2 * Copyright (C) 2001, 2002 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
11 #include <linux/init.h>
12 #include <linux/module.h>
13 #include <linux/mutex.h>
14 #include <linux/moduleparam.h>
15 #include <linux/blkpg.h>
16 #include <linux/bio.h>
17 #include <linux/buffer_head.h>
18 #include <linux/mempool.h>
19 #include <linux/slab.h>
20 #include <linux/idr.h>
21 #include <linux/hdreg.h>
22 #include <linux/blktrace_api.h>
23 #include <trace/block.h>
25 #define DM_MSG_PREFIX "core"
27 static const char *_name
= DM_NAME
;
29 static unsigned int major
= 0;
30 static unsigned int _major
= 0;
32 static DEFINE_SPINLOCK(_minor_lock
);
35 * One of these is allocated per bio.
38 struct mapped_device
*md
;
42 unsigned long start_time
;
47 * One of these is allocated per target within a bio. Hopefully
48 * this will be simplified out one day.
56 DEFINE_TRACE(block_bio_complete
);
59 * For request-based dm.
60 * One of these is allocated per request.
62 struct dm_rq_target_io
{
63 struct mapped_device
*md
;
65 struct request
*orig
, clone
;
71 * For request-based dm.
72 * One of these is allocated per bio.
74 struct dm_rq_clone_bio_info
{
79 union map_info
*dm_get_mapinfo(struct bio
*bio
)
81 if (bio
&& bio
->bi_private
)
82 return &((struct dm_target_io
*)bio
->bi_private
)->info
;
86 #define MINOR_ALLOCED ((void *)-1)
89 * Bits for the md->flags field.
91 #define DMF_BLOCK_IO_FOR_SUSPEND 0
92 #define DMF_SUSPENDED 1
95 #define DMF_DELETING 4
96 #define DMF_NOFLUSH_SUSPENDING 5
97 #define DMF_QUEUE_IO_TO_THREAD 6
100 * Work processed by per-device workqueue.
102 struct mapped_device
{
103 struct rw_semaphore io_lock
;
104 struct mutex suspend_lock
;
111 struct request_queue
*queue
;
112 struct gendisk
*disk
;
118 * A list of ios that arrived while we were suspended.
121 wait_queue_head_t wait
;
122 struct work_struct work
;
123 struct bio_list deferred
;
124 spinlock_t deferred_lock
;
127 * An error from the barrier request currently being processed.
132 * Processing queue (flush/barriers)
134 struct workqueue_struct
*wq
;
137 * The current mapping.
139 struct dm_table
*map
;
142 * io objects are allocated from here.
153 wait_queue_head_t eventq
;
155 struct list_head uevent_list
;
156 spinlock_t uevent_lock
; /* Protect access to uevent_list */
159 * freeze/thaw support require holding onto a super block
161 struct super_block
*frozen_sb
;
162 struct block_device
*suspended_bdev
;
164 /* forced geometry settings */
165 struct hd_geometry geometry
;
172 static struct kmem_cache
*_io_cache
;
173 static struct kmem_cache
*_tio_cache
;
174 static struct kmem_cache
*_rq_tio_cache
;
175 static struct kmem_cache
*_rq_bio_info_cache
;
177 static int __init
local_init(void)
181 /* allocate a slab for the dm_ios */
182 _io_cache
= KMEM_CACHE(dm_io
, 0);
186 /* allocate a slab for the target ios */
187 _tio_cache
= KMEM_CACHE(dm_target_io
, 0);
189 goto out_free_io_cache
;
191 _rq_tio_cache
= KMEM_CACHE(dm_rq_target_io
, 0);
193 goto out_free_tio_cache
;
195 _rq_bio_info_cache
= KMEM_CACHE(dm_rq_clone_bio_info
, 0);
196 if (!_rq_bio_info_cache
)
197 goto out_free_rq_tio_cache
;
199 r
= dm_uevent_init();
201 goto out_free_rq_bio_info_cache
;
204 r
= register_blkdev(_major
, _name
);
206 goto out_uevent_exit
;
215 out_free_rq_bio_info_cache
:
216 kmem_cache_destroy(_rq_bio_info_cache
);
217 out_free_rq_tio_cache
:
218 kmem_cache_destroy(_rq_tio_cache
);
220 kmem_cache_destroy(_tio_cache
);
222 kmem_cache_destroy(_io_cache
);
227 static void local_exit(void)
229 kmem_cache_destroy(_rq_bio_info_cache
);
230 kmem_cache_destroy(_rq_tio_cache
);
231 kmem_cache_destroy(_tio_cache
);
232 kmem_cache_destroy(_io_cache
);
233 unregister_blkdev(_major
, _name
);
238 DMINFO("cleaned up");
241 static int (*_inits
[])(void) __initdata
= {
250 static void (*_exits
[])(void) = {
259 static int __init
dm_init(void)
261 const int count
= ARRAY_SIZE(_inits
);
265 for (i
= 0; i
< count
; i
++) {
280 static void __exit
dm_exit(void)
282 int i
= ARRAY_SIZE(_exits
);
289 * Block device functions
291 static int dm_blk_open(struct block_device
*bdev
, fmode_t mode
)
293 struct mapped_device
*md
;
295 spin_lock(&_minor_lock
);
297 md
= bdev
->bd_disk
->private_data
;
301 if (test_bit(DMF_FREEING
, &md
->flags
) ||
302 test_bit(DMF_DELETING
, &md
->flags
)) {
308 atomic_inc(&md
->open_count
);
311 spin_unlock(&_minor_lock
);
313 return md
? 0 : -ENXIO
;
316 static int dm_blk_close(struct gendisk
*disk
, fmode_t mode
)
318 struct mapped_device
*md
= disk
->private_data
;
319 atomic_dec(&md
->open_count
);
324 int dm_open_count(struct mapped_device
*md
)
326 return atomic_read(&md
->open_count
);
330 * Guarantees nothing is using the device before it's deleted.
