2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/compiler.h>
25 #include <linux/kernel.h>
26 #include <linux/kmemcheck.h>
27 #include <linux/module.h>
28 #include <linux/suspend.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/slab.h>
32 #include <linux/oom.h>
33 #include <linux/notifier.h>
34 #include <linux/topology.h>
35 #include <linux/sysctl.h>
36 #include <linux/cpu.h>
37 #include <linux/cpuset.h>
38 #include <linux/memory_hotplug.h>
39 #include <linux/nodemask.h>
40 #include <linux/vmalloc.h>
41 #include <linux/mempolicy.h>
42 #include <linux/stop_machine.h>
43 #include <linux/sort.h>
44 #include <linux/pfn.h>
45 #include <linux/backing-dev.h>
46 #include <linux/fault-inject.h>
47 #include <linux/page-isolation.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/debugobjects.h>
50 #include <linux/kmemleak.h>
51 #include <linux/memory.h>
52 #include <linux/compaction.h>
53 #include <trace/events/kmem.h>
54 #include <linux/ftrace_event.h>
56 #include <asm/tlbflush.h>
57 #include <asm/div64.h>
60 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
61 DEFINE_PER_CPU(int, numa_node
);
62 EXPORT_PER_CPU_SYMBOL(numa_node
);
65 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
67 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
68 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
69 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
70 * defined in <linux/topology.h>.
72 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
73 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
77 * Array of node states.
79 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
80 [N_POSSIBLE
] = NODE_MASK_ALL
,
81 [N_ONLINE
] = { { [0] = 1UL } },
83 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
85 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
87 [N_CPU
] = { { [0] = 1UL } },
90 EXPORT_SYMBOL(node_states
);
92 unsigned long totalram_pages __read_mostly
;
93 unsigned long totalreserve_pages __read_mostly
;
94 int percpu_pagelist_fraction
;
95 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
97 #ifdef CONFIG_PM_SLEEP
99 * The following functions are used by the suspend/hibernate code to temporarily
100 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
101 * while devices are suspended. To avoid races with the suspend/hibernate code,
102 * they should always be called with pm_mutex held (gfp_allowed_mask also should
103 * only be modified with pm_mutex held, unless the suspend/hibernate code is
104 * guaranteed not to run in parallel with that modification).
106 void set_gfp_allowed_mask(gfp_t mask
)
108 WARN_ON(!mutex_is_locked(&pm_mutex
));
109 gfp_allowed_mask
= mask
;
112 gfp_t
clear_gfp_allowed_mask(gfp_t mask
)
114 gfp_t ret
= gfp_allowed_mask
;
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 gfp_allowed_mask
&= ~mask
;
120 #endif /* CONFIG_PM_SLEEP */
122 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
123 int pageblock_order __read_mostly
;
126 static void __free_pages_ok(struct page
*page
, unsigned int order
);
129 * results with 256, 32 in the lowmem_reserve sysctl:
130 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
131 * 1G machine -> (16M dma, 784M normal, 224M high)
132 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
133 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
134 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
136 * TBD: should special case ZONE_DMA32 machines here - in those we normally
137 * don't need any ZONE_NORMAL reservation
139 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
140 #ifdef CONFIG_ZONE_DMA
143 #ifdef CONFIG_ZONE_DMA32
146 #ifdef CONFIG_HIGHMEM
152 EXPORT_SYMBOL(totalram_pages
);
154 static char * const zone_names
[MAX_NR_ZONES
] = {
155 #ifdef CONFIG_ZONE_DMA
158 #ifdef CONFIG_ZONE_DMA32
162 #ifdef CONFIG_HIGHMEM
168 int min_free_kbytes
= 1024;
170 static unsigned long __meminitdata nr_kernel_pages
;
171 static unsigned long __meminitdata nr_all_pages
;
172 static unsigned long __meminitdata dma_reserve
;
174 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
176 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
177 * ranges of memory (RAM) that may be registered with add_active_range().
178 * Ranges passed to add_active_range() will be merged if possible
179 * so the number of times add_active_range() can be called is
180 * related to the number of nodes and the number of holes
182 #ifdef CONFIG_MAX_ACTIVE_REGIONS
183 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
184 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
186 #if MAX_NUMNODES >= 32
187 /* If there can be many nodes, allow up to 50 holes per node */
188 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
190 /* By default, allow up to 256 distinct regions */
191 #define MAX_ACTIVE_REGIONS 256
195 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
196 static int __meminitdata nr_nodemap_entries
;
197 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
198 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
199 static unsigned long __initdata required_kernelcore
;
200 static unsigned long __initdata required_movablecore
;
201 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
203 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
205 EXPORT_SYMBOL(movable_zone
);
206 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
209 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
210 int nr_online_nodes __read_mostly
= 1;
211 EXPORT_SYMBOL(nr_node_ids
);
212 EXPORT_SYMBOL(nr_online_nodes
);
215 int page_group_by_mobility_disabled __read_mostly
;
217 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
220 if (unlikely(page_group_by_mobility_disabled
))
221 migratetype
= MIGRATE_UNMOVABLE
;
223 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
224 PB_migrate
, PB_migrate_end
);
227 bool oom_killer_disabled __read_mostly
;
229 #ifdef CONFIG_DEBUG_VM
230 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
234 unsigned long pfn
= page_to_pfn(page
);
237 seq
= zone_span_seqbegin(zone
);
238 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
240 else if (pfn
< zone
->zone_start_pfn
)
242 } while (zone_span_seqretry(zone
, seq
));
247 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
249 if (!pfn_valid_within(page_to_pfn(page
)))
251 if (zone
!= page_zone(page
))
257 * Temporary debugging check for pages not lying within a given zone.
259 static int bad_range(struct zone
*zone
, struct page
*page
)
261 if (page_outside_zone_boundaries(zone
, page
))
263 if (!page_is_consistent(zone
, page
))
269 static inline int bad_range(struct zone
*zone
, struct page
*page
)
275 static void bad_page(struct page
*page
)
277 static unsigned long resume
;
278 static unsigned long nr_shown
;
279 static unsigned long nr_unshown
;
281 /* Don't complain about poisoned pages */
282 if (PageHWPoison(page
)) {
283 __ClearPageBuddy(page
);
288 * Allow a burst of 60 reports, then keep quiet for that minute;
289 * or allow a steady drip of one report per second.
291 if (nr_shown
== 60) {
292 if (time_before(jiffies
, resume
)) {
298 "BUG: Bad page state: %lu messages suppressed\n",
305 resume
= jiffies
+ 60 * HZ
;
307 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
308 current
->comm
, page_to_pfn(page
));
313 /* Leave bad fields for debug, except PageBuddy could make trouble */
314 __ClearPageBuddy(page
);
315 add_taint(TAINT_BAD_PAGE
);
319 * Higher-order pages are called "compound pages". They are structured thusly:
321 * The first PAGE_SIZE page is called the "head page".
323 * The remaining PAGE_SIZE pages are called "tail pages".
325 * All pages have PG_compound set. All pages have their ->private pointing at
326 * the head page (even the head page has this).
328 * The first tail page's ->lru.next holds the address of the compound page's
329 * put_page() function. Its ->lru.prev holds the order of allocation.
330 * This usage means that zero-order pages may not be compound.
333 static void free_compound_page(struct page
*page
)
335 __free_pages_ok(page
, compound_order(page
));
338 void prep_compound_page(struct page
*page
, unsigned long order
)
341 int nr_pages
= 1 << order
;
343 set_compound_page_dtor(page
, free_compound_page
);
344 set_compound_order(page
, order
);
346 for (i
= 1; i
< nr_pages
; i
++) {
347 struct page
*p
= page
+ i
;
350 p
->first_page
= page
;
354 static int destroy_compound_page(struct page
*page
, unsigned long order
)
357 int nr_pages
= 1 << order
;
360 if (unlikely(compound_order(page
) != order
) ||
361 unlikely(!PageHead(page
))) {
366 __ClearPageHead(page
);
368 for (i
= 1; i
< nr_pages
; i
++) {
369 struct page
*p
= page
+ i
;
371 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
381 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
386 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
387 * and __GFP_HIGHMEM from hard or soft interrupt context.
389 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
390 for (i
= 0; i
< (1 << order
); i
++)
391 clear_highpage(page
+ i
);
394 static inline void set_page_order(struct page
*page
, int order
)
396 set_page_private(page
, order
);
397 __SetPageBuddy(page
);
400 static inline void rmv_page_order(struct page
*page
)
402 __ClearPageBuddy(page
);
403 set_page_private(page
, 0);
407 * Locate the struct page for both the matching buddy in our
408 * pair (buddy1) and the combined O(n+1) page they form (page).
410 * 1) Any buddy B1 will have an order O twin B2 which satisfies
411 * the following equation:
413 * For example, if the starting buddy (buddy2) is #8 its order
415 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
417 * 2) Any buddy B will have an order O+1 parent P which
418 * satisfies the following equation:
421 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
423 static inline struct page
*
424 __page_find_buddy(struct page
*page
, unsigned long page_idx
, unsigned int order
)
426 unsigned long buddy_idx
= page_idx
^ (1 << order
);
428 return page
+ (buddy_idx
- page_idx
);
431 static inline unsigned long
432 __find_combined_index(unsigned long page_idx
, unsigned int order
)
434 return (page_idx
& ~(1 << order
));
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we use PG_buddy.
446 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
453 if (!pfn_valid_within(page_to_pfn(buddy
)))
456 if (page_zone_id(page
) != page_zone_id(buddy
))
459 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
460 VM_BUG_ON(page_count(buddy
) != 0);
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with PG_buddy. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
490 static inline void __free_one_page(struct page
*page
,
491 struct zone
*zone
, unsigned int order
,
494 unsigned long page_idx
;
495 unsigned long combined_idx
;
498 if (unlikely(PageCompound(page
)))
499 if (unlikely(destroy_compound_page(page
, order
)))
502 VM_BUG_ON(migratetype
== -1);
504 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
506 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
507 VM_BUG_ON(bad_range(zone
, page
));
509 while (order
< MAX_ORDER
-1) {
510 buddy
= __page_find_buddy(page
, page_idx
, order
);
511 if (!page_is_buddy(page
, buddy
, order
))
514 /* Our buddy is free, merge with it and move up one order. */
515 list_del(&buddy
->lru
);
516 zone
->free_area
[order
].nr_free
--;
517 rmv_page_order(buddy
);
518 combined_idx
= __find_combined_index(page_idx
, order
);
519 page
= page
+ (combined_idx
- page_idx
);
520 page_idx
= combined_idx
;
523 set_page_order(page
, order
);
526 * If this is not the largest possible page, check if the buddy
527 * of the next-highest order is free. If it is, it's possible
528 * that pages are being freed that will coalesce soon. In case,
529 * that is happening, add the free page to the tail of the list
530 * so it's less likely to be used soon and more likely to be merged
531 * as a higher order page
533 if ((order
< MAX_ORDER
-1) && pfn_valid_within(page_to_pfn(buddy
))) {
534 struct page
*higher_page
, *higher_buddy
;
535 combined_idx
= __find_combined_index(page_idx
, order
);
536 higher_page
= page
+ combined_idx
- page_idx
;
537 higher_buddy
= __page_find_buddy(higher_page
, combined_idx
, order
+ 1);
538 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
539 list_add_tail(&page
->lru
,
540 &zone
->free_area
[order
].free_list
[migratetype
]);
545 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
547 zone
->free_area
[order
].nr_free
++;
551 * free_page_mlock() -- clean up attempts to free and mlocked() page.
552 * Page should not be on lru, so no need to fix that up.
553 * free_pages_check() will verify...
555 static inline void free_page_mlock(struct page
*page
)
557 __dec_zone_page_state(page
, NR_MLOCK
);
558 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
561 static inline int free_pages_check(struct page
*page
)
563 if (unlikely(page_mapcount(page
) |
564 (page
->mapping
!= NULL
) |
565 (atomic_read(&page
->_count
) != 0) |
566 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
))) {
570 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
571 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
576 * Frees a number of pages from the PCP lists
577 * Assumes all pages on list are in same zone, and of same order.
578 * count is the number of pages to free.
580 * If the zone was previously in an "all pages pinned" state then look to
581 * see if this freeing clears that state.
583 * And clear the zone's pages_scanned counter, to hold off the "all pages are
584 * pinned" detection logic.
586 static void free_pcppages_bulk(struct zone
*zone
, int count
,
587 struct per_cpu_pages
*pcp
)
593 spin_lock(&zone
->lock
);
594 zone
->all_unreclaimable
= 0;
595 zone
->pages_scanned
= 0;
599 struct list_head
*list
;
602 * Remove pages from lists in a round-robin fashion. A
603 * batch_free count is maintained that is incremented when an
604 * empty list is encountered. This is so more pages are freed
605 * off fuller lists instead of spinning excessively around empty
610 if (++migratetype
== MIGRATE_PCPTYPES
)
612 list
= &pcp
->lists
[migratetype
];
613 } while (list_empty(list
));
616 page
= list_entry(list
->prev
, struct page
, lru
);
617 /* must delete as __free_one_page list manipulates */
618 list_del(&page
->lru
);
619 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
620 __free_one_page(page
, zone
, 0, page_private(page
));
621 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
622 } while (--to_free
&& --batch_free
&& !list_empty(list
));
624 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
625 spin_unlock(&zone
->lock
);
628 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
631 spin_lock(&zone
->lock
);
632 zone
->all_unreclaimable
= 0;
633 zone
->pages_scanned
= 0;
635 __free_one_page(page
, zone
, order
, migratetype
);
636 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
637 spin_unlock(&zone
->lock
);
640 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
645 trace_mm_page_free_direct(page
, order
);
646 kmemcheck_free_shadow(page
, order
);
648 for (i
= 0; i
< (1 << order
); i
++) {
649 struct page
*pg
= page
+ i
;
653 bad
+= free_pages_check(pg
);
658 if (!PageHighMem(page
)) {
659 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
660 debug_check_no_obj_freed(page_address(page
),
663 arch_free_page(page
, order
);
664 kernel_map_pages(page
, 1 << order
, 0);
669 static void __free_pages_ok(struct page
*page
, unsigned int order
)
672 int wasMlocked
= __TestClearPageMlocked(page
);
674 if (!free_pages_prepare(page
, order
))
677 local_irq_save(flags
);
678 if (unlikely(wasMlocked
))
679 free_page_mlock(page
);
680 __count_vm_events(PGFREE
, 1 << order
);
681 free_one_page(page_zone(page
), page
, order
,
682 get_pageblock_migratetype(page
));
683 local_irq_restore(flags
);
687 * permit the bootmem allocator to evade page validation on high-order frees
689 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
692 __ClearPageReserved(page
);
693 set_page_count(page
, 0);
694 set_page_refcounted(page
);
700 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
701 struct page
*p
= &page
[loop
];
703 if (loop
+ 1 < BITS_PER_LONG
)
705 __ClearPageReserved(p
);
706 set_page_count(p
, 0);
709 set_page_refcounted(page
);
710 __free_pages(page
, order
);
716 * The order of subdivision here is critical for the IO subsystem.
717 * Please do not alter this order without good reasons and regression
718 * testing. Specifically, as large blocks of memory are subdivided,
719 * the order in which smaller blocks are delivered depends on the order
720 * they're subdivided in this function. This is the primary factor
721 * influencing the order in which pages are delivered to the IO
722 * subsystem according to empirical testing, and this is also justified
723 * by considering the behavior of a buddy system containing a single
724 * large block of memory acted on by a series of small allocations.
725 * This behavior is a critical factor in sglist merging's success.
