[XFS] Remove Makefile wrappers in XFS
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / commoncap.c
blobea61bc73f6d3c4d1ecfe9d81964342b8cd306d74
1 /* Common capabilities, needed by capability.o and root_plug.o
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/module.h>
12 #include <linux/init.h>
13 #include <linux/kernel.h>
14 #include <linux/security.h>
15 #include <linux/file.h>
16 #include <linux/mm.h>
17 #include <linux/mman.h>
18 #include <linux/pagemap.h>
19 #include <linux/swap.h>
20 #include <linux/skbuff.h>
21 #include <linux/netlink.h>
22 #include <linux/ptrace.h>
23 #include <linux/xattr.h>
24 #include <linux/hugetlb.h>
25 #include <linux/mount.h>
26 #include <linux/sched.h>
28 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
30 * Because of the reduced scope of CAP_SETPCAP when filesystem
31 * capabilities are in effect, it is safe to allow this capability to
32 * be available in the default configuration.
34 # define CAP_INIT_BSET CAP_FULL_SET
35 #else /* ie. ndef CONFIG_SECURITY_FILE_CAPABILITIES */
36 # define CAP_INIT_BSET CAP_INIT_EFF_SET
37 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
39 kernel_cap_t cap_bset = CAP_INIT_BSET; /* systemwide capability bound */
40 EXPORT_SYMBOL(cap_bset);
42 /* Global security state */
44 unsigned securebits = SECUREBITS_DEFAULT; /* systemwide security settings */
45 EXPORT_SYMBOL(securebits);
47 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
49 NETLINK_CB(skb).eff_cap = current->cap_effective;
50 return 0;
53 int cap_netlink_recv(struct sk_buff *skb, int cap)
55 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
56 return -EPERM;
57 return 0;
60 EXPORT_SYMBOL(cap_netlink_recv);
63 * NOTE WELL: cap_capable() cannot be used like the kernel's capable()
64 * function. That is, it has the reverse semantics: cap_capable()
65 * returns 0 when a task has a capability, but the kernel's capable()
66 * returns 1 for this case.
68 int cap_capable (struct task_struct *tsk, int cap)
70 /* Derived from include/linux/sched.h:capable. */
71 if (cap_raised(tsk->cap_effective, cap))
72 return 0;
73 return -EPERM;
76 int cap_settime(struct timespec *ts, struct timezone *tz)
78 if (!capable(CAP_SYS_TIME))
79 return -EPERM;
80 return 0;
83 int cap_ptrace (struct task_struct *parent, struct task_struct *child)
85 /* Derived from arch/i386/kernel/ptrace.c:sys_ptrace. */
86 if (!cap_issubset(child->cap_permitted, parent->cap_permitted) &&
87 !__capable(parent, CAP_SYS_PTRACE))
88 return -EPERM;
89 return 0;
92 int cap_capget (struct task_struct *target, kernel_cap_t *effective,
93 kernel_cap_t *inheritable, kernel_cap_t *permitted)
95 /* Derived from kernel/capability.c:sys_capget. */
96 *effective = cap_t (target->cap_effective);
97 *inheritable = cap_t (target->cap_inheritable);
98 *permitted = cap_t (target->cap_permitted);
99 return 0;
102 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
104 static inline int cap_block_setpcap(struct task_struct *target)
107 * No support for remote process capability manipulation with
108 * filesystem capability support.
110 return (target != current);
113 static inline int cap_inh_is_capped(void)
116 * Return 1 if changes to the inheritable set are limited
117 * to the old permitted set. That is, if the current task
118 * does *not* possess the CAP_SETPCAP capability.