332 int dm_lock_for_deletion(struct mapped_device
*md
)
336 spin_lock(&_minor_lock
);
338 if (dm_open_count(md
))
341 set_bit(DMF_DELETING
, &md
->flags
);
343 spin_unlock(&_minor_lock
);
348 static int dm_blk_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
350 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
352 return dm_get_geometry(md
, geo
);
355 static int dm_blk_ioctl(struct block_device
*bdev
, fmode_t mode
,
356 unsigned int cmd
, unsigned long arg
)
358 struct mapped_device
*md
= bdev
->bd_disk
->private_data
;
359 struct dm_table
*map
= dm_get_table(md
);
360 struct dm_target
*tgt
;
363 if (!map
|| !dm_table_get_size(map
))
366 /* We only support devices that have a single target */
367 if (dm_table_get_num_targets(map
) != 1)
370 tgt
= dm_table_get_target(map
, 0);
372 if (dm_suspended(md
)) {
377 if (tgt
->type
->ioctl
)
378 r
= tgt
->type
->ioctl(tgt
, cmd
, arg
);
386 static struct dm_io
*alloc_io(struct mapped_device
*md
)
388 return mempool_alloc(md
->io_pool
, GFP_NOIO
);
391 static void free_io(struct mapped_device
*md
, struct dm_io
*io
)
393 mempool_free(io
, md
->io_pool
);
396 static struct dm_target_io
*alloc_tio(struct mapped_device
*md
)
398 return mempool_alloc(md
->tio_pool
, GFP_NOIO
);
401 static void free_tio(struct mapped_device
*md
, struct dm_target_io
*tio
)
403 mempool_free(tio
, md
->tio_pool
);
406 static void start_io_acct(struct dm_io
*io
)
408 struct mapped_device
*md
= io
->md
;
411 io
->start_time
= jiffies
;
413 cpu
= part_stat_lock();
414 part_round_stats(cpu
, &dm_disk(md
)->part0
);
416 dm_disk(md
)->part0
.in_flight
= atomic_inc_return(&md
->pending
);
419 static void end_io_acct(struct dm_io
*io
)
421 struct mapped_device
*md
= io
->md
;
422 struct bio
*bio
= io
->bio
;
423 unsigned long duration
= jiffies
- io
->start_time
;
425 int rw
= bio_data_dir(bio
);
427 cpu
= part_stat_lock();
428 part_round_stats(cpu
, &dm_disk(md
)->part0
);
429 part_stat_add(cpu
, &dm_disk(md
)->part0
, ticks
[rw
], duration
);
433 * After this is decremented the bio must not be touched if it is
436 dm_disk(md
)->part0
.in_flight
= pending
=
437 atomic_dec_return(&md
->pending
);
439 /* nudge anyone waiting on suspend queue */
445 * Add the bio to the list of deferred io.
447 static void queue_io(struct mapped_device
*md
, struct bio
*bio
)
449 down_write(&md
->io_lock
);
451 spin_lock_irq(&md
->deferred_lock
);
452 bio_list_add(&md
->deferred
, bio
);
453 spin_unlock_irq(&md
->deferred_lock
);
455 if (!test_and_set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
))
456 queue_work(md
->wq
, &md
->work
);
458 up_write(&md
->io_lock
);
462 * Everyone (including functions in this file), should use this
463 * function to access the md->map field, and make sure they call
464 * dm_table_put() when finished.
466 struct dm_table
*dm_get_table(struct mapped_device
*md
)
470 read_lock(&md
->map_lock
);
474 read_unlock(&md
->map_lock
);
480 * Get the geometry associated with a dm device
482 int dm_get_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
490 * Set the geometry of a device.
492 int dm_set_geometry(struct mapped_device
*md
, struct hd_geometry
*geo
)
494 sector_t sz
= (sector_t
)geo
->cylinders
* geo
->heads
* geo
->sectors
;
496 if (geo
->start
> sz
) {
497 DMWARN("Start sector is beyond the geometry limits.");
506 /*-----------------------------------------------------------------
508 * A more elegant soln is in the works that uses the queue
509 * merge fn, unfortunately there are a couple of changes to
510 * the block layer that I want to make for this. So in the
511 * interests of getting something for people to use I give
512 * you this clearly demarcated crap.
513 *---------------------------------------------------------------*/
515 static int __noflush_suspending(struct mapped_device
*md
)
517 return test_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
521 * Decrements the number of outstanding ios that a bio has been
522 * cloned into, completing the original io if necc.
524 static void dec_pending(struct dm_io
*io
, int error
)
529 struct mapped_device
*md
= io
->md
;
531 /* Push-back supersedes any I/O errors */
532 if (error
&& !(io
->error
> 0 && __noflush_suspending(md
)))
535 if (atomic_dec_and_test(&io
->io_count
)) {
536 if (io
->error
== DM_ENDIO_REQUEUE
) {
538 * Target requested pushing back the I/O.
