pnp: only assign IORESOURCE_DMA if CONFIG_ISA_DMA_API is enabled
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
blob3472bb1a070c4c2972e2c790da9fb9dd86e36488
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
41 struct remote_function_call {
42 struct task_struct *p;
43 int (*func)(void *info);
44 void *info;
45 int ret;
48 static void remote_function(void *data)
50 struct remote_function_call *tfc = data;
51 struct task_struct *p = tfc->p;
53 if (p) {
54 tfc->ret = -EAGAIN;
55 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
56 return;
59 tfc->ret = tfc->func(tfc->info);
62 /**
63 * task_function_call - call a function on the cpu on which a task runs
64 * @p: the task to evaluate
65 * @func: the function to be called
66 * @info: the function call argument
68 * Calls the function @func when the task is currently running. This might
69 * be on the current CPU, which just calls the function directly
71 * returns: @func return value, or
72 * -ESRCH - when the process isn't running
73 * -EAGAIN - when the process moved away
75 static int
76 task_function_call(struct task_struct *p, int (*func) (void *info), void *info)
78 struct remote_function_call data = {
79 .p = p,
80 .func = func,
81 .info = info,
82 .ret = -ESRCH, /* No such (running) process */
85 if (task_curr(p))
86 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
88 return data.ret;
91 /**
92 * cpu_function_call - call a function on the cpu
93 * @func: the function to be called
94 * @info: the function call argument
96 * Calls the function @func on the remote cpu.
98 * returns: @func return value or -ENXIO when the cpu is offline
100 static int cpu_function_call(int cpu, int (*func) (void *info), void *info)
102 struct remote_function_call data = {
103 .p = NULL,
104 .func = func,
105 .info = info,
106 .ret = -ENXIO, /* No such CPU */
109 smp_call_function_single(cpu, remote_function, &data, 1);
111 return data.ret;
114 #define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
115 PERF_FLAG_FD_OUTPUT |\
116 PERF_FLAG_PID_CGROUP)
118 enum event_type_t {
119 EVENT_FLEXIBLE = 0x1,
120 EVENT_PINNED = 0x2,
121 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
125 * perf_sched_events : >0 events exist
126 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
128 atomic_t perf_sched_events __read_mostly;
129 static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
131 static atomic_t nr_mmap_events __read_mostly;
132 static atomic_t nr_comm_events __read_mostly;
133 static atomic_t nr_task_events __read_mostly;
135 static LIST_HEAD(pmus);
136 static DEFINE_MUTEX(pmus_lock);
137 static struct srcu_struct pmus_srcu;
140 * perf event paranoia level:
141 * -1 - not paranoid at all
142 * 0 - disallow raw tracepoint access for unpriv
143 * 1 - disallow cpu events for unpriv
144 * 2 - disallow kernel profiling for unpriv
146 int sysctl_perf_event_paranoid __read_mostly = 1;
148 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
151 * max perf event sample rate
153 #define DEFAULT_MAX_SAMPLE_RATE 100000
154 int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
155 static int max_samples_per_tick __read_mostly =
156 DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
158 int perf_proc_update_handler(struct ctl_table *table, int write,
159 void __user *buffer, size_t *lenp,
160 loff_t *ppos)
162 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
164 if (ret || !write)
165 return ret;
167 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
169 return 0;
172 static atomic64_t perf_event_id;
174 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
175 enum event_type_t event_type);
177 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
178 enum event_type_t event_type,
179 struct task_struct *task);
181 static void update_context_time(struct perf_event_context *ctx);
182 static u64 perf_event_time(struct perf_event *event);
184 void __weak perf_event_print_debug(void) { }
186 extern __weak const char *perf_pmu_name(void)
188 return "pmu";
191 static inline u64 perf_clock(void)
193 return local_clock();
196 static inline struct perf_cpu_context *
197 __get_cpu_context(struct perf_event_context *ctx)
199 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
202 #ifdef CONFIG_CGROUP_PERF
205 * Must ensure cgroup is pinned (css_get) before calling
206 * this function. In other words, we cannot call this function
207 * if there is no cgroup event for the current CPU context.
209 static inline struct perf_cgroup *
210 perf_cgroup_from_task(struct task_struct *task)
212 return container_of(task_subsys_state(task, perf_subsys_id),
213 struct perf_cgroup, css);
216 static inline bool
217 perf_cgroup_match(struct perf_event *event)
219 struct perf_event_context *ctx = event->ctx;
220 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
222 return !event->cgrp || event->cgrp == cpuctx->cgrp;
225 static inline void perf_get_cgroup(struct perf_event *event)
227 css_get(&event->cgrp->css);
230 static inline void perf_put_cgroup(struct perf_event *event)
232 css_put(&event->cgrp->css);
235 static inline void perf_detach_cgroup(struct perf_event *event)
237 perf_put_cgroup(event);
238 event->cgrp = NULL;
241 static inline int is_cgroup_event(struct perf_event *event)
243 return event->cgrp != NULL;
246 static inline u64 perf_cgroup_event_time(struct perf_event *event)
248 struct perf_cgroup_info *t;
250 t = per_cpu_ptr(event->cgrp->info, event->cpu);
251 return t->time;
254 static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
256 struct perf_cgroup_info *info;
257 u64 now;
259 now = perf_clock();
261 info = this_cpu_ptr(cgrp->info);
263 info->time += now - info->timestamp;
264 info->timestamp = now;
267 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
269 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
270 if (cgrp_out)
271 __update_cgrp_time(cgrp_out);
274 static inline void update_cgrp_time_from_event(struct perf_event *event)
276 struct perf_cgroup *cgrp;
279 * ensure we access cgroup data only when needed and
280 * when we know the cgroup is pinned (css_get)
282 if (!is_cgroup_event(event))
283 return;
285 cgrp = perf_cgroup_from_task(current);
287 * Do not update time when cgroup is not active
289 if (cgrp == event->cgrp)
290 __update_cgrp_time(event->cgrp);
293 static inline void
294 perf_cgroup_set_timestamp(struct task_struct *task,
295 struct perf_event_context *ctx)
297 struct perf_cgroup *cgrp;
298 struct perf_cgroup_info *info;
301 * ctx->lock held by caller
302 * ensure we do not access cgroup data
303 * unless we have the cgroup pinned (css_get)
305 if (!task || !ctx->nr_cgroups)
306 return;
308 cgrp = perf_cgroup_from_task(task);
309 info = this_cpu_ptr(cgrp->info);
310 info->timestamp = ctx->timestamp;
313 #define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
314 #define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
317 * reschedule events based on the cgroup constraint of task.
319 * mode SWOUT : schedule out everything
320 * mode SWIN : schedule in based on cgroup for next
322 void perf_cgroup_switch(struct task_struct *task, int mode)
324 struct perf_cpu_context *cpuctx;
325 struct pmu *pmu;
326 unsigned long flags;
329 * disable interrupts to avoid geting nr_cgroup
330 * changes via __perf_event_disable(). Also
331 * avoids preemption.
333 local_irq_save(flags);
336 * we reschedule only in the presence of cgroup
337 * constrained events.
339 rcu_read_lock();
341 list_for_each_entry_rcu(pmu, &pmus, entry) {
343 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
345 perf_pmu_disable(cpuctx->ctx.pmu);
348 * perf_cgroup_events says at least one
349 * context on this CPU has cgroup events.
351 * ctx->nr_cgroups reports the number of cgroup
352 * events for a context.
354 if (cpuctx->ctx.nr_cgroups > 0) {
356 if (mode & PERF_CGROUP_SWOUT) {
357 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
359 * must not be done before ctxswout due
360 * to event_filter_match() in event_sched_out()
362 cpuctx->cgrp = NULL;
365 if (mode & PERF_CGROUP_SWIN) {
366 /* set cgrp before ctxsw in to
367 * allow event_filter_match() to not
368 * have to pass task around
370 cpuctx->cgrp = perf_cgroup_from_task(task);
371 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
375 perf_pmu_enable(cpuctx->ctx.pmu);
378 rcu_read_unlock();
380 local_irq_restore(flags);
383 static inline void perf_cgroup_sched_out(struct task_struct *task)
385 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
388 static inline void perf_cgroup_sched_in(struct task_struct *task)
390 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
393 static inline int perf_cgroup_connect(int fd, struct perf_event *event,
394 struct perf_event_attr *attr,
395 struct perf_event *group_leader)
397 struct perf_cgroup *cgrp;
398 struct cgroup_subsys_state *css;
399 struct file *file;
400 int ret = 0, fput_needed;
402 file = fget_light(fd, &fput_needed);
403 if (!file)
404 return -EBADF;
406 css = cgroup_css_from_dir(file, perf_subsys_id);
407 if (IS_ERR(css)) {
408 ret = PTR_ERR(css);
409 goto out;
412 cgrp = container_of(css, struct perf_cgroup, css);
413 event->cgrp = cgrp;
415 /* must be done before we fput() the file */
416 perf_get_cgroup(event);
419 * all events in a group must monitor
420 * the same cgroup because a task belongs
421 * to only one perf cgroup at a time
423 if (group_leader && group_leader->cgrp != cgrp) {
424 perf_detach_cgroup(event);
425 ret = -EINVAL;
427 out:
428 fput_light(file, fput_needed);
429 return ret;
432 static inline void
433 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
435 struct perf_cgroup_info *t;
436 t = per_cpu_ptr(event->cgrp->info, event->cpu);
437 event->shadow_ctx_time = now - t->timestamp;
440 static inline void
441 perf_cgroup_defer_enabled(struct perf_event *event)
444 * when the current task's perf cgroup does not match
445 * the event's, we need to remember to call the
446 * perf_mark_enable() function the first time a task with
447 * a matching perf cgroup is scheduled in.
449 if (is_cgroup_event(event) && !perf_cgroup_match(event))
450 event->cgrp_defer_enabled = 1;
453 static inline void
454 perf_cgroup_mark_enabled(struct perf_event *event,
455 struct perf_event_context *ctx)
457 struct perf_event *sub;
458 u64 tstamp = perf_event_time(event);
460 if (!event->cgrp_defer_enabled)
461 return;
463 event->cgrp_defer_enabled = 0;
465 event->tstamp_enabled = tstamp - event->total_time_enabled;
466 list_for_each_entry(sub, &event->sibling_list, group_entry) {
467 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
468 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
469 sub->cgrp_defer_enabled = 0;
473 #else /* !CONFIG_CGROUP_PERF */
475 static inline bool
476 perf_cgroup_match(struct perf_event *event)
478 return true;
481 static inline void perf_detach_cgroup(struct perf_event *event)
484 static inline int is_cgroup_event(struct perf_event *event)
486 return 0;
489 static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
491 return 0;
494 static inline void update_cgrp_time_from_event(struct perf_event *event)
498 static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
502 static inline void perf_cgroup_sched_out(struct task_struct *task)
506 static inline void perf_cgroup_sched_in(struct task_struct *task)
510 static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
511 struct perf_event_attr *attr,
512 struct perf_event *group_leader)
514 return -EINVAL;
517 static inline void
518 perf_cgroup_set_timestamp(struct task_struct *task,
519 struct perf_event_context *ctx)
523 void
524 perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
528 static inline void
529 perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
533 static inline u64 perf_cgroup_event_time(struct perf_event *event)
535 return 0;
538 static inline void
539 perf_cgroup_defer_enabled(struct perf_event *event)
543 static inline void
544 perf_cgroup_mark_enabled(struct perf_event *event,
545 struct perf_event_context *ctx)
548 #endif
550 void perf_pmu_disable(struct pmu *pmu)
552 int *count = this_cpu_ptr(pmu->pmu_disable_count);
553 if (!(*count)++)
554 pmu->pmu_disable(pmu);
557 void perf_pmu_enable(struct pmu *pmu)
559 int *count = this_cpu_ptr(pmu->pmu_disable_count);
560 if (!--(*count))
561 pmu->pmu_enable(pmu);
564 static DEFINE_PER_CPU(struct list_head, rotation_list);
567 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
568 * because they're strictly cpu affine and rotate_start is called with IRQs
569 * disabled, while rotate_context is called from IRQ context.
571 static void perf_pmu_rotate_start(struct pmu *pmu)
573 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
574 struct list_head *head = &__get_cpu_var(rotation_list);
576 WARN_ON(!irqs_disabled());
578 if (list_empty(&cpuctx->rotation_list))
579 list_add(&cpuctx->rotation_list, head);
582 static void get_ctx(struct perf_event_context *ctx)
584 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
587 static void free_ctx(struct rcu_head *head)
589 struct perf_event_context *ctx;
591 ctx = container_of(head, struct perf_event_context, rcu_head);
592 kfree(ctx);
595 static void put_ctx(struct perf_event_context *ctx)
597 if (atomic_dec_and_test(&ctx->refcount)) {
598 if (ctx->parent_ctx)
599 put_ctx(ctx->parent_ctx);
600 if (ctx->task)
601 put_task_struct(ctx->task);
602 call_rcu(&ctx->rcu_head, free_ctx);
606 static void unclone_ctx(struct perf_event_context *ctx)
608 if (ctx->parent_ctx) {
609 put_ctx(ctx->parent_ctx);
610 ctx->parent_ctx = NULL;
614 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
617 * only top level events have the pid namespace they were created in
619 if (event->parent)
620 event = event->parent;
622 return task_tgid_nr_ns(p, event->ns);
625 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
628 * only top level events have the pid namespace they were created in
630 if (event->parent)
631 event = event->parent;
633 return task_pid_nr_ns(p, event->ns);
637 * If we inherit events we want to return the parent event id
638 * to userspace.
640 static u64 primary_event_id(struct perf_event *event)
642 u64 id = event->id;
644 if (event->parent)
645 id = event->parent->id;
647 return id;
651 * Get the perf_event_context for a task and lock it.
652 * This has to cope with with the fact that until it is locked,
653 * the context could get moved to another task.
655 static struct perf_event_context *
656 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
658 struct perf_event_context *ctx;
660 rcu_read_lock();
661 retry:
662 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
663 if (ctx) {
665 * If this context is a clone of another, it might
666 * get swapped for another underneath us by
667 * perf_event_task_sched_out, though the
668 * rcu_read_lock() protects us from any context
669 * getting freed. Lock the context and check if it
670 * got swapped before we could get the lock, and retry
671 * if so. If we locked the right context, then it
672 * can't get swapped on us any more.
674 raw_spin_lock_irqsave(&ctx->lock, *flags);
675 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
676 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
677 goto retry;
680 if (!atomic_inc_not_zero(&ctx->refcount)) {
681 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
682 ctx = NULL;
685 rcu_read_unlock();
686 return ctx;
690 * Get the context for a task and increment its pin_count so it
691 * can't get swapped to another task. This also increments its
692 * reference count so that the context can't get freed.
694 static struct perf_event_context *
695 perf_pin_task_context(struct task_struct *task, int ctxn)
697 struct perf_event_context *ctx;
698 unsigned long flags;
700 ctx = perf_lock_task_context(task, ctxn, &flags);
701 if (ctx) {
702 ++ctx->pin_count;
703 raw_spin_unlock_irqrestore(&ctx->lock, flags);
705 return ctx;
708 static void perf_unpin_context(struct perf_event_context *ctx)
710 unsigned long flags;
712 raw_spin_lock_irqsave(&ctx->lock, flags);
713 --ctx->pin_count;
714 raw_spin_unlock_irqrestore(&ctx->lock, flags);
718 * Update the record of the current time in a context.
720 static void update_context_time(struct perf_event_context *ctx)
722 u64 now = perf_clock();
724 ctx->time += now - ctx->timestamp;
725 ctx->timestamp = now;
728 static u64 perf_event_time(struct perf_event *event)
730 struct perf_event_context *ctx = event->ctx;
732 if (is_cgroup_event(event))
733 return perf_cgroup_event_time(event);
735 return ctx ? ctx->time : 0;
739 * Update the total_time_enabled and total_time_running fields for a event.
741 static void update_event_times(struct perf_event *event)
743 struct perf_event_context *ctx = event->ctx;
744 u64 run_end;
746 if (event->state < PERF_EVENT_STATE_INACTIVE ||
747 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
748 return;
750 * in cgroup mode, time_enabled represents
751 * the time the event was enabled AND active
752 * tasks were in the monitored cgroup. This is
753 * independent of the activity of the context as
754 * there may be a mix of cgroup and non-cgroup events.
756 * That is why we treat cgroup events differently
757 * here.
759 if (is_cgroup_event(event))
760 run_end = perf_event_time(event);
761 else if (ctx->is_active)
762 run_end = ctx->time;
763 else
764 run_end = event->tstamp_stopped;
766 event->total_time_enabled = run_end - event->tstamp_enabled;
768 if (event->state == PERF_EVENT_STATE_INACTIVE)
769 run_end = event->tstamp_stopped;
770 else
771 run_end = perf_event_time(event);
773 event->total_time_running = run_end - event->tstamp_running;
778 * Update total_time_enabled and total_time_running for all events in a group.
780 static void update_group_times(struct perf_event *leader)
782 struct perf_event *event;
784 update_event_times(leader);
785 list_for_each_entry(event, &leader->sibling_list, group_entry)
786 update_event_times(event);
789 static struct list_head *
790 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
792 if (event->attr.pinned)
793 return &ctx->pinned_groups;
794 else
795 return &ctx->flexible_groups;
799 * Add a event from the lists for its context.
800 * Must be called with ctx->mutex and ctx->lock held.
802 static void
803 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
805 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
806 event->attach_state |= PERF_ATTACH_CONTEXT;
809 * If we're a stand alone event or group leader, we go to the context
810 * list, group events are kept attached to the group so that
811 * perf_group_detach can, at all times, locate all siblings.
813 if (event->group_leader == event) {
814 struct list_head *list;
816 if (is_software_event(event))
817 event->group_flags |= PERF_GROUP_SOFTWARE;
819 list = ctx_group_list(event, ctx);
820 list_add_tail(&event->group_entry, list);
823 if (is_cgroup_event(event))
824 ctx->nr_cgroups++;
826 list_add_rcu(&event->event_entry, &ctx->event_list);
827 if (!ctx->nr_events)
828 perf_pmu_rotate_start(ctx->pmu);
829 ctx->nr_events++;
830 if (event->attr.inherit_stat)
831 ctx->nr_stat++;
835 * Called at perf_event creation and when events are attached/detached from a
836 * group.
838 static void perf_event__read_size(struct perf_event *event)
840 int entry = sizeof(u64); /* value */
841 int size = 0;
842 int nr = 1;
844 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
845 size += sizeof(u64);
847 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
848 size += sizeof(u64);
850 if (event->attr.read_format & PERF_FORMAT_ID)
851 entry += sizeof(u64);
853 if (event->attr.read_format & PERF_FORMAT_GROUP) {
854 nr += event->group_leader->nr_siblings;
855 size += sizeof(u64);
858 size += entry * nr;
859 event->read_size = size;
862 static void perf_event__header_size(struct perf_event *event)
864 struct perf_sample_data *data;
865 u64 sample_type = event->attr.sample_type;
866 u16 size = 0;
868 perf_event__read_size(event);
870 if (sample_type & PERF_SAMPLE_IP)
871 size += sizeof(data->ip);
873 if (sample_type & PERF_SAMPLE_ADDR)
874 size += sizeof(data->addr);
876 if (sample_type & PERF_SAMPLE_PERIOD)
877 size += sizeof(data->period);
879 if (sample_type & PERF_SAMPLE_READ)
880 size += event->read_size;
882 event->header_size = size;
885 static void perf_event__id_header_size(struct perf_event *event)
887 struct perf_sample_data *data;
888 u64 sample_type = event->attr.sample_type;
889 u16 size = 0;
891 if (sample_type & PERF_SAMPLE_TID)
892 size += sizeof(data->tid_entry);
894 if (sample_type & PERF_SAMPLE_TIME)
895 size += sizeof(data->time);
897 if (sample_type & PERF_SAMPLE_ID)
898 size += sizeof(data->id);
900 if (sample_type & PERF_SAMPLE_STREAM_ID)
901 size += sizeof(data->stream_id);
903 if (sample_type & PERF_SAMPLE_CPU)
904 size += sizeof(data->cpu_entry);
906 event->id_header_size = size;
909 static void perf_group_attach(struct perf_event *event)
911 struct perf_event *group_leader = event->group_leader, *pos;
914 * We can have double attach due to group movement in perf_event_open.
916 if (event->attach_state & PERF_ATTACH_GROUP)
917 return;
919 event->attach_state |= PERF_ATTACH_GROUP;
921 if (group_leader == event)
922 return;
924 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
925 !is_software_event(event))
926 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
928 list_add_tail(&event->group_entry, &group_leader->sibling_list);
929 group_leader->nr_siblings++;
931 perf_event__header_size(group_leader);
933 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
934 perf_event__header_size(pos);
938 * Remove a event from the lists for its context.
939 * Must be called with ctx->mutex and ctx->lock held.
941 static void
942 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
945 * We can have double detach due to exit/hot-unplug + close.