729 static inline void expand(struct zone
*zone
, struct page
*page
,
730 int low
, int high
, struct free_area
*area
,
733 unsigned long size
= 1 << high
;
739 VM_BUG_ON(bad_range(zone
, &page
[size
]));
740 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
742 set_page_order(&page
[size
], high
);
747 * This page is about to be returned from the page allocator
749 static inline int check_new_page(struct page
*page
)
751 if (unlikely(page_mapcount(page
) |
752 (page
->mapping
!= NULL
) |
753 (atomic_read(&page
->_count
) != 0) |
754 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
))) {
761 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
765 for (i
= 0; i
< (1 << order
); i
++) {
766 struct page
*p
= page
+ i
;
767 if (unlikely(check_new_page(p
)))
771 set_page_private(page
, 0);
772 set_page_refcounted(page
);
774 arch_alloc_page(page
, order
);
775 kernel_map_pages(page
, 1 << order
, 1);
777 if (gfp_flags
& __GFP_ZERO
)
778 prep_zero_page(page
, order
, gfp_flags
);
780 if (order
&& (gfp_flags
& __GFP_COMP
))
781 prep_compound_page(page
, order
);
787 * Go through the free lists for the given migratetype and remove
788 * the smallest available page from the freelists
791 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
794 unsigned int current_order
;
795 struct free_area
* area
;
798 /* Find a page of the appropriate size in the preferred list */
799 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
800 area
= &(zone
->free_area
[current_order
]);
801 if (list_empty(&area
->free_list
[migratetype
]))
804 page
= list_entry(area
->free_list
[migratetype
].next
,
806 list_del(&page
->lru
);
807 rmv_page_order(page
);
809 expand(zone
, page
, order
, current_order
, area
, migratetype
);
818 * This array describes the order lists are fallen back to when
819 * the free lists for the desirable migrate type are depleted
821 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
822 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
823 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
824 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
825 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
829 * Move the free pages in a range to the free lists of the requested type.
830 * Note that start_page and end_pages are not aligned on a pageblock
831 * boundary. If alignment is required, use move_freepages_block()
833 static int move_freepages(struct zone
*zone
,
834 struct page
*start_page
, struct page
*end_page
,
841 #ifndef CONFIG_HOLES_IN_ZONE
843 * page_zone is not safe to call in this context when
844 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
845 * anyway as we check zone boundaries in move_freepages_block().
846 * Remove at a later date when no bug reports exist related to
847 * grouping pages by mobility
849 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
852 for (page
= start_page
; page
<= end_page
;) {
853 /* Make sure we are not inadvertently changing nodes */
854 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
856 if (!pfn_valid_within(page_to_pfn(page
))) {
861 if (!PageBuddy(page
)) {
866 order
= page_order(page
);
867 list_del(&page
->lru
);
869 &zone
->free_area
[order
].free_list
[migratetype
]);
871 pages_moved
+= 1 << order
;
877 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
880 unsigned long start_pfn
, end_pfn
;
881 struct page
*start_page
, *end_page
;
883 start_pfn
= page_to_pfn(page
);
884 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
885 start_page
= pfn_to_page(start_pfn
);
886 end_page
= start_page
+ pageblock_nr_pages
- 1;
887 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
889 /* Do not cross zone boundaries */
890 if (start_pfn
< zone
->zone_start_pfn
)
892 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
895 return move_freepages(zone
, start_page
, end_page
, migratetype
);
898 static void change_pageblock_range(struct page
*pageblock_page
,
899 int start_order
, int migratetype
)
901 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
903 while (nr_pageblocks
--) {
904 set_pageblock_migratetype(pageblock_page
, migratetype
);
905 pageblock_page
+= pageblock_nr_pages
;
909 /* Remove an element from the buddy allocator from the fallback list */
910 static inline struct page
*
911 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
913 struct free_area
* area
;
918 /* Find the largest possible block of pages in the other list */
919 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
921 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
922 migratetype
= fallbacks
[start_migratetype
][i
];
924 /* MIGRATE_RESERVE handled later if necessary */
925 if (migratetype
== MIGRATE_RESERVE
)
928 area
= &(zone
->free_area
[current_order
]);
929 if (list_empty(&area
->free_list
[migratetype
]))
932 page
= list_entry(area
->free_list
[migratetype
].next
,
937 * If breaking a large block of pages, move all free
938 * pages to the preferred allocation list. If falling
939 * back for a reclaimable kernel allocation, be more
940 * agressive about taking ownership of free pages
942 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
943 start_migratetype
== MIGRATE_RECLAIMABLE
||
944 page_group_by_mobility_disabled
) {
946 pages
= move_freepages_block(zone
, page
,
949 /* Claim the whole block if over half of it is free */
950 if (pages
>= (1 << (pageblock_order
-1)) ||
951 page_group_by_mobility_disabled
)
952 set_pageblock_migratetype(page
,
955 migratetype
= start_migratetype
;
958 /* Remove the page from the freelists */
959 list_del(&page
->lru
);
960 rmv_page_order(page
);
962 /* Take ownership for orders >= pageblock_order */
963 if (current_order
>= pageblock_order
)
964 change_pageblock_range(page
, current_order
,
967 expand(zone
, page
, order
, current_order
, area
, migratetype
);
969 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
970 start_migratetype
, migratetype
);
980 * Do the hard work of removing an element from the buddy allocator.
981 * Call me with the zone->lock already held.
983 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
989 page
= __rmqueue_smallest(zone
, order
, migratetype
);
991 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
992 page
= __rmqueue_fallback(zone
, order
, migratetype
);
995 * Use MIGRATE_RESERVE rather than fail an allocation. goto
996 * is used because __rmqueue_smallest is an inline function
997 * and we want just one call site
1000 migratetype
= MIGRATE_RESERVE
;
1005 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1010 * Obtain a specified number of elements from the buddy allocator, all under
1011 * a single hold of the lock, for efficiency. Add them to the supplied list.
1012 * Returns the number of new pages which were placed at *list.
1014 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1015 unsigned long count
, struct list_head
*list
,
1016 int migratetype
, int cold
)
1020 spin_lock(&zone
->lock
);
1021 for (i
= 0; i
< count
; ++i
) {
1022 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1023 if (unlikely(page
== NULL
))
1027 * Split buddy pages returned by expand() are received here
1028 * in physical page order. The page is added to the callers and
1029 * list and the list head then moves forward. From the callers
1030 * perspective, the linked list is ordered by page number in
1031 * some conditions. This is useful for IO devices that can
1032 * merge IO requests if the physical pages are ordered
1035 if (likely(cold
== 0))
1036 list_add(&page
->lru
, list
);
1038 list_add_tail(&page
->lru
, list
);
1039 set_page_private(page
, migratetype
);
1042 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1043 spin_unlock(&zone
->lock
);
1049 * Called from the vmstat counter updater to drain pagesets of this
1050 * currently executing processor on remote nodes after they have
1053 * Note that this function must be called with the thread pinned to
1054 * a single processor.
1056 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1058 unsigned long flags
;
1061 local_irq_save(flags
);
1062 if (pcp
->count
>= pcp
->batch
)
1063 to_drain
= pcp
->batch
;
1065 to_drain
= pcp
->count
;
1066 free_pcppages_bulk(zone
, to_drain
, pcp
);
1067 pcp
->count
-= to_drain
;
1068 local_irq_restore(flags
);
1073 * Drain pages of the indicated processor.
1075 * The processor must either be the current processor and the
1076 * thread pinned to the current processor or a processor that
1079 static void drain_pages(unsigned int cpu
)
1081 unsigned long flags
;
1084 for_each_populated_zone(zone
) {
1085 struct per_cpu_pageset
*pset
;
1086 struct per_cpu_pages
*pcp
;
1088 local_irq_save(flags
);
1089 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1092 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1094 local_irq_restore(flags
);
1099 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1101 void drain_local_pages(void *arg
)
1103 drain_pages(smp_processor_id());
1107 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1109 void drain_all_pages(void)
1111 on_each_cpu(drain_local_pages
, NULL
, 1);
1114 #ifdef CONFIG_HIBERNATION
1116 void mark_free_pages(struct zone
*zone
)
1118 unsigned long pfn
, max_zone_pfn
;
1119 unsigned long flags
;
1121 struct list_head
*curr
;
1123 if (!zone
->spanned_pages
)
1126 spin_lock_irqsave(&zone
->lock
, flags
);
1128 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1129 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1130 if (pfn_valid(pfn
)) {
1131 struct page
*page
= pfn_to_page(pfn
);
1133 if (!swsusp_page_is_forbidden(page
))
1134 swsusp_unset_page_free(page
);
1137 for_each_migratetype_order(order
, t
) {
1138 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1141 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1142 for (i
= 0; i
< (1UL << order
); i
++)
1143 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1146 spin_unlock_irqrestore(&zone
->lock
, flags
);
1148 #endif /* CONFIG_PM */
1151 * Free a 0-order page
1152 * cold == 1 ? free a cold page : free a hot page
1154 void free_hot_cold_page(struct page
*page
, int cold
)
1156 struct zone
*zone
= page_zone(page
);
1157 struct per_cpu_pages
*pcp
;
1158 unsigned long flags
;
1160 int wasMlocked
= __TestClearPageMlocked(page
);
1162 if (!free_pages_prepare(page
, 0))
1165 migratetype
= get_pageblock_migratetype(page
);
1166 set_page_private(page
, migratetype
);
1167 local_irq_save(flags
);
1168 if (unlikely(wasMlocked
))
1169 free_page_mlock(page
);
1170 __count_vm_event(PGFREE
);
1173 * We only track unmovable, reclaimable and movable on pcp lists.
1174 * Free ISOLATE pages back to the allocator because they are being
1175 * offlined but treat RESERVE as movable pages so we can get those
1176 * areas back if necessary. Otherwise, we may have to free
1177 * excessively into the page allocator
1179 if (migratetype
>= MIGRATE_PCPTYPES
) {
1180 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1181 free_one_page(zone
, page
, 0, migratetype
);
1184 migratetype
= MIGRATE_MOVABLE
;
1187 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1189 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1191 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1193 if (pcp
->count
>= pcp
->high
) {
1194 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1195 pcp
->count
-= pcp
->batch
;
1199 local_irq_restore(flags
);
1203 * split_page takes a non-compound higher-order page, and splits it into
1204 * n (1<<order) sub-pages: page[0..n]
1205 * Each sub-page must be freed individually.
1207 * Note: this is probably too low level an operation for use in drivers.
1208 * Please consult with lkml before using this in your driver.
1210 void split_page(struct page
*page
, unsigned int order
)
1214 VM_BUG_ON(PageCompound(page
));
1215 VM_BUG_ON(!page_count(page
));
1217 #ifdef CONFIG_KMEMCHECK
1219 * Split shadow pages too, because free(page[0]) would
1220 * otherwise free the whole shadow.
1222 if (kmemcheck_page_is_tracked(page
))
1223 split_page(virt_to_page(page
[0].shadow
), order
);
1226 for (i
= 1; i
< (1 << order
); i
++)
1227 set_page_refcounted(page
+ i
);
1231 * Similar to split_page except the page is already free. As this is only
1232 * being used for migration, the migratetype of the block also changes.
1233 * As this is called with interrupts disabled, the caller is responsible
1234 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1237 * Note: this is probably too low level an operation for use in drivers.
1238 * Please consult with lkml before using this in your driver.
1240 int split_free_page(struct page
*page
)
1243 unsigned long watermark
;
1246 BUG_ON(!PageBuddy(page
));
1248 zone
= page_zone(page
);
1249 order
= page_order(page
);
1251 /* Obey watermarks as if the page was being allocated */
1252 watermark
= low_wmark_pages(zone
) + (1 << order
);
1253 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1256 /* Remove page from free list */
1257 list_del(&page
->lru
);
1258 zone
->free_area
[order
].nr_free
--;
1259 rmv_page_order(page
);
1260 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1262 /* Split into individual pages */
1263 set_page_refcounted(page
);
1264 split_page(page
, order
);
1266 if (order
>= pageblock_order
- 1) {
1267 struct page
*endpage
= page
+ (1 << order
) - 1;
1268 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1269 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1276 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1277 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1281 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1282 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1285 unsigned long flags
;
1287 int cold
= !!(gfp_flags
& __GFP_COLD
);
1290 if (likely(order
== 0)) {
1291 struct per_cpu_pages
*pcp
;
1292 struct list_head
*list
;
1294 local_irq_save(flags
);
1295 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1296 list
= &pcp
->lists
[migratetype
];
1297 if (list_empty(list
)) {
1298 pcp
->count
+= rmqueue_bulk(zone
, 0,
1301 if (unlikely(list_empty(list
)))
1306 page
= list_entry(list
->prev
, struct page
, lru
);
1308 page
= list_entry(list
->next
, struct page
, lru
);
1310 list_del(&page
->lru
);
1313 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1315 * __GFP_NOFAIL is not to be used in new code.
1317 * All __GFP_NOFAIL callers should be fixed so that they
1318 * properly detect and handle allocation failures.
1320 * We most definitely don't want callers attempting to
1321 * allocate greater than order-1 page units with
1324 WARN_ON_ONCE(order
> 1);
1326 spin_lock_irqsave(&zone
->lock
, flags
);
1327 page
= __rmqueue(zone
, order
, migratetype
);
1328 spin_unlock(&zone
->lock
);
1331 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1334 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1335 zone_statistics(preferred_zone
, zone
);
1336 local_irq_restore(flags
);
1338 VM_BUG_ON(bad_range(zone
, page
));
1339 if (prep_new_page(page
, order
, gfp_flags
))
1344 local_irq_restore(flags
);
1348 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1349 #define ALLOC_WMARK_MIN WMARK_MIN
1350 #define ALLOC_WMARK_LOW WMARK_LOW
1351 #define ALLOC_WMARK_HIGH WMARK_HIGH
1352 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1354 /* Mask to get the watermark bits */
1355 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1357 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1358 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1359 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1361 #ifdef CONFIG_FAIL_PAGE_ALLOC
1363 static struct fail_page_alloc_attr
{
1364 struct fault_attr attr
;
1366 u32 ignore_gfp_highmem
;
1367 u32 ignore_gfp_wait
;
1370 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1372 struct dentry
*ignore_gfp_highmem_file
;
1373 struct dentry
*ignore_gfp_wait_file
;
1374 struct dentry
*min_order_file
;
1376 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1378 } fail_page_alloc
= {
1379 .attr
= FAULT_ATTR_INITIALIZER
,
1380 .ignore_gfp_wait
= 1,
1381 .ignore_gfp_highmem
= 1,
1385 static int __init
setup_fail_page_alloc(char *str
)
1387 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1389 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1391 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1393 if (order
< fail_page_alloc
.min_order
)
1395 if (gfp_mask
& __GFP_NOFAIL
)
1397 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1399 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1402 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1405 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1407 static int __init
fail_page_alloc_debugfs(void)
1409 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1413 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1417 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1419 fail_page_alloc
.ignore_gfp_wait_file
=
1420 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1421 &fail_page_alloc
.ignore_gfp_wait
);
1423 fail_page_alloc
.ignore_gfp_highmem_file
=
1424 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1425 &fail_page_alloc
.ignore_gfp_highmem
);
1426 fail_page_alloc
.min_order_file
=
1427 debugfs_create_u32("min-order", mode
, dir
,
1428 &fail_page_alloc
.min_order
);
1430 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1431 !fail_page_alloc
.ignore_gfp_highmem_file
||
1432 !fail_page_alloc
.min_order_file
) {
1434 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1435 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1436 debugfs_remove(fail_page_alloc
.min_order_file
);
1437 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1443 late_initcall(fail_page_alloc_debugfs
);
1445 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1447 #else /* CONFIG_FAIL_PAGE_ALLOC */
1449 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1454 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1457 * Return 1 if free pages are above 'mark'. This takes into account the order
1458 * of the allocation.