120 return (cap_capable(current, CAP_SETPCAP) != 0);
123 #else /* ie., ndef CONFIG_SECURITY_FILE_CAPABILITIES */
125 static inline int cap_block_setpcap(struct task_struct *t) { return 0; }
126 static inline int cap_inh_is_capped(void) { return 1; }
128 #endif /* def CONFIG_SECURITY_FILE_CAPABILITIES */
130 int cap_capset_check (struct task_struct *target, kernel_cap_t *effective,
131 kernel_cap_t *inheritable, kernel_cap_t *permitted)
133 if (cap_block_setpcap(target)) {
134 return -EPERM;
136 if (cap_inh_is_capped()
137 && !cap_issubset(*inheritable,
138 cap_combine(target->cap_inheritable,
139 current->cap_permitted))) {
140 /* incapable of using this inheritable set */
141 return -EPERM;
144 /* verify restrictions on target's new Permitted set */
145 if (!cap_issubset (*permitted,
146 cap_combine (target->cap_permitted,
147 current->cap_permitted))) {
148 return -EPERM;
151 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
152 if (!cap_issubset (*effective, *permitted)) {
153 return -EPERM;
156 return 0;
159 void cap_capset_set (struct task_struct *target, kernel_cap_t *effective,
160 kernel_cap_t *inheritable, kernel_cap_t *permitted)
162 target->cap_effective = *effective;
163 target->cap_inheritable = *inheritable;
164 target->cap_permitted = *permitted;
167 static inline void bprm_clear_caps(struct linux_binprm *bprm)
169 cap_clear(bprm->cap_inheritable);
170 cap_clear(bprm->cap_permitted);
171 bprm->cap_effective = false;
174 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
176 int cap_inode_need_killpriv(struct dentry *dentry)
178 struct inode *inode = dentry->d_inode;
179 int error;
181 if (!inode->i_op || !inode->i_op->getxattr)
182 return 0;
184 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
185 if (error <= 0)
186 return 0;
187 return 1;
190 int cap_inode_killpriv(struct dentry *dentry)
192 struct inode *inode = dentry->d_inode;
194 if (!inode->i_op || !inode->i_op->removexattr)
195 return 0;
197 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
200 static inline int cap_from_disk(struct vfs_cap_data *caps,
201 struct linux_binprm *bprm,
202 int size)
204 __u32 magic_etc;
206 if (size != XATTR_CAPS_SZ)
207 return -EINVAL;
209 magic_etc = le32_to_cpu(caps->magic_etc);
211 switch ((magic_etc & VFS_CAP_REVISION_MASK)) {
212 case VFS_CAP_REVISION:
213 if (magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
214 bprm->cap_effective = true;
215 else
216 bprm->cap_effective = false;
217 bprm->cap_permitted = to_cap_t(le32_to_cpu(caps->permitted));
218 bprm->cap_inheritable = to_cap_t(le32_to_cpu(caps->inheritable));
219 return 0;
220 default:
221 return -EINVAL;
225 /* Locate any VFS capabilities: */
226 static int get_file_caps(struct linux_binprm *bprm)
228 struct dentry *dentry;
229 int rc = 0;
230 struct vfs_cap_data incaps;
231 struct inode *inode;
233 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) {
234 bprm_clear_caps(bprm);
235 return 0;
238 dentry = dget(bprm->file->f_dentry);
239 inode = dentry->d_inode;
240 if (!inode->i_op || !inode->i_op->getxattr)
241 goto out;
243 rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
244 if (rc > 0) {
245 if (rc == XATTR_CAPS_SZ)
246 rc = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS,
247 &incaps, XATTR_CAPS_SZ);
248 else
249 rc = -EINVAL;
251 if (rc == -ENODATA || rc == -EOPNOTSUPP) {
252 /* no data, that's ok */
253 rc = 0;
254 goto out;
256 if (rc < 0)
257 goto out;
259 rc = cap_from_disk(&incaps, bprm, rc);
260 if (rc)
261 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
262 __FUNCTION__, rc, bprm->filename);
264 out:
265 dput(dentry);
266 if (rc)
267 bprm_clear_caps(bprm);
269 return rc;
272 #else
273 int cap_inode_need_killpriv(struct dentry *dentry)
275 return 0;
278 int cap_inode_killpriv(struct dentry *dentry)
280 return 0;
283 static inline int get_file_caps(struct linux_binprm *bprm)
285 bprm_clear_caps(bprm);
286 return 0;
288 #endif
290 int cap_bprm_set_security (struct linux_binprm *bprm)
292 int ret;
294 ret = get_file_caps(bprm);
295 if (ret)
296 printk(KERN_NOTICE "%s: get_file_caps returned %d for %s\n",
297 __FUNCTION__, ret, bprm->filename);
299 /* To support inheritance of root-permissions and suid-root
300 * executables under compatibility mode, we raise all three
301 * capability sets for the file.
303 * If only the real uid is 0, we only raise the inheritable
304 * and permitted sets of the executable file.