947 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
948 return;
950 event->attach_state &= ~PERF_ATTACH_CONTEXT;
952 if (is_cgroup_event(event))
953 ctx->nr_cgroups--;
955 ctx->nr_events--;
956 if (event->attr.inherit_stat)
957 ctx->nr_stat--;
959 list_del_rcu(&event->event_entry);
961 if (event->group_leader == event)
962 list_del_init(&event->group_entry);
964 update_group_times(event);
967 * If event was in error state, then keep it
968 * that way, otherwise bogus counts will be
969 * returned on read(). The only way to get out
970 * of error state is by explicit re-enabling
971 * of the event
973 if (event->state > PERF_EVENT_STATE_OFF)
974 event->state = PERF_EVENT_STATE_OFF;
977 static void perf_group_detach(struct perf_event *event)
979 struct perf_event *sibling, *tmp;
980 struct list_head *list = NULL;
983 * We can have double detach due to exit/hot-unplug + close.
985 if (!(event->attach_state & PERF_ATTACH_GROUP))
986 return;
988 event->attach_state &= ~PERF_ATTACH_GROUP;
991 * If this is a sibling, remove it from its group.
993 if (event->group_leader != event) {
994 list_del_init(&event->group_entry);
995 event->group_leader->nr_siblings--;
996 goto out;
999 if (!list_empty(&event->group_entry))
1000 list = &event->group_entry;
1003 * If this was a group event with sibling events then
1004 * upgrade the siblings to singleton events by adding them
1005 * to whatever list we are on.
1007 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
1008 if (list)
1009 list_move_tail(&sibling->group_entry, list);
1010 sibling->group_leader = sibling;
1012 /* Inherit group flags from the previous leader */
1013 sibling->group_flags = event->group_flags;
1016 out:
1017 perf_event__header_size(event->group_leader);
1019 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1020 perf_event__header_size(tmp);
1023 static inline int
1024 event_filter_match(struct perf_event *event)
1026 return (event->cpu == -1 || event->cpu == smp_processor_id())
1027 && perf_cgroup_match(event);
1030 static void
1031 event_sched_out(struct perf_event *event,
1032 struct perf_cpu_context *cpuctx,
1033 struct perf_event_context *ctx)
1035 u64 tstamp = perf_event_time(event);
1036 u64 delta;
1038 * An event which could not be activated because of
1039 * filter mismatch still needs to have its timings
1040 * maintained, otherwise bogus information is return
1041 * via read() for time_enabled, time_running:
1043 if (event->state == PERF_EVENT_STATE_INACTIVE
1044 && !event_filter_match(event)) {
1045 delta = tstamp - event->tstamp_stopped;
1046 event->tstamp_running += delta;
1047 event->tstamp_stopped = tstamp;
1050 if (event->state != PERF_EVENT_STATE_ACTIVE)
1051 return;
1053 event->state = PERF_EVENT_STATE_INACTIVE;
1054 if (event->pending_disable) {
1055 event->pending_disable = 0;
1056 event->state = PERF_EVENT_STATE_OFF;
1058 event->tstamp_stopped = tstamp;
1059 event->pmu->del(event, 0);
1060 event->oncpu = -1;
1062 if (!is_software_event(event))
1063 cpuctx->active_oncpu--;
1064 ctx->nr_active--;
1065 if (event->attr.exclusive || !cpuctx->active_oncpu)
1066 cpuctx->exclusive = 0;
1069 static void
1070 group_sched_out(struct perf_event *group_event,
1071 struct perf_cpu_context *cpuctx,
1072 struct perf_event_context *ctx)
1074 struct perf_event *event;
1075 int state = group_event->state;
1077 event_sched_out(group_event, cpuctx, ctx);
1080 * Schedule out siblings (if any):
1082 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1083 event_sched_out(event, cpuctx, ctx);
1085 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
1086 cpuctx->exclusive = 0;
1090 * Cross CPU call to remove a performance event
1092 * We disable the event on the hardware level first. After that we
1093 * remove it from the context list.
1095 static int __perf_remove_from_context(void *info)
1097 struct perf_event *event = info;
1098 struct perf_event_context *ctx = event->ctx;
1099 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1101 raw_spin_lock(&ctx->lock);
1102 event_sched_out(event, cpuctx, ctx);
1103 list_del_event(event, ctx);
1104 raw_spin_unlock(&ctx->lock);
1106 return 0;
1111 * Remove the event from a task's (or a CPU's) list of events.
1113 * CPU events are removed with a smp call. For task events we only
1114 * call when the task is on a CPU.
1116 * If event->ctx is a cloned context, callers must make sure that
1117 * every task struct that event->ctx->task could possibly point to
1118 * remains valid. This is OK when called from perf_release since
1119 * that only calls us on the top-level context, which can't be a clone.
1120 * When called from perf_event_exit_task, it's OK because the
1121 * context has been detached from its task.
1123 static void perf_remove_from_context(struct perf_event *event)
1125 struct perf_event_context *ctx = event->ctx;
1126 struct task_struct *task = ctx->task;
1128 lockdep_assert_held(&ctx->mutex);
1130 if (!task) {
1132 * Per cpu events are removed via an smp call and
1133 * the removal is always successful.
1135 cpu_function_call(event->cpu, __perf_remove_from_context, event);
1136 return;
1139 retry:
1140 if (!task_function_call(task, __perf_remove_from_context, event))
1141 return;
1143 raw_spin_lock_irq(&ctx->lock);
1145 * If we failed to find a running task, but find the context active now
1146 * that we've acquired the ctx->lock, retry.
1148 if (ctx->is_active) {
1149 raw_spin_unlock_irq(&ctx->lock);
1150 goto retry;
1154 * Since the task isn't running, its safe to remove the event, us
1155 * holding the ctx->lock ensures the task won't get scheduled in.
1157 list_del_event(event, ctx);
1158 raw_spin_unlock_irq(&ctx->lock);
1162 * Cross CPU call to disable a performance event
1164 static int __perf_event_disable(void *info)
1166 struct perf_event *event = info;
1167 struct perf_event_context *ctx = event->ctx;
1168 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1171 * If this is a per-task event, need to check whether this
1172 * event's task is the current task on this cpu.
1174 * Can trigger due to concurrent perf_event_context_sched_out()
1175 * flipping contexts around.
1177 if (ctx->task && cpuctx->task_ctx != ctx)
1178 return -EINVAL;
1180 raw_spin_lock(&ctx->lock);
1183 * If the event is on, turn it off.
1184 * If it is in error state, leave it in error state.
1186 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
1187 update_context_time(ctx);
1188 update_cgrp_time_from_event(event);
1189 update_group_times(event);
1190 if (event == event->group_leader)
1191 group_sched_out(event, cpuctx, ctx);
1192 else
1193 event_sched_out(event, cpuctx, ctx);
1194 event->state = PERF_EVENT_STATE_OFF;
1197 raw_spin_unlock(&ctx->lock);
1199 return 0;
1203 * Disable a event.
1205 * If event->ctx is a cloned context, callers must make sure that
1206 * every task struct that event->ctx->task could possibly point to
1207 * remains valid. This condition is satisifed when called through
1208 * perf_event_for_each_child or perf_event_for_each because they
1209 * hold the top-level event's child_mutex, so any descendant that
1210 * goes to exit will block in sync_child_event.
1211 * When called from perf_pending_event it's OK because event->ctx
1212 * is the current context on this CPU and preemption is disabled,
1213 * hence we can't get into perf_event_task_sched_out for this context.
1215 void perf_event_disable(struct perf_event *event)
1217 struct perf_event_context *ctx = event->ctx;
1218 struct task_struct *task = ctx->task;
1220 if (!task) {
1222 * Disable the event on the cpu that it's on
1224 cpu_function_call(event->cpu, __perf_event_disable, event);
1225 return;
1228 retry:
1229 if (!task_function_call(task, __perf_event_disable, event))
1230 return;
1232 raw_spin_lock_irq(&ctx->lock);
1234 * If the event is still active, we need to retry the cross-call.
1236 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1237 raw_spin_unlock_irq(&ctx->lock);
1239 * Reload the task pointer, it might have been changed by
1240 * a concurrent perf_event_context_sched_out().
1242 task = ctx->task;
1243 goto retry;
1247 * Since we have the lock this context can't be scheduled
1248 * in, so we can change the state safely.
1250 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1251 update_group_times(event);
1252 event->state = PERF_EVENT_STATE_OFF;
1254 raw_spin_unlock_irq(&ctx->lock);
1257 static void perf_set_shadow_time(struct perf_event *event,
1258 struct perf_event_context *ctx,
1259 u64 tstamp)
1262 * use the correct time source for the time snapshot
1264 * We could get by without this by leveraging the
1265 * fact that to get to this function, the caller
1266 * has most likely already called update_context_time()
1267 * and update_cgrp_time_xx() and thus both timestamp
1268 * are identical (or very close). Given that tstamp is,
1269 * already adjusted for cgroup, we could say that:
1270 * tstamp - ctx->timestamp
1271 * is equivalent to
1272 * tstamp - cgrp->timestamp.
1274 * Then, in perf_output_read(), the calculation would
1275 * work with no changes because:
1276 * - event is guaranteed scheduled in
1277 * - no scheduled out in between
1278 * - thus the timestamp would be the same
1280 * But this is a bit hairy.
1282 * So instead, we have an explicit cgroup call to remain
1283 * within the time time source all along. We believe it
1284 * is cleaner and simpler to understand.
1286 if (is_cgroup_event(event))
1287 perf_cgroup_set_shadow_time(event, tstamp);
1288 else
1289 event->shadow_ctx_time = tstamp - ctx->timestamp;
1292 #define MAX_INTERRUPTS (~0ULL)
1294 static void perf_log_throttle(struct perf_event *event, int enable);
1296 static int
1297 event_sched_in(struct perf_event *event,
1298 struct perf_cpu_context *cpuctx,
1299 struct perf_event_context *ctx)
1301 u64 tstamp = perf_event_time(event);
1303 if (event->state <= PERF_EVENT_STATE_OFF)
1304 return 0;
1306 event->state = PERF_EVENT_STATE_ACTIVE;
1307 event->oncpu = smp_processor_id();
1310 * Unthrottle events, since we scheduled we might have missed several
1311 * ticks already, also for a heavily scheduling task there is little
1312 * guarantee it'll get a tick in a timely manner.
1314 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1315 perf_log_throttle(event, 1);
1316 event->hw.interrupts = 0;
1320 * The new state must be visible before we turn it on in the hardware:
1322 smp_wmb();
1324 if (event->pmu->add(event, PERF_EF_START)) {
1325 event->state = PERF_EVENT_STATE_INACTIVE;
1326 event->oncpu = -1;
1327 return -EAGAIN;
1330 event->tstamp_running += tstamp - event->tstamp_stopped;
1332 perf_set_shadow_time(event, ctx, tstamp);
1334 if (!is_software_event(event))
1335 cpuctx->active_oncpu++;
1336 ctx->nr_active++;
1338 if (event->attr.exclusive)
1339 cpuctx->exclusive = 1;
1341 return 0;
1344 static int
1345 group_sched_in(struct perf_event *group_event,
1346 struct perf_cpu_context *cpuctx,
1347 struct perf_event_context *ctx)
1349 struct perf_event *event, *partial_group = NULL;
1350 struct pmu *pmu = group_event->pmu;
1351 u64 now = ctx->time;
1352 bool simulate = false;
1354 if (group_event->state == PERF_EVENT_STATE_OFF)
1355 return 0;
1357 pmu->start_txn(pmu);
1359 if (event_sched_in(group_event, cpuctx, ctx)) {
1360 pmu->cancel_txn(pmu);
1361 return -EAGAIN;
1365 * Schedule in siblings as one group (if any):
1367 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1368 if (event_sched_in(event, cpuctx, ctx)) {
1369 partial_group = event;
1370 goto group_error;
1374 if (!pmu->commit_txn(pmu))
1375 return 0;
1377 group_error:
1379 * Groups can be scheduled in as one unit only, so undo any
1380 * partial group before returning:
1381 * The events up to the failed event are scheduled out normally,
1382 * tstamp_stopped will be updated.
1384 * The failed events and the remaining siblings need to have
1385 * their timings updated as if they had gone thru event_sched_in()
1386 * and event_sched_out(). This is required to get consistent timings
1387 * across the group. This also takes care of the case where the group
1388 * could never be scheduled by ensuring tstamp_stopped is set to mark
1389 * the time the event was actually stopped, such that time delta
1390 * calculation in update_event_times() is correct.
1392 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
1393 if (event == partial_group)
1394 simulate = true;
1396 if (simulate) {
1397 event->tstamp_running += now - event->tstamp_stopped;
1398 event->tstamp_stopped = now;
1399 } else {
1400 event_sched_out(event, cpuctx, ctx);
1403 event_sched_out(group_event, cpuctx, ctx);
1405 pmu->cancel_txn(pmu);
1407 return -EAGAIN;
1411 * Work out whether we can put this event group on the CPU now.
1413 static int group_can_go_on(struct perf_event *event,
1414 struct perf_cpu_context *cpuctx,
1415 int can_add_hw)
1418 * Groups consisting entirely of software events can always go on.
1420 if (event->group_flags & PERF_GROUP_SOFTWARE)
1421 return 1;
1423 * If an exclusive group is already on, no other hardware
1424 * events can go on.
1426 if (cpuctx->exclusive)
1427 return 0;
1429 * If this group is exclusive and there are already
1430 * events on the CPU, it can't go on.
1432 if (event->attr.exclusive && cpuctx->active_oncpu)
1433 return 0;
1435 * Otherwise, try to add it if all previous groups were able
1436 * to go on.
1438 return can_add_hw;
1441 static void add_event_to_ctx(struct perf_event *event,
1442 struct perf_event_context *ctx)
1444 u64 tstamp = perf_event_time(event);
1446 list_add_event(event, ctx);
1447 perf_group_attach(event);
1448 event->tstamp_enabled = tstamp;
1449 event->tstamp_running = tstamp;
1450 event->tstamp_stopped = tstamp;
1453 static void perf_event_context_sched_in(struct perf_event_context *ctx,
1454 struct task_struct *tsk);
1457 * Cross CPU call to install and enable a performance event
1459 * Must be called with ctx->mutex held
1461 static int __perf_install_in_context(void *info)
1463 struct perf_event *event = info;
1464 struct perf_event_context *ctx = event->ctx;
1465 struct perf_event *leader = event->group_leader;
1466 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1467 int err;
1470 * In case we're installing a new context to an already running task,
1471 * could also happen before perf_event_task_sched_in() on architectures
1472 * which do context switches with IRQs enabled.
1474 if (ctx->task && !cpuctx->task_ctx)
1475 perf_event_context_sched_in(ctx, ctx->task);
1477 raw_spin_lock(&ctx->lock);
1478 ctx->is_active = 1;
1479 update_context_time(ctx);
1481 * update cgrp time only if current cgrp
1482 * matches event->cgrp. Must be done before
1483 * calling add_event_to_ctx()
1485 update_cgrp_time_from_event(event);
1487 add_event_to_ctx(event, ctx);
1489 if (!event_filter_match(event))
1490 goto unlock;
1493 * Don't put the event on if it is disabled or if
1494 * it is in a group and the group isn't on.
1496 if (event->state != PERF_EVENT_STATE_INACTIVE ||
1497 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
1498 goto unlock;
1501 * An exclusive event can't go on if there are already active
1502 * hardware events, and no hardware event can go on if there
1503 * is already an exclusive event on.
1505 if (!group_can_go_on(event, cpuctx, 1))
1506 err = -EEXIST;
1507 else
1508 err = event_sched_in(event, cpuctx, ctx);
1510 if (err) {
1512 * This event couldn't go on. If it is in a group
1513 * then we have to pull the whole group off.
1514 * If the event group is pinned then put it in error state.
1516 if (leader != event)
1517 group_sched_out(leader, cpuctx, ctx);
1518 if (leader->attr.pinned) {
1519 update_group_times(leader);
1520 leader->state = PERF_EVENT_STATE_ERROR;
1524 unlock:
1525 raw_spin_unlock(&ctx->lock);
1527 return 0;
1531 * Attach a performance event to a context
1533 * First we add the event to the list with the hardware enable bit
1534 * in event->hw_config cleared.
1536 * If the event is attached to a task which is on a CPU we use a smp
1537 * call to enable it in the task context. The task might have been
1538 * scheduled away, but we check this in the smp call again.
1540 static void
1541 perf_install_in_context(struct perf_event_context *ctx,
1542 struct perf_event *event,
1543 int cpu)
1545 struct task_struct *task = ctx->task;
1547 lockdep_assert_held(&ctx->mutex);
1549 event->ctx = ctx;
1551 if (!task) {
1553 * Per cpu events are installed via an smp call and
1554 * the install is always successful.
1556 cpu_function_call(cpu, __perf_install_in_context, event);
1557 return;
1560 retry:
1561 if (!task_function_call(task, __perf_install_in_context, event))
1562 return;
1564 raw_spin_lock_irq(&ctx->lock);
1566 * If we failed to find a running task, but find the context active now
1567 * that we've acquired the ctx->lock, retry.
1569 if (ctx->is_active) {
1570 raw_spin_unlock_irq(&ctx->lock);
1571 goto retry;
1575 * Since the task isn't running, its safe to add the event, us holding
1576 * the ctx->lock ensures the task won't get scheduled in.
1578 add_event_to_ctx(event, ctx);
1579 raw_spin_unlock_irq(&ctx->lock);
1583 * Put a event into inactive state and update time fields.
1584 * Enabling the leader of a group effectively enables all
1585 * the group members that aren't explicitly disabled, so we
1586 * have to update their ->tstamp_enabled also.
1587 * Note: this works for group members as well as group leaders
1588 * since the non-leader members' sibling_lists will be empty.
1590 static void __perf_event_mark_enabled(struct perf_event *event,
1591 struct perf_event_context *ctx)
1593 struct perf_event *sub;
1594 u64 tstamp = perf_event_time(event);
1596 event->state = PERF_EVENT_STATE_INACTIVE;
1597 event->tstamp_enabled = tstamp - event->total_time_enabled;
1598 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1599 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
1600 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
1605 * Cross CPU call to enable a performance event
1607 static int __perf_event_enable(void *info)
1609 struct perf_event *event = info;
1610 struct perf_event_context *ctx = event->ctx;
1611 struct perf_event *leader = event->group_leader;
1612 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1613 int err;
1615 if (WARN_ON_ONCE(!ctx->is_active))
1616 return -EINVAL;
1618 raw_spin_lock(&ctx->lock);
1619 update_context_time(ctx);
1621 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1622 goto unlock;
1625 * set current task's cgroup time reference point
1627 perf_cgroup_set_timestamp(current, ctx);
1629 __perf_event_mark_enabled(event, ctx);
1631 if (!event_filter_match(event)) {
1632 if (is_cgroup_event(event))
1633 perf_cgroup_defer_enabled(event);
1634 goto unlock;
1638 * If the event is in a group and isn't the group leader,
1639 * then don't put it on unless the group is on.
1641 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1642 goto unlock;
1644 if (!group_can_go_on(event, cpuctx, 1)) {
1645 err = -EEXIST;
1646 } else {
1647 if (event == leader)
1648 err = group_sched_in(event, cpuctx, ctx);
1649 else
1650 err = event_sched_in(event, cpuctx, ctx);
1653 if (err) {
1655 * If this event can't go on and it's part of a
1656 * group, then the whole group has to come off.
1658 if (leader != event)
1659 group_sched_out(leader, cpuctx, ctx);
1660 if (leader->attr.pinned) {
1661 update_group_times(leader);
1662 leader->state = PERF_EVENT_STATE_ERROR;
1666 unlock:
1667 raw_spin_unlock(&ctx->lock);
1669 return 0;
1673 * Enable a event.
1675 * If event->ctx is a cloned context, callers must make sure that
1676 * every task struct that event->ctx->task could possibly point to
1677 * remains valid. This condition is satisfied when called through
1678 * perf_event_for_each_child or perf_event_for_each as described
1679 * for perf_event_disable.
1681 void perf_event_enable(struct perf_event *event)
1683 struct perf_event_context *ctx = event->ctx;
1684 struct task_struct *task = ctx->task;
1686 if (!task) {
1688 * Enable the event on the cpu that it's on
1690 cpu_function_call(event->cpu, __perf_event_enable, event);
1691 return;
1694 raw_spin_lock_irq(&ctx->lock);
1695 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1696 goto out;
1699 * If the event is in error state, clear that first.
1700 * That way, if we see the event in error state below, we
1701 * know that it has gone back into error state, as distinct
1702 * from the task having been scheduled away before the
1703 * cross-call arrived.
1705 if (event->state == PERF_EVENT_STATE_ERROR)
1706 event->state = PERF_EVENT_STATE_OFF;
1708 retry:
1709 if (!ctx->is_active) {
1710 __perf_event_mark_enabled(event, ctx);
1711 goto out;
1714 raw_spin_unlock_irq(&ctx->lock);
1716 if (!task_function_call(task, __perf_event_enable, event))
1717 return;
1719 raw_spin_lock_irq(&ctx->lock);
1722 * If the context is active and the event is still off,
1723 * we need to retry the cross-call.