1460 int zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1461 int classzone_idx
, int alloc_flags
)
1463 /* free_pages my go negative - that's OK */
1465 long free_pages
= zone_nr_free_pages(z
) - (1 << order
) + 1;
1468 if (alloc_flags
& ALLOC_HIGH
)
1470 if (alloc_flags
& ALLOC_HARDER
)
1473 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1475 for (o
= 0; o
< order
; o
++) {
1476 /* At the next order, this order's pages become unavailable */
1477 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1479 /* Require fewer higher order pages to be free */
1482 if (free_pages
<= min
)
1490 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1491 * skip over zones that are not allowed by the cpuset, or that have
1492 * been recently (in last second) found to be nearly full. See further
1493 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1494 * that have to skip over a lot of full or unallowed zones.
1496 * If the zonelist cache is present in the passed in zonelist, then
1497 * returns a pointer to the allowed node mask (either the current
1498 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1500 * If the zonelist cache is not available for this zonelist, does
1501 * nothing and returns NULL.
1503 * If the fullzones BITMAP in the zonelist cache is stale (more than
1504 * a second since last zap'd) then we zap it out (clear its bits.)
1506 * We hold off even calling zlc_setup, until after we've checked the
1507 * first zone in the zonelist, on the theory that most allocations will
1508 * be satisfied from that first zone, so best to examine that zone as
1509 * quickly as we can.
1511 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1513 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1514 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1516 zlc
= zonelist
->zlcache_ptr
;
1520 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1521 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1522 zlc
->last_full_zap
= jiffies
;
1525 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1526 &cpuset_current_mems_allowed
:
1527 &node_states
[N_HIGH_MEMORY
];
1528 return allowednodes
;
1532 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1533 * if it is worth looking at further for free memory:
1534 * 1) Check that the zone isn't thought to be full (doesn't have its
1535 * bit set in the zonelist_cache fullzones BITMAP).
1536 * 2) Check that the zones node (obtained from the zonelist_cache
1537 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1538 * Return true (non-zero) if zone is worth looking at further, or
1539 * else return false (zero) if it is not.
1541 * This check -ignores- the distinction between various watermarks,
1542 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1543 * found to be full for any variation of these watermarks, it will
1544 * be considered full for up to one second by all requests, unless
1545 * we are so low on memory on all allowed nodes that we are forced
1546 * into the second scan of the zonelist.
1548 * In the second scan we ignore this zonelist cache and exactly
1549 * apply the watermarks to all zones, even it is slower to do so.
1550 * We are low on memory in the second scan, and should leave no stone
1551 * unturned looking for a free page.
1553 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1554 nodemask_t
*allowednodes
)
1556 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1557 int i
; /* index of *z in zonelist zones */
1558 int n
; /* node that zone *z is on */
1560 zlc
= zonelist
->zlcache_ptr
;
1564 i
= z
- zonelist
->_zonerefs
;
1567 /* This zone is worth trying if it is allowed but not full */
1568 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1572 * Given 'z' scanning a zonelist, set the corresponding bit in
1573 * zlc->fullzones, so that subsequent attempts to allocate a page
1574 * from that zone don't waste time re-examining it.
1576 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1578 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1579 int i
; /* index of *z in zonelist zones */
1581 zlc
= zonelist
->zlcache_ptr
;
1585 i
= z
- zonelist
->_zonerefs
;
1587 set_bit(i
, zlc
->fullzones
);
1590 #else /* CONFIG_NUMA */
1592 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1597 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1598 nodemask_t
*allowednodes
)
1603 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1606 #endif /* CONFIG_NUMA */
1609 * get_page_from_freelist goes through the zonelist trying to allocate
1612 static struct page
*
1613 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1614 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1615 struct zone
*preferred_zone
, int migratetype
)
1618 struct page
*page
= NULL
;
1621 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1622 int zlc_active
= 0; /* set if using zonelist_cache */
1623 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1625 classzone_idx
= zone_idx(preferred_zone
);
1628 * Scan zonelist, looking for a zone with enough free.
1629 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1631 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1632 high_zoneidx
, nodemask
) {
1633 if (NUMA_BUILD
&& zlc_active
&&
1634 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1636 if ((alloc_flags
& ALLOC_CPUSET
) &&
1637 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1640 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1641 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1645 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1646 if (zone_watermark_ok(zone
, order
, mark
,
1647 classzone_idx
, alloc_flags
))
1650 if (zone_reclaim_mode
== 0)
1651 goto this_zone_full
;
1653 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1655 case ZONE_RECLAIM_NOSCAN
:
1658 case ZONE_RECLAIM_FULL
:
1659 /* scanned but unreclaimable */
1660 goto this_zone_full
;
1662 /* did we reclaim enough */
1663 if (!zone_watermark_ok(zone
, order
, mark
,
1664 classzone_idx
, alloc_flags
))
1665 goto this_zone_full
;
1670 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1671 gfp_mask
, migratetype
);
1676 zlc_mark_zone_full(zonelist
, z
);
1678 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1680 * we do zlc_setup after the first zone is tried but only
1681 * if there are multiple nodes make it worthwhile
1683 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1689 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1690 /* Disable zlc cache for second zonelist scan */
1698 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1699 unsigned long pages_reclaimed
)
1701 /* Do not loop if specifically requested */
1702 if (gfp_mask
& __GFP_NORETRY
)
1706 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1707 * means __GFP_NOFAIL, but that may not be true in other
1710 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1714 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1715 * specified, then we retry until we no longer reclaim any pages
1716 * (above), or we've reclaimed an order of pages at least as
1717 * large as the allocation's order. In both cases, if the
1718 * allocation still fails, we stop retrying.
1720 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1724 * Don't let big-order allocations loop unless the caller
1725 * explicitly requests that.
1727 if (gfp_mask
& __GFP_NOFAIL
)
1733 static inline struct page
*
1734 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1735 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1736 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1741 /* Acquire the OOM killer lock for the zones in zonelist */
1742 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1743 schedule_timeout_uninterruptible(1);
1748 * Go through the zonelist yet one more time, keep very high watermark
1749 * here, this is only to catch a parallel oom killing, we must fail if
1750 * we're still under heavy pressure.
1752 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1753 order
, zonelist
, high_zoneidx
,
1754 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1755 preferred_zone
, migratetype
);
1759 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1760 /* The OOM killer will not help higher order allocs */
1761 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1763 /* The OOM killer does not needlessly kill tasks for lowmem */
1764 if (high_zoneidx
< ZONE_NORMAL
)
1767 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1768 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1769 * The caller should handle page allocation failure by itself if
1770 * it specifies __GFP_THISNODE.
1771 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1773 if (gfp_mask
& __GFP_THISNODE
)
1776 /* Exhausted what can be done so it's blamo time */
1777 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1780 clear_zonelist_oom(zonelist
, gfp_mask
);
1784 #ifdef CONFIG_COMPACTION
1785 /* Try memory compaction for high-order allocations before reclaim */
1786 static struct page
*
1787 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1788 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1789 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1790 int migratetype
, unsigned long *did_some_progress
)
1794 if (!order
|| compaction_deferred(preferred_zone
))
1797 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1799 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1801 /* Page migration frees to the PCP lists but we want merging */
1802 drain_pages(get_cpu());
1805 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1806 order
, zonelist
, high_zoneidx
,
1807 alloc_flags
, preferred_zone
,
1810 preferred_zone
->compact_considered
= 0;
1811 preferred_zone
->compact_defer_shift
= 0;
1812 count_vm_event(COMPACTSUCCESS
);
1817 * It's bad if compaction run occurs and fails.
1818 * The most likely reason is that pages exist,
1819 * but not enough to satisfy watermarks.
1821 count_vm_event(COMPACTFAIL
);
1822 defer_compaction(preferred_zone
);
1830 static inline struct page
*
1831 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1832 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1833 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1834 int migratetype
, unsigned long *did_some_progress
)
1838 #endif /* CONFIG_COMPACTION */
1840 /* The really slow allocator path where we enter direct reclaim */
1841 static inline struct page
*
1842 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1843 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1844 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1845 int migratetype
, unsigned long *did_some_progress
)
1847 struct page
*page
= NULL
;
1848 struct reclaim_state reclaim_state
;
1849 struct task_struct
*p
= current
;
1850 bool drained
= false;
1854 /* We now go into synchronous reclaim */
1855 cpuset_memory_pressure_bump();
1856 p
->flags
|= PF_MEMALLOC
;
1857 lockdep_set_current_reclaim_state(gfp_mask
);
1858 reclaim_state
.reclaimed_slab
= 0;
1859 p
->reclaim_state
= &reclaim_state
;
1861 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1863 p
->reclaim_state
= NULL
;
1864 lockdep_clear_current_reclaim_state();
1865 p
->flags
&= ~PF_MEMALLOC
;
1869 if (unlikely(!(*did_some_progress
)))
1873 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1874 zonelist
, high_zoneidx
,
1875 alloc_flags
, preferred_zone
,
1879 * If an allocation failed after direct reclaim, it could be because
1880 * pages are pinned on the per-cpu lists. Drain them and try again
1882 if (!page
&& !drained
) {
1892 * This is called in the allocator slow-path if the allocation request is of
1893 * sufficient urgency to ignore watermarks and take other desperate measures
1895 static inline struct page
*
1896 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1897 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1898 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1904 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1905 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1906 preferred_zone
, migratetype
);
1908 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1909 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
1910 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1916 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1917 enum zone_type high_zoneidx
)
1922 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1923 wakeup_kswapd(zone
, order
);
1927 gfp_to_alloc_flags(gfp_t gfp_mask
)
1929 struct task_struct
*p
= current
;
1930 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1931 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1933 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1934 BUILD_BUG_ON(__GFP_HIGH
!= ALLOC_HIGH
);
1937 * The caller may dip into page reserves a bit more if the caller
1938 * cannot run direct reclaim, or if the caller has realtime scheduling
1939 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1940 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1942 alloc_flags
|= (gfp_mask
& __GFP_HIGH
);
1945 alloc_flags
|= ALLOC_HARDER
;
1947 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1948 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1950 alloc_flags
&= ~ALLOC_CPUSET
;
1951 } else if (unlikely(rt_task(p
)) && !in_interrupt())
1952 alloc_flags
|= ALLOC_HARDER
;
1954 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
1955 if (!in_interrupt() &&
1956 ((p
->flags
& PF_MEMALLOC
) ||
1957 unlikely(test_thread_flag(TIF_MEMDIE
))))
1958 alloc_flags
|= ALLOC_NO_WATERMARKS
;
1964 static inline struct page
*
1965 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
1966 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1967 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1970 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1971 struct page
*page
= NULL
;
1973 unsigned long pages_reclaimed
= 0;
1974 unsigned long did_some_progress
;
1975 struct task_struct
*p
= current
;
1978 * In the slowpath, we sanity check order to avoid ever trying to
1979 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1980 * be using allocators in order of preference for an area that is
1983 if (order
>= MAX_ORDER
) {
1984 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
1989 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1990 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1991 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1992 * using a larger set of nodes after it has established that the
1993 * allowed per node queues are empty and that nodes are
1996 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2000 wake_all_kswapd(order
, zonelist
, high_zoneidx
);
2003 * OK, we're below the kswapd watermark and have kicked background
2004 * reclaim. Now things get more complex, so set up alloc_flags according
2005 * to how we want to proceed.
2007 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2009 /* This is the last chance, in general, before the goto nopage. */
2010 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2011 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2012 preferred_zone
, migratetype
);
2017 /* Allocate without watermarks if the context allows */
2018 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2019 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2020 zonelist
, high_zoneidx
, nodemask
,
2021 preferred_zone
, migratetype
);
2026 /* Atomic allocations - we can't balance anything */
2030 /* Avoid recursion of direct reclaim */
2031 if (p
->flags
& PF_MEMALLOC
)
2034 /* Avoid allocations with no watermarks from looping endlessly */
2035 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2038 /* Try direct compaction */
2039 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2040 zonelist
, high_zoneidx
,
2042 alloc_flags
, preferred_zone
,
2043 migratetype
, &did_some_progress
);
2047 /* Try direct reclaim and then allocating */
2048 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2049 zonelist
, high_zoneidx
,
2051 alloc_flags
, preferred_zone
,
2052 migratetype
, &did_some_progress
);
2057 * If we failed to make any progress reclaiming, then we are
2058 * running out of options and have to consider going OOM
2060 if (!did_some_progress
) {
2061 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2062 if (oom_killer_disabled
)
2064 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2065 zonelist
, high_zoneidx
,
2066 nodemask
, preferred_zone
,
2071 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2073 * The oom killer is not called for high-order
2074 * allocations that may fail, so if no progress
2075 * is being made, there are no other options and
2076 * retrying is unlikely to help.
2078 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2081 * The oom killer is not called for lowmem
2082 * allocations to prevent needlessly killing
2085 if (high_zoneidx
< ZONE_NORMAL
)
2093 /* Check if we should retry the allocation */
2094 pages_reclaimed
+= did_some_progress
;
2095 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2096 /* Wait for some write requests to complete then retry */
2097 congestion_wait(BLK_RW_ASYNC
, HZ
/50);
2102 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2103 printk(KERN_WARNING
"%s: page allocation failure."
2104 " order:%d, mode:0x%x\n",
2105 p
->comm
, order
, gfp_mask
);
2111 if (kmemcheck_enabled
)
2112 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2118 * This is the 'heart' of the zoned buddy allocator.
2121 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2122 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2124 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2125 struct zone
*preferred_zone
;
2127 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2129 gfp_mask
&= gfp_allowed_mask
;
2131 lockdep_trace_alloc(gfp_mask
);
2133 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2135 if (should_fail_alloc_page(gfp_mask
, order
))
2139 * Check the zones suitable for the gfp_mask contain at least one
2140 * valid zone. It's possible to have an empty zonelist as a result
2141 * of GFP_THISNODE and a memoryless node
2143 if (unlikely(!zonelist
->_zonerefs
->zone
))
2147 /* The preferred zone is used for statistics later */
2148 first_zones_zonelist(zonelist
, high_zoneidx
, nodemask
, &preferred_zone
);
2149 if (!preferred_zone
) {
2154 /* First allocation attempt */
2155 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2156 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2157 preferred_zone
, migratetype
);
2158 if (unlikely(!page
))
2159 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2160 zonelist
, high_zoneidx
, nodemask
,
2161 preferred_zone
, migratetype
);
2164 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2167 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2170 * Common helper functions.
2172 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2177 * __get_free_pages() returns a 32-bit address, which cannot represent
2180 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2182 page
= alloc_pages(gfp_mask
, order
);
2185 return (unsigned long) page_address(page
);
2187 EXPORT_SYMBOL(__get_free_pages
);
2189 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2191 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2193 EXPORT_SYMBOL(get_zeroed_page
);
2195 void __pagevec_free(struct pagevec
*pvec
)
2197 int i
= pagevec_count(pvec
);
2200 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2201 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2205 void __free_pages(struct page
*page
, unsigned int order
)
2207 if (put_page_testzero(page
)) {
2209 free_hot_cold_page(page
, 0);
2211 __free_pages_ok(page
, order
);
2215 EXPORT_SYMBOL(__free_pages
);
2217 void free_pages(unsigned long addr
, unsigned int order
)
2220 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2221 __free_pages(virt_to_page((void *)addr
), order
);
2225 EXPORT_SYMBOL(free_pages
);
2228 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2229 * @size: the number of bytes to allocate
2230 * @gfp_mask: GFP flags for the allocation
2232 * This function is similar to alloc_pages(), except that it allocates the
2233 * minimum number of pages to satisfy the request. alloc_pages() can only
2234 * allocate memory in power-of-two pages.
2236 * This function is also limited by MAX_ORDER.
2238 * Memory allocated by this function must be released by free_pages_exact().