307 if (!issecure (SECURE_NOROOT)) {
308 if (bprm->e_uid == 0 || current->uid == 0) {
309 cap_set_full (bprm->cap_inheritable);
310 cap_set_full (bprm->cap_permitted);
312 if (bprm->e_uid == 0)
313 bprm->cap_effective = true;
316 return ret;
319 void cap_bprm_apply_creds (struct linux_binprm *bprm, int unsafe)
321 /* Derived from fs/exec.c:compute_creds. */
322 kernel_cap_t new_permitted, working;
324 new_permitted = cap_intersect (bprm->cap_permitted, cap_bset);
325 working = cap_intersect (bprm->cap_inheritable,
326 current->cap_inheritable);
327 new_permitted = cap_combine (new_permitted, working);
329 if (bprm->e_uid != current->uid || bprm->e_gid != current->gid ||
330 !cap_issubset (new_permitted, current->cap_permitted)) {
331 set_dumpable(current->mm, suid_dumpable);
332 current->pdeath_signal = 0;
334 if (unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
335 if (!capable(CAP_SETUID)) {
336 bprm->e_uid = current->uid;
337 bprm->e_gid = current->gid;
339 if (!capable (CAP_SETPCAP)) {
340 new_permitted = cap_intersect (new_permitted,
341 current->cap_permitted);
346 current->suid = current->euid = current->fsuid = bprm->e_uid;
347 current->sgid = current->egid = current->fsgid = bprm->e_gid;
349 /* For init, we want to retain the capabilities set
350 * in the init_task struct. Thus we skip the usual
351 * capability rules */
352 if (!is_global_init(current)) {
353 current->cap_permitted = new_permitted;
354 current->cap_effective = bprm->cap_effective ?
355 new_permitted : 0;
358 /* AUD: Audit candidate if current->cap_effective is set */
360 current->keep_capabilities = 0;
363 int cap_bprm_secureexec (struct linux_binprm *bprm)
365 if (current->uid != 0) {
366 if (bprm->cap_effective)
367 return 1;
368 if (!cap_isclear(bprm->cap_permitted))
369 return 1;
370 if (!cap_isclear(bprm->cap_inheritable))
371 return 1;
374 return (current->euid != current->uid ||
375 current->egid != current->gid);
378 int cap_inode_setxattr(struct dentry *dentry, char *name, void *value,
379 size_t size, int flags)
381 if (!strcmp(name, XATTR_NAME_CAPS)) {
382 if (!capable(CAP_SETFCAP))
383 return -EPERM;
384 return 0;
385 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
386 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
387 !capable(CAP_SYS_ADMIN))
388 return -EPERM;
389 return 0;
392 int cap_inode_removexattr(struct dentry *dentry, char *name)
394 if (!strcmp(name, XATTR_NAME_CAPS)) {
395 if (!capable(CAP_SETFCAP))
396 return -EPERM;
397 return 0;
398 } else if (!strncmp(name, XATTR_SECURITY_PREFIX,
399 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
400 !capable(CAP_SYS_ADMIN))
401 return -EPERM;
402 return 0;
405 /* moved from kernel/sys.c. */
407 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
408 * a process after a call to setuid, setreuid, or setresuid.
410 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
411 * {r,e,s}uid != 0, the permitted and effective capabilities are
412 * cleared.
414 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
415 * capabilities of the process are cleared.
417 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
418 * capabilities are set to the permitted capabilities.
420 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
421 * never happen.
423 * -astor
425 * cevans - New behaviour, Oct '99
426 * A process may, via prctl(), elect to keep its capabilities when it
427 * calls setuid() and switches away from uid==0. Both permitted and
428 * effective sets will be retained.
429 * Without this change, it was impossible for a daemon to drop only some
430 * of its privilege. The call to setuid(!=0) would drop all privileges!
431 * Keeping uid 0 is not an option because uid 0 owns too many vital
432 * files..
433 * Thanks to Olaf Kirch and Peter Benie for spotting this.