1725 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF) {
1727 * task could have been flipped by a concurrent
1728 * perf_event_context_sched_out()
1730 task = ctx->task;
1731 goto retry;
1734 out:
1735 raw_spin_unlock_irq(&ctx->lock);
1738 static int perf_event_refresh(struct perf_event *event, int refresh)
1741 * not supported on inherited events
1743 if (event->attr.inherit || !is_sampling_event(event))
1744 return -EINVAL;
1746 atomic_add(refresh, &event->event_limit);
1747 perf_event_enable(event);
1749 return 0;
1752 static void ctx_sched_out(struct perf_event_context *ctx,
1753 struct perf_cpu_context *cpuctx,
1754 enum event_type_t event_type)
1756 struct perf_event *event;
1758 raw_spin_lock(&ctx->lock);
1759 perf_pmu_disable(ctx->pmu);
1760 ctx->is_active = 0;
1761 if (likely(!ctx->nr_events))
1762 goto out;
1763 update_context_time(ctx);
1764 update_cgrp_time_from_cpuctx(cpuctx);
1766 if (!ctx->nr_active)
1767 goto out;
1769 if (event_type & EVENT_PINNED) {
1770 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1771 group_sched_out(event, cpuctx, ctx);
1774 if (event_type & EVENT_FLEXIBLE) {
1775 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1776 group_sched_out(event, cpuctx, ctx);
1778 out:
1779 perf_pmu_enable(ctx->pmu);
1780 raw_spin_unlock(&ctx->lock);
1784 * Test whether two contexts are equivalent, i.e. whether they
1785 * have both been cloned from the same version of the same context
1786 * and they both have the same number of enabled events.
1787 * If the number of enabled events is the same, then the set
1788 * of enabled events should be the same, because these are both
1789 * inherited contexts, therefore we can't access individual events
1790 * in them directly with an fd; we can only enable/disable all
1791 * events via prctl, or enable/disable all events in a family
1792 * via ioctl, which will have the same effect on both contexts.
1794 static int context_equiv(struct perf_event_context *ctx1,
1795 struct perf_event_context *ctx2)
1797 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1798 && ctx1->parent_gen == ctx2->parent_gen
1799 && !ctx1->pin_count && !ctx2->pin_count;
1802 static void __perf_event_sync_stat(struct perf_event *event,
1803 struct perf_event *next_event)
1805 u64 value;
1807 if (!event->attr.inherit_stat)
1808 return;
1811 * Update the event value, we cannot use perf_event_read()
1812 * because we're in the middle of a context switch and have IRQs
1813 * disabled, which upsets smp_call_function_single(), however
1814 * we know the event must be on the current CPU, therefore we
1815 * don't need to use it.
1817 switch (event->state) {
1818 case PERF_EVENT_STATE_ACTIVE:
1819 event->pmu->read(event);
1820 /* fall-through */
1822 case PERF_EVENT_STATE_INACTIVE:
1823 update_event_times(event);
1824 break;
1826 default:
1827 break;
1831 * In order to keep per-task stats reliable we need to flip the event
1832 * values when we flip the contexts.
1834 value = local64_read(&next_event->count);
1835 value = local64_xchg(&event->count, value);
1836 local64_set(&next_event->count, value);
1838 swap(event->total_time_enabled, next_event->total_time_enabled);
1839 swap(event->total_time_running, next_event->total_time_running);
1842 * Since we swizzled the values, update the user visible data too.
1844 perf_event_update_userpage(event);
1845 perf_event_update_userpage(next_event);
1848 #define list_next_entry(pos, member) \
1849 list_entry(pos->member.next, typeof(*pos), member)
1851 static void perf_event_sync_stat(struct perf_event_context *ctx,
1852 struct perf_event_context *next_ctx)
1854 struct perf_event *event, *next_event;
1856 if (!ctx->nr_stat)
1857 return;
1859 update_context_time(ctx);
1861 event = list_first_entry(&ctx->event_list,
1862 struct perf_event, event_entry);
1864 next_event = list_first_entry(&next_ctx->event_list,
1865 struct perf_event, event_entry);
1867 while (&event->event_entry != &ctx->event_list &&
1868 &next_event->event_entry != &next_ctx->event_list) {
1870 __perf_event_sync_stat(event, next_event);
1872 event = list_next_entry(event, event_entry);
1873 next_event = list_next_entry(next_event, event_entry);
1877 static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1878 struct task_struct *next)
1880 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1881 struct perf_event_context *next_ctx;
1882 struct perf_event_context *parent;
1883 struct perf_cpu_context *cpuctx;
1884 int do_switch = 1;
1886 if (likely(!ctx))
1887 return;
1889 cpuctx = __get_cpu_context(ctx);
1890 if (!cpuctx->task_ctx)
1891 return;
1893 rcu_read_lock();
1894 parent = rcu_dereference(ctx->parent_ctx);
1895 next_ctx = next->perf_event_ctxp[ctxn];
1896 if (parent && next_ctx &&
1897 rcu_dereference(next_ctx->parent_ctx) == parent) {
1899 * Looks like the two contexts are clones, so we might be
1900 * able to optimize the context switch. We lock both
1901 * contexts and check that they are clones under the
1902 * lock (including re-checking that neither has been
1903 * uncloned in the meantime). It doesn't matter which
1904 * order we take the locks because no other cpu could
1905 * be trying to lock both of these tasks.
1907 raw_spin_lock(&ctx->lock);
1908 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1909 if (context_equiv(ctx, next_ctx)) {
1911 * XXX do we need a memory barrier of sorts
1912 * wrt to rcu_dereference() of perf_event_ctxp
1914 task->perf_event_ctxp[ctxn] = next_ctx;
1915 next->perf_event_ctxp[ctxn] = ctx;
1916 ctx->task = next;
1917 next_ctx->task = task;
1918 do_switch = 0;
1920 perf_event_sync_stat(ctx, next_ctx);
1922 raw_spin_unlock(&next_ctx->lock);
1923 raw_spin_unlock(&ctx->lock);
1925 rcu_read_unlock();
1927 if (do_switch) {
1928 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1929 cpuctx->task_ctx = NULL;
1933 #define for_each_task_context_nr(ctxn) \
1934 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1937 * Called from scheduler to remove the events of the current task,
1938 * with interrupts disabled.
1940 * We stop each event and update the event value in event->count.
1942 * This does not protect us against NMI, but disable()
1943 * sets the disabled bit in the control field of event _before_
1944 * accessing the event control register. If a NMI hits, then it will
1945 * not restart the event.
1947 void __perf_event_task_sched_out(struct task_struct *task,
1948 struct task_struct *next)
1950 int ctxn;
1952 for_each_task_context_nr(ctxn)
1953 perf_event_context_sched_out(task, ctxn, next);
1956 * if cgroup events exist on this CPU, then we need
1957 * to check if we have to switch out PMU state.
1958 * cgroup event are system-wide mode only
1960 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
1961 perf_cgroup_sched_out(task);
1964 static void task_ctx_sched_out(struct perf_event_context *ctx,
1965 enum event_type_t event_type)
1967 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1969 if (!cpuctx->task_ctx)
1970 return;
1972 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1973 return;
1975 ctx_sched_out(ctx, cpuctx, event_type);
1976 cpuctx->task_ctx = NULL;
1980 * Called with IRQs disabled
1982 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1983 enum event_type_t event_type)
1985 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1988 static void
1989 ctx_pinned_sched_in(struct perf_event_context *ctx,
1990 struct perf_cpu_context *cpuctx)
1992 struct perf_event *event;
1994 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1995 if (event->state <= PERF_EVENT_STATE_OFF)
1996 continue;
1997 if (!event_filter_match(event))
1998 continue;
2000 /* may need to reset tstamp_enabled */
2001 if (is_cgroup_event(event))
2002 perf_cgroup_mark_enabled(event, ctx);
2004 if (group_can_go_on(event, cpuctx, 1))
2005 group_sched_in(event, cpuctx, ctx);
2008 * If this pinned group hasn't been scheduled,
2009 * put it in error state.
2011 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2012 update_group_times(event);
2013 event->state = PERF_EVENT_STATE_ERROR;
2018 static void
2019 ctx_flexible_sched_in(struct perf_event_context *ctx,
2020 struct perf_cpu_context *cpuctx)
2022 struct perf_event *event;
2023 int can_add_hw = 1;
2025 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2026 /* Ignore events in OFF or ERROR state */
2027 if (event->state <= PERF_EVENT_STATE_OFF)
2028 continue;
2030 * Listen to the 'cpu' scheduling filter constraint
2031 * of events:
2033 if (!event_filter_match(event))
2034 continue;
2036 /* may need to reset tstamp_enabled */
2037 if (is_cgroup_event(event))
2038 perf_cgroup_mark_enabled(event, ctx);
2040 if (group_can_go_on(event, cpuctx, can_add_hw)) {
2041 if (group_sched_in(event, cpuctx, ctx))
2042 can_add_hw = 0;
2047 static void
2048 ctx_sched_in(struct perf_event_context *ctx,
2049 struct perf_cpu_context *cpuctx,
2050 enum event_type_t event_type,
2051 struct task_struct *task)
2053 u64 now;
2055 raw_spin_lock(&ctx->lock);
2056 ctx->is_active = 1;
2057 if (likely(!ctx->nr_events))
2058 goto out;
2060 now = perf_clock();
2061 ctx->timestamp = now;
2062 perf_cgroup_set_timestamp(task, ctx);
2064 * First go through the list and put on any pinned groups
2065 * in order to give them the best chance of going on.
2067 if (event_type & EVENT_PINNED)
2068 ctx_pinned_sched_in(ctx, cpuctx);
2070 /* Then walk through the lower prio flexible groups */
2071 if (event_type & EVENT_FLEXIBLE)
2072 ctx_flexible_sched_in(ctx, cpuctx);
2074 out:
2075 raw_spin_unlock(&ctx->lock);
2078 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
2079 enum event_type_t event_type,
2080 struct task_struct *task)
2082 struct perf_event_context *ctx = &cpuctx->ctx;
2084 ctx_sched_in(ctx, cpuctx, event_type, task);
2087 static void task_ctx_sched_in(struct perf_event_context *ctx,
2088 enum event_type_t event_type)
2090 struct perf_cpu_context *cpuctx;
2092 cpuctx = __get_cpu_context(ctx);
2093 if (cpuctx->task_ctx == ctx)
2094 return;
2096 ctx_sched_in(ctx, cpuctx, event_type, NULL);
2097 cpuctx->task_ctx = ctx;
2100 static void perf_event_context_sched_in(struct perf_event_context *ctx,
2101 struct task_struct *task)
2103 struct perf_cpu_context *cpuctx;
2105 cpuctx = __get_cpu_context(ctx);
2106 if (cpuctx->task_ctx == ctx)
2107 return;
2109 perf_pmu_disable(ctx->pmu);
2111 * We want to keep the following priority order:
2112 * cpu pinned (that don't need to move), task pinned,
2113 * cpu flexible, task flexible.
2115 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2117 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2118 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2119 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2121 cpuctx->task_ctx = ctx;
2124 * Since these rotations are per-cpu, we need to ensure the
2125 * cpu-context we got scheduled on is actually rotating.
2127 perf_pmu_rotate_start(ctx->pmu);
2128 perf_pmu_enable(ctx->pmu);
2132 * Called from scheduler to add the events of the current task
2133 * with interrupts disabled.
2135 * We restore the event value and then enable it.
2137 * This does not protect us against NMI, but enable()
2138 * sets the enabled bit in the control field of event _before_
2139 * accessing the event control register. If a NMI hits, then it will
2140 * keep the event running.
2142 void __perf_event_task_sched_in(struct task_struct *task)
2144 struct perf_event_context *ctx;
2145 int ctxn;
2147 for_each_task_context_nr(ctxn) {
2148 ctx = task->perf_event_ctxp[ctxn];
2149 if (likely(!ctx))
2150 continue;
2152 perf_event_context_sched_in(ctx, task);
2155 * if cgroup events exist on this CPU, then we need
2156 * to check if we have to switch in PMU state.
2157 * cgroup event are system-wide mode only
2159 if (atomic_read(&__get_cpu_var(perf_cgroup_events)))
2160 perf_cgroup_sched_in(task);
2163 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2165 u64 frequency = event->attr.sample_freq;
2166 u64 sec = NSEC_PER_SEC;
2167 u64 divisor, dividend;
2169 int count_fls, nsec_fls, frequency_fls, sec_fls;
2171 count_fls = fls64(count);
2172 nsec_fls = fls64(nsec);
2173 frequency_fls = fls64(frequency);
2174 sec_fls = 30;
2177 * We got @count in @nsec, with a target of sample_freq HZ
2178 * the target period becomes:
2180 * @count * 10^9
2181 * period = -------------------
2182 * @nsec * sample_freq
2187 * Reduce accuracy by one bit such that @a and @b converge
2188 * to a similar magnitude.
2190 #define REDUCE_FLS(a, b) \
2191 do { \
2192 if (a##_fls > b##_fls) { \
2193 a >>= 1; \
2194 a##_fls--; \
2195 } else { \
2196 b >>= 1; \
2197 b##_fls--; \
2199 } while (0)
2202 * Reduce accuracy until either term fits in a u64, then proceed with
2203 * the other, so that finally we can do a u64/u64 division.
2205 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2206 REDUCE_FLS(nsec, frequency);
2207 REDUCE_FLS(sec, count);
2210 if (count_fls + sec_fls > 64) {
2211 divisor = nsec * frequency;
2213 while (count_fls + sec_fls > 64) {
2214 REDUCE_FLS(count, sec);
2215 divisor >>= 1;
2218 dividend = count * sec;
2219 } else {
2220 dividend = count * sec;
2222 while (nsec_fls + frequency_fls > 64) {
2223 REDUCE_FLS(nsec, frequency);
2224 dividend >>= 1;
2227 divisor = nsec * frequency;
2230 if (!divisor)
2231 return dividend;
2233 return div64_u64(dividend, divisor);
2236 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
2238 struct hw_perf_event *hwc = &event->hw;
2239 s64 period, sample_period;
2240 s64 delta;
2242 period = perf_calculate_period(event, nsec, count);
2244 delta = (s64)(period - hwc->sample_period);
2245 delta = (delta + 7) / 8; /* low pass filter */
2247 sample_period = hwc->sample_period + delta;
2249 if (!sample_period)
2250 sample_period = 1;
2252 hwc->sample_period = sample_period;
2254 if (local64_read(&hwc->period_left) > 8*sample_period) {
2255 event->pmu->stop(event, PERF_EF_UPDATE);
2256 local64_set(&hwc->period_left, 0);
2257 event->pmu->start(event, PERF_EF_RELOAD);
2261 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
2263 struct perf_event *event;
2264 struct hw_perf_event *hwc;
2265 u64 interrupts, now;
2266 s64 delta;
2268 raw_spin_lock(&ctx->lock);
2269 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
2270 if (event->state != PERF_EVENT_STATE_ACTIVE)
2271 continue;
2273 if (!event_filter_match(event))
2274 continue;
2276 hwc = &event->hw;
2278 interrupts = hwc->interrupts;
2279 hwc->interrupts = 0;
2282 * unthrottle events on the tick
2284 if (interrupts == MAX_INTERRUPTS) {
2285 perf_log_throttle(event, 1);
2286 event->pmu->start(event, 0);
2289 if (!event->attr.freq || !event->attr.sample_freq)
2290 continue;
2292 event->pmu->read(event);
2293 now = local64_read(&event->count);
2294 delta = now - hwc->freq_count_stamp;
2295 hwc->freq_count_stamp = now;
2297 if (delta > 0)
2298 perf_adjust_period(event, period, delta);
2300 raw_spin_unlock(&ctx->lock);
2304 * Round-robin a context's events:
2306 static void rotate_ctx(struct perf_event_context *ctx)
2308 raw_spin_lock(&ctx->lock);
2311 * Rotate the first entry last of non-pinned groups. Rotation might be
2312 * disabled by the inheritance code.
2314 if (!ctx->rotate_disable)
2315 list_rotate_left(&ctx->flexible_groups);
2317 raw_spin_unlock(&ctx->lock);
2321 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
2322 * because they're strictly cpu affine and rotate_start is called with IRQs
2323 * disabled, while rotate_context is called from IRQ context.
2325 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
2327 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
2328 struct perf_event_context *ctx = NULL;
2329 int rotate = 0, remove = 1;
2331 if (cpuctx->ctx.nr_events) {
2332 remove = 0;
2333 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
2334 rotate = 1;
2337 ctx = cpuctx->task_ctx;
2338 if (ctx && ctx->nr_events) {
2339 remove = 0;
2340 if (ctx->nr_events != ctx->nr_active)
2341 rotate = 1;
2344 perf_pmu_disable(cpuctx->ctx.pmu);
2345 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
2346 if (ctx)
2347 perf_ctx_adjust_freq(ctx, interval);
2349 if (!rotate)
2350 goto done;
2352 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
2353 if (ctx)
2354 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
2356 rotate_ctx(&cpuctx->ctx);
2357 if (ctx)
2358 rotate_ctx(ctx);
2360 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, current);
2361 if (ctx)
2362 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
2364 done:
2365 if (remove)
2366 list_del_init(&cpuctx->rotation_list);
2368 perf_pmu_enable(cpuctx->ctx.pmu);
2371 void perf_event_task_tick(void)
2373 struct list_head *head = &__get_cpu_var(rotation_list);
2374 struct perf_cpu_context *cpuctx, *tmp;
2376 WARN_ON(!irqs_disabled());
2378 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
2379 if (cpuctx->jiffies_interval == 1 ||
2380 !(jiffies % cpuctx->jiffies_interval))
2381 perf_rotate_context(cpuctx);
2385 static int event_enable_on_exec(struct perf_event *event,
2386 struct perf_event_context *ctx)
2388 if (!event->attr.enable_on_exec)
2389 return 0;
2391 event->attr.enable_on_exec = 0;
2392 if (event->state >= PERF_EVENT_STATE_INACTIVE)
2393 return 0;
2395 __perf_event_mark_enabled(event, ctx);
2397 return 1;
2401 * Enable all of a task's events that have been marked enable-on-exec.
2402 * This expects task == current.
2404 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
2406 struct perf_event *event;
2407 unsigned long flags;
2408 int enabled = 0;
2409 int ret;
2411 local_irq_save(flags);
2412 if (!ctx || !ctx->nr_events)
2413 goto out;
2415 task_ctx_sched_out(ctx, EVENT_ALL);
2417 raw_spin_lock(&ctx->lock);
2419 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2420 ret = event_enable_on_exec(event, ctx);
2421 if (ret)
2422 enabled = 1;
2425 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2426 ret = event_enable_on_exec(event, ctx);
2427 if (ret)
2428 enabled = 1;
2432 * Unclone this context if we enabled any event.
2434 if (enabled)
2435 unclone_ctx(ctx);
2437 raw_spin_unlock(&ctx->lock);
2439 perf_event_context_sched_in(ctx, ctx->task);
2440 out:
2441 local_irq_restore(flags);
2445 * Cross CPU call to read the hardware event
2447 static void __perf_event_read(void *info)
2449 struct perf_event *event = info;
2450 struct perf_event_context *ctx = event->ctx;
2451 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2454 * If this is a task context, we need to check whether it is
2455 * the current task context of this cpu. If not it has been
2456 * scheduled out before the smp call arrived. In that case
2457 * event->count would have been updated to a recent sample
2458 * when the event was scheduled out.
2460 if (ctx->task && cpuctx->task_ctx != ctx)
2461 return;
2463 raw_spin_lock(&ctx->lock);
2464 if (ctx->is_active) {
2465 update_context_time(ctx);
2466 update_cgrp_time_from_event(event);
2468 update_event_times(event);
2469 if (event->state == PERF_EVENT_STATE_ACTIVE)
2470 event->pmu->read(event);
2471 raw_spin_unlock(&ctx->lock);
2474 static inline u64 perf_event_count(struct perf_event *event)
2476 return local64_read(&event->count) + atomic64_read(&event->child_count);
2479 static u64 perf_event_read(struct perf_event *event)
2482 * If event is enabled and currently active on a CPU, update the
2483 * value in the event structure:
2485 if (event->state == PERF_EVENT_STATE_ACTIVE) {
2486 smp_call_function_single(event->oncpu,
2487 __perf_event_read, event, 1);
2488 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2489 struct perf_event_context *ctx = event->ctx;
2490 unsigned long flags;
2492 raw_spin_lock_irqsave(&ctx->lock, flags);
2494 * may read while context is not active
2495 * (e.g., thread is blocked), in that case
2496 * we cannot update context time
2498 if (ctx->is_active) {
2499 update_context_time(ctx);
2500 update_cgrp_time_from_event(event);
2502 update_event_times(event);
2503 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2506 return perf_event_count(event);
2510 * Callchain support
2513 struct callchain_cpus_entries {
2514 struct rcu_head rcu_head;
2515 struct perf_callchain_entry *cpu_entries[0];
2518 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
2519 static atomic_t nr_callchain_events;
2520 static DEFINE_MUTEX(callchain_mutex);
2521 struct callchain_cpus_entries *callchain_cpus_entries;
2524 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
2525 struct pt_regs *regs)
2529 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
2530 struct pt_regs *regs)
2534 static void release_callchain_buffers_rcu(struct rcu_head *head)
2536 struct callchain_cpus_entries *entries;
2537 int cpu;
2539 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
2541 for_each_possible_cpu(cpu)
2542 kfree(entries->cpu_entries[cpu]);
2544 kfree(entries);
2547 static void release_callchain_buffers(void)
2549 struct callchain_cpus_entries *entries;
2551 entries = callchain_cpus_entries;
2552 rcu_assign_pointer(callchain_cpus_entries, NULL);
2553 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
2556 static int alloc_callchain_buffers(void)
2558 int cpu;
2559 int size;
2560 struct callchain_cpus_entries *entries;
2563 * We can't use the percpu allocation API for data that can be
2564 * accessed from NMI. Use a temporary manual per cpu allocation
2565 * until that gets sorted out.