2240 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2242 unsigned int order
= get_order(size
);
2245 addr
= __get_free_pages(gfp_mask
, order
);
2247 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2248 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2250 split_page(virt_to_page((void *)addr
), order
);
2251 while (used
< alloc_end
) {
2257 return (void *)addr
;
2259 EXPORT_SYMBOL(alloc_pages_exact
);
2262 * free_pages_exact - release memory allocated via alloc_pages_exact()
2263 * @virt: the value returned by alloc_pages_exact.
2264 * @size: size of allocation, same value as passed to alloc_pages_exact().
2266 * Release the memory allocated by a previous call to alloc_pages_exact.
2268 void free_pages_exact(void *virt
, size_t size
)
2270 unsigned long addr
= (unsigned long)virt
;
2271 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2273 while (addr
< end
) {
2278 EXPORT_SYMBOL(free_pages_exact
);
2280 static unsigned int nr_free_zone_pages(int offset
)
2285 /* Just pick one node, since fallback list is circular */
2286 unsigned int sum
= 0;
2288 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2290 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2291 unsigned long size
= zone
->present_pages
;
2292 unsigned long high
= high_wmark_pages(zone
);
2301 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2303 unsigned int nr_free_buffer_pages(void)
2305 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2307 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2310 * Amount of free RAM allocatable within all zones
2312 unsigned int nr_free_pagecache_pages(void)
2314 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2317 static inline void show_node(struct zone
*zone
)
2320 printk("Node %d ", zone_to_nid(zone
));
2323 void si_meminfo(struct sysinfo
*val
)
2325 val
->totalram
= totalram_pages
;
2327 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2328 val
->bufferram
= nr_blockdev_pages();
2329 val
->totalhigh
= totalhigh_pages
;
2330 val
->freehigh
= nr_free_highpages();
2331 val
->mem_unit
= PAGE_SIZE
;
2334 EXPORT_SYMBOL(si_meminfo
);
2337 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2339 pg_data_t
*pgdat
= NODE_DATA(nid
);
2341 val
->totalram
= pgdat
->node_present_pages
;
2342 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2343 #ifdef CONFIG_HIGHMEM
2344 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2345 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2351 val
->mem_unit
= PAGE_SIZE
;
2355 #define K(x) ((x) << (PAGE_SHIFT-10))
2358 * Show free area list (used inside shift_scroll-lock stuff)
2359 * We also calculate the percentage fragmentation. We do this by counting the
2360 * memory on each free list with the exception of the first item on the list.
2362 void show_free_areas(void)
2367 for_each_populated_zone(zone
) {
2369 printk("%s per-cpu:\n", zone
->name
);
2371 for_each_online_cpu(cpu
) {
2372 struct per_cpu_pageset
*pageset
;
2374 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2376 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2377 cpu
, pageset
->pcp
.high
,
2378 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2382 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2383 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2385 " dirty:%lu writeback:%lu unstable:%lu\n"
2386 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2387 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2388 global_page_state(NR_ACTIVE_ANON
),
2389 global_page_state(NR_INACTIVE_ANON
),
2390 global_page_state(NR_ISOLATED_ANON
),
2391 global_page_state(NR_ACTIVE_FILE
),
2392 global_page_state(NR_INACTIVE_FILE
),
2393 global_page_state(NR_ISOLATED_FILE
),
2394 global_page_state(NR_UNEVICTABLE
),
2395 global_page_state(NR_FILE_DIRTY
),
2396 global_page_state(NR_WRITEBACK
),
2397 global_page_state(NR_UNSTABLE_NFS
),
2398 global_page_state(NR_FREE_PAGES
),
2399 global_page_state(NR_SLAB_RECLAIMABLE
),
2400 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2401 global_page_state(NR_FILE_MAPPED
),
2402 global_page_state(NR_SHMEM
),
2403 global_page_state(NR_PAGETABLE
),
2404 global_page_state(NR_BOUNCE
));
2406 for_each_populated_zone(zone
) {
2415 " active_anon:%lukB"
2416 " inactive_anon:%lukB"
2417 " active_file:%lukB"
2418 " inactive_file:%lukB"
2419 " unevictable:%lukB"
2420 " isolated(anon):%lukB"
2421 " isolated(file):%lukB"
2428 " slab_reclaimable:%lukB"
2429 " slab_unreclaimable:%lukB"
2430 " kernel_stack:%lukB"
2434 " writeback_tmp:%lukB"
2435 " pages_scanned:%lu"
2436 " all_unreclaimable? %s"
2439 K(zone_nr_free_pages(zone
)),
2440 K(min_wmark_pages(zone
)),
2441 K(low_wmark_pages(zone
)),
2442 K(high_wmark_pages(zone
)),
2443 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2444 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2445 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2446 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2447 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2448 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2449 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2450 K(zone
->present_pages
),
2451 K(zone_page_state(zone
, NR_MLOCK
)),
2452 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2453 K(zone_page_state(zone
, NR_WRITEBACK
)),
2454 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2455 K(zone_page_state(zone
, NR_SHMEM
)),
2456 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2457 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2458 zone_page_state(zone
, NR_KERNEL_STACK
) *
2460 K(zone_page_state(zone
, NR_PAGETABLE
)),
2461 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2462 K(zone_page_state(zone
, NR_BOUNCE
)),
2463 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2464 zone
->pages_scanned
,
2465 (zone
->all_unreclaimable
? "yes" : "no")
2467 printk("lowmem_reserve[]:");
2468 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2469 printk(" %lu", zone
->lowmem_reserve
[i
]);
2473 for_each_populated_zone(zone
) {
2474 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2477 printk("%s: ", zone
->name
);
2479 spin_lock_irqsave(&zone
->lock
, flags
);
2480 for (order
= 0; order
< MAX_ORDER
; order
++) {
2481 nr
[order
] = zone
->free_area
[order
].nr_free
;
2482 total
+= nr
[order
] << order
;
2484 spin_unlock_irqrestore(&zone
->lock
, flags
);
2485 for (order
= 0; order
< MAX_ORDER
; order
++)
2486 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2487 printk("= %lukB\n", K(total
));
2490 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2492 show_swap_cache_info();
2495 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2497 zoneref
->zone
= zone
;
2498 zoneref
->zone_idx
= zone_idx(zone
);
2502 * Builds allocation fallback zone lists.
2504 * Add all populated zones of a node to the zonelist.
2506 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2507 int nr_zones
, enum zone_type zone_type
)
2511 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2516 zone
= pgdat
->node_zones
+ zone_type
;
2517 if (populated_zone(zone
)) {
2518 zoneref_set_zone(zone
,
2519 &zonelist
->_zonerefs
[nr_zones
++]);
2520 check_highest_zone(zone_type
);
2523 } while (zone_type
);
2530 * 0 = automatic detection of better ordering.
2531 * 1 = order by ([node] distance, -zonetype)
2532 * 2 = order by (-zonetype, [node] distance)
2534 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2535 * the same zonelist. So only NUMA can configure this param.
2537 #define ZONELIST_ORDER_DEFAULT 0
2538 #define ZONELIST_ORDER_NODE 1
2539 #define ZONELIST_ORDER_ZONE 2
2541 /* zonelist order in the kernel.
2542 * set_zonelist_order() will set this to NODE or ZONE.
2544 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2545 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2549 /* The value user specified ....changed by config */
2550 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2551 /* string for sysctl */
2552 #define NUMA_ZONELIST_ORDER_LEN 16
2553 char numa_zonelist_order
[16] = "default";
2556 * interface for configure zonelist ordering.
2557 * command line option "numa_zonelist_order"
2558 * = "[dD]efault - default, automatic configuration.
2559 * = "[nN]ode - order by node locality, then by zone within node
2560 * = "[zZ]one - order by zone, then by locality within zone
2563 static int __parse_numa_zonelist_order(char *s
)
2565 if (*s
== 'd' || *s
== 'D') {
2566 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2567 } else if (*s
== 'n' || *s
== 'N') {
2568 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2569 } else if (*s
== 'z' || *s
== 'Z') {
2570 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2573 "Ignoring invalid numa_zonelist_order value: "
2580 static __init
int setup_numa_zonelist_order(char *s
)
2583 return __parse_numa_zonelist_order(s
);
2586 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2589 * sysctl handler for numa_zonelist_order
2591 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2592 void __user
*buffer
, size_t *length
,
2595 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2597 static DEFINE_MUTEX(zl_order_mutex
);
2599 mutex_lock(&zl_order_mutex
);
2601 strcpy(saved_string
, (char*)table
->data
);
2602 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2606 int oldval
= user_zonelist_order
;
2607 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2609 * bogus value. restore saved string
2611 strncpy((char*)table
->data
, saved_string
,
2612 NUMA_ZONELIST_ORDER_LEN
);
2613 user_zonelist_order
= oldval
;
2614 } else if (oldval
!= user_zonelist_order
) {
2615 mutex_lock(&zonelists_mutex
);
2616 build_all_zonelists(NULL
);
2617 mutex_unlock(&zonelists_mutex
);
2621 mutex_unlock(&zl_order_mutex
);
2626 #define MAX_NODE_LOAD (nr_online_nodes)
2627 static int node_load
[MAX_NUMNODES
];
2630 * find_next_best_node - find the next node that should appear in a given node's fallback list
2631 * @node: node whose fallback list we're appending
2632 * @used_node_mask: nodemask_t of already used nodes
2634 * We use a number of factors to determine which is the next node that should
2635 * appear on a given node's fallback list. The node should not have appeared
2636 * already in @node's fallback list, and it should be the next closest node
2637 * according to the distance array (which contains arbitrary distance values
2638 * from each node to each node in the system), and should also prefer nodes
2639 * with no CPUs, since presumably they'll have very little allocation pressure
2640 * on them otherwise.
2641 * It returns -1 if no node is found.
2643 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2646 int min_val
= INT_MAX
;
2648 const struct cpumask
*tmp
= cpumask_of_node(0);
2650 /* Use the local node if we haven't already */
2651 if (!node_isset(node
, *used_node_mask
)) {
2652 node_set(node
, *used_node_mask
);
2656 for_each_node_state(n
, N_HIGH_MEMORY
) {
2658 /* Don't want a node to appear more than once */
2659 if (node_isset(n
, *used_node_mask
))
2662 /* Use the distance array to find the distance */
2663 val
= node_distance(node
, n
);
2665 /* Penalize nodes under us ("prefer the next node") */
2668 /* Give preference to headless and unused nodes */
2669 tmp
= cpumask_of_node(n
);
2670 if (!cpumask_empty(tmp
))
2671 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2673 /* Slight preference for less loaded node */
2674 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2675 val
+= node_load
[n
];
2677 if (val
< min_val
) {
2684 node_set(best_node
, *used_node_mask
);
2691 * Build zonelists ordered by node and zones within node.
2692 * This results in maximum locality--normal zone overflows into local
2693 * DMA zone, if any--but risks exhausting DMA zone.
2695 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2698 struct zonelist
*zonelist
;
2700 zonelist
= &pgdat
->node_zonelists
[0];
2701 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2703 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2705 zonelist
->_zonerefs
[j
].zone
= NULL
;
2706 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2710 * Build gfp_thisnode zonelists
2712 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2715 struct zonelist
*zonelist
;
2717 zonelist
= &pgdat
->node_zonelists
[1];
2718 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2719 zonelist
->_zonerefs
[j
].zone
= NULL
;
2720 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2724 * Build zonelists ordered by zone and nodes within zones.
2725 * This results in conserving DMA zone[s] until all Normal memory is
2726 * exhausted, but results in overflowing to remote node while memory
2727 * may still exist in local DMA zone.
2729 static int node_order
[MAX_NUMNODES
];
2731 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2734 int zone_type
; /* needs to be signed */
2736 struct zonelist
*zonelist
;
2738 zonelist
= &pgdat
->node_zonelists
[0];
2740 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2741 for (j
= 0; j
< nr_nodes
; j
++) {
2742 node
= node_order
[j
];
2743 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2744 if (populated_zone(z
)) {
2746 &zonelist
->_zonerefs
[pos
++]);
2747 check_highest_zone(zone_type
);
2751 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2752 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2755 static int default_zonelist_order(void)
2758 unsigned long low_kmem_size
,total_size
;
2762 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2763 * If they are really small and used heavily, the system can fall
2764 * into OOM very easily.
2765 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2767 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2770 for_each_online_node(nid
) {
2771 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2772 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2773 if (populated_zone(z
)) {
2774 if (zone_type
< ZONE_NORMAL
)
2775 low_kmem_size
+= z
->present_pages
;
2776 total_size
+= z
->present_pages
;
2777 } else if (zone_type
== ZONE_NORMAL
) {
2779 * If any node has only lowmem, then node order
2780 * is preferred to allow kernel allocations
2781 * locally; otherwise, they can easily infringe
2782 * on other nodes when there is an abundance of
2783 * lowmem available to allocate from.
2785 return ZONELIST_ORDER_NODE
;
2789 if (!low_kmem_size
|| /* there are no DMA area. */
2790 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2791 return ZONELIST_ORDER_NODE
;
2793 * look into each node's config.
2794 * If there is a node whose DMA/DMA32 memory is very big area on
2795 * local memory, NODE_ORDER may be suitable.
2797 average_size
= total_size
/
2798 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2799 for_each_online_node(nid
) {
2802 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2803 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2804 if (populated_zone(z
)) {
2805 if (zone_type
< ZONE_NORMAL
)
2806 low_kmem_size
+= z
->present_pages
;
2807 total_size
+= z
->present_pages
;
2810 if (low_kmem_size
&&
2811 total_size
> average_size
&& /* ignore small node */
2812 low_kmem_size
> total_size
* 70/100)
2813 return ZONELIST_ORDER_NODE
;
2815 return ZONELIST_ORDER_ZONE
;
2818 static void set_zonelist_order(void)
2820 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2821 current_zonelist_order
= default_zonelist_order();
2823 current_zonelist_order
= user_zonelist_order
;
2826 static void build_zonelists(pg_data_t
*pgdat
)
2830 nodemask_t used_mask
;
2831 int local_node
, prev_node
;
2832 struct zonelist
*zonelist
;
2833 int order
= current_zonelist_order
;
2835 /* initialize zonelists */
2836 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2837 zonelist
= pgdat
->node_zonelists
+ i
;
2838 zonelist
->_zonerefs
[0].zone
= NULL
;
2839 zonelist
->_zonerefs
[0].zone_idx
= 0;
2842 /* NUMA-aware ordering of nodes */
2843 local_node
= pgdat
->node_id
;
2844 load
= nr_online_nodes
;
2845 prev_node
= local_node
;
2846 nodes_clear(used_mask
);
2848 memset(node_order
, 0, sizeof(node_order
));
2851 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
2852 int distance
= node_distance(local_node
, node
);
2855 * If another node is sufficiently far away then it is better
2856 * to reclaim pages in a zone before going off node.
2858 if (distance
> RECLAIM_DISTANCE
)
2859 zone_reclaim_mode
= 1;
2862 * We don't want to pressure a particular node.
2863 * So adding penalty to the first node in same
2864 * distance group to make it round-robin.
2866 if (distance
!= node_distance(local_node
, prev_node
))
2867 node_load
[node
] = load
;
2871 if (order
== ZONELIST_ORDER_NODE
)
2872 build_zonelists_in_node_order(pgdat
, node
);
2874 node_order
[j
++] = node
; /* remember order */
2877 if (order
== ZONELIST_ORDER_ZONE
) {
2878 /* calculate node order -- i.e., DMA last! */
2879 build_zonelists_in_zone_order(pgdat
, j
);
2882 build_thisnode_zonelists(pgdat
);
2885 /* Construct the zonelist performance cache - see further mmzone.h */
2886 static void build_zonelist_cache(pg_data_t
*pgdat
)
2888 struct zonelist
*zonelist
;
2889 struct zonelist_cache
*zlc
;
2892 zonelist
= &pgdat
->node_zonelists
[0];
2893 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
2894 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
2895 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
2896 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
2899 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
2901 * Return node id of node used for "local" allocations.
