->ptype = cpu_to_be32(T_DATA);
567 AFFS_DATA_HEAD(bh)->key = cpu_to_be32(inode->i_ino);
568 AFFS_DATA_HEAD(bh)->sequence = cpu_to_be32(bidx);
569 AFFS_DATA_HEAD(bh)->size = cpu_to_be32(tmp);
570 affs_fix_checksum(sb, bh);
571 bh->b_state &= ~(1UL << BH_New);
572 mark_buffer_dirty_inode(bh, inode);
573 if (prev_bh) {
574 u32 tmp = be32_to_cpu(AFFS_DATA_HEAD(prev_bh)->next);
575 if (tmp)
576 affs_warning(sb, "extent_file_ofs", "next block already set for %d (%d)", bidx, tmp);
577 AFFS_DATA_HEAD(prev_bh)->next = cpu_to_be32(bh->b_blocknr);
578 affs_adjust_checksum(prev_bh, bh->b_blocknr - tmp);
579 mark_buffer_dirty_inode(prev_bh, inode);
580 affs_brelse(prev_bh);
582 size += bsize;
583 bidx++;
585 affs_brelse(bh);
586 inode->i_size = AFFS_I(inode)->mmu_private = newsize;
587 return 0;
589 out:
590 inode->i_size = AFFS_I(inode)->mmu_private = newsize;
591 return PTR_ERR(bh);
594 static int
595 affs_readpage_ofs(struct file *file, struct page *page)
597 struct inode *inode = page->mapping->host;
598 u32 to;
599 int err;
601 pr_debug("AFFS: read_page(%u, %ld)\n", (u32)inode->i_ino, page->index);
602 to = PAGE_CACHE_SIZE;
603 if (((page->index + 1) << PAGE_CACHE_SHIFT) > inode->i_size) {
604 to = inode->i_size & ~PAGE_CACHE_MASK;
605 memset(page_address(page) + to, 0, PAGE_CACHE_SIZE - to);
608 err = affs_do_readpage_ofs(file, page, 0, to);
609 if (!err)
610 SetPageUptodate(page);
611 unlock_page(page);
612 return err;
615 static int affs_write_begin_ofs(struct file *file, struct address_space *mapping,
616 loff_t pos, unsigned len, unsigned flags,
617 struct page **pagep, void **fsdata)
619 struct inode *inode = mapping->host;
620 struct page *page;
621 pgoff_t index;
622 int err = 0;
624 pr_debug("AFFS: write_begin(%u, %llu, %llu)\n", (u32)inode->i_ino, (unsigned long long)pos, (unsigned long long)pos + len);
625 if (pos > AFFS_I(inode)->mmu_private) {
626 /* XXX: this probably leaves a too-big i_size in case of
627 * failure. Should really be updating i_size at write_end time
629 err = affs_extent_file_ofs(inode, pos);
630 if (err)
631 return err;
634 index = pos >> PAGE_CACHE_SHIFT;
635 page = __grab_cache_page(mapping, index);
636 if (!page)
637 return -ENOMEM;
638 *pagep = page;
640 if (PageUptodate(page))
641 return 0;
643 /* XXX: inefficient but safe in the face of short writes */
644 err = affs_do_readpage_ofs(file, page, 0, PAGE_CACHE_SIZE);
645 if (err) {
646 unlock_page(page);
647 page_cache_release(page);
649 return err;
652 static int affs_write_end_ofs(struct file *file, struct address_space *mapping,
653 loff_t pos, unsigned len, unsigned copied,
654 struct page *page, void *fsdata)
656 struct inode *inode = mapping->host;
657 struct super_block *sb = inode->i_sb;
658 struct buffer_head *bh, *prev_bh;
659 char *data;
660 u32 bidx, boff, bsize;
661 unsigned from, to;
662 u32 tmp;
663 int written;
665 from = pos & (PAGE_CACHE_SIZE - 1);
666 to = pos + len;
668 * XXX: not sure if this can handle short copies (len < copied), but
669 * we don't have to, because the page should always be uptodate here,
670 * due to write_begin.