2567 size = offsetof(struct callchain_cpus_entries, cpu_entries[nr_cpu_ids]);
2569 entries = kzalloc(size, GFP_KERNEL);
2570 if (!entries)
2571 return -ENOMEM;
2573 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
2575 for_each_possible_cpu(cpu) {
2576 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
2577 cpu_to_node(cpu));
2578 if (!entries->cpu_entries[cpu])
2579 goto fail;
2582 rcu_assign_pointer(callchain_cpus_entries, entries);
2584 return 0;
2586 fail:
2587 for_each_possible_cpu(cpu)
2588 kfree(entries->cpu_entries[cpu]);
2589 kfree(entries);
2591 return -ENOMEM;
2594 static int get_callchain_buffers(void)
2596 int err = 0;
2597 int count;
2599 mutex_lock(&callchain_mutex);
2601 count = atomic_inc_return(&nr_callchain_events);
2602 if (WARN_ON_ONCE(count < 1)) {
2603 err = -EINVAL;
2604 goto exit;
2607 if (count > 1) {
2608 /* If the allocation failed, give up */
2609 if (!callchain_cpus_entries)
2610 err = -ENOMEM;
2611 goto exit;
2614 err = alloc_callchain_buffers();
2615 if (err)
2616 release_callchain_buffers();
2617 exit:
2618 mutex_unlock(&callchain_mutex);
2620 return err;
2623 static void put_callchain_buffers(void)
2625 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2626 release_callchain_buffers();
2627 mutex_unlock(&callchain_mutex);
2631 static int get_recursion_context(int *recursion)
2633 int rctx;
2635 if (in_nmi())
2636 rctx = 3;
2637 else if (in_irq())
2638 rctx = 2;
2639 else if (in_softirq())
2640 rctx = 1;
2641 else
2642 rctx = 0;
2644 if (recursion[rctx])
2645 return -1;
2647 recursion[rctx]++;
2648 barrier();
2650 return rctx;
2653 static inline void put_recursion_context(int *recursion, int rctx)
2655 barrier();
2656 recursion[rctx]--;
2659 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2661 int cpu;
2662 struct callchain_cpus_entries *entries;
2664 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2665 if (*rctx == -1)
2666 return NULL;
2668 entries = rcu_dereference(callchain_cpus_entries);
2669 if (!entries)
2670 return NULL;
2672 cpu = smp_processor_id();
2674 return &entries->cpu_entries[cpu][*rctx];
2677 static void
2678 put_callchain_entry(int rctx)
2680 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2683 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2685 int rctx;
2686 struct perf_callchain_entry *entry;
2689 entry = get_callchain_entry(&rctx);
2690 if (rctx == -1)
2691 return NULL;
2693 if (!entry)
2694 goto exit_put;
2696 entry->nr = 0;
2698 if (!user_mode(regs)) {
2699 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2700 perf_callchain_kernel(entry, regs);
2701 if (current->mm)
2702 regs = task_pt_regs(current);
2703 else
2704 regs = NULL;
2707 if (regs) {
2708 perf_callchain_store(entry, PERF_CONTEXT_USER);
2709 perf_callchain_user(entry, regs);
2712 exit_put:
2713 put_callchain_entry(rctx);
2715 return entry;
2719 * Initialize the perf_event context in a task_struct:
2721 static void __perf_event_init_context(struct perf_event_context *ctx)
2723 raw_spin_lock_init(&ctx->lock);
2724 mutex_init(&ctx->mutex);
2725 INIT_LIST_HEAD(&ctx->pinned_groups);
2726 INIT_LIST_HEAD(&ctx->flexible_groups);
2727 INIT_LIST_HEAD(&ctx->event_list);
2728 atomic_set(&ctx->refcount, 1);
2731 static struct perf_event_context *
2732 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2734 struct perf_event_context *ctx;
2736 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2737 if (!ctx)
2738 return NULL;
2740 __perf_event_init_context(ctx);
2741 if (task) {
2742 ctx->task = task;
2743 get_task_struct(task);
2745 ctx->pmu = pmu;
2747 return ctx;
2750 static struct task_struct *
2751 find_lively_task_by_vpid(pid_t vpid)
2753 struct task_struct *task;
2754 int err;
2756 rcu_read_lock();
2757 if (!vpid)
2758 task = current;
2759 else
2760 task = find_task_by_vpid(vpid);
2761 if (task)
2762 get_task_struct(task);
2763 rcu_read_unlock();
2765 if (!task)
2766 return ERR_PTR(-ESRCH);
2768 /* Reuse ptrace permission checks for now. */
2769 err = -EACCES;
2770 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2771 goto errout;
2773 return task;
2774 errout:
2775 put_task_struct(task);
2776 return ERR_PTR(err);
2781 * Returns a matching context with refcount and pincount.
2783 static struct perf_event_context *
2784 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2786 struct perf_event_context *ctx;
2787 struct perf_cpu_context *cpuctx;
2788 unsigned long flags;
2789 int ctxn, err;
2791 if (!task) {
2792 /* Must be root to operate on a CPU event: */
2793 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2794 return ERR_PTR(-EACCES);
2797 * We could be clever and allow to attach a event to an
2798 * offline CPU and activate it when the CPU comes up, but
2799 * that's for later.
2801 if (!cpu_online(cpu))
2802 return ERR_PTR(-ENODEV);
2804 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2805 ctx = &cpuctx->ctx;
2806 get_ctx(ctx);
2807 ++ctx->pin_count;
2809 return ctx;
2812 err = -EINVAL;
2813 ctxn = pmu->task_ctx_nr;
2814 if (ctxn < 0)
2815 goto errout;
2817 retry:
2818 ctx = perf_lock_task_context(task, ctxn, &flags);
2819 if (ctx) {
2820 unclone_ctx(ctx);
2821 ++ctx->pin_count;
2822 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2825 if (!ctx) {
2826 ctx = alloc_perf_context(pmu, task);
2827 err = -ENOMEM;
2828 if (!ctx)
2829 goto errout;
2831 get_ctx(ctx);
2833 err = 0;
2834 mutex_lock(&task->perf_event_mutex);
2836 * If it has already passed perf_event_exit_task().
2837 * we must see PF_EXITING, it takes this mutex too.
2839 if (task->flags & PF_EXITING)
2840 err = -ESRCH;
2841 else if (task->perf_event_ctxp[ctxn])
2842 err = -EAGAIN;
2843 else {
2844 ++ctx->pin_count;
2845 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
2847 mutex_unlock(&task->perf_event_mutex);
2849 if (unlikely(err)) {
2850 put_task_struct(task);
2851 kfree(ctx);
2853 if (err == -EAGAIN)
2854 goto retry;
2855 goto errout;
2859 return ctx;
2861 errout:
2862 return ERR_PTR(err);
2865 static void perf_event_free_filter(struct perf_event *event);
2867 static void free_event_rcu(struct rcu_head *head)
2869 struct perf_event *event;
2871 event = container_of(head, struct perf_event, rcu_head);
2872 if (event->ns)
2873 put_pid_ns(event->ns);
2874 perf_event_free_filter(event);
2875 kfree(event);
2878 static void perf_buffer_put(struct perf_buffer *buffer);
2880 static void free_event(struct perf_event *event)
2882 irq_work_sync(&event->pending);
2884 if (!event->parent) {
2885 if (event->attach_state & PERF_ATTACH_TASK)
2886 jump_label_dec(&perf_sched_events);
2887 if (event->attr.mmap || event->attr.mmap_data)
2888 atomic_dec(&nr_mmap_events);
2889 if (event->attr.comm)
2890 atomic_dec(&nr_comm_events);
2891 if (event->attr.task)
2892 atomic_dec(&nr_task_events);
2893 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2894 put_callchain_buffers();
2895 if (is_cgroup_event(event)) {
2896 atomic_dec(&per_cpu(perf_cgroup_events, event->cpu));
2897 jump_label_dec(&perf_sched_events);
2901 if (event->buffer) {
2902 perf_buffer_put(event->buffer);
2903 event->buffer = NULL;
2906 if (is_cgroup_event(event))
2907 perf_detach_cgroup(event);
2909 if (event->destroy)
2910 event->destroy(event);
2912 if (event->ctx)
2913 put_ctx(event->ctx);
2915 call_rcu(&event->rcu_head, free_event_rcu);
2918 int perf_event_release_kernel(struct perf_event *event)
2920 struct perf_event_context *ctx = event->ctx;
2923 * Remove from the PMU, can't get re-enabled since we got
2924 * here because the last ref went.
2926 perf_event_disable(event);
2928 WARN_ON_ONCE(ctx->parent_ctx);
2930 * There are two ways this annotation is useful:
2932 * 1) there is a lock recursion from perf_event_exit_task
2933 * see the comment there.
2935 * 2) there is a lock-inversion with mmap_sem through
2936 * perf_event_read_group(), which takes faults while
2937 * holding ctx->mutex, however this is called after
2938 * the last filedesc died, so there is no possibility
2939 * to trigger the AB-BA case.
2941 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2942 raw_spin_lock_irq(&ctx->lock);
2943 perf_group_detach(event);
2944 list_del_event(event, ctx);
2945 raw_spin_unlock_irq(&ctx->lock);
2946 mutex_unlock(&ctx->mutex);
2948 free_event(event);
2950 return 0;
2952 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2955 * Called when the last reference to the file is gone.
2957 static int perf_release(struct inode *inode, struct file *file)
2959 struct perf_event *event = file->private_data;
2960 struct task_struct *owner;
2962 file->private_data = NULL;
2964 rcu_read_lock();
2965 owner = ACCESS_ONCE(event->owner);
2967 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2968 * !owner it means the list deletion is complete and we can indeed
2969 * free this event, otherwise we need to serialize on
2970 * owner->perf_event_mutex.
2972 smp_read_barrier_depends();
2973 if (owner) {
2975 * Since delayed_put_task_struct() also drops the last
2976 * task reference we can safely take a new reference
2977 * while holding the rcu_read_lock().
2979 get_task_struct(owner);
2981 rcu_read_unlock();
2983 if (owner) {
2984 mutex_lock(&owner->perf_event_mutex);
2986 * We have to re-check the event->owner field, if it is cleared
2987 * we raced with perf_event_exit_task(), acquiring the mutex
2988 * ensured they're done, and we can proceed with freeing the
2989 * event.
2991 if (event->owner)
2992 list_del_init(&event->owner_entry);
2993 mutex_unlock(&owner->perf_event_mutex);
2994 put_task_struct(owner);
2997 return perf_event_release_kernel(event);
3000 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
3002 struct perf_event *child;
3003 u64 total = 0;
3005 *enabled = 0;
3006 *running = 0;
3008 mutex_lock(&event->child_mutex);
3009 total += perf_event_read(event);
3010 *enabled += event->total_time_enabled +
3011 atomic64_read(&event->child_total_time_enabled);
3012 *running += event->total_time_running +
3013 atomic64_read(&event->child_total_time_running);
3015 list_for_each_entry(child, &event->child_list, child_list) {
3016 total += perf_event_read(child);
3017 *enabled += child->total_time_enabled;
3018 *running += child->total_time_running;
3020 mutex_unlock(&event->child_mutex);
3022 return total;
3024 EXPORT_SYMBOL_GPL(perf_event_read_value);
3026 static int perf_event_read_group(struct perf_event *event,
3027 u64 read_format, char __user *buf)
3029 struct perf_event *leader = event->group_leader, *sub;
3030 int n = 0, size = 0, ret = -EFAULT;
3031 struct perf_event_context *ctx = leader->ctx;
3032 u64 values[5];
3033 u64 count, enabled, running;
3035 mutex_lock(&ctx->mutex);
3036 count = perf_event_read_value(leader, &enabled, &running);
3038 values[n++] = 1 + leader->nr_siblings;
3039 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3040 values[n++] = enabled;
3041 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3042 values[n++] = running;
3043 values[n++] = count;
3044 if (read_format & PERF_FORMAT_ID)
3045 values[n++] = primary_event_id(leader);
3047 size = n * sizeof(u64);
3049 if (copy_to_user(buf, values, size))
3050 goto unlock;
3052 ret = size;
3054 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3055 n = 0;
3057 values[n++] = perf_event_read_value(sub, &enabled, &running);
3058 if (read_format & PERF_FORMAT_ID)
3059 values[n++] = primary_event_id(sub);
3061 size = n * sizeof(u64);
3063 if (copy_to_user(buf + ret, values, size)) {
3064 ret = -EFAULT;
3065 goto unlock;
3068 ret += size;
3070 unlock:
3071 mutex_unlock(&ctx->mutex);
3073 return ret;
3076 static int perf_event_read_one(struct perf_event *event,
3077 u64 read_format, char __user *buf)
3079 u64 enabled, running;
3080 u64 values[4];
3081 int n = 0;
3083 values[n++] = perf_event_read_value(event, &enabled, &running);
3084 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3085 values[n++] = enabled;
3086 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3087 values[n++] = running;
3088 if (read_format & PERF_FORMAT_ID)
3089 values[n++] = primary_event_id(event);
3091 if (copy_to_user(buf, values, n * sizeof(u64)))
3092 return -EFAULT;
3094 return n * sizeof(u64);
3098 * Read the performance event - simple non blocking version for now
3100 static ssize_t
3101 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
3103 u64 read_format = event->attr.read_format;
3104 int ret;
3107 * Return end-of-file for a read on a event that is in
3108 * error state (i.e. because it was pinned but it couldn't be
3109 * scheduled on to the CPU at some point).
3111 if (event->state == PERF_EVENT_STATE_ERROR)
3112 return 0;
3114 if (count < event->read_size)
3115 return -ENOSPC;
3117 WARN_ON_ONCE(event->ctx->parent_ctx);
3118 if (read_format & PERF_FORMAT_GROUP)
3119 ret = perf_event_read_group(event, read_format, buf);
3120 else
3121 ret = perf_event_read_one(event, read_format, buf);
3123 return ret;
3126 static ssize_t
3127 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
3129 struct perf_event *event = file->private_data;
3131 return perf_read_hw(event, buf, count);
3134 static unsigned int perf_poll(struct file *file, poll_table *wait)
3136 struct perf_event *event = file->private_data;
3137 struct perf_buffer *buffer;
3138 unsigned int events = POLL_HUP;
3140 rcu_read_lock();
3141 buffer = rcu_dereference(event->buffer);
3142 if (buffer)
3143 events = atomic_xchg(&buffer->poll, 0);
3144 rcu_read_unlock();
3146 poll_wait(file, &event->waitq, wait);
3148 return events;
3151 static void perf_event_reset(struct perf_event *event)
3153 (void)perf_event_read(event);
3154 local64_set(&event->count, 0);
3155 perf_event_update_userpage(event);
3159 * Holding the top-level event's child_mutex means that any
3160 * descendant process that has inherited this event will block
3161 * in sync_child_event if it goes to exit, thus satisfying the
3162 * task existence requirements of perf_event_enable/disable.
3164 static void perf_event_for_each_child(struct perf_event *event,
3165 void (*func)(struct perf_event *))
3167 struct perf_event *child;
3169 WARN_ON_ONCE(event->ctx->parent_ctx);
3170 mutex_lock(&event->child_mutex);
3171 func(event);
3172 list_for_each_entry(child, &event->child_list, child_list)
3173 func(child);
3174 mutex_unlock(&event->child_mutex);
3177 static void perf_event_for_each(struct perf_event *event,
3178 void (*func)(struct perf_event *))
3180 struct perf_event_context *ctx = event->ctx;
3181 struct perf_event *sibling;
3183 WARN_ON_ONCE(ctx->parent_ctx);
3184 mutex_lock(&ctx->mutex);
3185 event = event->group_leader;
3187 perf_event_for_each_child(event, func);
3188 func(event);
3189 list_for_each_entry(sibling, &event->sibling_list, group_entry)
3190 perf_event_for_each_child(event, func);
3191 mutex_unlock(&ctx->mutex);
3194 static int perf_event_period(struct perf_event *event, u64 __user *arg)
3196 struct perf_event_context *ctx = event->ctx;
3197 int ret = 0;
3198 u64 value;
3200 if (!is_sampling_event(event))
3201 return -EINVAL;
3203 if (copy_from_user(&value, arg, sizeof(value)))
3204 return -EFAULT;
3206 if (!value)
3207 return -EINVAL;
3209 raw_spin_lock_irq(&ctx->lock);
3210 if (event->attr.freq) {
3211 if (value > sysctl_perf_event_sample_rate) {
3212 ret = -EINVAL;
3213 goto unlock;
3216 event->attr.sample_freq = value;
3217 } else {
3218 event->attr.sample_period = value;
3219 event->hw.sample_period = value;
3221 unlock:
3222 raw_spin_unlock_irq(&ctx->lock);
3224 return ret;
3227 static const struct file_operations perf_fops;
3229 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
3231 struct file *file;
3233 file = fget_light(fd, fput_needed);
3234 if (!file)
3235 return ERR_PTR(-EBADF);
3237 if (file->f_op != &perf_fops) {
3238 fput_light(file, *fput_needed);
3239 *fput_needed = 0;
3240 return ERR_PTR(-EBADF);
3243 return file->private_data;
3246 static int perf_event_set_output(struct perf_event *event,
3247 struct perf_event *output_event);
3248 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
3250 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
3252 struct perf_event *event = file->private_data;
3253 void (*func)(struct perf_event *);
3254 u32 flags = arg;
3256 switch (cmd) {
3257 case PERF_EVENT_IOC_ENABLE:
3258 func = perf_event_enable;
3259 break;
3260 case PERF_EVENT_IOC_DISABLE:
3261 func = perf_event_disable;
3262 break;
3263 case PERF_EVENT_IOC_RESET:
3264 func = perf_event_reset;
3265 break;
3267 case PERF_EVENT_IOC_REFRESH:
3268 return perf_event_refresh(event, arg);
3270 case PERF_EVENT_IOC_PERIOD:
3271 return perf_event_period(event, (u64 __user *)arg);
3273 case PERF_EVENT_IOC_SET_OUTPUT:
3275 struct perf_event *output_event = NULL;
3276 int fput_needed = 0;
3277 int ret;
3279 if (arg != -1) {
3280 output_event = perf_fget_light(arg, &fput_needed);
3281 if (IS_ERR(output_event))
3282 return PTR_ERR(output_event);
3285 ret = perf_event_set_output(event, output_event);
3286 if (output_event)
3287 fput_light(output_event->filp, fput_needed);
3289 return ret;
3292 case PERF_EVENT_IOC_SET_FILTER:
3293 return perf_event_set_filter(event, (void __user *)arg);
3295 default:
3296 return -ENOTTY;
3299 if (flags & PERF_IOC_FLAG_GROUP)
3300 perf_event_for_each(event, func);
3301 else
3302 perf_event_for_each_child(event, func);
3304 return 0;
3307 int perf_event_task_enable(void)
3309 struct perf_event *event;
3311 mutex_lock(&current->perf_event_mutex);
3312 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3313 perf_event_for_each_child(event, perf_event_enable);
3314 mutex_unlock(&current->perf_event_mutex);
3316 return 0;
3319 int perf_event_task_disable(void)
3321 struct perf_event *event;
3323 mutex_lock(&current->perf_event_mutex);
3324 list_for_each_entry(event, &current->perf_event_list, owner_entry)
3325 perf_event_for_each_child(event, perf_event_disable);
3326 mutex_unlock(&current->perf_event_mutex);
3328 return 0;
3331 #ifndef PERF_EVENT_INDEX_OFFSET
3332 # define PERF_EVENT_INDEX_OFFSET 0
3333 #endif
3335 static int perf_event_index(struct perf_event *event)
3337 if (event->hw.state & PERF_HES_STOPPED)
3338 return 0;
3340 if (event->state != PERF_EVENT_STATE_ACTIVE)
3341 return 0;
3343 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
3347 * Callers need to ensure there can be no nesting of this function, otherwise
3348 * the seqlock logic goes bad. We can not serialize this because the arch
3349 * code calls this from NMI context.
3351 void perf_event_update_userpage(struct perf_event *event)
3353 struct perf_event_mmap_page *userpg;
3354 struct perf_buffer *buffer;
3356 rcu_read_lock();
3357 buffer = rcu_dereference(event->buffer);
3358 if (!buffer)
3359 goto unlock;
3361 userpg = buffer->user_page;
3364 * Disable preemption so as to not let the corresponding user-space
3365 * spin too long if we get preempted.