2902 * I.e., first node id of first zone in arg node's generic zonelist.
2903 * Used for initializing percpu 'numa_mem', which is used primarily
2904 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
2906 int local_memory_node(int node
)
2910 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
2911 gfp_zone(GFP_KERNEL
),
2918 #else /* CONFIG_NUMA */
2920 static void set_zonelist_order(void)
2922 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
2925 static void build_zonelists(pg_data_t
*pgdat
)
2927 int node
, local_node
;
2929 struct zonelist
*zonelist
;
2931 local_node
= pgdat
->node_id
;
2933 zonelist
= &pgdat
->node_zonelists
[0];
2934 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2937 * Now we build the zonelist so that it contains the zones
2938 * of all the other nodes.
2939 * We don't want to pressure a particular node, so when
2940 * building the zones for node N, we make sure that the
2941 * zones coming right after the local ones are those from
2942 * node N+1 (modulo N)
2944 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
2945 if (!node_online(node
))
2947 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2950 for (node
= 0; node
< local_node
; node
++) {
2951 if (!node_online(node
))
2953 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2957 zonelist
->_zonerefs
[j
].zone
= NULL
;
2958 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2961 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
2962 static void build_zonelist_cache(pg_data_t
*pgdat
)
2964 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
2967 #endif /* CONFIG_NUMA */
2970 * Boot pageset table. One per cpu which is going to be used for all
2971 * zones and all nodes. The parameters will be set in such a way
2972 * that an item put on a list will immediately be handed over to
2973 * the buddy list. This is safe since pageset manipulation is done
2974 * with interrupts disabled.
2976 * The boot_pagesets must be kept even after bootup is complete for
2977 * unused processors and/or zones. They do play a role for bootstrapping
2978 * hotplugged processors.
2980 * zoneinfo_show() and maybe other functions do
2981 * not check if the processor is online before following the pageset pointer.
2982 * Other parts of the kernel may not check if the zone is available.
2984 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
2985 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
2986 static void setup_zone_pageset(struct zone
*zone
);
2989 * Global mutex to protect against size modification of zonelists
2990 * as well as to serialize pageset setup for the new populated zone.
2992 DEFINE_MUTEX(zonelists_mutex
);
2994 /* return values int ....just for stop_machine() */
2995 static __init_refok
int __build_all_zonelists(void *data
)
3001 memset(node_load
, 0, sizeof(node_load
));
3003 for_each_online_node(nid
) {
3004 pg_data_t
*pgdat
= NODE_DATA(nid
);
3006 build_zonelists(pgdat
);
3007 build_zonelist_cache(pgdat
);
3010 #ifdef CONFIG_MEMORY_HOTPLUG
3011 /* Setup real pagesets for the new zone */
3013 struct zone
*zone
= data
;
3014 setup_zone_pageset(zone
);
3019 * Initialize the boot_pagesets that are going to be used
3020 * for bootstrapping processors. The real pagesets for
3021 * each zone will be allocated later when the per cpu
3022 * allocator is available.
3024 * boot_pagesets are used also for bootstrapping offline
3025 * cpus if the system is already booted because the pagesets
3026 * are needed to initialize allocators on a specific cpu too.
3027 * F.e. the percpu allocator needs the page allocator which
3028 * needs the percpu allocator in order to allocate its pagesets
3029 * (a chicken-egg dilemma).
3031 for_each_possible_cpu(cpu
) {
3032 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3034 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3036 * We now know the "local memory node" for each node--
3037 * i.e., the node of the first zone in the generic zonelist.
3038 * Set up numa_mem percpu variable for on-line cpus. During
3039 * boot, only the boot cpu should be on-line; we'll init the
3040 * secondary cpus' numa_mem as they come on-line. During
3041 * node/memory hotplug, we'll fixup all on-line cpus.
3043 if (cpu_online(cpu
))
3044 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3052 * Called with zonelists_mutex held always
3053 * unless system_state == SYSTEM_BOOTING.
3055 void build_all_zonelists(void *data
)
3057 set_zonelist_order();
3059 if (system_state
== SYSTEM_BOOTING
) {
3060 __build_all_zonelists(NULL
);
3061 mminit_verify_zonelist();
3062 cpuset_init_current_mems_allowed();
3064 /* we have to stop all cpus to guarantee there is no user
3066 stop_machine(__build_all_zonelists
, data
, NULL
);
3067 /* cpuset refresh routine should be here */
3069 vm_total_pages
= nr_free_pagecache_pages();
3071 * Disable grouping by mobility if the number of pages in the
3072 * system is too low to allow the mechanism to work. It would be
3073 * more accurate, but expensive to check per-zone. This check is
3074 * made on memory-hotadd so a system can start with mobility
3075 * disabled and enable it later
3077 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3078 page_group_by_mobility_disabled
= 1;
3080 page_group_by_mobility_disabled
= 0;
3082 printk("Built %i zonelists in %s order, mobility grouping %s. "
3083 "Total pages: %ld\n",
3085 zonelist_order_name
[current_zonelist_order
],
3086 page_group_by_mobility_disabled
? "off" : "on",
3089 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3094 * Helper functions to size the waitqueue hash table.
3095 * Essentially these want to choose hash table sizes sufficiently
3096 * large so that collisions trying to wait on pages are rare.
3097 * But in fact, the number of active page waitqueues on typical
3098 * systems is ridiculously low, less than 200. So this is even
3099 * conservative, even though it seems large.
3101 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3102 * waitqueues, i.e. the size of the waitq table given the number of pages.
3104 #define PAGES_PER_WAITQUEUE 256
3106 #ifndef CONFIG_MEMORY_HOTPLUG
3107 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3109 unsigned long size
= 1;
3111 pages
/= PAGES_PER_WAITQUEUE
;
3113 while (size
< pages
)
3117 * Once we have dozens or even hundreds of threads sleeping
3118 * on IO we've got bigger problems than wait queue collision.
3119 * Limit the size of the wait table to a reasonable size.
3121 size
= min(size
, 4096UL);
3123 return max(size
, 4UL);
3127 * A zone's size might be changed by hot-add, so it is not possible to determine
3128 * a suitable size for its wait_table. So we use the maximum size now.
3130 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3132 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3133 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3134 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3136 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3137 * or more by the traditional way. (See above). It equals:
3139 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3140 * ia64(16K page size) : = ( 8G + 4M)byte.
3141 * powerpc (64K page size) : = (32G +16M)byte.
3143 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3150 * This is an integer logarithm so that shifts can be used later
3151 * to extract the more random high bits from the multiplicative
3152 * hash function before the remainder is taken.
3154 static inline unsigned long wait_table_bits(unsigned long size
)
3159 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3162 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3163 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3164 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3165 * higher will lead to a bigger reserve which will get freed as contiguous
3166 * blocks as reclaim kicks in
3168 static void setup_zone_migrate_reserve(struct zone
*zone
)
3170 unsigned long start_pfn
, pfn
, end_pfn
;
3172 unsigned long block_migratetype
;
3175 /* Get the start pfn, end pfn and the number of blocks to reserve */
3176 start_pfn
= zone
->zone_start_pfn
;
3177 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3178 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3182 * Reserve blocks are generally in place to help high-order atomic
3183 * allocations that are short-lived. A min_free_kbytes value that
3184 * would result in more than 2 reserve blocks for atomic allocations
3185 * is assumed to be in place to help anti-fragmentation for the
3186 * future allocation of hugepages at runtime.
3188 reserve
= min(2, reserve
);
3190 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3191 if (!pfn_valid(pfn
))
3193 page
= pfn_to_page(pfn
);
3195 /* Watch out for overlapping nodes */
3196 if (page_to_nid(page
) != zone_to_nid(zone
))
3199 /* Blocks with reserved pages will never free, skip them. */
3200 if (PageReserved(page
))
3203 block_migratetype
= get_pageblock_migratetype(page
);
3205 /* If this block is reserved, account for it */
3206 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3211 /* Suitable for reserving if this block is movable */
3212 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3213 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3214 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3220 * If the reserve is met and this is a previous reserved block,
3223 if (block_migratetype
== MIGRATE_RESERVE
) {
3224 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3225 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3231 * Initially all pages are reserved - free ones are freed
3232 * up by free_all_bootmem() once the early boot process is
3233 * done. Non-atomic initialization, single-pass.
3235 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3236 unsigned long start_pfn
, enum memmap_context context
)
3239 unsigned long end_pfn
= start_pfn
+ size
;
3243 if (highest_memmap_pfn
< end_pfn
- 1)
3244 highest_memmap_pfn
= end_pfn
- 1;
3246 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3247 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3249 * There can be holes in boot-time mem_map[]s
3250 * handed to this function. They do not
3251 * exist on hotplugged memory.
3253 if (context
== MEMMAP_EARLY
) {
3254 if (!early_pfn_valid(pfn
))
3256 if (!early_pfn_in_nid(pfn
, nid
))
3259 page
= pfn_to_page(pfn
);
3260 set_page_links(page
, zone
, nid
, pfn
);
3261 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3262 init_page_count(page
);
3263 reset_page_mapcount(page
);
3264 SetPageReserved(page
);
3266 * Mark the block movable so that blocks are reserved for
3267 * movable at startup. This will force kernel allocations
3268 * to reserve their blocks rather than leaking throughout
3269 * the address space during boot when many long-lived
3270 * kernel allocations are made. Later some blocks near
3271 * the start are marked MIGRATE_RESERVE by
3272 * setup_zone_migrate_reserve()
3274 * bitmap is created for zone's valid pfn range. but memmap
3275 * can be created for invalid pages (for alignment)
3276 * check here not to call set_pageblock_migratetype() against
3279 if ((z
->zone_start_pfn
<= pfn
)
3280 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3281 && !(pfn
& (pageblock_nr_pages
- 1)))
3282 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3284 INIT_LIST_HEAD(&page
->lru
);
3285 #ifdef WANT_PAGE_VIRTUAL
3286 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3287 if (!is_highmem_idx(zone
))
3288 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3293 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3296 for_each_migratetype_order(order
, t
) {
3297 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3298 zone
->free_area
[order
].nr_free
= 0;
3302 #ifndef __HAVE_ARCH_MEMMAP_INIT
3303 #define memmap_init(size, nid, zone, start_pfn) \
3304 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3307 static int zone_batchsize(struct zone
*zone
)
3313 * The per-cpu-pages pools are set to around 1000th of the
3314 * size of the zone. But no more than 1/2 of a meg.
3316 * OK, so we don't know how big the cache is. So guess.
3318 batch
= zone
->present_pages
/ 1024;
3319 if (batch
* PAGE_SIZE
> 512 * 1024)
3320 batch
= (512 * 1024) / PAGE_SIZE
;
3321 batch
/= 4; /* We effectively *= 4 below */
3326 * Clamp the batch to a 2^n - 1 value. Having a power
3327 * of 2 value was found to be more likely to have
3328 * suboptimal cache aliasing properties in some cases.
3330 * For example if 2 tasks are alternately allocating
3331 * batches of pages, one task can end up with a lot
3332 * of pages of one half of the possible page colors
3333 * and the other with pages of the other colors.
3335 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3340 /* The deferral and batching of frees should be suppressed under NOMMU
3343 * The problem is that NOMMU needs to be able to allocate large chunks
3344 * of contiguous memory as there's no hardware page translation to
3345 * assemble apparent contiguous memory from discontiguous pages.
3347 * Queueing large contiguous runs of pages for batching, however,
3348 * causes the pages to actually be freed in smaller chunks. As there
3349 * can be a significant delay between the individual batches being
3350 * recycled, this leads to the once large chunks of space being
3351 * fragmented and becoming unavailable for high-order allocations.
3357 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3359 struct per_cpu_pages
*pcp
;
3362 memset(p
, 0, sizeof(*p
));
3366 pcp
->high
= 6 * batch
;
3367 pcp
->batch
= max(1UL, 1 * batch
);
3368 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3369 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3373 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3374 * to the value high for the pageset p.
3377 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3380 struct per_cpu_pages
*pcp
;
3384 pcp
->batch
= max(1UL, high
/4);
3385 if ((high
/4) > (PAGE_SHIFT
* 8))
3386 pcp
->batch
= PAGE_SHIFT
* 8;
3389 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3393 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3395 for_each_possible_cpu(cpu
) {
3396 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3398 setup_pageset(pcp
, zone_batchsize(zone
));
3400 if (percpu_pagelist_fraction
)
3401 setup_pagelist_highmark(pcp
,
3402 (zone
->present_pages
/
3403 percpu_pagelist_fraction
));
3408 * Allocate per cpu pagesets and initialize them.
3409 * Before this call only boot pagesets were available.
3411 void __init
setup_per_cpu_pageset(void)
3415 for_each_populated_zone(zone
)
3416 setup_zone_pageset(zone
);
3419 static noinline __init_refok
3420 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3423 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3427 * The per-page waitqueue mechanism uses hashed waitqueues
3430 zone
->wait_table_hash_nr_entries
=
3431 wait_table_hash_nr_entries(zone_size_pages
);
3432 zone
->wait_table_bits
=
3433 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3434 alloc_size
= zone
->wait_table_hash_nr_entries
3435 * sizeof(wait_queue_head_t
);
3437 if (!slab_is_available()) {
3438 zone
->wait_table
= (wait_queue_head_t
*)
3439 alloc_bootmem_node(pgdat
, alloc_size
);
3442 * This case means that a zone whose size was 0 gets new memory
3443 * via memory hot-add.
3444 * But it may be the case that a new node was hot-added. In
3445 * this case vmalloc() will not be able to use this new node's
3446 * memory - this wait_table must be initialized to use this new
3447 * node itself as well.
3448 * To use this new node's memory, further consideration will be
3451 zone
->wait_table
= vmalloc(alloc_size
);
3453 if (!zone
->wait_table
)
3456 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3457 init_waitqueue_head(zone
->wait_table
+ i
);
3462 static int __zone_pcp_update(void *data
)
3464 struct zone
*zone
= data
;
3466 unsigned long batch
= zone_batchsize(zone
), flags
;
3468 for_each_possible_cpu(cpu
) {
3469 struct per_cpu_pageset
*pset
;
3470 struct per_cpu_pages
*pcp
;
3472 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3475 local_irq_save(flags
);
3476 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3477 setup_pageset(pset
, batch
);
3478 local_irq_restore(flags
);
3483 void zone_pcp_update(struct zone
*zone
)
3485 stop_machine(__zone_pcp_update
, zone
, NULL
);
3488 static __meminit
void zone_pcp_init(struct zone
*zone
)
3491 * per cpu subsystem is not up at this point. The following code
3492 * relies on the ability of the linker to provide the
3493 * offset of a (static) per cpu variable into the per cpu area.