540 spin_lock_irqsave(&md
->deferred_lock
, flags
);
541 if (__noflush_suspending(md
))
542 bio_list_add_head(&md
->deferred
, io
->bio
);
544 /* noflush suspend was interrupted. */
546 spin_unlock_irqrestore(&md
->deferred_lock
, flags
);
549 io_error
= io
->error
;
552 if (bio_barrier(bio
)) {
554 * There can be just one barrier request so we use
555 * a per-device variable for error reporting.
556 * Note that you can't touch the bio after end_io_acct
558 md
->barrier_error
= io_error
;
563 if (io_error
!= DM_ENDIO_REQUEUE
) {
564 trace_block_bio_complete(md
->queue
, bio
);
566 bio_endio(bio
, io_error
);
574 static void clone_endio(struct bio
*bio
, int error
)
577 struct dm_target_io
*tio
= bio
->bi_private
;
578 struct dm_io
*io
= tio
->io
;
579 struct mapped_device
*md
= tio
->io
->md
;
580 dm_endio_fn endio
= tio
->ti
->type
->end_io
;
582 if (!bio_flagged(bio
, BIO_UPTODATE
) && !error
)
586 r
= endio(tio
->ti
, bio
, error
, &tio
->info
);
587 if (r
< 0 || r
== DM_ENDIO_REQUEUE
)
589 * error and requeue request are handled
593 else if (r
== DM_ENDIO_INCOMPLETE
)
594 /* The target will handle the io */
597 DMWARN("unimplemented target endio return value: %d", r
);
603 * Store md for cleanup instead of tio which is about to get freed.
605 bio
->bi_private
= md
->bs
;
609 dec_pending(io
, error
);
612 static sector_t
max_io_len(struct mapped_device
*md
,
613 sector_t sector
, struct dm_target
*ti
)
615 sector_t offset
= sector
- ti
->begin
;
616 sector_t len
= ti
->len
- offset
;
619 * Does the target need to split even further ?
623 boundary
= ((offset
+ ti
->split_io
) & ~(ti
->split_io
- 1))
632 static void __map_bio(struct dm_target
*ti
, struct bio
*clone
,
633 struct dm_target_io
*tio
)
637 struct mapped_device
*md
;
642 BUG_ON(!clone
->bi_size
);
644 clone
->bi_end_io
= clone_endio
;
645 clone
->bi_private
= tio
;
648 * Map the clone. If r == 0 we don't need to do
649 * anything, the target has assumed ownership of
652 atomic_inc(&tio
->io
->io_count
);
653 sector
= clone
->bi_sector
;
654 r
= ti
->type
->map(ti
, clone
, &tio
->info
);
655 if (r
== DM_MAPIO_REMAPPED
) {
656 /* the bio has been remapped so dispatch it */
658 trace_block_remap(bdev_get_queue(clone
->bi_bdev
), clone
,
659 tio
->io
->bio
->bi_bdev
->bd_dev
,
660 clone
->bi_sector
, sector
);
662 generic_make_request(clone
);
663 } else if (r
< 0 || r
== DM_MAPIO_REQUEUE
) {
664 /* error the io and bail out, or requeue it if needed */
666 dec_pending(tio
->io
, r
);
668 * Store bio_set for cleanup.
670 clone
->bi_private
= md
->bs
;
674 DMWARN("unimplemented target map return value: %d", r
);
680 struct mapped_device
*md
;
681 struct dm_table
*map
;
685 sector_t sector_count
;
689 static void dm_bio_destructor(struct bio
*bio
)
691 struct bio_set
*bs
= bio
->bi_private
;
697 * Creates a little bio that is just does part of a bvec.
699 static struct bio
*split_bvec(struct bio
*bio
, sector_t sector
,
700 unsigned short idx
, unsigned int offset
,
701 unsigned int len
, struct bio_set
*bs
)
704 struct bio_vec
*bv
= bio
->bi_io_vec
+ idx
;
706 clone
= bio_alloc_bioset(GFP_NOIO
, 1, bs
);
707 clone
->bi_destructor
= dm_bio_destructor
;
708 *clone
->bi_io_vec
= *bv
;
710 clone
->bi_sector
= sector
;
711 clone
->bi_bdev
= bio
->bi_bdev
;
712 clone
->bi_rw
= bio
->bi_rw
& ~(1 << BIO_RW_BARRIER
);
714 clone
->bi_size
= to_bytes(len
);
715 clone
->bi_io_vec
->bv_offset
= offset
;
716 clone
->bi_io_vec
->bv_len
= clone
->bi_size
;
717 clone
->bi_flags
|= 1 << BIO_CLONED
;
719 if (bio_integrity(bio
)) {
720 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
721 bio_integrity_trim(clone
,
722 bio_sector_offset(bio
, idx
, offset
), len
);
729 * Creates a bio that consists of range of complete bvecs.
731 static struct bio
*clone_bio(struct bio
*bio
, sector_t sector
,
732 unsigned short idx
, unsigned short bv_count
,
733 unsigned int len
, struct bio_set
*bs
)
737 clone
= bio_alloc_bioset(GFP_NOIO
, bio
->bi_max_vecs
, bs
);
738 __bio_clone(clone
, bio
);
739 clone
->bi_rw
&= ~(1 << BIO_RW_BARRIER
);
740 clone
->bi_destructor
= dm_bio_destructor
;
741 clone
->bi_sector
= sector
;
743 clone
->bi_vcnt
= idx
+ bv_count
;
744 clone
->bi_size
= to_bytes(len
);
745 clone
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
747 if (bio_integrity(bio
)) {
748 bio_integrity_clone(clone
, bio
, GFP_NOIO
);
750 if (idx
!= bio
->bi_idx
|| clone
->bi_size
< bio
->bi_size
)
751 bio_integrity_trim(clone
,
752 bio_sector_offset(bio
, idx
, 0), len
);
758 static int __clone_and_map(struct clone_info
*ci
)
760 struct bio
*clone
, *bio
= ci
->bio
;
761 struct dm_target
*ti
;
762 sector_t len
= 0, max
;
763 struct dm_target_io
*tio
;
765 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
766 if (!dm_target_is_valid(ti
))
769 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
772 * Allocate a target io object.