3367 preempt_disable();
3368 ++userpg->lock;
3369 barrier();
3370 userpg->index = perf_event_index(event);
3371 userpg->offset = perf_event_count(event);
3372 if (event->state == PERF_EVENT_STATE_ACTIVE)
3373 userpg->offset -= local64_read(&event->hw.prev_count);
3375 userpg->time_enabled = event->total_time_enabled +
3376 atomic64_read(&event->child_total_time_enabled);
3378 userpg->time_running = event->total_time_running +
3379 atomic64_read(&event->child_total_time_running);
3381 barrier();
3382 ++userpg->lock;
3383 preempt_enable();
3384 unlock:
3385 rcu_read_unlock();
3388 static unsigned long perf_data_size(struct perf_buffer *buffer);
3390 static void
3391 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
3393 long max_size = perf_data_size(buffer);
3395 if (watermark)
3396 buffer->watermark = min(max_size, watermark);
3398 if (!buffer->watermark)
3399 buffer->watermark = max_size / 2;
3401 if (flags & PERF_BUFFER_WRITABLE)
3402 buffer->writable = 1;
3404 atomic_set(&buffer->refcount, 1);
3407 #ifndef CONFIG_PERF_USE_VMALLOC
3410 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
3413 static struct page *
3414 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3416 if (pgoff > buffer->nr_pages)
3417 return NULL;
3419 if (pgoff == 0)
3420 return virt_to_page(buffer->user_page);
3422 return virt_to_page(buffer->data_pages[pgoff - 1]);
3425 static void *perf_mmap_alloc_page(int cpu)
3427 struct page *page;
3428 int node;
3430 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
3431 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
3432 if (!page)
3433 return NULL;
3435 return page_address(page);
3438 static struct perf_buffer *
3439 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3441 struct perf_buffer *buffer;
3442 unsigned long size;
3443 int i;
3445 size = sizeof(struct perf_buffer);
3446 size += nr_pages * sizeof(void *);
3448 buffer = kzalloc(size, GFP_KERNEL);
3449 if (!buffer)
3450 goto fail;
3452 buffer->user_page = perf_mmap_alloc_page(cpu);
3453 if (!buffer->user_page)
3454 goto fail_user_page;
3456 for (i = 0; i < nr_pages; i++) {
3457 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
3458 if (!buffer->data_pages[i])
3459 goto fail_data_pages;
3462 buffer->nr_pages = nr_pages;
3464 perf_buffer_init(buffer, watermark, flags);
3466 return buffer;
3468 fail_data_pages:
3469 for (i--; i >= 0; i--)
3470 free_page((unsigned long)buffer->data_pages[i]);
3472 free_page((unsigned long)buffer->user_page);
3474 fail_user_page:
3475 kfree(buffer);
3477 fail:
3478 return NULL;
3481 static void perf_mmap_free_page(unsigned long addr)
3483 struct page *page = virt_to_page((void *)addr);
3485 page->mapping = NULL;
3486 __free_page(page);
3489 static void perf_buffer_free(struct perf_buffer *buffer)
3491 int i;
3493 perf_mmap_free_page((unsigned long)buffer->user_page);
3494 for (i = 0; i < buffer->nr_pages; i++)
3495 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
3496 kfree(buffer);
3499 static inline int page_order(struct perf_buffer *buffer)
3501 return 0;
3504 #else
3507 * Back perf_mmap() with vmalloc memory.
3509 * Required for architectures that have d-cache aliasing issues.
3512 static inline int page_order(struct perf_buffer *buffer)
3514 return buffer->page_order;
3517 static struct page *
3518 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
3520 if (pgoff > (1UL << page_order(buffer)))
3521 return NULL;
3523 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
3526 static void perf_mmap_unmark_page(void *addr)
3528 struct page *page = vmalloc_to_page(addr);
3530 page->mapping = NULL;
3533 static void perf_buffer_free_work(struct work_struct *work)
3535 struct perf_buffer *buffer;
3536 void *base;
3537 int i, nr;
3539 buffer = container_of(work, struct perf_buffer, work);
3540 nr = 1 << page_order(buffer);
3542 base = buffer->user_page;
3543 for (i = 0; i < nr + 1; i++)
3544 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
3546 vfree(base);
3547 kfree(buffer);
3550 static void perf_buffer_free(struct perf_buffer *buffer)
3552 schedule_work(&buffer->work);
3555 static struct perf_buffer *
3556 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
3558 struct perf_buffer *buffer;
3559 unsigned long size;
3560 void *all_buf;
3562 size = sizeof(struct perf_buffer);
3563 size += sizeof(void *);
3565 buffer = kzalloc(size, GFP_KERNEL);
3566 if (!buffer)
3567 goto fail;
3569 INIT_WORK(&buffer->work, perf_buffer_free_work);
3571 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
3572 if (!all_buf)
3573 goto fail_all_buf;
3575 buffer->user_page = all_buf;
3576 buffer->data_pages[0] = all_buf + PAGE_SIZE;
3577 buffer->page_order = ilog2(nr_pages);
3578 buffer->nr_pages = 1;
3580 perf_buffer_init(buffer, watermark, flags);
3582 return buffer;
3584 fail_all_buf:
3585 kfree(buffer);
3587 fail:
3588 return NULL;
3591 #endif
3593 static unsigned long perf_data_size(struct perf_buffer *buffer)
3595 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
3598 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3600 struct perf_event *event = vma->vm_file->private_data;
3601 struct perf_buffer *buffer;
3602 int ret = VM_FAULT_SIGBUS;
3604 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3605 if (vmf->pgoff == 0)
3606 ret = 0;
3607 return ret;
3610 rcu_read_lock();
3611 buffer = rcu_dereference(event->buffer);
3612 if (!buffer)
3613 goto unlock;
3615 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3616 goto unlock;
3618 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3619 if (!vmf->page)
3620 goto unlock;
3622 get_page(vmf->page);
3623 vmf->page->mapping = vma->vm_file->f_mapping;
3624 vmf->page->index = vmf->pgoff;
3626 ret = 0;
3627 unlock:
3628 rcu_read_unlock();
3630 return ret;
3633 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3635 struct perf_buffer *buffer;
3637 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3638 perf_buffer_free(buffer);
3641 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3643 struct perf_buffer *buffer;
3645 rcu_read_lock();
3646 buffer = rcu_dereference(event->buffer);
3647 if (buffer) {
3648 if (!atomic_inc_not_zero(&buffer->refcount))
3649 buffer = NULL;
3651 rcu_read_unlock();
3653 return buffer;
3656 static void perf_buffer_put(struct perf_buffer *buffer)
3658 if (!atomic_dec_and_test(&buffer->refcount))
3659 return;
3661 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3664 static void perf_mmap_open(struct vm_area_struct *vma)
3666 struct perf_event *event = vma->vm_file->private_data;
3668 atomic_inc(&event->mmap_count);
3671 static void perf_mmap_close(struct vm_area_struct *vma)
3673 struct perf_event *event = vma->vm_file->private_data;
3675 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3676 unsigned long size = perf_data_size(event->buffer);
3677 struct user_struct *user = event->mmap_user;
3678 struct perf_buffer *buffer = event->buffer;
3680 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3681 vma->vm_mm->locked_vm -= event->mmap_locked;
3682 rcu_assign_pointer(event->buffer, NULL);
3683 mutex_unlock(&event->mmap_mutex);
3685 perf_buffer_put(buffer);
3686 free_uid(user);
3690 static const struct vm_operations_struct perf_mmap_vmops = {
3691 .open = perf_mmap_open,
3692 .close = perf_mmap_close,
3693 .fault = perf_mmap_fault,
3694 .page_mkwrite = perf_mmap_fault,
3697 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3699 struct perf_event *event = file->private_data;
3700 unsigned long user_locked, user_lock_limit;
3701 struct user_struct *user = current_user();
3702 unsigned long locked, lock_limit;
3703 struct perf_buffer *buffer;
3704 unsigned long vma_size;
3705 unsigned long nr_pages;
3706 long user_extra, extra;
3707 int ret = 0, flags = 0;
3710 * Don't allow mmap() of inherited per-task counters. This would
3711 * create a performance issue due to all children writing to the
3712 * same buffer.
3714 if (event->cpu == -1 && event->attr.inherit)
3715 return -EINVAL;
3717 if (!(vma->vm_flags & VM_SHARED))
3718 return -EINVAL;
3720 vma_size = vma->vm_end - vma->vm_start;
3721 nr_pages = (vma_size / PAGE_SIZE) - 1;
3724 * If we have buffer pages ensure they're a power-of-two number, so we
3725 * can do bitmasks instead of modulo.
3727 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3728 return -EINVAL;
3730 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3731 return -EINVAL;
3733 if (vma->vm_pgoff != 0)
3734 return -EINVAL;
3736 WARN_ON_ONCE(event->ctx->parent_ctx);
3737 mutex_lock(&event->mmap_mutex);
3738 if (event->buffer) {
3739 if (event->buffer->nr_pages == nr_pages)
3740 atomic_inc(&event->buffer->refcount);
3741 else
3742 ret = -EINVAL;
3743 goto unlock;
3746 user_extra = nr_pages + 1;
3747 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3750 * Increase the limit linearly with more CPUs:
3752 user_lock_limit *= num_online_cpus();
3754 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3756 extra = 0;
3757 if (user_locked > user_lock_limit)
3758 extra = user_locked - user_lock_limit;
3760 lock_limit = rlimit(RLIMIT_MEMLOCK);
3761 lock_limit >>= PAGE_SHIFT;
3762 locked = vma->vm_mm->locked_vm + extra;
3764 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3765 !capable(CAP_IPC_LOCK)) {
3766 ret = -EPERM;
3767 goto unlock;
3770 WARN_ON(event->buffer);
3772 if (vma->vm_flags & VM_WRITE)
3773 flags |= PERF_BUFFER_WRITABLE;
3775 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3776 event->cpu, flags);
3777 if (!buffer) {
3778 ret = -ENOMEM;
3779 goto unlock;
3781 rcu_assign_pointer(event->buffer, buffer);
3783 atomic_long_add(user_extra, &user->locked_vm);
3784 event->mmap_locked = extra;
3785 event->mmap_user = get_current_user();
3786 vma->vm_mm->locked_vm += event->mmap_locked;
3788 unlock:
3789 if (!ret)
3790 atomic_inc(&event->mmap_count);
3791 mutex_unlock(&event->mmap_mutex);
3793 vma->vm_flags |= VM_RESERVED;
3794 vma->vm_ops = &perf_mmap_vmops;
3796 return ret;
3799 static int perf_fasync(int fd, struct file *filp, int on)
3801 struct inode *inode = filp->f_path.dentry->d_inode;
3802 struct perf_event *event = filp->private_data;
3803 int retval;
3805 mutex_lock(&inode->i_mutex);
3806 retval = fasync_helper(fd, filp, on, &event->fasync);
3807 mutex_unlock(&inode->i_mutex);
3809 if (retval < 0)
3810 return retval;
3812 return 0;
3815 static const struct file_operations perf_fops = {
3816 .llseek = no_llseek,
3817 .release = perf_release,
3818 .read = perf_read,
3819 .poll = perf_poll,
3820 .unlocked_ioctl = perf_ioctl,
3821 .compat_ioctl = perf_ioctl,
3822 .mmap = perf_mmap,
3823 .fasync = perf_fasync,
3827 * Perf event wakeup
3829 * If there's data, ensure we set the poll() state and publish everything
3830 * to user-space before waking everybody up.
3833 void perf_event_wakeup(struct perf_event *event)
3835 wake_up_all(&event->waitq);
3837 if (event->pending_kill) {
3838 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3839 event->pending_kill = 0;
3843 static void perf_pending_event(struct irq_work *entry)
3845 struct perf_event *event = container_of(entry,
3846 struct perf_event, pending);
3848 if (event->pending_disable) {
3849 event->pending_disable = 0;
3850 __perf_event_disable(event);
3853 if (event->pending_wakeup) {
3854 event->pending_wakeup = 0;
3855 perf_event_wakeup(event);
3860 * We assume there is only KVM supporting the callbacks.
3861 * Later on, we might change it to a list if there is
3862 * another virtualization implementation supporting the callbacks.
3864 struct perf_guest_info_callbacks *perf_guest_cbs;
3866 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3868 perf_guest_cbs = cbs;
3869 return 0;
3871 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3873 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3875 perf_guest_cbs = NULL;
3876 return 0;
3878 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3881 * Output
3883 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3884 unsigned long offset, unsigned long head)
3886 unsigned long mask;
3888 if (!buffer->writable)
3889 return true;
3891 mask = perf_data_size(buffer) - 1;
3893 offset = (offset - tail) & mask;
3894 head = (head - tail) & mask;
3896 if ((int)(head - offset) < 0)
3897 return false;
3899 return true;
3902 static void perf_output_wakeup(struct perf_output_handle *handle)
3904 atomic_set(&handle->buffer->poll, POLL_IN);
3906 if (handle->nmi) {
3907 handle->event->pending_wakeup = 1;
3908 irq_work_queue(&handle->event->pending);
3909 } else
3910 perf_event_wakeup(handle->event);
3914 * We need to ensure a later event_id doesn't publish a head when a former
3915 * event isn't done writing. However since we need to deal with NMIs we
3916 * cannot fully serialize things.
3918 * We only publish the head (and generate a wakeup) when the outer-most
3919 * event completes.
3921 static void perf_output_get_handle(struct perf_output_handle *handle)
3923 struct perf_buffer *buffer = handle->buffer;
3925 preempt_disable();
3926 local_inc(&buffer->nest);
3927 handle->wakeup = local_read(&buffer->wakeup);
3930 static void perf_output_put_handle(struct perf_output_handle *handle)
3932 struct perf_buffer *buffer = handle->buffer;
3933 unsigned long head;
3935 again:
3936 head = local_read(&buffer->head);
3939 * IRQ/NMI can happen here, which means we can miss a head update.
3942 if (!local_dec_and_test(&buffer->nest))
3943 goto out;
3946 * Publish the known good head. Rely on the full barrier implied
3947 * by atomic_dec_and_test() order the buffer->head read and this
3948 * write.
3950 buffer->user_page->data_head = head;
3953 * Now check if we missed an update, rely on the (compiler)
3954 * barrier in atomic_dec_and_test() to re-read buffer->head.
3956 if (unlikely(head != local_read(&buffer->head))) {
3957 local_inc(&buffer->nest);
3958 goto again;
3961 if (handle->wakeup != local_read(&buffer->wakeup))
3962 perf_output_wakeup(handle);
3964 out:
3965 preempt_enable();
3968 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3969 const void *buf, unsigned int len)
3971 do {
3972 unsigned long size = min_t(unsigned long, handle->size, len);
3974 memcpy(handle->addr, buf, size);
3976 len -= size;
3977 handle->addr += size;
3978 buf += size;
3979 handle->size -= size;
3980 if (!handle->size) {
3981 struct perf_buffer *buffer = handle->buffer;
3983 handle->page++;
3984 handle->page &= buffer->nr_pages - 1;
3985 handle->addr = buffer->data_pages[handle->page];
3986 handle->size = PAGE_SIZE << page_order(buffer);
3988 } while (len);
3991 static void __perf_event_header__init_id(struct perf_event_header *header,
3992 struct perf_sample_data *data,
3993 struct perf_event *event)
3995 u64 sample_type = event->attr.sample_type;
3997 data->type = sample_type;
3998 header->size += event->id_header_size;
4000 if (sample_type & PERF_SAMPLE_TID) {
4001 /* namespace issues */
4002 data->tid_entry.pid = perf_event_pid(event, current);
4003 data->tid_entry.tid = perf_event_tid(event, current);
4006 if (sample_type & PERF_SAMPLE_TIME)
4007 data->time = perf_clock();
4009 if (sample_type & PERF_SAMPLE_ID)
4010 data->id = primary_event_id(event);
4012 if (sample_type & PERF_SAMPLE_STREAM_ID)
4013 data->stream_id = event->id;
4015 if (sample_type & PERF_SAMPLE_CPU) {
4016 data->cpu_entry.cpu = raw_smp_processor_id();
4017 data->cpu_entry.reserved = 0;
4021 static void perf_event_header__init_id(struct perf_event_header *header,
4022 struct perf_sample_data *data,
4023 struct perf_event *event)
4025 if (event->attr.sample_id_all)
4026 __perf_event_header__init_id(header, data, event);
4029 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
4030 struct perf_sample_data *data)
4032 u64 sample_type = data->type;
4034 if (sample_type & PERF_SAMPLE_TID)
4035 perf_output_put(handle, data->tid_entry);
4037 if (sample_type & PERF_SAMPLE_TIME)
4038 perf_output_put(handle, data->time);
4040 if (sample_type & PERF_SAMPLE_ID)
4041 perf_output_put(handle, data->id);
4043 if (sample_type & PERF_SAMPLE_STREAM_ID)
4044 perf_output_put(handle, data->stream_id);
4046 if (sample_type & PERF_SAMPLE_CPU)
4047 perf_output_put(handle, data->cpu_entry);
4050 static void perf_event__output_id_sample(struct perf_event *event,
4051 struct perf_output_handle *handle,
4052 struct perf_sample_data *sample)
4054 if (event->attr.sample_id_all)
4055 __perf_event__output_id_sample(handle, sample);
4058 int perf_output_begin(struct perf_output_handle *handle,
4059 struct perf_event *event, unsigned int size,
4060 int nmi, int sample)
4062 struct perf_buffer *buffer;
4063 unsigned long tail, offset, head;
4064 int have_lost;
4065 struct perf_sample_data sample_data;
4066 struct {
4067 struct perf_event_header header;
4068 u64 id;
4069 u64 lost;
4070 } lost_event;
4072 rcu_read_lock();
4074 * For inherited events we send all the output towards the parent.
4076 if (event->parent)
4077 event = event->parent;
4079 buffer = rcu_dereference(event->buffer);
4080 if (!buffer)
4081 goto out;
4083 handle->buffer = buffer;
4084 handle->event = event;
4085 handle->nmi = nmi;
4086 handle->sample = sample;
4088 if (!buffer->nr_pages)
4089 goto out;
4091 have_lost = local_read(&buffer->lost);
4092 if (have_lost) {
4093 lost_event.header.size = sizeof(lost_event);
4094 perf_event_header__init_id(&lost_event.header, &sample_data,
4095 event);
4096 size += lost_event.header.size;
4099 perf_output_get_handle(handle);
4101 do {
4103 * Userspace could choose to issue a mb() before updating the
4104 * tail pointer. So that all reads will be completed before the
4105 * write is issued.
4107 tail = ACCESS_ONCE(buffer->user_page->data_tail);
4108 smp_rmb();
4109 offset = head = local_read(&buffer->head);
4110 head += size;
4111 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
4112 goto fail;
4113 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
4115 if (head - local_read(&buffer->wakeup) > buffer->watermark)
4116 local_add(buffer->watermark, &buffer->wakeup);
4118 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
4119 handle->page &= buffer->nr_pages - 1;
4120 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
4121 handle->addr = buffer->data_pages[handle->page];
4122 handle->addr += handle->size;
4123 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
4125 if (have_lost) {
4126 lost_event.header.type = PERF_RECORD_LOST;
4127 lost_event.header.misc = 0;
4128 lost_event.id = event->id;
4129 lost_event.lost = local_xchg(&buffer->lost, 0);
4131 perf_output_put(handle, lost_event);
4132 perf_event__output_id_sample(event, handle, &sample_data);
4135 return 0;
4137 fail:
4138 local_inc(&buffer->lost);
4139 perf_output_put_handle(handle);
4140 out:
4141 rcu_read_unlock();
4143 return -ENOSPC;
4146 void perf_output_end(struct perf_output_handle *handle)
4148 struct perf_event *event = handle->event;
4149 struct perf_buffer *buffer = handle->buffer;
4151 int wakeup_events = event->attr.wakeup_events;
4153 if (handle->sample && wakeup_events) {
4154 int events = local_inc_return(&buffer->events);
4155 if (events >= wakeup_events) {
4156 local_sub(wakeup_events, &buffer->events);
4157 local_inc(&buffer->wakeup);
4161 perf_output_put_handle(handle);
4162 rcu_read_unlock();
4165 static void perf_output_read_one(struct perf_output_handle *handle,
4166 struct perf_event *event,
4167 u64 enabled, u64 running)
4169 u64 read_format = event->attr.read_format;
4170 u64 values[4];
4171 int n = 0;
4173 values[n++] = perf_event_count(event);
4174 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
4175 values[n++] = enabled +
4176 atomic64_read(&event->child_total_time_enabled);
4178 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
4179 values[n++] = running +
4180 atomic64_read(&event->child_total_time_running);
4182 if (read_format & PERF_FORMAT_ID)
4183 values[n++] = primary_event_id(event);
4185 perf_output_copy(handle, values, n * sizeof(u64));
4189 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
4191 static void perf_output_read_group(struct perf_output_handle *handle,
4192 struct perf_event *event,
4193 u64 enabled, u64 running)
4195 struct perf_event *leader = event->group_leader, *sub;
4196 u64 read_format = event->attr.read_format;
4197 u64 values[5];
4198 int n = 0;
4200 values[n++] = 1 + leader->nr_siblings;
4202 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
4203 values[n++] = enabled;
4205 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
4206 values[n++] = running;
4208 if (leader != event)
4209 leader->pmu->read(leader);
4211 values[n++] = perf_event_count(leader);
4212 if (read_format & PERF_FORMAT_ID)
4213 values[n++] = primary_event_id(leader);
4215 perf_output_copy(handle, values, n * sizeof(u64));
4217 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
4218 n = 0;
4220 if (sub != event)
4221 sub->pmu->read(sub);
4223 values[n++] = perf_event_count(sub);
4224 if (read_format & PERF_FORMAT_ID)
4225 values[n++] = primary_event_id(sub);
4227 perf_output_copy(handle, values, n * sizeof(u64));
4231 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
4232 PERF_FORMAT_TOTAL_TIME_RUNNING)
4234 static void perf_output_read(struct perf_output_handle *handle,
4235 struct perf_event *event)
4237 u64 enabled = 0, running = 0, now, ctx_time;
4238 u64 read_format = event->attr.read_format;
4241 * compute total_time_enabled, total_time_running
4242 * based on snapshot values taken when the event
4243 * was last scheduled in.