3495 zone
->pageset
= &boot_pageset
;
3497 if (zone
->present_pages
)
3498 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3499 zone
->name
, zone
->present_pages
,
3500 zone_batchsize(zone
));
3503 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3504 unsigned long zone_start_pfn
,
3506 enum memmap_context context
)
3508 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3510 ret
= zone_wait_table_init(zone
, size
);
3513 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3515 zone
->zone_start_pfn
= zone_start_pfn
;
3517 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3518 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3520 (unsigned long)zone_idx(zone
),
3521 zone_start_pfn
, (zone_start_pfn
+ size
));
3523 zone_init_free_lists(zone
);
3528 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3530 * Basic iterator support. Return the first range of PFNs for a node
3531 * Note: nid == MAX_NUMNODES returns first region regardless of node
3533 static int __meminit
first_active_region_index_in_nid(int nid
)
3537 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3538 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3545 * Basic iterator support. Return the next active range of PFNs for a node
3546 * Note: nid == MAX_NUMNODES returns next region regardless of node
3548 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3550 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3551 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3557 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3559 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3560 * Architectures may implement their own version but if add_active_range()
3561 * was used and there are no special requirements, this is a convenient
3564 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3568 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3569 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3570 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3572 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3573 return early_node_map
[i
].nid
;
3575 /* This is a memory hole */
3578 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3580 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3584 nid
= __early_pfn_to_nid(pfn
);
3587 /* just returns 0 */
3591 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3592 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3596 nid
= __early_pfn_to_nid(pfn
);
3597 if (nid
>= 0 && nid
!= node
)
3603 /* Basic iterator support to walk early_node_map[] */
3604 #define for_each_active_range_index_in_nid(i, nid) \
3605 for (i = first_active_region_index_in_nid(nid); i != -1; \
3606 i = next_active_region_index_in_nid(i, nid))
3609 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3610 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3611 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3613 * If an architecture guarantees that all ranges registered with
3614 * add_active_ranges() contain no holes and may be freed, this
3615 * this function may be used instead of calling free_bootmem() manually.
3617 void __init
free_bootmem_with_active_regions(int nid
,
3618 unsigned long max_low_pfn
)
3622 for_each_active_range_index_in_nid(i
, nid
) {
3623 unsigned long size_pages
= 0;
3624 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3626 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3629 if (end_pfn
> max_low_pfn
)
3630 end_pfn
= max_low_pfn
;
3632 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3633 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3634 PFN_PHYS(early_node_map
[i
].start_pfn
),
3635 size_pages
<< PAGE_SHIFT
);
3639 int __init
add_from_early_node_map(struct range
*range
, int az
,
3640 int nr_range
, int nid
)
3645 /* need to go over early_node_map to find out good range for node */
3646 for_each_active_range_index_in_nid(i
, nid
) {
3647 start
= early_node_map
[i
].start_pfn
;
3648 end
= early_node_map
[i
].end_pfn
;
3649 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3654 #ifdef CONFIG_NO_BOOTMEM
3655 void * __init
__alloc_memory_core_early(int nid
, u64 size
, u64 align
,
3656 u64 goal
, u64 limit
)
3661 if (limit
> get_max_mapped())
3662 limit
= get_max_mapped();
3664 /* need to go over early_node_map to find out good range for node */
3665 for_each_active_range_index_in_nid(i
, nid
) {
3667 u64 ei_start
, ei_last
;
3669 ei_last
= early_node_map
[i
].end_pfn
;
3670 ei_last
<<= PAGE_SHIFT
;
3671 ei_start
= early_node_map
[i
].start_pfn
;
3672 ei_start
<<= PAGE_SHIFT
;
3673 addr
= find_early_area(ei_start
, ei_last
,
3674 goal
, limit
, size
, align
);
3680 printk(KERN_DEBUG
"alloc (nid=%d %llx - %llx) (%llx - %llx) %llx %llx => %llx\n",
3682 ei_start
, ei_last
, goal
, limit
, size
,
3686 ptr
= phys_to_virt(addr
);
3687 memset(ptr
, 0, size
);
3688 reserve_early_without_check(addr
, addr
+ size
, "BOOTMEM");
3690 * The min_count is set to 0 so that bootmem allocated blocks
3691 * are never reported as leaks.
3693 kmemleak_alloc(ptr
, size
, 0, 0);
3702 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3707 for_each_active_range_index_in_nid(i
, nid
) {
3708 ret
= work_fn(early_node_map
[i
].start_pfn
,
3709 early_node_map
[i
].end_pfn
, data
);
3715 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3716 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3718 * If an architecture guarantees that all ranges registered with
3719 * add_active_ranges() contain no holes and may be freed, this
3720 * function may be used instead of calling memory_present() manually.
3722 void __init
sparse_memory_present_with_active_regions(int nid
)
3726 for_each_active_range_index_in_nid(i
, nid
)
3727 memory_present(early_node_map
[i
].nid
,
3728 early_node_map
[i
].start_pfn
,
3729 early_node_map
[i
].end_pfn
);
3733 * get_pfn_range_for_nid - Return the start and end page frames for a node
3734 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3735 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3736 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3738 * It returns the start and end page frame of a node based on information
3739 * provided by an arch calling add_active_range(). If called for a node
3740 * with no available memory, a warning is printed and the start and end
3743 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3744 unsigned long *start_pfn
, unsigned long *end_pfn
)
3750 for_each_active_range_index_in_nid(i
, nid
) {
3751 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3752 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3755 if (*start_pfn
== -1UL)
3760 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3761 * assumption is made that zones within a node are ordered in monotonic
3762 * increasing memory addresses so that the "highest" populated zone is used
3764 static void __init
find_usable_zone_for_movable(void)
3767 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3768 if (zone_index
== ZONE_MOVABLE
)
3771 if (arch_zone_highest_possible_pfn
[zone_index
] >
3772 arch_zone_lowest_possible_pfn
[zone_index
])
3776 VM_BUG_ON(zone_index
== -1);
3777 movable_zone
= zone_index
;
3781 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3782 * because it is sized independant of architecture. Unlike the other zones,
3783 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3784 * in each node depending on the size of each node and how evenly kernelcore
3785 * is distributed. This helper function adjusts the zone ranges
3786 * provided by the architecture for a given node by using the end of the
3787 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3788 * zones within a node are in order of monotonic increases memory addresses
3790 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3791 unsigned long zone_type
,
3792 unsigned long node_start_pfn
,
3793 unsigned long node_end_pfn
,
3794 unsigned long *zone_start_pfn
,
3795 unsigned long *zone_end_pfn
)
3797 /* Only adjust if ZONE_MOVABLE is on this node */
3798 if (zone_movable_pfn
[nid
]) {
3799 /* Size ZONE_MOVABLE */
3800 if (zone_type
== ZONE_MOVABLE
) {
3801 *zone_start_pfn
= zone_movable_pfn
[nid
];
3802 *zone_end_pfn
= min(node_end_pfn
,
3803 arch_zone_highest_possible_pfn
[movable_zone
]);
3805 /* Adjust for ZONE_MOVABLE starting within this range */
3806 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3807 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3808 *zone_end_pfn
= zone_movable_pfn
[nid
];
3810 /* Check if this whole range is within ZONE_MOVABLE */
3811 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3812 *zone_start_pfn
= *zone_end_pfn
;
3817 * Return the number of pages a zone spans in a node, including holes
3818 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3820 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3821 unsigned long zone_type
,
3822 unsigned long *ignored
)
3824 unsigned long node_start_pfn
, node_end_pfn
;
3825 unsigned long zone_start_pfn
, zone_end_pfn
;
3827 /* Get the start and end of the node and zone */
3828 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3829 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
3830 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
3831 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3832 node_start_pfn
, node_end_pfn
,
3833 &zone_start_pfn
, &zone_end_pfn
);
3835 /* Check that this node has pages within the zone's required range */
3836 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
3839 /* Move the zone boundaries inside the node if necessary */
3840 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
3841 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
3843 /* Return the spanned pages */
3844 return zone_end_pfn
- zone_start_pfn
;
3848 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
3849 * then all holes in the requested range will be accounted for.
3851 unsigned long __meminit
__absent_pages_in_range(int nid
,
3852 unsigned long range_start_pfn
,
3853 unsigned long range_end_pfn
)
3856 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
3857 unsigned long start_pfn
;
3859 /* Find the end_pfn of the first active range of pfns in the node */
3860 i
= first_active_region_index_in_nid(nid
);
3864 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3866 /* Account for ranges before physical memory on this node */
3867 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
3868 hole_pages
= prev_end_pfn
- range_start_pfn
;
3870 /* Find all holes for the zone within the node */
3871 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
3873 /* No need to continue if prev_end_pfn is outside the zone */
3874 if (prev_end_pfn
>= range_end_pfn
)
3877 /* Make sure the end of the zone is not within the hole */
3878 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
3879 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
3881 /* Update the hole size cound and move on */
3882 if (start_pfn
> range_start_pfn
) {
3883 BUG_ON(prev_end_pfn
> start_pfn
);
3884 hole_pages
+= start_pfn
- prev_end_pfn
;
3886 prev_end_pfn
= early_node_map
[i
].end_pfn
;
3889 /* Account for ranges past physical memory on this node */
3890 if (range_end_pfn
> prev_end_pfn
)
3891 hole_pages
+= range_end_pfn
-
3892 max(range_start_pfn
, prev_end_pfn
);
3898 * absent_pages_in_range - Return number of page frames in holes within a range
3899 * @start_pfn: The start PFN to start searching for holes
3900 * @end_pfn: The end PFN to stop searching for holes
3902 * It returns the number of pages frames in memory holes within a range.
3904 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
3905 unsigned long end_pfn
)
3907 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
3910 /* Return the number of page frames in holes in a zone on a node */
3911 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3912 unsigned long zone_type
,
3913 unsigned long *ignored
)
3915 unsigned long node_start_pfn
, node_end_pfn
;
3916 unsigned long zone_start_pfn
, zone_end_pfn
;
3918 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
3919 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
3921 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
3924 adjust_zone_range_for_zone_movable(nid
, zone_type
,
3925 node_start_pfn
, node_end_pfn
,
3926 &zone_start_pfn
, &zone_end_pfn
);
3927 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
3931 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3932 unsigned long zone_type
,
3933 unsigned long *zones_size
)
3935 return zones_size
[zone_type
];
3938 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
3939 unsigned long zone_type
,
3940 unsigned long *zholes_size
)
3945 return zholes_size
[zone_type
];
3950 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
3951 unsigned long *zones_size
, unsigned long *zholes_size
)
3953 unsigned long realtotalpages
, totalpages
= 0;
3956 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3957 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
3959 pgdat
->node_spanned_pages
= totalpages
;
3961 realtotalpages
= totalpages
;
3962 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
3964 zone_absent_pages_in_node(pgdat
->node_id
, i
,
3966 pgdat
->node_present_pages
= realtotalpages
;
3967 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
3971 #ifndef CONFIG_SPARSEMEM
3973 * Calculate the size of the zone->blockflags rounded to an unsigned long
3974 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3975 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
3976 * round what is now in bits to nearest long in bits, then return it in
3979 static unsigned long __init
usemap_size(unsigned long zonesize
)
3981 unsigned long usemapsize
;
3983 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
3984 usemapsize
= usemapsize
>> pageblock_order
;
3985 usemapsize
*= NR_PAGEBLOCK_BITS
;
3986 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
3988 return usemapsize
/ 8;
3991 static void __init
setup_usemap(struct pglist_data
*pgdat
,
3992 struct zone
*zone
, unsigned long zonesize
)
3994 unsigned long usemapsize
= usemap_size(zonesize
);
3995 zone
->pageblock_flags
= NULL
;
3997 zone
->pageblock_flags
= alloc_bootmem_node(pgdat
, usemapsize
);
4000 static void inline setup_usemap(struct pglist_data
*pgdat
,
4001 struct zone
*zone
, unsigned long zonesize
) {}
4002 #endif /* CONFIG_SPARSEMEM */
4004 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4006 /* Return a sensible default order for the pageblock size. */
4007 static inline int pageblock_default_order(void)
4009 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4010 return HUGETLB_PAGE_ORDER
;
4015 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4016 static inline void __init
set_pageblock_order(unsigned int order
)
4018 /* Check that pageblock_nr_pages has not already been setup */
4019 if (pageblock_order
)
4023 * Assume the largest contiguous order of interest is a huge page.
4024 * This value may be variable depending on boot parameters on IA64
4026 pageblock_order
= order
;
4028 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4031 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4032 * and pageblock_default_order() are unused as pageblock_order is set
4033 * at compile-time. See include/linux/pageblock-flags.h for the values of
4034 * pageblock_order based on the kernel config
4036 static inline int pageblock_default_order(unsigned int order
)
4040 #define set_pageblock_order(x) do {} while (0)
4042 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4045 * Set up the zone data structures:
4046 * - mark all pages reserved
4047 * - mark all memory queues empty
4048 * - clear the memory bitmaps
4050 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4051 unsigned long *zones_size
, unsigned long *zholes_size
)
4054 int nid
= pgdat
->node_id
;
4055 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4058 pgdat_resize_init(pgdat
);
4059 pgdat
->nr_zones
= 0;
4060 init_waitqueue_head(&pgdat
->kswapd_wait
);
4061 pgdat
->kswapd_max_order
= 0;
4062 pgdat_page_cgroup_init(pgdat
);
4064 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4065 struct zone
*zone
= pgdat
->node_zones
+ j
;
4066 unsigned long size
, realsize
, memmap_pages
;
4069 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4070 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4074 * Adjust realsize so that it accounts for how much memory
4075 * is used by this zone for memmap. This affects the watermark
4076 * and per-cpu initialisations
4079 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4080 if (realsize
>= memmap_pages
) {
4081 realsize
-= memmap_pages
;
4084 " %s zone: %lu pages used for memmap\n",
4085 zone_names
[j
], memmap_pages
);
4088 " %s zone: %lu pages exceeds realsize %lu\n",
4089 zone_names
[j
], memmap_pages
, realsize
);
4091 /* Account for reserved pages */
4092 if (j
== 0 && realsize
> dma_reserve
) {
4093 realsize
-= dma_reserve
;
4094 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4095 zone_names
[0], dma_reserve
);
4098 if (!is_highmem_idx(j
))
4099 nr_kernel_pages
+= realsize
;
4100 nr_all_pages
+= realsize
;
4102 zone
->spanned_pages
= size
;
4103 zone
->present_pages
= realsize
;
4106 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4108 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4110 zone
->name
= zone_names
[j
];
4111 spin_lock_init(&zone
->lock
);
4112 spin_lock_init(&zone
->lru_lock
);
4113 zone_seqlock_init(zone
);
4114 zone
->zone_pgdat
= pgdat
;
4116 zone_pcp_init(zone
);
4118 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4119 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4121 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4122 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4123 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4124 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4125 zap_zone_vm_stats(zone
);
4130 set_pageblock_order(pageblock_default_order());
4131 setup_usemap(pgdat
, zone
, size
);
4132 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4133 size
, MEMMAP_EARLY
);
4135 memmap_init(size
, nid
, j
, zone_start_pfn
);
4136 zone_start_pfn
+= size
;
4140 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4142 /* Skip empty nodes */
4143 if (!pgdat
->node_spanned_pages
)
4146 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4147 /* ia64 gets its own node_mem_map, before this, without bootmem */
4148 if (!pgdat
->node_mem_map
) {
4149 unsigned long size
, start
, end
;
4153 * The zone's endpoints aren't required to be MAX_ORDER
4154 * aligned but the node_mem_map endpoints must be in order
4155 * for the buddy allocator to function correctly.
4157 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4158 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4159 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4160 size
= (end
- start
) * sizeof(struct page
);
4161 map
= alloc_remap(pgdat
->node_id
, size
);
4163 map
= alloc_bootmem_node(pgdat
, size
);
4164 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4166 #ifndef CONFIG_NEED_MULTIPLE_NODES
4168 * With no DISCONTIG, the global mem_map is just set as node 0's
4170 if (pgdat
== NODE_DATA(0)) {
4171 mem_map
= NODE_DATA(0)->node_mem_map
;
4172 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4173 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4174 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4175 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4178 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4181 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4182 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4184 pg_data_t
*pgdat
= NODE_DATA(nid
);
4186 pgdat
->node_id
= nid
;
4187 pgdat
->node_start_pfn
= node_start_pfn
;
4188 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4190 alloc_node_mem_map(pgdat
);
4191 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4192 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4193 nid
, (unsigned long)pgdat
,
4194 (unsigned long)pgdat
->node_mem_map
);
4197 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4200 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4202 #if MAX_NUMNODES > 1
4204 * Figure out the number of possible node ids.