673 pr_debug("AFFS: write_begin(%u, %llu, %llu)\n", (u32)inode->i_ino, (unsigned long long)pos, (unsigned long long)pos + len);
674 bsize = AFFS_SB(sb)->s_data_blksize;
675 data = page_address(page);
677 bh = NULL;
678 written = 0;
679 tmp = (page->index << PAGE_CACHE_SHIFT) + from;
680 bidx = tmp / bsize;
681 boff = tmp % bsize;
682 if (boff) {
683 bh = affs_bread_ino(inode, bidx, 0);
684 if (IS_ERR(bh))
685 return PTR_ERR(bh);
686 tmp = min(bsize - boff, to - from);
687 BUG_ON(boff + tmp > bsize || tmp > bsize);
688 memcpy(AFFS_DATA(bh) + boff, data + from, tmp);
689 be32_add_cpu(&AFFS_DATA_HEAD(bh)->size, tmp);
690 affs_fix_checksum(sb, bh);
691 mark_buffer_dirty_inode(bh, inode);
692 written += tmp;
693 from += tmp;
694 bidx++;
695 } else if (bidx) {
696 bh = affs_bread_ino(inode, bidx - 1, 0);
697 if (IS_ERR(bh))
698 return PTR_ERR(bh);
700 while (from + bsize <= to) {
701 prev_bh = bh;
702 bh = affs_getemptyblk_ino(inode, bidx);
703 if (IS_ERR(bh))
704 goto out;
705 memcpy(AFFS_DATA(bh), data + from, bsize);
706 if (buffer_new(bh)) {
707 AFFS_DATA_HEAD(bh)->ptype = cpu_to_be32(T_DATA);
708 AFFS_DATA_HEAD(bh)->key = cpu_to_be32(inode->i_ino);
709 AFFS_DATA_HEAD(bh)->sequence = cpu_to_be32(bidx);
710 AFFS_DATA_HEAD(bh)->size = cpu_to_be32(bsize);
711 AFFS_DATA_HEAD(bh)->next = 0;
712 bh->b_state &= ~(1UL << BH_New);
713 if (prev_bh) {
714 u32 tmp = be32_to_cpu(AFFS_DATA_HEAD(prev_bh)->next);
715 if (tmp)
716 affs_warning(sb, "commit_write_ofs", "next block already set for %d (%d)", bidx, tmp);
717 AFFS_DATA_HEAD(prev_bh)->next = cpu_to_be32(bh->b_blocknr);
718 affs_adjust_checksum(prev_bh, bh->b_blocknr - tmp);
719 mark_buffer_dirty_inode(prev_bh, inode);
722 affs_brelse(prev_bh);
723 affs_fix_checksum(sb, bh);
724 mark_buffer_dirty_inode(bh, inode);
725 written += bsize;
726 from += bsize;
727 bidx++;
729 if (from < to) {
730 prev_bh = bh;
731 bh = affs_bread_ino(inode, bidx, 1);
732 if (IS_ERR(bh))
733 goto out;
734 tmp = min(bsize, to - from);
735 BUG_ON(tmp > bsize);
736 memcpy(AFFS_DATA(bh), data + from, tmp);
737 if (buffer_new(bh)) {
738 AFFS_DATA_HEAD(bh)->ptype = cpu_to_be32(T_DATA);
739 AFFS_DATA_HEAD(bh)->key = cpu_to_be32(inode->i_ino);
740 AFFS_DATA_HEAD(bh)->sequence = cpu_to_be32(bidx);
741 AFFS_DATA_HEAD(bh)->size = cpu_to_be32(tmp);
742 AFFS_DATA_HEAD(bh)->next = 0;
743 bh->b_state &= ~(1UL << BH_New);
744 if (prev_bh) {
745 u32 tmp = be32_to_cpu(AFFS_DATA_HEAD(prev_bh)->next);
746 if (tmp)
747 affs_warning(sb, "commit_write_ofs", "next block already set for %d (%d)", bidx, tmp);
748 AFFS_DATA_HEAD(prev_bh)->next = cpu_to_be32(bh->b_blocknr);
749 affs_adjust_checksum(prev_bh, bh->b_blocknr - tmp);
750 mark_buffer_dirty_inode(prev_bh, inode);
752 } else if (be32_to_cpu(AFFS_DATA_HEAD(bh)->size) < tmp)
753 AFFS_DATA_HEAD(bh)->size = cpu_to_be32(tmp);
754 affs_brelse(prev_bh);
755 affs_fix_checksum(sb, bh);
756 mark_buffer_dirty_inode(bh, inode);
757 written += tmp;
758 from += tmp;
759 bidx++;
761 SetPageUptodate(page);
763 done:
764 affs_brelse(bh);
765 tmp = (page->index << PAGE_CACHE_SHIFT) + from;
766 if (tmp > inode->i_size)
767 inode->i_size = AFFS_I(inode)->mmu_private = tmp;
769 unlock_page(page);
770 page_cache_release(page);
772 return written;
774 out:
775 bh = prev_bh;
776 if (!written)
777 written = PTR_ERR(bh);
778 goto done;
781 const struct address_space_operations affs_aops_ofs = {
782 .readpage = affs_readpage_ofs,
783 //.writepage = affs_writepage_ofs,
784 //.sync_page = affs_sync_page_ofs,
785 .write_begin = affs_write_begin_ofs,
786 .write_end = affs_write_end_ofs
789 /* Free any preallocated blocks. */
791 void
792 affs_free_prealloc(struct inode *inode)
794 struct super_block *sb = inode->i_sb;