774 tio
= alloc_tio(ci
->md
);
777 memset(&tio
->info
, 0, sizeof(tio
->info
));
779 if (ci
->sector_count
<= max
) {
781 * Optimise for the simple case where we can do all of
782 * the remaining io with a single clone.
784 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
,
785 bio
->bi_vcnt
- ci
->idx
, ci
->sector_count
,
787 __map_bio(ti
, clone
, tio
);
788 ci
->sector_count
= 0;
790 } else if (to_sector(bio
->bi_io_vec
[ci
->idx
].bv_len
) <= max
) {
792 * There are some bvecs that don't span targets.
793 * Do as many of these as possible.
796 sector_t remaining
= max
;
799 for (i
= ci
->idx
; remaining
&& (i
< bio
->bi_vcnt
); i
++) {
800 bv_len
= to_sector(bio
->bi_io_vec
[i
].bv_len
);
802 if (bv_len
> remaining
)
809 clone
= clone_bio(bio
, ci
->sector
, ci
->idx
, i
- ci
->idx
, len
,
811 __map_bio(ti
, clone
, tio
);
814 ci
->sector_count
-= len
;
819 * Handle a bvec that must be split between two or more targets.
821 struct bio_vec
*bv
= bio
->bi_io_vec
+ ci
->idx
;
822 sector_t remaining
= to_sector(bv
->bv_len
);
823 unsigned int offset
= 0;
827 ti
= dm_table_find_target(ci
->map
, ci
->sector
);
828 if (!dm_target_is_valid(ti
))
831 max
= max_io_len(ci
->md
, ci
->sector
, ti
);
833 tio
= alloc_tio(ci
->md
);
836 memset(&tio
->info
, 0, sizeof(tio
->info
));
839 len
= min(remaining
, max
);
841 clone
= split_bvec(bio
, ci
->sector
, ci
->idx
,
842 bv
->bv_offset
+ offset
, len
,
845 __map_bio(ti
, clone
, tio
);
848 ci
->sector_count
-= len
;
849 offset
+= to_bytes(len
);
850 } while (remaining
-= len
);
859 * Split the bio into several clones and submit it to targets.
861 static void __split_and_process_bio(struct mapped_device
*md
, struct bio
*bio
)
863 struct clone_info ci
;
866 ci
.map
= dm_get_table(md
);
867 if (unlikely(!ci
.map
)) {
868 if (!bio_barrier(bio
))
871 md
->barrier_error
= -EIO
;
877 ci
.io
= alloc_io(md
);
879 atomic_set(&ci
.io
->io_count
, 1);
882 ci
.sector
= bio
->bi_sector
;
883 ci
.sector_count
= bio_sectors(bio
);
884 ci
.idx
= bio
->bi_idx
;
886 start_io_acct(ci
.io
);
887 while (ci
.sector_count
&& !error
)
888 error
= __clone_and_map(&ci
);
890 /* drop the extra reference count */
891 dec_pending(ci
.io
, error
);
892 dm_table_put(ci
.map
);
894 /*-----------------------------------------------------------------
896 *---------------------------------------------------------------*/
898 static int dm_merge_bvec(struct request_queue
*q
,
899 struct bvec_merge_data
*bvm
,
900 struct bio_vec
*biovec
)
902 struct mapped_device
*md
= q
->queuedata
;
903 struct dm_table
*map
= dm_get_table(md
);
904 struct dm_target
*ti
;
905 sector_t max_sectors
;
911 ti
= dm_table_find_target(map
, bvm
->bi_sector
);
912 if (!dm_target_is_valid(ti
))
916 * Find maximum amount of I/O that won't need splitting
918 max_sectors
= min(max_io_len(md
, bvm
->bi_sector
, ti
),
919 (sector_t
) BIO_MAX_SECTORS
);
920 max_size
= (max_sectors
<< SECTOR_SHIFT
) - bvm
->bi_size
;
925 * merge_bvec_fn() returns number of bytes
926 * it can accept at this offset
927 * max is precomputed maximal io size
929 if (max_size
&& ti
->type
->merge
)
930 max_size
= ti
->type
->merge(ti
, bvm
, biovec
, max_size
);
937 * Always allow an entire first page
939 if (max_size
<= biovec
->bv_len
&& !(bvm
->bi_size
>> SECTOR_SHIFT
))
940 max_size
= biovec
->bv_len
;
946 * The request function that just remaps the bio built up by
949 static int dm_request(struct request_queue
*q
, struct bio
*bio
)
951 int rw
= bio_data_dir(bio
);
952 struct mapped_device
*md
= q
->queuedata
;
955 down_read(&md
->io_lock
);
957 cpu
= part_stat_lock();
958 part_stat_inc(cpu
, &dm_disk(md
)->part0
, ios
[rw
]);
959 part_stat_add(cpu
, &dm_disk(md
)->part0
, sectors
[rw
], bio_sectors(bio
));
963 * If we're suspended or the thread is processing barriers
964 * we have to queue this io for later.