4206 static void __init
setup_nr_node_ids(void)
4209 unsigned int highest
= 0;
4211 for_each_node_mask(node
, node_possible_map
)
4213 nr_node_ids
= highest
+ 1;
4216 static inline void setup_nr_node_ids(void)
4222 * add_active_range - Register a range of PFNs backed by physical memory
4223 * @nid: The node ID the range resides on
4224 * @start_pfn: The start PFN of the available physical memory
4225 * @end_pfn: The end PFN of the available physical memory
4227 * These ranges are stored in an early_node_map[] and later used by
4228 * free_area_init_nodes() to calculate zone sizes and holes. If the
4229 * range spans a memory hole, it is up to the architecture to ensure
4230 * the memory is not freed by the bootmem allocator. If possible
4231 * the range being registered will be merged with existing ranges.
4233 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4234 unsigned long end_pfn
)
4238 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4239 "Entering add_active_range(%d, %#lx, %#lx) "
4240 "%d entries of %d used\n",
4241 nid
, start_pfn
, end_pfn
,
4242 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4244 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4246 /* Merge with existing active regions if possible */
4247 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4248 if (early_node_map
[i
].nid
!= nid
)
4251 /* Skip if an existing region covers this new one */
4252 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4253 end_pfn
<= early_node_map
[i
].end_pfn
)
4256 /* Merge forward if suitable */
4257 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4258 end_pfn
> early_node_map
[i
].end_pfn
) {
4259 early_node_map
[i
].end_pfn
= end_pfn
;
4263 /* Merge backward if suitable */
4264 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4265 end_pfn
>= early_node_map
[i
].start_pfn
) {
4266 early_node_map
[i
].start_pfn
= start_pfn
;
4271 /* Check that early_node_map is large enough */
4272 if (i
>= MAX_ACTIVE_REGIONS
) {
4273 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4274 MAX_ACTIVE_REGIONS
);
4278 early_node_map
[i
].nid
= nid
;
4279 early_node_map
[i
].start_pfn
= start_pfn
;
4280 early_node_map
[i
].end_pfn
= end_pfn
;
4281 nr_nodemap_entries
= i
+ 1;
4285 * remove_active_range - Shrink an existing registered range of PFNs
4286 * @nid: The node id the range is on that should be shrunk
4287 * @start_pfn: The new PFN of the range
4288 * @end_pfn: The new PFN of the range
4290 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4291 * The map is kept near the end physical page range that has already been
4292 * registered. This function allows an arch to shrink an existing registered
4295 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4296 unsigned long end_pfn
)
4301 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4302 nid
, start_pfn
, end_pfn
);
4304 /* Find the old active region end and shrink */
4305 for_each_active_range_index_in_nid(i
, nid
) {
4306 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4307 early_node_map
[i
].end_pfn
<= end_pfn
) {
4309 early_node_map
[i
].start_pfn
= 0;
4310 early_node_map
[i
].end_pfn
= 0;
4314 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4315 early_node_map
[i
].end_pfn
> start_pfn
) {
4316 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4317 early_node_map
[i
].end_pfn
= start_pfn
;
4318 if (temp_end_pfn
> end_pfn
)
4319 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4322 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4323 early_node_map
[i
].end_pfn
> end_pfn
&&
4324 early_node_map
[i
].start_pfn
< end_pfn
) {
4325 early_node_map
[i
].start_pfn
= end_pfn
;
4333 /* remove the blank ones */
4334 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4335 if (early_node_map
[i
].nid
!= nid
)
4337 if (early_node_map
[i
].end_pfn
)
4339 /* we found it, get rid of it */
4340 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4341 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4342 sizeof(early_node_map
[j
]));
4343 j
= nr_nodemap_entries
- 1;
4344 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4345 nr_nodemap_entries
--;
4350 * remove_all_active_ranges - Remove all currently registered regions
4352 * During discovery, it may be found that a table like SRAT is invalid
4353 * and an alternative discovery method must be used. This function removes
4354 * all currently registered regions.
4356 void __init
remove_all_active_ranges(void)
4358 memset(early_node_map
, 0, sizeof(early_node_map
));
4359 nr_nodemap_entries
= 0;
4362 /* Compare two active node_active_regions */
4363 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4365 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4366 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4368 /* Done this way to avoid overflows */
4369 if (arange
->start_pfn
> brange
->start_pfn
)
4371 if (arange
->start_pfn
< brange
->start_pfn
)
4377 /* sort the node_map by start_pfn */
4378 void __init
sort_node_map(void)
4380 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4381 sizeof(struct node_active_region
),
4382 cmp_node_active_region
, NULL
);
4385 /* Find the lowest pfn for a node */
4386 static unsigned long __init
find_min_pfn_for_node(int nid
)
4389 unsigned long min_pfn
= ULONG_MAX
;
4391 /* Assuming a sorted map, the first range found has the starting pfn */
4392 for_each_active_range_index_in_nid(i
, nid
)
4393 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4395 if (min_pfn
== ULONG_MAX
) {
4397 "Could not find start_pfn for node %d\n", nid
);
4405 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4407 * It returns the minimum PFN based on information provided via
4408 * add_active_range().
4410 unsigned long __init
find_min_pfn_with_active_regions(void)
4412 return find_min_pfn_for_node(MAX_NUMNODES
);
4416 * early_calculate_totalpages()
4417 * Sum pages in active regions for movable zone.
4418 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4420 static unsigned long __init
early_calculate_totalpages(void)
4423 unsigned long totalpages
= 0;
4425 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4426 unsigned long pages
= early_node_map
[i
].end_pfn
-
4427 early_node_map
[i
].start_pfn
;
4428 totalpages
+= pages
;
4430 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4436 * Find the PFN the Movable zone begins in each node. Kernel memory
4437 * is spread evenly between nodes as long as the nodes have enough
4438 * memory. When they don't, some nodes will have more kernelcore than
4441 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4444 unsigned long usable_startpfn
;
4445 unsigned long kernelcore_node
, kernelcore_remaining
;
4446 /* save the state before borrow the nodemask */
4447 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4448 unsigned long totalpages
= early_calculate_totalpages();
4449 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4452 * If movablecore was specified, calculate what size of
4453 * kernelcore that corresponds so that memory usable for
4454 * any allocation type is evenly spread. If both kernelcore
4455 * and movablecore are specified, then the value of kernelcore
4456 * will be used for required_kernelcore if it's greater than
4457 * what movablecore would have allowed.
4459 if (required_movablecore
) {
4460 unsigned long corepages
;
4463 * Round-up so that ZONE_MOVABLE is at least as large as what
4464 * was requested by the user
4466 required_movablecore
=
4467 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4468 corepages
= totalpages
- required_movablecore
;
4470 required_kernelcore
= max(required_kernelcore
, corepages
);
4473 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4474 if (!required_kernelcore
)
4477 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4478 find_usable_zone_for_movable();
4479 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4482 /* Spread kernelcore memory as evenly as possible throughout nodes */
4483 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4484 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4486 * Recalculate kernelcore_node if the division per node
4487 * now exceeds what is necessary to satisfy the requested
4488 * amount of memory for the kernel
4490 if (required_kernelcore
< kernelcore_node
)
4491 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4494 * As the map is walked, we track how much memory is usable
4495 * by the kernel using kernelcore_remaining. When it is
4496 * 0, the rest of the node is usable by ZONE_MOVABLE
4498 kernelcore_remaining
= kernelcore_node
;
4500 /* Go through each range of PFNs within this node */
4501 for_each_active_range_index_in_nid(i
, nid
) {
4502 unsigned long start_pfn
, end_pfn
;
4503 unsigned long size_pages
;
4505 start_pfn
= max(early_node_map
[i
].start_pfn
,
4506 zone_movable_pfn
[nid
]);
4507 end_pfn
= early_node_map
[i
].end_pfn
;
4508 if (start_pfn
>= end_pfn
)
4511 /* Account for what is only usable for kernelcore */
4512 if (start_pfn
< usable_startpfn
) {
4513 unsigned long kernel_pages
;
4514 kernel_pages
= min(end_pfn
, usable_startpfn
)
4517 kernelcore_remaining
-= min(kernel_pages
,
4518 kernelcore_remaining
);
4519 required_kernelcore
-= min(kernel_pages
,
4520 required_kernelcore
);
4522 /* Continue if range is now fully accounted */
4523 if (end_pfn
<= usable_startpfn
) {
4526 * Push zone_movable_pfn to the end so
4527 * that if we have to rebalance
4528 * kernelcore across nodes, we will
4529 * not double account here
4531 zone_movable_pfn
[nid
] = end_pfn
;
4534 start_pfn
= usable_startpfn
;
4538 * The usable PFN range for ZONE_MOVABLE is from
4539 * start_pfn->end_pfn. Calculate size_pages as the
4540 * number of pages used as kernelcore
4542 size_pages
= end_pfn
- start_pfn
;
4543 if (size_pages
> kernelcore_remaining
)
4544 size_pages
= kernelcore_remaining
;
4545 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4548 * Some kernelcore has been met, update counts and
4549 * break if the kernelcore for this node has been
4552 required_kernelcore
-= min(required_kernelcore
,
4554 kernelcore_remaining
-= size_pages
;
4555 if (!kernelcore_remaining
)
4561 * If there is still required_kernelcore, we do another pass with one
4562 * less node in the count. This will push zone_movable_pfn[nid] further
4563 * along on the nodes that still have memory until kernelcore is
4567 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4570 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4571 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4572 zone_movable_pfn
[nid
] =
4573 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4576 /* restore the node_state */
4577 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4580 /* Any regular memory on that node ? */
4581 static void check_for_regular_memory(pg_data_t
*pgdat
)
4583 #ifdef CONFIG_HIGHMEM
4584 enum zone_type zone_type
;
4586 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4587 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4588 if (zone
->present_pages
)
4589 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4595 * free_area_init_nodes - Initialise all pg_data_t and zone data
4596 * @max_zone_pfn: an array of max PFNs for each zone
4598 * This will call free_area_init_node() for each active node in the system.
4599 * Using the page ranges provided by add_active_range(), the size of each
4600 * zone in each node and their holes is calculated. If the maximum PFN
4601 * between two adjacent zones match, it is assumed that the zone is empty.
4602 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4603 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4604 * starts where the previous one ended. For example, ZONE_DMA32 starts
4605 * at arch_max_dma_pfn.
4607 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4612 /* Sort early_node_map as initialisation assumes it is sorted */
4615 /* Record where the zone boundaries are */
4616 memset(arch_zone_lowest_possible_pfn
, 0,
4617 sizeof(arch_zone_lowest_possible_pfn
));
4618 memset(arch_zone_highest_possible_pfn
, 0,
4619 sizeof(arch_zone_highest_possible_pfn
));
4620 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4621 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4622 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4623 if (i
== ZONE_MOVABLE
)
4625 arch_zone_lowest_possible_pfn
[i
] =
4626 arch_zone_highest_possible_pfn
[i
-1];
4627 arch_zone_highest_possible_pfn
[i
] =
4628 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4630 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4631 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4633 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4634 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4635 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4637 /* Print out the zone ranges */
4638 printk("Zone PFN ranges:\n");
4639 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4640 if (i
== ZONE_MOVABLE
)
4642 printk(" %-8s ", zone_names
[i
]);
4643 if (arch_zone_lowest_possible_pfn
[i
] ==
4644 arch_zone_highest_possible_pfn
[i
])
4647 printk("%0#10lx -> %0#10lx\n",
4648 arch_zone_lowest_possible_pfn
[i
],
4649 arch_zone_highest_possible_pfn
[i
]);
4652 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4653 printk("Movable zone start PFN for each node\n");
4654 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4655 if (zone_movable_pfn
[i
])
4656 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4659 /* Print out the early_node_map[] */
4660 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4661 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4662 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4663 early_node_map
[i
].start_pfn
,
4664 early_node_map
[i
].end_pfn
);
4666 /* Initialise every node */
4667 mminit_verify_pageflags_layout();
4668 setup_nr_node_ids();
4669 for_each_online_node(nid
) {
4670 pg_data_t
*pgdat
= NODE_DATA(nid
);
4671 free_area_init_node(nid
, NULL
,
4672 find_min_pfn_for_node(nid
), NULL
);
4674 /* Any memory on that node */
4675 if (pgdat
->node_present_pages
)
4676 node_set_state(nid
, N_HIGH_MEMORY
);
4677 check_for_regular_memory(pgdat
);
4681 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4683 unsigned long long coremem
;
4687 coremem
= memparse(p
, &p
);
4688 *core
= coremem
>> PAGE_SHIFT
;
4690 /* Paranoid check that UL is enough for the coremem value */
4691 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4697 * kernelcore=size sets the amount of memory for use for allocations that
4698 * cannot be reclaimed or migrated.
4700 static int __init
cmdline_parse_kernelcore(char *p
)
4702 return cmdline_parse_core(p
, &required_kernelcore
);
4706 * movablecore=size sets the amount of memory for use for allocations that
4707 * can be reclaimed or migrated.
4709 static int __init
cmdline_parse_movablecore(char *p
)
4711 return cmdline_parse_core(p
, &required_movablecore
);
4714 early_param("kernelcore", cmdline_parse_kernelcore
);
4715 early_param("movablecore", cmdline_parse_movablecore
);
4717 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4720 * set_dma_reserve - set the specified number of pages reserved in the first zone
4721 * @new_dma_reserve: The number of pages to mark reserved
4723 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4724 * In the DMA zone, a significant percentage may be consumed by kernel image
4725 * and other unfreeable allocations which can skew the watermarks badly. This
4726 * function may optionally be used to account for unfreeable pages in the
4727 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4728 * smaller per-cpu batchsize.
4730 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4732 dma_reserve
= new_dma_reserve
;
4735 #ifndef CONFIG_NEED_MULTIPLE_NODES
4736 struct pglist_data __refdata contig_page_data
= {
4737 #ifndef CONFIG_NO_BOOTMEM
4738 .bdata
= &bootmem_node_data
[0]
4741 EXPORT_SYMBOL(contig_page_data
);
4744 void __init
free_area_init(unsigned long *zones_size
)
4746 free_area_init_node(0, zones_size
,
4747 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4750 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4751 unsigned long action
, void *hcpu
)
4753 int cpu
= (unsigned long)hcpu
;
4755 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4759 * Spill the event counters of the dead processor
4760 * into the current processors event counters.
4761 * This artificially elevates the count of the current
4764 vm_events_fold_cpu(cpu
);
4767 * Zero the differential counters of the dead processor
4768 * so that the vm statistics are consistent.
4770 * This is only okay since the processor is dead and cannot
4771 * race with what we are doing.
4773 refresh_cpu_vm_stats(cpu
);
4778 void __init
page_alloc_init(void)
4780 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4784 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4785 * or min_free_kbytes changes.
4787 static void calculate_totalreserve_pages(void)
4789 struct pglist_data
*pgdat
;
4790 unsigned long reserve_pages
= 0;
4791 enum zone_type i
, j
;
4793 for_each_online_pgdat(pgdat
) {
4794 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4795 struct zone
*zone
= pgdat
->node_zones
+ i
;
4796 unsigned long max
= 0;
4798 /* Find valid and maximum lowmem_reserve in the zone */
4799 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4800 if (zone
->lowmem_reserve
[j
] > max
)
4801 max
= zone
->lowmem_reserve
[j
];
4804 /* we treat the high watermark as reserved pages. */
4805 max
+= high_wmark_pages(zone
);
4807 if (max
> zone
->present_pages
)
4808 max
= zone
->present_pages
;
4809 reserve_pages
+= max
;
4812 totalreserve_pages
= reserve_pages
;
4816 * setup_per_zone_lowmem_reserve - called whenever
4817 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4818 * has a correct pages reserved value, so an adequate number of
4819 * pages are left in the zone after a successful __alloc_pages().