435 static inline void cap_emulate_setxuid (int old_ruid, int old_euid,
436 int old_suid)
438 if ((old_ruid == 0 || old_euid == 0 || old_suid == 0) &&
439 (current->uid != 0 && current->euid != 0 && current->suid != 0) &&
440 !current->keep_capabilities) {
441 cap_clear (current->cap_permitted);
442 cap_clear (current->cap_effective);
444 if (old_euid == 0 && current->euid != 0) {
445 cap_clear (current->cap_effective);
447 if (old_euid != 0 && current->euid == 0) {
448 current->cap_effective = current->cap_permitted;
452 int cap_task_post_setuid (uid_t old_ruid, uid_t old_euid, uid_t old_suid,
453 int flags)
455 switch (flags) {
456 case LSM_SETID_RE:
457 case LSM_SETID_ID:
458 case LSM_SETID_RES:
459 /* Copied from kernel/sys.c:setreuid/setuid/setresuid. */
460 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
461 cap_emulate_setxuid (old_ruid, old_euid, old_suid);
463 break;
464 case LSM_SETID_FS:
466 uid_t old_fsuid = old_ruid;
468 /* Copied from kernel/sys.c:setfsuid. */
471 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
472 * if not, we might be a bit too harsh here.
475 if (!issecure (SECURE_NO_SETUID_FIXUP)) {
476 if (old_fsuid == 0 && current->fsuid != 0) {
477 cap_t (current->cap_effective) &=
478 ~CAP_FS_MASK;
480 if (old_fsuid != 0 && current->fsuid == 0) {
481 cap_t (current->cap_effective) |=
482 (cap_t (current->cap_permitted) &
483 CAP_FS_MASK);
486 break;
488 default:
489 return -EINVAL;
492 return 0;
495 #ifdef CONFIG_SECURITY_FILE_CAPABILITIES
497 * Rationale: code calling task_setscheduler, task_setioprio, and
498 * task_setnice, assumes that
499 * . if capable(cap_sys_nice), then those actions should be allowed
500 * . if not capable(cap_sys_nice), but acting on your own processes,
501 * then those actions should be allowed
502 * This is insufficient now since you can call code without suid, but
503 * yet with increased caps.
504 * So we check for increased caps on the target process.
506 static inline int cap_safe_nice(struct task_struct *p)
508 if (!cap_issubset(p->cap_permitted, current->cap_permitted) &&
509 !__capable(current, CAP_SYS_NICE))
510 return -EPERM;
511 return 0;
514 int cap_task_setscheduler (struct task_struct *p, int policy,
515 struct sched_param *lp)
517 return cap_safe_nice(p);
520 int cap_task_setioprio (struct task_struct *p, int ioprio)
522 return cap_safe_nice(p);
525 int cap_task_setnice (struct task_struct *p, int nice)
527 return cap_safe_nice(p);
530 int cap_task_kill(struct task_struct *p, struct siginfo *info,
531 int sig, u32 secid)
533 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info)))
534 return 0;
537 * Running a setuid root program raises your capabilities.
538 * Killing your own setuid root processes was previously
539 * allowed.
540 * We must preserve legacy signal behavior in this case.
542 if (p->euid == 0 && p->uid == current->uid)
543 return 0;
545 /* sigcont is permitted within same session */
546 if (sig == SIGCONT && (task_session_nr(current) == task_session_nr(p)))
547 return 0;
549 if (secid)
551 * Signal sent as a particular user.
552 * Capabilities are ignored. May be wrong, but it's the
553 * only thing we can do at the moment.
554 * Used only by usb drivers?
556 return 0;
557 if (cap_issubset(p->cap_permitted, current->cap_permitted))
558 return 0;
559 if (capable(CAP_KILL))
560 return 0;
562 return -EPERM;
564 #else
565 int cap_task_setscheduler (struct task_struct *p, int policy,
566 struct sched_param *lp)
568 return 0;
570 int cap_task_setioprio (struct task_struct *p, int ioprio)
572 return 0;
574 int cap_task_setnice (struct task_struct *p, int nice)
576 return 0;
578 int cap_task_kill(struct task_struct *p, struct siginfo *info,
579 int sig, u32 secid)
581 return 0;
583 #endif
585 void cap_task_reparent_to_init (struct task_struct *p)
587 p->cap_effective = CAP_INIT_EFF_SET;
588 p->cap_inheritable = CAP_INIT_INH_SET;
589 p->cap_permitted = CAP_FULL_SET;
590 p->keep_capabilities = 0;
591 return;
594 int cap_syslog (int type)
596 if ((type != 3 && type != 10) && !capable(CAP_SYS_ADMIN))
597 return -EPERM;
598 return 0;
601 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
603 int cap_sys_admin = 0;
605 if (cap_capable(current, CAP_SYS_ADMIN) == 0)
606 cap_sys_admin = 1;
607 return __vm_enough_memory(mm, pages, cap_sys_admin);