966 if (unlikely(test_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
)) ||
967 unlikely(bio_barrier(bio
))) {
968 up_read(&md
->io_lock
);
970 if (unlikely(test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) &&
971 bio_rw(bio
) == READA
) {
981 __split_and_process_bio(md
, bio
);
982 up_read(&md
->io_lock
);
986 static void dm_unplug_all(struct request_queue
*q
)
988 struct mapped_device
*md
= q
->queuedata
;
989 struct dm_table
*map
= dm_get_table(md
);
992 dm_table_unplug_all(map
);
997 static int dm_any_congested(void *congested_data
, int bdi_bits
)
1000 struct mapped_device
*md
= congested_data
;
1001 struct dm_table
*map
;
1003 if (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1004 map
= dm_get_table(md
);
1006 r
= dm_table_any_congested(map
, bdi_bits
);
1014 /*-----------------------------------------------------------------
1015 * An IDR is used to keep track of allocated minor numbers.
1016 *---------------------------------------------------------------*/
1017 static DEFINE_IDR(_minor_idr
);
1019 static void free_minor(int minor
)
1021 spin_lock(&_minor_lock
);
1022 idr_remove(&_minor_idr
, minor
);
1023 spin_unlock(&_minor_lock
);
1027 * See if the device with a specific minor # is free.
1029 static int specific_minor(int minor
)
1033 if (minor
>= (1 << MINORBITS
))
1036 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1040 spin_lock(&_minor_lock
);
1042 if (idr_find(&_minor_idr
, minor
)) {
1047 r
= idr_get_new_above(&_minor_idr
, MINOR_ALLOCED
, minor
, &m
);
1052 idr_remove(&_minor_idr
, m
);
1058 spin_unlock(&_minor_lock
);
1062 static int next_free_minor(int *minor
)
1066 r
= idr_pre_get(&_minor_idr
, GFP_KERNEL
);
1070 spin_lock(&_minor_lock
);
1072 r
= idr_get_new(&_minor_idr
, MINOR_ALLOCED
, &m
);
1076 if (m
>= (1 << MINORBITS
)) {
1077 idr_remove(&_minor_idr
, m
);
1085 spin_unlock(&_minor_lock
);
1089 static struct block_device_operations dm_blk_dops
;
1091 static void dm_wq_work(struct work_struct
*work
);
1094 * Allocate and initialise a blank device with a given minor.
1096 static struct mapped_device
*alloc_dev(int minor
)
1099 struct mapped_device
*md
= kzalloc(sizeof(*md
), GFP_KERNEL
);
1103 DMWARN("unable to allocate device, out of memory.");
1107 if (!try_module_get(THIS_MODULE
))
1108 goto bad_module_get
;
1110 /* get a minor number for the dev */
1111 if (minor
== DM_ANY_MINOR
)
1112 r
= next_free_minor(&minor
);
1114 r
= specific_minor(minor
);
1118 init_rwsem(&md
->io_lock
);
1119 mutex_init(&md
->suspend_lock
);
1120 spin_lock_init(&md
->deferred_lock
);
1121 rwlock_init(&md
->map_lock
);
1122 atomic_set(&md
->holders
, 1);
1123 atomic_set(&md
->open_count
, 0);
1124 atomic_set(&md
->event_nr
, 0);
1125 atomic_set(&md
->uevent_seq
, 0);
1126 INIT_LIST_HEAD(&md
->uevent_list
);
1127 spin_lock_init(&md
->uevent_lock
);
1129 md
->queue
= blk_alloc_queue(GFP_KERNEL
);
1133 md
->queue
->queuedata
= md
;
1134 md
->queue
->backing_dev_info
.congested_fn
= dm_any_congested
;
1135 md
->queue
->backing_dev_info
.congested_data
= md
;
1136 blk_queue_make_request(md
->queue
, dm_request
);
1137 blk_queue_ordered(md
->queue
, QUEUE_ORDERED_DRAIN
, NULL
);
1138 blk_queue_bounce_limit(md
->queue
, BLK_BOUNCE_ANY
);
1139 md
->queue
->unplug_fn
= dm_unplug_all
;
1140 blk_queue_merge_bvec(md
->queue
, dm_merge_bvec
);
1142 md
->io_pool
= mempool_create_slab_pool(MIN_IOS
, _io_cache
);
1146 md
->tio_pool
= mempool_create_slab_pool(MIN_IOS
, _tio_cache
);
1150 md
->bs
= bioset_create(16, 0);
1154 md
->disk
= alloc_disk(1);
1158 atomic_set(&md
->pending
, 0);
1159 init_waitqueue_head(&md
->wait
);
1160 INIT_WORK(&md
->work
, dm_wq_work
);
1161 init_waitqueue_head(&md
->eventq
);
1163 md
->disk
->major
= _major
;
1164 md
->disk
->first_minor
= minor
;
1165 md
->disk
->fops
= &dm_blk_dops
;
1166 md
->disk
->queue
= md
->queue
;
1167 md
->disk
->private_data
= md
;
1168 sprintf(md
->disk
->disk_name
, "dm-%d", minor
);
1170 format_dev_t(md
->name
, MKDEV(_major
, minor
));
1172 md
->wq
= create_singlethread_workqueue("kdmflush");
1176 /* Populate the mapping, nobody knows we exist yet */
1177 spin_lock(&_minor_lock
);
1178 old_md
= idr_replace(&_minor_idr
, md
, minor
);
1179 spin_unlock(&_minor_lock
);
1181 BUG_ON(old_md
!= MINOR_ALLOCED
);
1188 bioset_free(md
->bs
);
1190 mempool_destroy(md
->tio_pool
);
1192 mempool_destroy(md
->io_pool
);
1194 blk_cleanup_queue(md
->queue
);
1198 module_put(THIS_MODULE
);
1204 static void unlock_fs(struct mapped_device
*md
);
1206 static void free_dev(struct mapped_device
*md
)
1208 int minor
= MINOR(disk_devt(md
->disk
));
1210 if (md
->suspended_bdev
) {
1212 bdput(md
->suspended_bdev
);
1214 destroy_workqueue(md
->wq
);
1215 mempool_destroy(md
->tio_pool
);
1216 mempool_destroy(md
->io_pool
);
1217 bioset_free(md
->bs
);
1218 blk_integrity_unregister(md
->disk
);
1219 del_gendisk(md
->disk
);
1222 spin_lock(&_minor_lock
);
1223 md
->disk
->private_data
= NULL
;
1224 spin_unlock(&_minor_lock
);
1227 blk_cleanup_queue(md
->queue
);
1228 module_put(THIS_MODULE
);
1233 * Bind a table to the device.