4245 * we cannot simply called update_context_time()
4246 * because of locking issue as we are called in
4247 * NMI context
4249 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
4250 now = perf_clock();
4251 ctx_time = event->shadow_ctx_time + now;
4252 enabled = ctx_time - event->tstamp_enabled;
4253 running = ctx_time - event->tstamp_running;
4256 if (event->attr.read_format & PERF_FORMAT_GROUP)
4257 perf_output_read_group(handle, event, enabled, running);
4258 else
4259 perf_output_read_one(handle, event, enabled, running);
4262 void perf_output_sample(struct perf_output_handle *handle,
4263 struct perf_event_header *header,
4264 struct perf_sample_data *data,
4265 struct perf_event *event)
4267 u64 sample_type = data->type;
4269 perf_output_put(handle, *header);
4271 if (sample_type & PERF_SAMPLE_IP)
4272 perf_output_put(handle, data->ip);
4274 if (sample_type & PERF_SAMPLE_TID)
4275 perf_output_put(handle, data->tid_entry);
4277 if (sample_type & PERF_SAMPLE_TIME)
4278 perf_output_put(handle, data->time);
4280 if (sample_type & PERF_SAMPLE_ADDR)
4281 perf_output_put(handle, data->addr);
4283 if (sample_type & PERF_SAMPLE_ID)
4284 perf_output_put(handle, data->id);
4286 if (sample_type & PERF_SAMPLE_STREAM_ID)
4287 perf_output_put(handle, data->stream_id);
4289 if (sample_type & PERF_SAMPLE_CPU)
4290 perf_output_put(handle, data->cpu_entry);
4292 if (sample_type & PERF_SAMPLE_PERIOD)
4293 perf_output_put(handle, data->period);
4295 if (sample_type & PERF_SAMPLE_READ)
4296 perf_output_read(handle, event);
4298 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4299 if (data->callchain) {
4300 int size = 1;
4302 if (data->callchain)
4303 size += data->callchain->nr;
4305 size *= sizeof(u64);
4307 perf_output_copy(handle, data->callchain, size);
4308 } else {
4309 u64 nr = 0;
4310 perf_output_put(handle, nr);
4314 if (sample_type & PERF_SAMPLE_RAW) {
4315 if (data->raw) {
4316 perf_output_put(handle, data->raw->size);
4317 perf_output_copy(handle, data->raw->data,
4318 data->raw->size);
4319 } else {
4320 struct {
4321 u32 size;
4322 u32 data;
4323 } raw = {
4324 .size = sizeof(u32),
4325 .data = 0,
4327 perf_output_put(handle, raw);
4332 void perf_prepare_sample(struct perf_event_header *header,
4333 struct perf_sample_data *data,
4334 struct perf_event *event,
4335 struct pt_regs *regs)
4337 u64 sample_type = event->attr.sample_type;
4339 header->type = PERF_RECORD_SAMPLE;
4340 header->size = sizeof(*header) + event->header_size;
4342 header->misc = 0;
4343 header->misc |= perf_misc_flags(regs);
4345 __perf_event_header__init_id(header, data, event);
4347 if (sample_type & PERF_SAMPLE_IP)
4348 data->ip = perf_instruction_pointer(regs);
4350 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
4351 int size = 1;
4353 data->callchain = perf_callchain(regs);
4355 if (data->callchain)
4356 size += data->callchain->nr;
4358 header->size += size * sizeof(u64);
4361 if (sample_type & PERF_SAMPLE_RAW) {
4362 int size = sizeof(u32);
4364 if (data->raw)
4365 size += data->raw->size;
4366 else
4367 size += sizeof(u32);
4369 WARN_ON_ONCE(size & (sizeof(u64)-1));
4370 header->size += size;
4374 static void perf_event_output(struct perf_event *event, int nmi,
4375 struct perf_sample_data *data,
4376 struct pt_regs *regs)
4378 struct perf_output_handle handle;
4379 struct perf_event_header header;
4381 /* protect the callchain buffers */
4382 rcu_read_lock();
4384 perf_prepare_sample(&header, data, event, regs);
4386 if (perf_output_begin(&handle, event, header.size, nmi, 1))
4387 goto exit;
4389 perf_output_sample(&handle, &header, data, event);
4391 perf_output_end(&handle);
4393 exit:
4394 rcu_read_unlock();
4398 * read event_id
4401 struct perf_read_event {
4402 struct perf_event_header header;
4404 u32 pid;
4405 u32 tid;
4408 static void
4409 perf_event_read_event(struct perf_event *event,
4410 struct task_struct *task)
4412 struct perf_output_handle handle;
4413 struct perf_sample_data sample;
4414 struct perf_read_event read_event = {
4415 .header = {
4416 .type = PERF_RECORD_READ,
4417 .misc = 0,
4418 .size = sizeof(read_event) + event->read_size,
4420 .pid = perf_event_pid(event, task),
4421 .tid = perf_event_tid(event, task),
4423 int ret;
4425 perf_event_header__init_id(&read_event.header, &sample, event);
4426 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
4427 if (ret)
4428 return;
4430 perf_output_put(&handle, read_event);
4431 perf_output_read(&handle, event);
4432 perf_event__output_id_sample(event, &handle, &sample);
4434 perf_output_end(&handle);
4438 * task tracking -- fork/exit
4440 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
4443 struct perf_task_event {
4444 struct task_struct *task;
4445 struct perf_event_context *task_ctx;
4447 struct {
4448 struct perf_event_header header;
4450 u32 pid;
4451 u32 ppid;
4452 u32 tid;
4453 u32 ptid;
4454 u64 time;
4455 } event_id;
4458 static void perf_event_task_output(struct perf_event *event,
4459 struct perf_task_event *task_event)
4461 struct perf_output_handle handle;
4462 struct perf_sample_data sample;
4463 struct task_struct *task = task_event->task;
4464 int ret, size = task_event->event_id.header.size;
4466 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
4468 ret = perf_output_begin(&handle, event,
4469 task_event->event_id.header.size, 0, 0);
4470 if (ret)
4471 goto out;
4473 task_event->event_id.pid = perf_event_pid(event, task);
4474 task_event->event_id.ppid = perf_event_pid(event, current);
4476 task_event->event_id.tid = perf_event_tid(event, task);
4477 task_event->event_id.ptid = perf_event_tid(event, current);
4479 perf_output_put(&handle, task_event->event_id);
4481 perf_event__output_id_sample(event, &handle, &sample);
4483 perf_output_end(&handle);
4484 out:
4485 task_event->event_id.header.size = size;
4488 static int perf_event_task_match(struct perf_event *event)
4490 if (event->state < PERF_EVENT_STATE_INACTIVE)
4491 return 0;
4493 if (!event_filter_match(event))
4494 return 0;
4496 if (event->attr.comm || event->attr.mmap ||
4497 event->attr.mmap_data || event->attr.task)
4498 return 1;
4500 return 0;
4503 static void perf_event_task_ctx(struct perf_event_context *ctx,
4504 struct perf_task_event *task_event)
4506 struct perf_event *event;
4508 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4509 if (perf_event_task_match(event))
4510 perf_event_task_output(event, task_event);
4514 static void perf_event_task_event(struct perf_task_event *task_event)
4516 struct perf_cpu_context *cpuctx;
4517 struct perf_event_context *ctx;
4518 struct pmu *pmu;
4519 int ctxn;
4521 rcu_read_lock();
4522 list_for_each_entry_rcu(pmu, &pmus, entry) {
4523 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4524 if (cpuctx->active_pmu != pmu)
4525 goto next;
4526 perf_event_task_ctx(&cpuctx->ctx, task_event);
4528 ctx = task_event->task_ctx;
4529 if (!ctx) {
4530 ctxn = pmu->task_ctx_nr;
4531 if (ctxn < 0)
4532 goto next;
4533 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4535 if (ctx)
4536 perf_event_task_ctx(ctx, task_event);
4537 next:
4538 put_cpu_ptr(pmu->pmu_cpu_context);
4540 rcu_read_unlock();
4543 static void perf_event_task(struct task_struct *task,
4544 struct perf_event_context *task_ctx,
4545 int new)
4547 struct perf_task_event task_event;
4549 if (!atomic_read(&nr_comm_events) &&
4550 !atomic_read(&nr_mmap_events) &&
4551 !atomic_read(&nr_task_events))
4552 return;
4554 task_event = (struct perf_task_event){
4555 .task = task,
4556 .task_ctx = task_ctx,
4557 .event_id = {
4558 .header = {
4559 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
4560 .misc = 0,
4561 .size = sizeof(task_event.event_id),
4563 /* .pid */
4564 /* .ppid */
4565 /* .tid */
4566 /* .ptid */
4567 .time = perf_clock(),
4571 perf_event_task_event(&task_event);
4574 void perf_event_fork(struct task_struct *task)
4576 perf_event_task(task, NULL, 1);
4580 * comm tracking
4583 struct perf_comm_event {
4584 struct task_struct *task;
4585 char *comm;
4586 int comm_size;
4588 struct {
4589 struct perf_event_header header;
4591 u32 pid;
4592 u32 tid;
4593 } event_id;
4596 static void perf_event_comm_output(struct perf_event *event,
4597 struct perf_comm_event *comm_event)
4599 struct perf_output_handle handle;
4600 struct perf_sample_data sample;
4601 int size = comm_event->event_id.header.size;
4602 int ret;
4604 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4605 ret = perf_output_begin(&handle, event,
4606 comm_event->event_id.header.size, 0, 0);
4608 if (ret)
4609 goto out;
4611 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4612 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4614 perf_output_put(&handle, comm_event->event_id);
4615 perf_output_copy(&handle, comm_event->comm,
4616 comm_event->comm_size);
4618 perf_event__output_id_sample(event, &handle, &sample);
4620 perf_output_end(&handle);
4621 out:
4622 comm_event->event_id.header.size = size;
4625 static int perf_event_comm_match(struct perf_event *event)
4627 if (event->state < PERF_EVENT_STATE_INACTIVE)
4628 return 0;
4630 if (!event_filter_match(event))
4631 return 0;
4633 if (event->attr.comm)
4634 return 1;
4636 return 0;
4639 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4640 struct perf_comm_event *comm_event)
4642 struct perf_event *event;
4644 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4645 if (perf_event_comm_match(event))
4646 perf_event_comm_output(event, comm_event);
4650 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4652 struct perf_cpu_context *cpuctx;
4653 struct perf_event_context *ctx;
4654 char comm[TASK_COMM_LEN];
4655 unsigned int size;
4656 struct pmu *pmu;
4657 int ctxn;
4659 memset(comm, 0, sizeof(comm));
4660 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4661 size = ALIGN(strlen(comm)+1, sizeof(u64));
4663 comm_event->comm = comm;
4664 comm_event->comm_size = size;
4666 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4667 rcu_read_lock();
4668 list_for_each_entry_rcu(pmu, &pmus, entry) {
4669 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4670 if (cpuctx->active_pmu != pmu)
4671 goto next;
4672 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4674 ctxn = pmu->task_ctx_nr;
4675 if (ctxn < 0)
4676 goto next;
4678 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4679 if (ctx)
4680 perf_event_comm_ctx(ctx, comm_event);
4681 next:
4682 put_cpu_ptr(pmu->pmu_cpu_context);
4684 rcu_read_unlock();
4687 void perf_event_comm(struct task_struct *task)
4689 struct perf_comm_event comm_event;
4690 struct perf_event_context *ctx;
4691 int ctxn;
4693 for_each_task_context_nr(ctxn) {
4694 ctx = task->perf_event_ctxp[ctxn];
4695 if (!ctx)
4696 continue;
4698 perf_event_enable_on_exec(ctx);
4701 if (!atomic_read(&nr_comm_events))
4702 return;
4704 comm_event = (struct perf_comm_event){
4705 .task = task,
4706 /* .comm */
4707 /* .comm_size */
4708 .event_id = {
4709 .header = {
4710 .type = PERF_RECORD_COMM,
4711 .misc = 0,
4712 /* .size */
4714 /* .pid */
4715 /* .tid */
4719 perf_event_comm_event(&comm_event);
4723 * mmap tracking
4726 struct perf_mmap_event {
4727 struct vm_area_struct *vma;
4729 const char *file_name;
4730 int file_size;
4732 struct {
4733 struct perf_event_header header;
4735 u32 pid;
4736 u32 tid;
4737 u64 start;
4738 u64 len;
4739 u64 pgoff;
4740 } event_id;
4743 static void perf_event_mmap_output(struct perf_event *event,
4744 struct perf_mmap_event *mmap_event)
4746 struct perf_output_handle handle;
4747 struct perf_sample_data sample;
4748 int size = mmap_event->event_id.header.size;
4749 int ret;
4751 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4752 ret = perf_output_begin(&handle, event,
4753 mmap_event->event_id.header.size, 0, 0);
4754 if (ret)
4755 goto out;
4757 mmap_event->event_id.pid = perf_event_pid(event, current);
4758 mmap_event->event_id.tid = perf_event_tid(event, current);
4760 perf_output_put(&handle, mmap_event->event_id);
4761 perf_output_copy(&handle, mmap_event->file_name,
4762 mmap_event->file_size);
4764 perf_event__output_id_sample(event, &handle, &sample);
4766 perf_output_end(&handle);
4767 out:
4768 mmap_event->event_id.header.size = size;
4771 static int perf_event_mmap_match(struct perf_event *event,
4772 struct perf_mmap_event *mmap_event,
4773 int executable)
4775 if (event->state < PERF_EVENT_STATE_INACTIVE)
4776 return 0;
4778 if (!event_filter_match(event))
4779 return 0;
4781 if ((!executable && event->attr.mmap_data) ||
4782 (executable && event->attr.mmap))
4783 return 1;
4785 return 0;
4788 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4789 struct perf_mmap_event *mmap_event,
4790 int executable)
4792 struct perf_event *event;
4794 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4795 if (perf_event_mmap_match(event, mmap_event, executable))
4796 perf_event_mmap_output(event, mmap_event);
4800 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4802 struct perf_cpu_context *cpuctx;
4803 struct perf_event_context *ctx;
4804 struct vm_area_struct *vma = mmap_event->vma;
4805 struct file *file = vma->vm_file;
4806 unsigned int size;
4807 char tmp[16];
4808 char *buf = NULL;
4809 const char *name;
4810 struct pmu *pmu;
4811 int ctxn;
4813 memset(tmp, 0, sizeof(tmp));
4815 if (file) {
4817 * d_path works from the end of the buffer backwards, so we
4818 * need to add enough zero bytes after the string to handle
4819 * the 64bit alignment we do later.
4821 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4822 if (!buf) {
4823 name = strncpy(tmp, "//enomem", sizeof(tmp));
4824 goto got_name;
4826 name = d_path(&file->f_path, buf, PATH_MAX);
4827 if (IS_ERR(name)) {
4828 name = strncpy(tmp, "//toolong", sizeof(tmp));
4829 goto got_name;
4831 } else {
4832 if (arch_vma_name(mmap_event->vma)) {
4833 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4834 sizeof(tmp));
4835 goto got_name;
4838 if (!vma->vm_mm) {
4839 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4840 goto got_name;
4841 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4842 vma->vm_end >= vma->vm_mm->brk) {
4843 name = strncpy(tmp, "[heap]", sizeof(tmp));
4844 goto got_name;
4845 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4846 vma->vm_end >= vma->vm_mm->start_stack) {
4847 name = strncpy(tmp, "[stack]", sizeof(tmp));
4848 goto got_name;
4851 name = strncpy(tmp, "//anon", sizeof(tmp));
4852 goto got_name;
4855 got_name:
4856 size = ALIGN(strlen(name)+1, sizeof(u64));
4858 mmap_event->file_name = name;
4859 mmap_event->file_size = size;
4861 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4863 rcu_read_lock();
4864 list_for_each_entry_rcu(pmu, &pmus, entry) {
4865 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4866 if (cpuctx->active_pmu != pmu)
4867 goto next;
4868 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4869 vma->vm_flags & VM_EXEC);
4871 ctxn = pmu->task_ctx_nr;
4872 if (ctxn < 0)
4873 goto next;
4875 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4876 if (ctx) {
4877 perf_event_mmap_ctx(ctx, mmap_event,
4878 vma->vm_flags & VM_EXEC);
4880 next:
4881 put_cpu_ptr(pmu->pmu_cpu_context);
4883 rcu_read_unlock();
4885 kfree(buf);
4888 void perf_event_mmap(struct vm_area_struct *vma)
4890 struct perf_mmap_event mmap_event;
4892 if (!atomic_read(&nr_mmap_events))
4893 return;
4895 mmap_event = (struct perf_mmap_event){
4896 .vma = vma,
4897 /* .file_name */
4898 /* .file_size */
4899 .event_id = {
4900 .header = {
4901 .type = PERF_RECORD_MMAP,
4902 .misc = PERF_RECORD_MISC_USER,
4903 /* .size */
4905 /* .pid */
4906 /* .tid */
4907 .start = vma->vm_start,
4908 .len = vma->vm_end - vma->vm_start,
4909 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4913 perf_event_mmap_event(&mmap_event);
4917 * IRQ throttle logging
4920 static void perf_log_throttle(struct perf_event *event, int enable)
4922 struct perf_output_handle handle;
4923 struct perf_sample_data sample;
4924 int ret;
4926 struct {
4927 struct perf_event_header header;
4928 u64 time;
4929 u64 id;
4930 u64 stream_id;
4931 } throttle_event = {
4932 .header = {
4933 .type = PERF_RECORD_THROTTLE,
4934 .misc = 0,
4935 .size = sizeof(throttle_event),
4937 .time = perf_clock(),
4938 .id = primary_event_id(event),
4939 .stream_id = event->id,
4942 if (enable)
4943 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4945 perf_event_header__init_id(&throttle_event.header, &sample, event);
4947 ret = perf_output_begin(&handle, event,
4948 throttle_event.header.size, 1, 0);
4949 if (ret)
4950 return;
4952 perf_output_put(&handle, throttle_event);
4953 perf_event__output_id_sample(event, &handle, &sample);
4954 perf_output_end(&handle);
4958 * Generic event overflow handling, sampling.
4961 static int __perf_event_overflow(struct perf_event *event, int nmi,
4962 int throttle, struct perf_sample_data *data,
4963 struct pt_regs *regs)
4965 int events = atomic_read(&event->event_limit);
4966 struct hw_perf_event *hwc = &event->hw;
4967 int ret = 0;
4970 * Non-sampling counters might still use the PMI to fold short
4971 * hardware counters, ignore those.
4973 if (unlikely(!is_sampling_event(event)))
4974 return 0;
4976 if (unlikely(hwc->interrupts >= max_samples_per_tick)) {
4977 if (throttle) {
4978 hwc->interrupts = MAX_INTERRUPTS;
4979 perf_log_throttle(event, 0);
4980 ret = 1;
4982 } else
4983 hwc->interrupts++;
4985 if (event->attr.freq) {
4986 u64 now = perf_clock();
4987 s64 delta = now - hwc->freq_time_stamp;
4989 hwc->freq_time_stamp = now;
4991 if (delta > 0 && delta < 2*TICK_NSEC)
4992 perf_adjust_period(event, delta, hwc->last_period);
4996 * XXX event_limit might not quite work as expected on inherited
4997 * events
5000 event->pending_kill = POLL_IN;
5001 if (events && atomic_dec_and_test(&event->event_limit)) {
5002 ret = 1;
5003 event->pending_kill = POLL_HUP;
5004 if (nmi) {
5005 event->pending_disable = 1;
5006 irq_work_queue(&event->pending);
5007 } else
5008 perf_event_disable(event);
5011 if (event->overflow_handler)
5012 event->overflow_handler(event, nmi, data, regs);
5013 else
5014 perf_event_output(event, nmi, data, regs);
5016 return ret;
5019 int perf_event_overflow(struct perf_event *event, int nmi,
5020 struct perf_sample_data *data,
5021 struct pt_regs *regs)
5023 return __perf_event_overflow(event, nmi, 1, data, regs);
5027 * Generic software event infrastructure
5030 struct swevent_htable {
5031 struct swevent_hlist *swevent_hlist;
5032 struct mutex hlist_mutex;
5033 int hlist_refcount;
5035 /* Recursion avoidance in each contexts */
5036 int recursion[PERF_NR_CONTEXTS];
5039 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
5042 * We directly increment event->count and keep a second value in
5043 * event->hw.period_left to count intervals. This period event
5044 * is kept in the range [-sample_period, 0] so that we can use the
5045 * sign as trigger.