4821 static void setup_per_zone_lowmem_reserve(void)
4823 struct pglist_data
*pgdat
;
4824 enum zone_type j
, idx
;
4826 for_each_online_pgdat(pgdat
) {
4827 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4828 struct zone
*zone
= pgdat
->node_zones
+ j
;
4829 unsigned long present_pages
= zone
->present_pages
;
4831 zone
->lowmem_reserve
[j
] = 0;
4835 struct zone
*lower_zone
;
4839 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
4840 sysctl_lowmem_reserve_ratio
[idx
] = 1;
4842 lower_zone
= pgdat
->node_zones
+ idx
;
4843 lower_zone
->lowmem_reserve
[j
] = present_pages
/
4844 sysctl_lowmem_reserve_ratio
[idx
];
4845 present_pages
+= lower_zone
->present_pages
;
4850 /* update totalreserve_pages */
4851 calculate_totalreserve_pages();
4855 * setup_per_zone_wmarks - called when min_free_kbytes changes
4856 * or when memory is hot-{added|removed}
4858 * Ensures that the watermark[min,low,high] values for each zone are set
4859 * correctly with respect to min_free_kbytes.
4861 void setup_per_zone_wmarks(void)
4863 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
4864 unsigned long lowmem_pages
= 0;
4866 unsigned long flags
;
4868 /* Calculate total number of !ZONE_HIGHMEM pages */
4869 for_each_zone(zone
) {
4870 if (!is_highmem(zone
))
4871 lowmem_pages
+= zone
->present_pages
;
4874 for_each_zone(zone
) {
4877 spin_lock_irqsave(&zone
->lock
, flags
);
4878 tmp
= (u64
)pages_min
* zone
->present_pages
;
4879 do_div(tmp
, lowmem_pages
);
4880 if (is_highmem(zone
)) {
4882 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4883 * need highmem pages, so cap pages_min to a small
4886 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
4887 * deltas controls asynch page reclaim, and so should
4888 * not be capped for highmem.
4892 min_pages
= zone
->present_pages
/ 1024;
4893 if (min_pages
< SWAP_CLUSTER_MAX
)
4894 min_pages
= SWAP_CLUSTER_MAX
;
4895 if (min_pages
> 128)
4897 zone
->watermark
[WMARK_MIN
] = min_pages
;
4900 * If it's a lowmem zone, reserve a number of pages
4901 * proportionate to the zone's size.
4903 zone
->watermark
[WMARK_MIN
] = tmp
;
4906 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
4907 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
4908 setup_zone_migrate_reserve(zone
);
4909 spin_unlock_irqrestore(&zone
->lock
, flags
);
4912 /* update totalreserve_pages */
4913 calculate_totalreserve_pages();
4917 * The inactive anon list should be small enough that the VM never has to
4918 * do too much work, but large enough that each inactive page has a chance
4919 * to be referenced again before it is swapped out.
4921 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4922 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4923 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4924 * the anonymous pages are kept on the inactive list.
4927 * memory ratio inactive anon
4928 * -------------------------------------
4937 void calculate_zone_inactive_ratio(struct zone
*zone
)
4939 unsigned int gb
, ratio
;
4941 /* Zone size in gigabytes */
4942 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
4944 ratio
= int_sqrt(10 * gb
);
4948 zone
->inactive_ratio
= ratio
;
4951 static void __init
setup_per_zone_inactive_ratio(void)
4956 calculate_zone_inactive_ratio(zone
);
4960 * Initialise min_free_kbytes.
4962 * For small machines we want it small (128k min). For large machines
4963 * we want it large (64MB max). But it is not linear, because network
4964 * bandwidth does not increase linearly with machine size. We use
4966 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4967 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4983 static int __init
init_per_zone_wmark_min(void)
4985 unsigned long lowmem_kbytes
;
4987 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
4989 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
4990 if (min_free_kbytes
< 128)
4991 min_free_kbytes
= 128;
4992 if (min_free_kbytes
> 65536)
4993 min_free_kbytes
= 65536;
4994 setup_per_zone_wmarks();
4995 setup_per_zone_lowmem_reserve();
4996 setup_per_zone_inactive_ratio();
4999 module_init(init_per_zone_wmark_min
)
5002 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5003 * that we can call two helper functions whenever min_free_kbytes
5006 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5007 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5009 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5011 setup_per_zone_wmarks();
5016 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5017 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5022 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5027 zone
->min_unmapped_pages
= (zone
->present_pages
*
5028 sysctl_min_unmapped_ratio
) / 100;
5032 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5033 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5038 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5043 zone
->min_slab_pages
= (zone
->present_pages
*
5044 sysctl_min_slab_ratio
) / 100;
5050 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5051 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5052 * whenever sysctl_lowmem_reserve_ratio changes.
5054 * The reserve ratio obviously has absolutely no relation with the
5055 * minimum watermarks. The lowmem reserve ratio can only make sense
5056 * if in function of the boot time zone sizes.
5058 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5059 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5061 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5062 setup_per_zone_lowmem_reserve();
5067 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5068 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5069 * can have before it gets flushed back to buddy allocator.
5072 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5073 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5079 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5080 if (!write
|| (ret
== -EINVAL
))
5082 for_each_populated_zone(zone
) {
5083 for_each_possible_cpu(cpu
) {
5085 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5086 setup_pagelist_highmark(
5087 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5093 int hashdist
= HASHDIST_DEFAULT
;
5096 static int __init
set_hashdist(char *str
)
5100 hashdist
= simple_strtoul(str
, &str
, 0);
5103 __setup("hashdist=", set_hashdist
);
5107 * allocate a large system hash table from bootmem
5108 * - it is assumed that the hash table must contain an exact power-of-2
5109 * quantity of entries
5110 * - limit is the number of hash buckets, not the total allocation size
5112 void *__init
alloc_large_system_hash(const char *tablename
,
5113 unsigned long bucketsize
,
5114 unsigned long numentries
,
5117 unsigned int *_hash_shift
,
5118 unsigned int *_hash_mask
,
5119 unsigned long limit
)
5121 unsigned long long max
= limit
;
5122 unsigned long log2qty
, size
;
5125 /* allow the kernel cmdline to have a say */
5127 /* round applicable memory size up to nearest megabyte */
5128 numentries
= nr_kernel_pages
;
5129 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5130 numentries
>>= 20 - PAGE_SHIFT
;
5131 numentries
<<= 20 - PAGE_SHIFT
;
5133 /* limit to 1 bucket per 2^scale bytes of low memory */
5134 if (scale
> PAGE_SHIFT
)
5135 numentries
>>= (scale
- PAGE_SHIFT
);
5137 numentries
<<= (PAGE_SHIFT
- scale
);
5139 /* Make sure we've got at least a 0-order allocation.. */
5140 if (unlikely(flags
& HASH_SMALL
)) {
5141 /* Makes no sense without HASH_EARLY */
5142 WARN_ON(!(flags
& HASH_EARLY
));
5143 if (!(numentries
>> *_hash_shift
)) {
5144 numentries
= 1UL << *_hash_shift
;
5145 BUG_ON(!numentries
);
5147 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5148 numentries
= PAGE_SIZE
/ bucketsize
;
5150 numentries
= roundup_pow_of_two(numentries
);
5152 /* limit allocation size to 1/16 total memory by default */
5154 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5155 do_div(max
, bucketsize
);
5158 if (numentries
> max
)
5161 log2qty
= ilog2(numentries
);
5164 size
= bucketsize
<< log2qty
;
5165 if (flags
& HASH_EARLY
)
5166 table
= alloc_bootmem_nopanic(size
);
5168 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5171 * If bucketsize is not a power-of-two, we may free
5172 * some pages at the end of hash table which
5173 * alloc_pages_exact() automatically does
5175 if (get_order(size
) < MAX_ORDER
) {
5176 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5177 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5180 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5183 panic("Failed to allocate %s hash table\n", tablename
);
5185 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5188 ilog2(size
) - PAGE_SHIFT
,
5192 *_hash_shift
= log2qty
;
5194 *_hash_mask
= (1 << log2qty
) - 1;
5199 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5200 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5203 #ifdef CONFIG_SPARSEMEM
5204 return __pfn_to_section(pfn
)->pageblock_flags
;
5206 return zone
->pageblock_flags
;
5207 #endif /* CONFIG_SPARSEMEM */
5210 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5212 #ifdef CONFIG_SPARSEMEM
5213 pfn
&= (PAGES_PER_SECTION
-1);
5214 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5216 pfn
= pfn
- zone
->zone_start_pfn
;
5217 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5218 #endif /* CONFIG_SPARSEMEM */
5222 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5223 * @page: The page within the block of interest
5224 * @start_bitidx: The first bit of interest to retrieve
5225 * @end_bitidx: The last bit of interest
5226 * returns pageblock_bits flags
5228 unsigned long get_pageblock_flags_group(struct page
*page
,
5229 int start_bitidx
, int end_bitidx
)
5232 unsigned long *bitmap
;
5233 unsigned long pfn
, bitidx
;
5234 unsigned long flags
= 0;
5235 unsigned long value
= 1;
5237 zone
= page_zone(page
);
5238 pfn
= page_to_pfn(page
);
5239 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5240 bitidx
= pfn_to_bitidx(zone
, pfn
);
5242 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5243 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5250 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5251 * @page: The page within the block of interest
5252 * @start_bitidx: The first bit of interest
5253 * @end_bitidx: The last bit of interest
5254 * @flags: The flags to set
5256 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5257 int start_bitidx
, int end_bitidx
)
5260 unsigned long *bitmap
;
5261 unsigned long pfn
, bitidx
;
5262 unsigned long value
= 1;
5264 zone
= page_zone(page
);
5265 pfn
= page_to_pfn(page
);
5266 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5267 bitidx
= pfn_to_bitidx(zone
, pfn
);
5268 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5269 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5271 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5273 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5275 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5279 * This is designed as sub function...plz see page_isolation.c also.
5280 * set/clear page block's type to be ISOLATE.
5281 * page allocater never alloc memory from ISOLATE block.
5284 int set_migratetype_isolate(struct page
*page
)
5287 struct page
*curr_page
;
5288 unsigned long flags
, pfn
, iter
;
5289 unsigned long immobile
= 0;
5290 struct memory_isolate_notify arg
;
5295 zone
= page_zone(page
);
5296 zone_idx
= zone_idx(zone
);
5298 spin_lock_irqsave(&zone
->lock
, flags
);
5299 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
||
5300 zone_idx
== ZONE_MOVABLE
) {
5305 pfn
= page_to_pfn(page
);
5306 arg
.start_pfn
= pfn
;
5307 arg
.nr_pages
= pageblock_nr_pages
;
5308 arg
.pages_found
= 0;
5311 * It may be possible to isolate a pageblock even if the
5312 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5313 * notifier chain is used by balloon drivers to return the
5314 * number of pages in a range that are held by the balloon
5315 * driver to shrink memory. If all the pages are accounted for
5316 * by balloons, are free, or on the LRU, isolation can continue.
5317 * Later, for example, when memory hotplug notifier runs, these
5318 * pages reported as "can be isolated" should be isolated(freed)
5319 * by the balloon driver through the memory notifier chain.
5321 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5322 notifier_ret
= notifier_to_errno(notifier_ret
);
5323 if (notifier_ret
|| !arg
.pages_found
)
5326 for (iter
= pfn
; iter
< (pfn
+ pageblock_nr_pages
); iter
++) {
5327 if (!pfn_valid_within(pfn
))
5330 curr_page
= pfn_to_page(iter
);
5331 if (!page_count(curr_page
) || PageLRU(curr_page
))
5337 if (arg
.pages_found
== immobile
)
5342 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5343 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5346 spin_unlock_irqrestore(&zone
->lock
, flags
);
5352 void unset_migratetype_isolate(struct page
*page
)
5355 unsigned long flags
;
5356 zone
= page_zone(page
);
5357 spin_lock_irqsave(&zone
->lock
, flags
);
5358 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5360 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5361 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5363 spin_unlock_irqrestore(&zone
->lock
, flags
);
5366 #ifdef CONFIG_MEMORY_HOTREMOVE
5368 * All pages in the range must be isolated before calling this.
5371 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5377 unsigned long flags
;
5378 /* find the first valid pfn */
5379 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5384 zone
= page_zone(pfn_to_page(pfn
));
5385 spin_lock_irqsave(&zone
->lock
, flags
);
5387 while (pfn
< end_pfn
) {
5388 if (!pfn_valid(pfn
)) {
5392 page
= pfn_to_page(pfn
);
5393 BUG_ON(page_count(page
));
5394 BUG_ON(!PageBuddy(page
));
5395 order
= page_order(page
);
5396 #ifdef CONFIG_DEBUG_VM
5397 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5398 pfn
, 1 << order
, end_pfn
);
5400 list_del(&page
->lru
);
5401 rmv_page_order(page
);
5402 zone
->free_area
[order
].nr_free
--;
5403 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5405 for (i
= 0; i
< (1 << order
); i
++)
5406 SetPageReserved((page
+i
));
5407 pfn
+= (1 << order
);
5409 spin_unlock_irqrestore(&zone
->lock
, flags
);
5413 #ifdef CONFIG_MEMORY_FAILURE
5414 bool is_free_buddy_page(struct page
*page
)
5416 struct zone
*zone
= page_zone(page
);
5417 unsigned long pfn
= page_to_pfn(page
);
5418 unsigned long flags
;
5421 spin_lock_irqsave(&zone
->lock
, flags
);
5422 for (order
= 0; order
< MAX_ORDER
; order
++) {
5423 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5425 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5428 spin_unlock_irqrestore(&zone
->lock
, flags
);
5430 return order
< MAX_ORDER
;
5434 static struct trace_print_flags pageflag_names
[] = {
5435 {1UL << PG_locked
, "locked" },
5436 {1UL << PG_error
, "error" },
5437 {1UL << PG_referenced
, "referenced" },
5438 {1UL << PG_uptodate
, "uptodate" },
5439 {1UL << PG_dirty
, "dirty" },
5440 {1UL << PG_lru
, "lru" },
5441 {1UL << PG_active
, "active" },
5442 {1UL << PG_slab
, "slab" },
5443 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5444 {1UL << PG_arch_1
, "arch_1" },
5445 {1UL << PG_reserved
, "reserved" },
5446 {1UL << PG_private
, "private" },
5447 {1UL << PG_private_2
, "private_2" },
5448 {1UL << PG_writeback
, "writeback" },
5449 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5450 {1UL << PG_head
, "head" },
5451 {1UL << PG_tail
, "tail" },
5453 {1UL << PG_compound
, "compound" },
5455 {1UL << PG_swapcache
, "swapcache" },
5456 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5457 {1UL << PG_reclaim
, "reclaim" },
5458 {1UL << PG_buddy
, "buddy" },
5459 {1UL << PG_swapbacked
, "swapbacked" },
5460 {1UL << PG_unevictable
, "unevictable" },
5462 {1UL << PG_mlocked
, "mlocked" },
5464 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5465 {1UL << PG_uncached
, "uncached" },
5467 #ifdef CONFIG_MEMORY_FAILURE
5468 {1UL << PG_hwpoison
, "hwpoison" },
5473 static void dump_page_flags(unsigned long flags
)
5475 const char *delim
= "";
5479 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5481 /* remove zone id */
5482 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5484 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5486 mask
= pageflag_names
[i
].mask
;
5487 if ((flags
& mask
) != mask
)
5491 printk("%s%s", delim
, pageflag_names
[i
].name
);
5495 /* check for left over flags */
5497 printk("%s%#lx", delim
, flags
);
5502 void dump_page(struct page
*page
)
5505 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5506 page
, page_count(page
), page_mapcount(page
),
5507 page
->mapping
, page
->index
);
5508 dump_page_flags(page
->flags
);