1235 static void event_callback(void *context
)
1237 unsigned long flags
;
1239 struct mapped_device
*md
= (struct mapped_device
*) context
;
1241 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1242 list_splice_init(&md
->uevent_list
, &uevents
);
1243 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1245 dm_send_uevents(&uevents
, &disk_to_dev(md
->disk
)->kobj
);
1247 atomic_inc(&md
->event_nr
);
1248 wake_up(&md
->eventq
);
1251 static void __set_size(struct mapped_device
*md
, sector_t size
)
1253 set_capacity(md
->disk
, size
);
1255 mutex_lock(&md
->suspended_bdev
->bd_inode
->i_mutex
);
1256 i_size_write(md
->suspended_bdev
->bd_inode
, (loff_t
)size
<< SECTOR_SHIFT
);
1257 mutex_unlock(&md
->suspended_bdev
->bd_inode
->i_mutex
);
1260 static int __bind(struct mapped_device
*md
, struct dm_table
*t
)
1262 struct request_queue
*q
= md
->queue
;
1265 size
= dm_table_get_size(t
);
1268 * Wipe any geometry if the size of the table changed.
1270 if (size
!= get_capacity(md
->disk
))
1271 memset(&md
->geometry
, 0, sizeof(md
->geometry
));
1273 if (md
->suspended_bdev
)
1274 __set_size(md
, size
);
1277 dm_table_destroy(t
);
1281 dm_table_event_callback(t
, event_callback
, md
);
1283 write_lock(&md
->map_lock
);
1285 dm_table_set_restrictions(t
, q
);
1286 write_unlock(&md
->map_lock
);
1291 static void __unbind(struct mapped_device
*md
)
1293 struct dm_table
*map
= md
->map
;
1298 dm_table_event_callback(map
, NULL
, NULL
);
1299 write_lock(&md
->map_lock
);
1301 write_unlock(&md
->map_lock
);
1302 dm_table_destroy(map
);
1306 * Constructor for a new device.
1308 int dm_create(int minor
, struct mapped_device
**result
)
1310 struct mapped_device
*md
;
1312 md
= alloc_dev(minor
);
1322 static struct mapped_device
*dm_find_md(dev_t dev
)
1324 struct mapped_device
*md
;
1325 unsigned minor
= MINOR(dev
);
1327 if (MAJOR(dev
) != _major
|| minor
>= (1 << MINORBITS
))
1330 spin_lock(&_minor_lock
);
1332 md
= idr_find(&_minor_idr
, minor
);
1333 if (md
&& (md
== MINOR_ALLOCED
||
1334 (MINOR(disk_devt(dm_disk(md
))) != minor
) ||
1335 test_bit(DMF_FREEING
, &md
->flags
))) {
1341 spin_unlock(&_minor_lock
);
1346 struct mapped_device
*dm_get_md(dev_t dev
)
1348 struct mapped_device
*md
= dm_find_md(dev
);
1356 void *dm_get_mdptr(struct mapped_device
*md
)
1358 return md
->interface_ptr
;
1361 void dm_set_mdptr(struct mapped_device
*md
, void *ptr
)
1363 md
->interface_ptr
= ptr
;
1366 void dm_get(struct mapped_device
*md
)
1368 atomic_inc(&md
->holders
);
1371 const char *dm_device_name(struct mapped_device
*md
)
1375 EXPORT_SYMBOL_GPL(dm_device_name
);
1377 void dm_put(struct mapped_device
*md
)
1379 struct dm_table
*map
;
1381 BUG_ON(test_bit(DMF_FREEING
, &md
->flags
));
1383 if (atomic_dec_and_lock(&md
->holders
, &_minor_lock
)) {
1384 map
= dm_get_table(md
);
1385 idr_replace(&_minor_idr
, MINOR_ALLOCED
,
1386 MINOR(disk_devt(dm_disk(md
))));
1387 set_bit(DMF_FREEING
, &md
->flags
);
1388 spin_unlock(&_minor_lock
);
1389 if (!dm_suspended(md
)) {
1390 dm_table_presuspend_targets(map
);
1391 dm_table_postsuspend_targets(map
);
1399 EXPORT_SYMBOL_GPL(dm_put
);
1401 static int dm_wait_for_completion(struct mapped_device
*md
, int interruptible
)
1404 DECLARE_WAITQUEUE(wait
, current
);
1406 dm_unplug_all(md
->queue
);
1408 add_wait_queue(&md
->wait
, &wait
);
1411 set_current_state(interruptible
);
1414 if (!atomic_read(&md
->pending
))
1417 if (interruptible
== TASK_INTERRUPTIBLE
&&
1418 signal_pending(current
)) {
1425 set_current_state(TASK_RUNNING
);
1427 remove_wait_queue(&md
->wait
, &wait
);
1432 static int dm_flush(struct mapped_device
*md
)
1434 dm_wait_for_completion(md
, TASK_UNINTERRUPTIBLE
);
1438 static void process_barrier(struct mapped_device
*md
, struct bio
*bio
)
1440 int error
= dm_flush(md
);
1442 if (unlikely(error
)) {
1443 bio_endio(bio
, error
);