796 pr_debug("AFFS: free_prealloc(ino=%lu)\n", inode->i_ino);
798 while (AFFS_I(inode)->i_pa_cnt) {
799 AFFS_I(inode)->i_pa_cnt--;
800 affs_free_block(sb, ++AFFS_I(inode)->i_lastalloc);
804 /* Truncate (or enlarge) a file to the requested size. */
806 void
807 affs_truncate(struct inode *inode)
809 struct super_block *sb = inode->i_sb;
810 u32 ext, ext_key;
811 u32 last_blk, blkcnt, blk;
812 u32 size;
813 struct buffer_head *ext_bh;
814 int i;
816 pr_debug("AFFS: truncate(inode=%d, oldsize=%u, newsize=%u)\n",
817 (u32)inode->i_ino, (u32)AFFS_I(inode)->mmu_private, (u32)inode->i_size);
819 last_blk = 0;
820 ext = 0;
821 if (inode->i_size) {
822 last_blk = ((u32)inode->i_size - 1) / AFFS_SB(sb)->s_data_blksize;
823 ext = last_blk / AFFS_SB(sb)->s_hashsize;
826 if (inode->i_size > AFFS_I(inode)->mmu_private) {
827 struct address_space *mapping = inode->i_mapping;
828 struct page *page;
829 void *fsdata;
830 u32 size = inode->i_size;
831 int res;
833 res = mapping->a_ops->write_begin(NULL, mapping, size, 0, 0, &page, &fsdata);
834 if (!res)
835 res = mapping->a_ops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
836 else
837 inode->i_size = AFFS_I(inode)->mmu_private;
838 mark_inode_dirty(inode);
839 return;
840 } else if (inode->i_size == AFFS_I(inode)->mmu_private)
841 return;
843 // lock cache
844 ext_bh = affs_get_extblock(inode, ext);
845 if (IS_ERR(ext_bh)) {
846 affs_warning(sb, "truncate", "unexpected read error for ext block %u (%d)",
847 ext, PTR_ERR(ext_bh));
848 return;
850 if (AFFS_I(inode)->i_lc) {
851 /* clear linear cache */
852 i = (ext + 1) >> AFFS_I(inode)->i_lc_shift;
853 if (AFFS_I(inode)->i_lc_size > i) {
854 AFFS_I(inode)->i_lc_size = i;
855 for (; i < AFFS_LC_SIZE; i++)
856 AFFS_I(inode)->i_lc[i] = 0;
858 /* clear associative cache */
859 for (i = 0; i < AFFS_AC_SIZE; i++)
860 if (AFFS_I(inode)->i_ac[i].ext >= ext)
861 AFFS_I(inode)->i_ac[i].ext = 0;
863 ext_key = be32_to_cpu(AFFS_TAIL(sb, ext_bh)->extension);
865 blkcnt = AFFS_I(inode)->i_blkcnt;
866 i = 0;
867 blk = last_blk;
868 if (inode->i_size) {
869 i = last_blk % AFFS_SB(sb)->s_hashsize + 1;
870 blk++;
871 } else
872 AFFS_HEAD(ext_bh)->first_data = 0;
873 AFFS_HEAD(ext_bh)->block_count = cpu_to_be32(i);
874 size = AFFS_SB(sb)->s_hashsize;
875 if (size > blkcnt - blk + i)
876 size = blkcnt - blk + i;
877 for (; i < size; i++, blk++) {
878 affs_free_block(sb, be32_to_cpu(AFFS_BLOCK(sb, ext_bh, i)));
879 AFFS_BLOCK(sb, ext_bh, i) = 0;
881 AFFS_TAIL(sb, ext_bh)->extension = 0;
882 affs_fix_checksum(sb, ext_bh);
883 mark_buffer_dirty_inode(ext_bh, inode);
884 affs_brelse(ext_bh);
886 if (inode->i_size) {
887 AFFS_I(inode)->i_blkcnt = last_blk + 1;
888 AFFS_I(inode)->i_extcnt = ext + 1;
889 if (AFFS_SB(sb)->s_flags & SF_OFS) {
890 struct buffer_head *bh = affs_bread_ino(inode, last_blk, 0);
891 u32 tmp;
892 if (IS_ERR(ext_bh)) {
893 affs_warning(sb, "truncate", "unexpected read error for last block %u (%d)",
894 ext, PTR_ERR(ext_bh));
895 return;
897 tmp = be32_to_cpu(AFFS_DATA_HEAD(bh)->next);
898 AFFS_DATA_HEAD(bh)->next = 0;
899 affs_adjust_checksum(bh, -tmp);
900 affs_brelse(bh);
902 } else {
903 AFFS_I(inode)->i_blkcnt = 0;
904 AFFS_I(inode)->i_extcnt = 1;
906 AFFS_I(inode)->mmu_private = inode->i_size;
907 // unlock cache
909 while (ext_key) {
910 ext_bh = affs_bread(sb, ext_key);
911 size = AFFS_SB(sb)->s_hashsize;
912 if (size > blkcnt - blk)
913 size = blkcnt - blk;
914 for (i = 0; i < size; i++, blk++)
915 affs_free_block(sb, be32_to_cpu(AFFS_BLOCK(sb, ext_bh, i)));
916 affs_free_block(sb, ext_key);
917 ext_key = be32_to_cpu(AFFS_TAIL(sb, ext_bh)->extension);
918 affs_brelse(ext_bh);
920 affs_free_prealloc(inode);