5048 static u64 perf_swevent_set_period(struct perf_event *event)
5050 struct hw_perf_event *hwc = &event->hw;
5051 u64 period = hwc->last_period;
5052 u64 nr, offset;
5053 s64 old, val;
5055 hwc->last_period = hwc->sample_period;
5057 again:
5058 old = val = local64_read(&hwc->period_left);
5059 if (val < 0)
5060 return 0;
5062 nr = div64_u64(period + val, period);
5063 offset = nr * period;
5064 val -= offset;
5065 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
5066 goto again;
5068 return nr;
5071 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
5072 int nmi, struct perf_sample_data *data,
5073 struct pt_regs *regs)
5075 struct hw_perf_event *hwc = &event->hw;
5076 int throttle = 0;
5078 data->period = event->hw.last_period;
5079 if (!overflow)
5080 overflow = perf_swevent_set_period(event);
5082 if (hwc->interrupts == MAX_INTERRUPTS)
5083 return;
5085 for (; overflow; overflow--) {
5086 if (__perf_event_overflow(event, nmi, throttle,
5087 data, regs)) {
5089 * We inhibit the overflow from happening when
5090 * hwc->interrupts == MAX_INTERRUPTS.
5092 break;
5094 throttle = 1;
5098 static void perf_swevent_event(struct perf_event *event, u64 nr,
5099 int nmi, struct perf_sample_data *data,
5100 struct pt_regs *regs)
5102 struct hw_perf_event *hwc = &event->hw;
5104 local64_add(nr, &event->count);
5106 if (!regs)
5107 return;
5109 if (!is_sampling_event(event))
5110 return;
5112 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
5113 return perf_swevent_overflow(event, 1, nmi, data, regs);
5115 if (local64_add_negative(nr, &hwc->period_left))
5116 return;
5118 perf_swevent_overflow(event, 0, nmi, data, regs);
5121 static int perf_exclude_event(struct perf_event *event,
5122 struct pt_regs *regs)
5124 if (event->hw.state & PERF_HES_STOPPED)
5125 return 1;
5127 if (regs) {
5128 if (event->attr.exclude_user && user_mode(regs))
5129 return 1;
5131 if (event->attr.exclude_kernel && !user_mode(regs))
5132 return 1;
5135 return 0;
5138 static int perf_swevent_match(struct perf_event *event,
5139 enum perf_type_id type,
5140 u32 event_id,
5141 struct perf_sample_data *data,
5142 struct pt_regs *regs)
5144 if (event->attr.type != type)
5145 return 0;
5147 if (event->attr.config != event_id)
5148 return 0;
5150 if (perf_exclude_event(event, regs))
5151 return 0;
5153 return 1;
5156 static inline u64 swevent_hash(u64 type, u32 event_id)
5158 u64 val = event_id | (type << 32);
5160 return hash_64(val, SWEVENT_HLIST_BITS);
5163 static inline struct hlist_head *
5164 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
5166 u64 hash = swevent_hash(type, event_id);
5168 return &hlist->heads[hash];
5171 /* For the read side: events when they trigger */
5172 static inline struct hlist_head *
5173 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
5175 struct swevent_hlist *hlist;
5177 hlist = rcu_dereference(swhash->swevent_hlist);
5178 if (!hlist)
5179 return NULL;
5181 return __find_swevent_head(hlist, type, event_id);
5184 /* For the event head insertion and removal in the hlist */
5185 static inline struct hlist_head *
5186 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
5188 struct swevent_hlist *hlist;
5189 u32 event_id = event->attr.config;
5190 u64 type = event->attr.type;
5193 * Event scheduling is always serialized against hlist allocation
5194 * and release. Which makes the protected version suitable here.
5195 * The context lock guarantees that.
5197 hlist = rcu_dereference_protected(swhash->swevent_hlist,
5198 lockdep_is_held(&event->ctx->lock));
5199 if (!hlist)
5200 return NULL;
5202 return __find_swevent_head(hlist, type, event_id);
5205 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
5206 u64 nr, int nmi,
5207 struct perf_sample_data *data,
5208 struct pt_regs *regs)
5210 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5211 struct perf_event *event;
5212 struct hlist_node *node;
5213 struct hlist_head *head;
5215 rcu_read_lock();
5216 head = find_swevent_head_rcu(swhash, type, event_id);
5217 if (!head)
5218 goto end;
5220 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5221 if (perf_swevent_match(event, type, event_id, data, regs))
5222 perf_swevent_event(event, nr, nmi, data, regs);
5224 end:
5225 rcu_read_unlock();
5228 int perf_swevent_get_recursion_context(void)
5230 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5232 return get_recursion_context(swhash->recursion);
5234 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
5236 inline void perf_swevent_put_recursion_context(int rctx)
5238 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5240 put_recursion_context(swhash->recursion, rctx);
5243 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
5244 struct pt_regs *regs, u64 addr)
5246 struct perf_sample_data data;
5247 int rctx;
5249 preempt_disable_notrace();
5250 rctx = perf_swevent_get_recursion_context();
5251 if (rctx < 0)
5252 return;
5254 perf_sample_data_init(&data, addr);
5256 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
5258 perf_swevent_put_recursion_context(rctx);
5259 preempt_enable_notrace();
5262 static void perf_swevent_read(struct perf_event *event)
5266 static int perf_swevent_add(struct perf_event *event, int flags)
5268 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
5269 struct hw_perf_event *hwc = &event->hw;
5270 struct hlist_head *head;
5272 if (is_sampling_event(event)) {
5273 hwc->last_period = hwc->sample_period;
5274 perf_swevent_set_period(event);
5277 hwc->state = !(flags & PERF_EF_START);
5279 head = find_swevent_head(swhash, event);
5280 if (WARN_ON_ONCE(!head))
5281 return -EINVAL;
5283 hlist_add_head_rcu(&event->hlist_entry, head);
5285 return 0;
5288 static void perf_swevent_del(struct perf_event *event, int flags)
5290 hlist_del_rcu(&event->hlist_entry);
5293 static void perf_swevent_start(struct perf_event *event, int flags)
5295 event->hw.state = 0;
5298 static void perf_swevent_stop(struct perf_event *event, int flags)
5300 event->hw.state = PERF_HES_STOPPED;
5303 /* Deref the hlist from the update side */
5304 static inline struct swevent_hlist *
5305 swevent_hlist_deref(struct swevent_htable *swhash)
5307 return rcu_dereference_protected(swhash->swevent_hlist,
5308 lockdep_is_held(&swhash->hlist_mutex));
5311 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
5313 struct swevent_hlist *hlist;
5315 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
5316 kfree(hlist);
5319 static void swevent_hlist_release(struct swevent_htable *swhash)
5321 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
5323 if (!hlist)
5324 return;
5326 rcu_assign_pointer(swhash->swevent_hlist, NULL);
5327 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
5330 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
5332 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5334 mutex_lock(&swhash->hlist_mutex);
5336 if (!--swhash->hlist_refcount)
5337 swevent_hlist_release(swhash);
5339 mutex_unlock(&swhash->hlist_mutex);
5342 static void swevent_hlist_put(struct perf_event *event)
5344 int cpu;
5346 if (event->cpu != -1) {
5347 swevent_hlist_put_cpu(event, event->cpu);
5348 return;
5351 for_each_possible_cpu(cpu)
5352 swevent_hlist_put_cpu(event, cpu);
5355 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
5357 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
5358 int err = 0;
5360 mutex_lock(&swhash->hlist_mutex);
5362 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
5363 struct swevent_hlist *hlist;
5365 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
5366 if (!hlist) {
5367 err = -ENOMEM;
5368 goto exit;
5370 rcu_assign_pointer(swhash->swevent_hlist, hlist);
5372 swhash->hlist_refcount++;
5373 exit:
5374 mutex_unlock(&swhash->hlist_mutex);
5376 return err;
5379 static int swevent_hlist_get(struct perf_event *event)
5381 int err;
5382 int cpu, failed_cpu;
5384 if (event->cpu != -1)
5385 return swevent_hlist_get_cpu(event, event->cpu);
5387 get_online_cpus();
5388 for_each_possible_cpu(cpu) {
5389 err = swevent_hlist_get_cpu(event, cpu);
5390 if (err) {
5391 failed_cpu = cpu;
5392 goto fail;
5395 put_online_cpus();
5397 return 0;
5398 fail:
5399 for_each_possible_cpu(cpu) {
5400 if (cpu == failed_cpu)
5401 break;
5402 swevent_hlist_put_cpu(event, cpu);
5405 put_online_cpus();
5406 return err;
5409 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
5411 static void sw_perf_event_destroy(struct perf_event *event)
5413 u64 event_id = event->attr.config;
5415 WARN_ON(event->parent);
5417 jump_label_dec(&perf_swevent_enabled[event_id]);
5418 swevent_hlist_put(event);
5421 static int perf_swevent_init(struct perf_event *event)
5423 int event_id = event->attr.config;
5425 if (event->attr.type != PERF_TYPE_SOFTWARE)
5426 return -ENOENT;
5428 switch (event_id) {
5429 case PERF_COUNT_SW_CPU_CLOCK:
5430 case PERF_COUNT_SW_TASK_CLOCK:
5431 return -ENOENT;
5433 default:
5434 break;
5437 if (event_id >= PERF_COUNT_SW_MAX)
5438 return -ENOENT;
5440 if (!event->parent) {
5441 int err;
5443 err = swevent_hlist_get(event);
5444 if (err)
5445 return err;
5447 jump_label_inc(&perf_swevent_enabled[event_id]);
5448 event->destroy = sw_perf_event_destroy;
5451 return 0;
5454 static struct pmu perf_swevent = {
5455 .task_ctx_nr = perf_sw_context,
5457 .event_init = perf_swevent_init,
5458 .add = perf_swevent_add,
5459 .del = perf_swevent_del,
5460 .start = perf_swevent_start,
5461 .stop = perf_swevent_stop,
5462 .read = perf_swevent_read,
5465 #ifdef CONFIG_EVENT_TRACING
5467 static int perf_tp_filter_match(struct perf_event *event,
5468 struct perf_sample_data *data)
5470 void *record = data->raw->data;
5472 if (likely(!event->filter) || filter_match_preds(event->filter, record))
5473 return 1;
5474 return 0;
5477 static int perf_tp_event_match(struct perf_event *event,
5478 struct perf_sample_data *data,
5479 struct pt_regs *regs)
5481 if (event->hw.state & PERF_HES_STOPPED)
5482 return 0;
5484 * All tracepoints are from kernel-space.
5486 if (event->attr.exclude_kernel)
5487 return 0;
5489 if (!perf_tp_filter_match(event, data))
5490 return 0;
5492 return 1;
5495 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
5496 struct pt_regs *regs, struct hlist_head *head, int rctx)
5498 struct perf_sample_data data;
5499 struct perf_event *event;
5500 struct hlist_node *node;
5502 struct perf_raw_record raw = {
5503 .size = entry_size,
5504 .data = record,
5507 perf_sample_data_init(&data, addr);
5508 data.raw = &raw;
5510 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
5511 if (perf_tp_event_match(event, &data, regs))
5512 perf_swevent_event(event, count, 1, &data, regs);
5515 perf_swevent_put_recursion_context(rctx);
5517 EXPORT_SYMBOL_GPL(perf_tp_event);
5519 static void tp_perf_event_destroy(struct perf_event *event)
5521 perf_trace_destroy(event);
5524 static int perf_tp_event_init(struct perf_event *event)
5526 int err;
5528 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5529 return -ENOENT;
5531 err = perf_trace_init(event);
5532 if (err)
5533 return err;
5535 event->destroy = tp_perf_event_destroy;
5537 return 0;
5540 static struct pmu perf_tracepoint = {
5541 .task_ctx_nr = perf_sw_context,
5543 .event_init = perf_tp_event_init,
5544 .add = perf_trace_add,
5545 .del = perf_trace_del,
5546 .start = perf_swevent_start,
5547 .stop = perf_swevent_stop,
5548 .read = perf_swevent_read,
5551 static inline void perf_tp_register(void)
5553 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
5556 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5558 char *filter_str;
5559 int ret;
5561 if (event->attr.type != PERF_TYPE_TRACEPOINT)
5562 return -EINVAL;
5564 filter_str = strndup_user(arg, PAGE_SIZE);
5565 if (IS_ERR(filter_str))
5566 return PTR_ERR(filter_str);
5568 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
5570 kfree(filter_str);
5571 return ret;
5574 static void perf_event_free_filter(struct perf_event *event)
5576 ftrace_profile_free_filter(event);
5579 #else
5581 static inline void perf_tp_register(void)
5585 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
5587 return -ENOENT;
5590 static void perf_event_free_filter(struct perf_event *event)
5594 #endif /* CONFIG_EVENT_TRACING */
5596 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5597 void perf_bp_event(struct perf_event *bp, void *data)
5599 struct perf_sample_data sample;
5600 struct pt_regs *regs = data;
5602 perf_sample_data_init(&sample, bp->attr.bp_addr);
5604 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5605 perf_swevent_event(bp, 1, 1, &sample, regs);
5607 #endif
5610 * hrtimer based swevent callback
5613 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5615 enum hrtimer_restart ret = HRTIMER_RESTART;
5616 struct perf_sample_data data;
5617 struct pt_regs *regs;
5618 struct perf_event *event;
5619 u64 period;
5621 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5623 if (event->state != PERF_EVENT_STATE_ACTIVE)
5624 return HRTIMER_NORESTART;
5626 event->pmu->read(event);
5628 perf_sample_data_init(&data, 0);
5629 data.period = event->hw.last_period;
5630 regs = get_irq_regs();
5632 if (regs && !perf_exclude_event(event, regs)) {
5633 if (!(event->attr.exclude_idle && current->pid == 0))
5634 if (perf_event_overflow(event, 0, &data, regs))
5635 ret = HRTIMER_NORESTART;
5638 period = max_t(u64, 10000, event->hw.sample_period);
5639 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5641 return ret;
5644 static void perf_swevent_start_hrtimer(struct perf_event *event)
5646 struct hw_perf_event *hwc = &event->hw;
5647 s64 period;
5649 if (!is_sampling_event(event))
5650 return;
5652 period = local64_read(&hwc->period_left);
5653 if (period) {
5654 if (period < 0)
5655 period = 10000;
5657 local64_set(&hwc->period_left, 0);
5658 } else {
5659 period = max_t(u64, 10000, hwc->sample_period);
5661 __hrtimer_start_range_ns(&hwc->hrtimer,
5662 ns_to_ktime(period), 0,
5663 HRTIMER_MODE_REL_PINNED, 0);
5666 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5668 struct hw_perf_event *hwc = &event->hw;
5670 if (is_sampling_event(event)) {
5671 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5672 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5674 hrtimer_cancel(&hwc->hrtimer);
5678 static void perf_swevent_init_hrtimer(struct perf_event *event)
5680 struct hw_perf_event *hwc = &event->hw;
5682 if (!is_sampling_event(event))
5683 return;
5685 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5686 hwc->hrtimer.function = perf_swevent_hrtimer;
5689 * Since hrtimers have a fixed rate, we can do a static freq->period
5690 * mapping and avoid the whole period adjust feedback stuff.
5692 if (event->attr.freq) {
5693 long freq = event->attr.sample_freq;
5695 event->attr.sample_period = NSEC_PER_SEC / freq;
5696 hwc->sample_period = event->attr.sample_period;
5697 local64_set(&hwc->period_left, hwc->sample_period);
5698 event->attr.freq = 0;
5703 * Software event: cpu wall time clock
5706 static void cpu_clock_event_update(struct perf_event *event)
5708 s64 prev;
5709 u64 now;
5711 now = local_clock();
5712 prev = local64_xchg(&event->hw.prev_count, now);
5713 local64_add(now - prev, &event->count);
5716 static void cpu_clock_event_start(struct perf_event *event, int flags)
5718 local64_set(&event->hw.prev_count, local_clock());
5719 perf_swevent_start_hrtimer(event);
5722 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5724 perf_swevent_cancel_hrtimer(event);
5725 cpu_clock_event_update(event);
5728 static int cpu_clock_event_add(struct perf_event *event, int flags)
5730 if (flags & PERF_EF_START)
5731 cpu_clock_event_start(event, flags);
5733 return 0;
5736 static void cpu_clock_event_del(struct perf_event *event, int flags)
5738 cpu_clock_event_stop(event, flags);
5741 static void cpu_clock_event_read(struct perf_event *event)
5743 cpu_clock_event_update(event);
5746 static int cpu_clock_event_init(struct perf_event *event)
5748 if (event->attr.type != PERF_TYPE_SOFTWARE)
5749 return -ENOENT;
5751 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5752 return -ENOENT;
5754 perf_swevent_init_hrtimer(event);
5756 return 0;
5759 static struct pmu perf_cpu_clock = {
5760 .task_ctx_nr = perf_sw_context,
5762 .event_init = cpu_clock_event_init,
5763 .add = cpu_clock_event_add,
5764 .del = cpu_clock_event_del,
5765 .start = cpu_clock_event_start,
5766 .stop = cpu_clock_event_stop,
5767 .read = cpu_clock_event_read,
5771 * Software event: task time clock
5774 static void task_clock_event_update(struct perf_event *event, u64 now)
5776 u64 prev;
5777 s64 delta;
5779 prev = local64_xchg(&event->hw.prev_count, now);
5780 delta = now - prev;
5781 local64_add(delta, &event->count);
5784 static void task_clock_event_start(struct perf_event *event, int flags)
5786 local64_set(&event->hw.prev_count, event->ctx->time);
5787 perf_swevent_start_hrtimer(event);
5790 static void task_clock_event_stop(struct perf_event *event, int flags)
5792 perf_swevent_cancel_hrtimer(event);
5793 task_clock_event_update(event, event->ctx->time);
5796 static int task_clock_event_add(struct perf_event *event, int flags)
5798 if (flags & PERF_EF_START)
5799 task_clock_event_start(event, flags);
5801 return 0;
5804 static void task_clock_event_del(struct perf_event *event, int flags)
5806 task_clock_event_stop(event, PERF_EF_UPDATE);
5809 static void task_clock_event_read(struct perf_event *event)
5811 u64 now = perf_clock();
5812 u64 delta = now - event->ctx->timestamp;
5813 u64 time = event->ctx->time + delta;
5815 task_clock_event_update(event, time);
5818 static int task_clock_event_init(struct perf_event *event)
5820 if (event->attr.type != PERF_TYPE_SOFTWARE)
5821 return -ENOENT;
5823 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5824 return -ENOENT;
5826 perf_swevent_init_hrtimer(event);
5828 return 0;
5831 static struct pmu perf_task_clock = {
5832 .task_ctx_nr = perf_sw_context,
5834 .event_init = task_clock_event_init,
5835 .add = task_clock_event_add,
5836 .del = task_clock_event_del,
5837 .start = task_clock_event_start,
5838 .stop = task_clock_event_stop,
5839 .read = task_clock_event_read,
5842 static void perf_pmu_nop_void(struct pmu *pmu)
5846 static int perf_pmu_nop_int(struct pmu *pmu)
5848 return 0;
5851 static void perf_pmu_start_txn(struct pmu *pmu)
5853 perf_pmu_disable(pmu);
5856 static int perf_pmu_commit_txn(struct pmu *pmu)
5858 perf_pmu_enable(pmu);
5859 return 0;
5862 static void perf_pmu_cancel_txn(struct pmu *pmu)
5864 perf_pmu_enable(pmu);
5868 * Ensures all contexts with the same task_ctx_nr have the same
5869 * pmu_cpu_context too.
5871 static void *find_pmu_context(int ctxn)
5873 struct pmu *pmu;
5875 if (ctxn < 0)
5876 return NULL;
5878 list_for_each_entry(pmu, &pmus, entry) {
5879 if (pmu->task_ctx_nr == ctxn)
5880 return pmu->pmu_cpu_context;
5883 return NULL;
5886 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5888 int cpu;
5890 for_each_possible_cpu(cpu) {
5891 struct perf_cpu_context *cpuctx;
5893 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5895 if (cpuctx->active_pmu == old_pmu)
5896 cpuctx->active_pmu = pmu;
5900 static void free_pmu_context(struct pmu *pmu)
5902 struct pmu *i;
5904 mutex_lock(&pmus_lock);
5906 * Like a real lame refcount.