1446 if (bio_empty_barrier(bio
)) {
1451 __split_and_process_bio(md
, bio
);
1453 error
= dm_flush(md
);
1455 if (!error
&& md
->barrier_error
)
1456 error
= md
->barrier_error
;
1458 if (md
->barrier_error
!= DM_ENDIO_REQUEUE
)
1459 bio_endio(bio
, error
);
1463 * Process the deferred bios
1465 static void dm_wq_work(struct work_struct
*work
)
1467 struct mapped_device
*md
= container_of(work
, struct mapped_device
,
1471 down_write(&md
->io_lock
);
1473 while (!test_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
)) {
1474 spin_lock_irq(&md
->deferred_lock
);
1475 c
= bio_list_pop(&md
->deferred
);
1476 spin_unlock_irq(&md
->deferred_lock
);
1479 clear_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
1483 up_write(&md
->io_lock
);
1486 process_barrier(md
, c
);
1488 __split_and_process_bio(md
, c
);
1490 down_write(&md
->io_lock
);
1493 up_write(&md
->io_lock
);
1496 static void dm_queue_flush(struct mapped_device
*md
)
1498 clear_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
1499 smp_mb__after_clear_bit();
1500 queue_work(md
->wq
, &md
->work
);
1504 * Swap in a new table (destroying old one).
1506 int dm_swap_table(struct mapped_device
*md
, struct dm_table
*table
)
1510 mutex_lock(&md
->suspend_lock
);
1512 /* device must be suspended */
1513 if (!dm_suspended(md
))
1516 /* without bdev, the device size cannot be changed */
1517 if (!md
->suspended_bdev
)
1518 if (get_capacity(md
->disk
) != dm_table_get_size(table
))
1522 r
= __bind(md
, table
);
1525 mutex_unlock(&md
->suspend_lock
);
1530 * Functions to lock and unlock any filesystem running on the
1533 static int lock_fs(struct mapped_device
*md
)
1537 WARN_ON(md
->frozen_sb
);
1539 md
->frozen_sb
= freeze_bdev(md
->suspended_bdev
);
1540 if (IS_ERR(md
->frozen_sb
)) {
1541 r
= PTR_ERR(md
->frozen_sb
);
1542 md
->frozen_sb
= NULL
;
1546 set_bit(DMF_FROZEN
, &md
->flags
);
1548 /* don't bdput right now, we don't want the bdev
1549 * to go away while it is locked.
1554 static void unlock_fs(struct mapped_device
*md
)
1556 if (!test_bit(DMF_FROZEN
, &md
->flags
))
1559 thaw_bdev(md
->suspended_bdev
, md
->frozen_sb
);
1560 md
->frozen_sb
= NULL
;
1561 clear_bit(DMF_FROZEN
, &md
->flags
);
1565 * We need to be able to change a mapping table under a mounted
1566 * filesystem. For example we might want to move some data in
1567 * the background. Before the table can be swapped with
1568 * dm_bind_table, dm_suspend must be called to flush any in
1569 * flight bios and ensure that any further io gets deferred.
1571 int dm_suspend(struct mapped_device
*md
, unsigned suspend_flags
)
1573 struct dm_table
*map
= NULL
;
1575 int do_lockfs
= suspend_flags
& DM_SUSPEND_LOCKFS_FLAG
? 1 : 0;
1576 int noflush
= suspend_flags
& DM_SUSPEND_NOFLUSH_FLAG
? 1 : 0;
1578 mutex_lock(&md
->suspend_lock
);
1580 if (dm_suspended(md
)) {
1585 map
= dm_get_table(md
);
1588 * DMF_NOFLUSH_SUSPENDING must be set before presuspend.
1589 * This flag is cleared before dm_suspend returns.
1592 set_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
1594 /* This does not get reverted if there's an error later. */
1595 dm_table_presuspend_targets(map
);
1597 /* bdget() can stall if the pending I/Os are not flushed */
1599 md
->suspended_bdev
= bdget_disk(md
->disk
, 0);
1600 if (!md
->suspended_bdev
) {
1601 DMWARN("bdget failed in dm_suspend");
1607 * Flush I/O to the device. noflush supersedes do_lockfs,
1608 * because lock_fs() needs to flush I/Os.
1618 * Here we must make sure that no processes are submitting requests
1619 * to target drivers i.e. no one may be executing
1620 * __split_and_process_bio. This is called from dm_request and
1623 * To get all processes out of __split_and_process_bio in dm_request,
1624 * we take the write lock. To prevent any process from reentering
1625 * __split_and_process_bio from dm_request, we set
1626 * DMF_QUEUE_IO_TO_THREAD.
1628 * To quiesce the thread (dm_wq_work), we set DMF_BLOCK_IO_FOR_SUSPEND
1629 * and call flush_workqueue(md->wq). flush_workqueue will wait until
1630 * dm_wq_work exits and DMF_BLOCK_IO_FOR_SUSPEND will prevent any
1631 * further calls to __split_and_process_bio from dm_wq_work.
1633 down_write(&md
->io_lock
);
1634 set_bit(DMF_BLOCK_IO_FOR_SUSPEND
, &md
->flags
);
1635 set_bit(DMF_QUEUE_IO_TO_THREAD
, &md
->flags
);
1636 up_write(&md
->io_lock
);
1638 flush_workqueue(md
->wq
);
1641 * At this point no more requests are entering target request routines.
1642 * We call dm_wait_for_completion to wait for all existing requests
1645 r
= dm_wait_for_completion(md
, TASK_INTERRUPTIBLE
);
1647 down_write(&md
->io_lock
);
1649 clear_bit(DMF_NOFLUSH_SUSPENDING
, &md
->flags
);
1650 up_write(&md
->io_lock
);
1652 /* were we interrupted ? */
1657 goto out
; /* pushback list is already flushed, so skip flush */
1661 * If dm_wait_for_completion returned 0, the device is completely
1662 * quiescent now. There is no request-processing activity. All new
1663 * requests are being added to md->deferred list.
1666 dm_table_postsuspend_targets(map
);
1668 set_bit(DMF_SUSPENDED
, &md
->flags
);
1671 if (r
&& md
->suspended_bdev
) {
1672 bdput(md
->suspended_bdev
);
1673 md
->suspended_bdev
= NULL
;
1679 mutex_unlock(&md
->suspend_lock
);
1683 int dm_resume(struct mapped_device
*md
)
1686 struct dm_table
*map
= NULL
;
1688 mutex_lock(&md
->suspend_lock
);
1689 if (!dm_suspended(md
))
1692 map
= dm_get_table(md
);
1693 if (!map
|| !dm_table_get_size(map
))
1696 r
= dm_table_resume_targets(map
);
1704 if (md
->suspended_bdev
) {
1705 bdput(md
->suspended_bdev
);
1706 md
->suspended_bdev
= NULL
;
1709 clear_bit(DMF_SUSPENDED
, &md
->flags
);
1711 dm_table_unplug_all(map
);
1713 dm_kobject_uevent(md
);
1719 mutex_unlock(&md
->suspend_lock
);
1724 /*-----------------------------------------------------------------
1725 * Event notification.
1726 *---------------------------------------------------------------*/
1727 void dm_kobject_uevent(struct mapped_device
*md
)
1729 kobject_uevent(&disk_to_dev(md
->disk
)->kobj
, KOBJ_CHANGE
);
1732 uint32_t dm_next_uevent_seq(struct mapped_device
*md
)
1734 return atomic_add_return(1, &md
->uevent_seq
);
1737 uint32_t dm_get_event_nr(struct mapped_device
*md
)
1739 return atomic_read(&md
->event_nr
);
1742 int dm_wait_event(struct mapped_device
*md
, int event_nr
)
1744 return wait_event_interruptible(md
->eventq
,
1745 (event_nr
!= atomic_read(&md
->event_nr
)));
1748 void dm_uevent_add(struct mapped_device
*md
, struct list_head
*elist
)
1750 unsigned long flags
;
1752 spin_lock_irqsave(&md
->uevent_lock
, flags
);
1753 list_add(elist
, &md
->uevent_list
);
1754 spin_unlock_irqrestore(&md
->uevent_lock
, flags
);
1758 * The gendisk is only valid as long as you have a reference
1761 struct gendisk
*dm_disk(struct mapped_device
*md
)
1766 struct kobject
*dm_kobject(struct mapped_device
*md
)
1772 * struct mapped_device should not be exported outside of dm.c
1773 * so use this check to verify that kobj is part of md structure
1775 struct mapped_device
*dm_get_from_kobject(struct kobject
*kobj
)
1777 struct mapped_device
*md
;
1779 md
= container_of(kobj
, struct mapped_device
, kobj
);
1780 if (&md
->kobj
!= kobj
)
1787 int dm_suspended(struct mapped_device
*md
)
1789 return test_bit(DMF_SUSPENDED
, &md
->flags
);
1792 int dm_noflush_suspending(struct dm_target
*ti
)
1794 struct mapped_device
*md
= dm_table_get_md(ti
->table
);
1795 int r
= __noflush_suspending(md
);
1801 EXPORT_SYMBOL_GPL(dm_noflush_suspending
);
1803 static struct block_device_operations dm_blk_dops
= {
1804 .open
= dm_blk_open
,
1805 .release
= dm_blk_close
,
1806 .ioctl
= dm_blk_ioctl
,
1807 .getgeo
= dm_blk_getgeo
,
1808 .owner
= THIS_MODULE
1811 EXPORT_SYMBOL(dm_get_mapinfo
);
1816 module_init(dm_init
);
1817 module_exit(dm_exit
);
1819 module_param(major
, uint
, 0);
1820 MODULE_PARM_DESC(major
, "The major number of the device mapper");
1821 MODULE_DESCRIPTION(DM_NAME
" driver");
1822 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
1823 MODULE_LICENSE("GPL");