5908 list_for_each_entry(i, &pmus, entry) {
5909 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5910 update_pmu_context(i, pmu);
5911 goto out;
5915 free_percpu(pmu->pmu_cpu_context);
5916 out:
5917 mutex_unlock(&pmus_lock);
5919 static struct idr pmu_idr;
5921 static ssize_t
5922 type_show(struct device *dev, struct device_attribute *attr, char *page)
5924 struct pmu *pmu = dev_get_drvdata(dev);
5926 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
5929 static struct device_attribute pmu_dev_attrs[] = {
5930 __ATTR_RO(type),
5931 __ATTR_NULL,
5934 static int pmu_bus_running;
5935 static struct bus_type pmu_bus = {
5936 .name = "event_source",
5937 .dev_attrs = pmu_dev_attrs,
5940 static void pmu_dev_release(struct device *dev)
5942 kfree(dev);
5945 static int pmu_dev_alloc(struct pmu *pmu)
5947 int ret = -ENOMEM;
5949 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
5950 if (!pmu->dev)
5951 goto out;
5953 device_initialize(pmu->dev);
5954 ret = dev_set_name(pmu->dev, "%s", pmu->name);
5955 if (ret)
5956 goto free_dev;
5958 dev_set_drvdata(pmu->dev, pmu);
5959 pmu->dev->bus = &pmu_bus;
5960 pmu->dev->release = pmu_dev_release;
5961 ret = device_add(pmu->dev);
5962 if (ret)
5963 goto free_dev;
5965 out:
5966 return ret;
5968 free_dev:
5969 put_device(pmu->dev);
5970 goto out;
5973 static struct lock_class_key cpuctx_mutex;
5975 int perf_pmu_register(struct pmu *pmu, char *name, int type)
5977 int cpu, ret;
5979 mutex_lock(&pmus_lock);
5980 ret = -ENOMEM;
5981 pmu->pmu_disable_count = alloc_percpu(int);
5982 if (!pmu->pmu_disable_count)
5983 goto unlock;
5985 pmu->type = -1;
5986 if (!name)
5987 goto skip_type;
5988 pmu->name = name;
5990 if (type < 0) {
5991 int err = idr_pre_get(&pmu_idr, GFP_KERNEL);
5992 if (!err)
5993 goto free_pdc;
5995 err = idr_get_new_above(&pmu_idr, pmu, PERF_TYPE_MAX, &type);
5996 if (err) {
5997 ret = err;
5998 goto free_pdc;
6001 pmu->type = type;
6003 if (pmu_bus_running) {
6004 ret = pmu_dev_alloc(pmu);
6005 if (ret)
6006 goto free_idr;
6009 skip_type:
6010 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
6011 if (pmu->pmu_cpu_context)
6012 goto got_cpu_context;
6014 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
6015 if (!pmu->pmu_cpu_context)
6016 goto free_dev;
6018 for_each_possible_cpu(cpu) {
6019 struct perf_cpu_context *cpuctx;
6021 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
6022 __perf_event_init_context(&cpuctx->ctx);
6023 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
6024 cpuctx->ctx.type = cpu_context;
6025 cpuctx->ctx.pmu = pmu;
6026 cpuctx->jiffies_interval = 1;
6027 INIT_LIST_HEAD(&cpuctx->rotation_list);
6028 cpuctx->active_pmu = pmu;
6031 got_cpu_context:
6032 if (!pmu->start_txn) {
6033 if (pmu->pmu_enable) {
6035 * If we have pmu_enable/pmu_disable calls, install
6036 * transaction stubs that use that to try and batch
6037 * hardware accesses.
6039 pmu->start_txn = perf_pmu_start_txn;
6040 pmu->commit_txn = perf_pmu_commit_txn;
6041 pmu->cancel_txn = perf_pmu_cancel_txn;
6042 } else {
6043 pmu->start_txn = perf_pmu_nop_void;
6044 pmu->commit_txn = perf_pmu_nop_int;
6045 pmu->cancel_txn = perf_pmu_nop_void;
6049 if (!pmu->pmu_enable) {
6050 pmu->pmu_enable = perf_pmu_nop_void;
6051 pmu->pmu_disable = perf_pmu_nop_void;
6054 list_add_rcu(&pmu->entry, &pmus);
6055 ret = 0;
6056 unlock:
6057 mutex_unlock(&pmus_lock);
6059 return ret;
6061 free_dev:
6062 device_del(pmu->dev);
6063 put_device(pmu->dev);
6065 free_idr:
6066 if (pmu->type >= PERF_TYPE_MAX)
6067 idr_remove(&pmu_idr, pmu->type);
6069 free_pdc:
6070 free_percpu(pmu->pmu_disable_count);
6071 goto unlock;
6074 void perf_pmu_unregister(struct pmu *pmu)
6076 mutex_lock(&pmus_lock);
6077 list_del_rcu(&pmu->entry);
6078 mutex_unlock(&pmus_lock);
6081 * We dereference the pmu list under both SRCU and regular RCU, so
6082 * synchronize against both of those.
6084 synchronize_srcu(&pmus_srcu);
6085 synchronize_rcu();
6087 free_percpu(pmu->pmu_disable_count);
6088 if (pmu->type >= PERF_TYPE_MAX)
6089 idr_remove(&pmu_idr, pmu->type);
6090 device_del(pmu->dev);
6091 put_device(pmu->dev);
6092 free_pmu_context(pmu);
6095 struct pmu *perf_init_event(struct perf_event *event)
6097 struct pmu *pmu = NULL;
6098 int idx;
6099 int ret;
6101 idx = srcu_read_lock(&pmus_srcu);
6103 rcu_read_lock();
6104 pmu = idr_find(&pmu_idr, event->attr.type);
6105 rcu_read_unlock();
6106 if (pmu) {
6107 ret = pmu->event_init(event);
6108 if (ret)
6109 pmu = ERR_PTR(ret);
6110 goto unlock;
6113 list_for_each_entry_rcu(pmu, &pmus, entry) {
6114 ret = pmu->event_init(event);
6115 if (!ret)
6116 goto unlock;
6118 if (ret != -ENOENT) {
6119 pmu = ERR_PTR(ret);
6120 goto unlock;
6123 pmu = ERR_PTR(-ENOENT);
6124 unlock:
6125 srcu_read_unlock(&pmus_srcu, idx);
6127 return pmu;
6131 * Allocate and initialize a event structure
6133 static struct perf_event *
6134 perf_event_alloc(struct perf_event_attr *attr, int cpu,
6135 struct task_struct *task,
6136 struct perf_event *group_leader,
6137 struct perf_event *parent_event,
6138 perf_overflow_handler_t overflow_handler)
6140 struct pmu *pmu;
6141 struct perf_event *event;
6142 struct hw_perf_event *hwc;
6143 long err;
6145 if ((unsigned)cpu >= nr_cpu_ids) {
6146 if (!task || cpu != -1)
6147 return ERR_PTR(-EINVAL);
6150 event = kzalloc(sizeof(*event), GFP_KERNEL);
6151 if (!event)
6152 return ERR_PTR(-ENOMEM);
6155 * Single events are their own group leaders, with an
6156 * empty sibling list:
6158 if (!group_leader)
6159 group_leader = event;
6161 mutex_init(&event->child_mutex);
6162 INIT_LIST_HEAD(&event->child_list);
6164 INIT_LIST_HEAD(&event->group_entry);
6165 INIT_LIST_HEAD(&event->event_entry);
6166 INIT_LIST_HEAD(&event->sibling_list);
6167 init_waitqueue_head(&event->waitq);
6168 init_irq_work(&event->pending, perf_pending_event);
6170 mutex_init(&event->mmap_mutex);
6172 event->cpu = cpu;
6173 event->attr = *attr;
6174 event->group_leader = group_leader;
6175 event->pmu = NULL;
6176 event->oncpu = -1;
6178 event->parent = parent_event;
6180 event->ns = get_pid_ns(current->nsproxy->pid_ns);
6181 event->id = atomic64_inc_return(&perf_event_id);
6183 event->state = PERF_EVENT_STATE_INACTIVE;
6185 if (task) {
6186 event->attach_state = PERF_ATTACH_TASK;
6187 #ifdef CONFIG_HAVE_HW_BREAKPOINT
6189 * hw_breakpoint is a bit difficult here..
6191 if (attr->type == PERF_TYPE_BREAKPOINT)
6192 event->hw.bp_target = task;
6193 #endif
6196 if (!overflow_handler && parent_event)
6197 overflow_handler = parent_event->overflow_handler;
6199 event->overflow_handler = overflow_handler;
6201 if (attr->disabled)
6202 event->state = PERF_EVENT_STATE_OFF;
6204 pmu = NULL;
6206 hwc = &event->hw;
6207 hwc->sample_period = attr->sample_period;
6208 if (attr->freq && attr->sample_freq)
6209 hwc->sample_period = 1;
6210 hwc->last_period = hwc->sample_period;
6212 local64_set(&hwc->period_left, hwc->sample_period);
6215 * we currently do not support PERF_FORMAT_GROUP on inherited events
6217 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
6218 goto done;
6220 pmu = perf_init_event(event);
6222 done:
6223 err = 0;
6224 if (!pmu)
6225 err = -EINVAL;
6226 else if (IS_ERR(pmu))
6227 err = PTR_ERR(pmu);
6229 if (err) {
6230 if (event->ns)
6231 put_pid_ns(event->ns);
6232 kfree(event);
6233 return ERR_PTR(err);
6236 event->pmu = pmu;
6238 if (!event->parent) {
6239 if (event->attach_state & PERF_ATTACH_TASK)
6240 jump_label_inc(&perf_sched_events);
6241 if (event->attr.mmap || event->attr.mmap_data)
6242 atomic_inc(&nr_mmap_events);
6243 if (event->attr.comm)
6244 atomic_inc(&nr_comm_events);
6245 if (event->attr.task)
6246 atomic_inc(&nr_task_events);
6247 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
6248 err = get_callchain_buffers();
6249 if (err) {
6250 free_event(event);
6251 return ERR_PTR(err);
6256 return event;
6259 static int perf_copy_attr(struct perf_event_attr __user *uattr,
6260 struct perf_event_attr *attr)
6262 u32 size;
6263 int ret;
6265 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
6266 return -EFAULT;
6269 * zero the full structure, so that a short copy will be nice.
6271 memset(attr, 0, sizeof(*attr));
6273 ret = get_user(size, &uattr->size);
6274 if (ret)
6275 return ret;
6277 if (size > PAGE_SIZE) /* silly large */
6278 goto err_size;
6280 if (!size) /* abi compat */
6281 size = PERF_ATTR_SIZE_VER0;
6283 if (size < PERF_ATTR_SIZE_VER0)
6284 goto err_size;
6287 * If we're handed a bigger struct than we know of,
6288 * ensure all the unknown bits are 0 - i.e. new
6289 * user-space does not rely on any kernel feature
6290 * extensions we dont know about yet.
6292 if (size > sizeof(*attr)) {
6293 unsigned char __user *addr;
6294 unsigned char __user *end;
6295 unsigned char val;
6297 addr = (void __user *)uattr + sizeof(*attr);
6298 end = (void __user *)uattr + size;
6300 for (; addr < end; addr++) {
6301 ret = get_user(val, addr);
6302 if (ret)
6303 return ret;
6304 if (val)
6305 goto err_size;
6307 size = sizeof(*attr);
6310 ret = copy_from_user(attr, uattr, size);
6311 if (ret)
6312 return -EFAULT;
6315 * If the type exists, the corresponding creation will verify
6316 * the attr->config.
6318 if (attr->type >= PERF_TYPE_MAX)
6319 return -EINVAL;
6321 if (attr->__reserved_1)
6322 return -EINVAL;
6324 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
6325 return -EINVAL;
6327 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
6328 return -EINVAL;
6330 out:
6331 return ret;
6333 err_size:
6334 put_user(sizeof(*attr), &uattr->size);
6335 ret = -E2BIG;
6336 goto out;
6339 static int
6340 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
6342 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
6343 int ret = -EINVAL;
6345 if (!output_event)
6346 goto set;
6348 /* don't allow circular references */
6349 if (event == output_event)
6350 goto out;
6353 * Don't allow cross-cpu buffers
6355 if (output_event->cpu != event->cpu)
6356 goto out;
6359 * If its not a per-cpu buffer, it must be the same task.
6361 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
6362 goto out;
6364 set:
6365 mutex_lock(&event->mmap_mutex);
6366 /* Can't redirect output if we've got an active mmap() */
6367 if (atomic_read(&event->mmap_count))
6368 goto unlock;
6370 if (output_event) {
6371 /* get the buffer we want to redirect to */
6372 buffer = perf_buffer_get(output_event);
6373 if (!buffer)
6374 goto unlock;
6377 old_buffer = event->buffer;
6378 rcu_assign_pointer(event->buffer, buffer);
6379 ret = 0;
6380 unlock:
6381 mutex_unlock(&event->mmap_mutex);
6383 if (old_buffer)
6384 perf_buffer_put(old_buffer);
6385 out:
6386 return ret;
6390 * sys_perf_event_open - open a performance event, associate it to a task/cpu
6392 * @attr_uptr: event_id type attributes for monitoring/sampling
6393 * @pid: target pid
6394 * @cpu: target cpu
6395 * @group_fd: group leader event fd
6397 SYSCALL_DEFINE5(perf_event_open,
6398 struct perf_event_attr __user *, attr_uptr,
6399 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
6401 struct perf_event *group_leader = NULL, *output_event = NULL;
6402 struct perf_event *event, *sibling;
6403 struct perf_event_attr attr;
6404 struct perf_event_context *ctx;
6405 struct file *event_file = NULL;
6406 struct file *group_file = NULL;
6407 struct task_struct *task = NULL;
6408 struct pmu *pmu;
6409 int event_fd;
6410 int move_group = 0;
6411 int fput_needed = 0;
6412 int err;
6414 /* for future expandability... */
6415 if (flags & ~PERF_FLAG_ALL)
6416 return -EINVAL;
6418 err = perf_copy_attr(attr_uptr, &attr);
6419 if (err)
6420 return err;
6422 if (!attr.exclude_kernel) {
6423 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
6424 return -EACCES;
6427 if (attr.freq) {
6428 if (attr.sample_freq > sysctl_perf_event_sample_rate)
6429 return -EINVAL;
6433 * In cgroup mode, the pid argument is used to pass the fd
6434 * opened to the cgroup directory in cgroupfs. The cpu argument
6435 * designates the cpu on which to monitor threads from that
6436 * cgroup.
6438 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
6439 return -EINVAL;
6441 event_fd = get_unused_fd_flags(O_RDWR);
6442 if (event_fd < 0)
6443 return event_fd;
6445 if (group_fd != -1) {
6446 group_leader = perf_fget_light(group_fd, &fput_needed);
6447 if (IS_ERR(group_leader)) {
6448 err = PTR_ERR(group_leader);
6449 goto err_fd;
6451 group_file = group_leader->filp;
6452 if (flags & PERF_FLAG_FD_OUTPUT)
6453 output_event = group_leader;
6454 if (flags & PERF_FLAG_FD_NO_GROUP)
6455 group_leader = NULL;
6458 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
6459 task = find_lively_task_by_vpid(pid);
6460 if (IS_ERR(task)) {
6461 err = PTR_ERR(task);
6462 goto err_group_fd;
6466 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
6467 if (IS_ERR(event)) {
6468 err = PTR_ERR(event);
6469 goto err_task;
6472 if (flags & PERF_FLAG_PID_CGROUP) {
6473 err = perf_cgroup_connect(pid, event, &attr, group_leader);
6474 if (err)
6475 goto err_alloc;
6477 * one more event:
6478 * - that has cgroup constraint on event->cpu
6479 * - that may need work on context switch
6481 atomic_inc(&per_cpu(perf_cgroup_events, event->cpu));
6482 jump_label_inc(&perf_sched_events);
6486 * Special case software events and allow them to be part of
6487 * any hardware group.
6489 pmu = event->pmu;
6491 if (group_leader &&
6492 (is_software_event(event) != is_software_event(group_leader))) {
6493 if (is_software_event(event)) {
6495 * If event and group_leader are not both a software
6496 * event, and event is, then group leader is not.
6498 * Allow the addition of software events to !software
6499 * groups, this is safe because software events never
6500 * fail to schedule.
6502 pmu = group_leader->pmu;
6503 } else if (is_software_event(group_leader) &&
6504 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
6506 * In case the group is a pure software group, and we
6507 * try to add a hardware event, move the whole group to
6508 * the hardware context.
6510 move_group = 1;
6515 * Get the target context (task or percpu):
6517 ctx = find_get_context(pmu, task, cpu);
6518 if (IS_ERR(ctx)) {
6519 err = PTR_ERR(ctx);
6520 goto err_alloc;
6524 * Look up the group leader (we will attach this event to it):
6526 if (group_leader) {
6527 err = -EINVAL;
6530 * Do not allow a recursive hierarchy (this new sibling
6531 * becoming part of another group-sibling):
6533 if (group_leader->group_leader != group_leader)
6534 goto err_context;
6536 * Do not allow to attach to a group in a different
6537 * task or CPU context:
6539 if (move_group) {
6540 if (group_leader->ctx->type != ctx->type)
6541 goto err_context;
6542 } else {
6543 if (group_leader->ctx != ctx)
6544 goto err_context;
6548 * Only a group leader can be exclusive or pinned
6550 if (attr.exclusive || attr.pinned)
6551 goto err_context;
6554 if (output_event) {
6555 err = perf_event_set_output(event, output_event);
6556 if (err)
6557 goto err_context;
6560 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
6561 if (IS_ERR(event_file)) {
6562 err = PTR_ERR(event_file);
6563 goto err_context;
6566 if (move_group) {
6567 struct perf_event_context *gctx = group_leader->ctx;
6569 mutex_lock(&gctx->mutex);
6570 perf_remove_from_context(group_leader);
6571 list_for_each_entry(sibling, &group_leader->sibling_list,
6572 group_entry) {
6573 perf_remove_from_context(sibling);
6574 put_ctx(gctx);
6576 mutex_unlock(&gctx->mutex);
6577 put_ctx(gctx);
6580 event->filp = event_file;
6581 WARN_ON_ONCE(ctx->parent_ctx);
6582 mutex_lock(&ctx->mutex);
6584 if (move_group) {
6585 perf_install_in_context(ctx, group_leader, cpu);
6586 get_ctx(ctx);
6587 list_for_each_entry(sibling, &group_leader->sibling_list,
6588 group_entry) {
6589 perf_install_in_context(ctx, sibling, cpu);
6590 get_ctx(ctx);
6594 perf_install_in_context(ctx, event, cpu);
6595 ++ctx->generation;
6596 perf_unpin_context(ctx);
6597 mutex_unlock(&ctx->mutex);
6599 event->owner = current;
6601 mutex_lock(&current->perf_event_mutex);
6602 list_add_tail(&event->owner_entry, &current->perf_event_list);
6603 mutex_unlock(&current->perf_event_mutex);
6606 * Precalculate sample_data sizes
6608 perf_event__header_size(event);
6609 perf_event__id_header_size(event);
6612 * Drop the reference on the group_event after placing the
6613 * new event on the sibling_list. This ensures destruction
6614 * of the group leader will find the pointer to itself in
6615 * perf_group_detach().
6617 fput_light(group_file, fput_needed);
6618 fd_install(event_fd, event_file);
6619 return event_fd;
6621 err_context:
6622 perf_unpin_context(ctx);
6623 put_ctx(ctx);
6624 err_alloc:
6625 free_event(event);
6626 err_task:
6627 if (task)
6628 put_task_struct(task);
6629 err_group_fd:
6630 fput_light(group_file, fput_needed);
6631 err_fd:
6632 put_unused_fd(event_fd);
6633 return err;
6637 * perf_event_create_kernel_counter
6639 * @attr: attributes of the counter to create
6640 * @cpu: cpu in which the counter is bound
6641 * @task: task to profile (NULL for percpu)
6643 struct perf_event *
6644 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
6645 struct task_struct *task,
6646 perf_overflow_handler_t overflow_handler)
6648 struct perf_event_context *ctx;
6649 struct perf_event *event;
6650 int err;
6653 * Get the target context (task or percpu):
6656 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
6657 if (IS_ERR(event)) {
6658 err = PTR_ERR(event);
6659 goto err;
6662 ctx = find_get_context(event->pmu, task, cpu);
6663 if (IS_ERR(ctx)) {
6664 err = PTR_ERR(ctx);
6665 goto err_free;
6668 event->filp = NULL;
6669 WARN_ON_ONCE(ctx->parent_ctx);
6670 mutex_lock(&ctx->mutex);
6671 perf_install_in_context(ctx, event, cpu);
6672 ++ctx->generation;
6673 perf_unpin_context(ctx);
6674 mutex_unlock(&ctx->mutex);
6676 return event;
6678 err_free:
6679 free_event(event);
6680 err:
6681 return ERR_PTR(err);
6683 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
6685 static void sync_child_event(struct perf_event *child_event,
6686 struct task_struct *child)
6688 struct perf_event *parent_event = child_event->parent;
6689 u64 child_val;
6691 if (child_event->attr.inherit_stat)
6692 perf_event_read_event(child_event, child);
6694 child_val = perf_event_count(child_event);
6697 * Add back the child's count to the parent's count:
6699 atomic64_add(child_val, &parent_event->child_count);
6700 atomic64_add(child_event->total_time_enabled,
6701 &parent_event->child_total_time_enabled);
6702 atomic64_add(child_event->total_time_running,
6703 &parent_event->child_total_time_running);
6706 * Remove this event from the parent's list
6708 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6709 mutex_lock(&parent_event->child_mutex);
6710 list_del_init(&child_event->child_list);
6711 mutex_unlock(&parent_event->child_mutex);
6714 * Release the parent event, if this was the last
6715 * reference to it.
6717 fput(parent_event->filp);
6720 static void
6721 __perf_event_exit_task(struct perf_event *child_event,
6722 struct perf_event_context *child_ctx,
6723 struct task_struct *child)
6725 if (child_event->parent) {
6726 raw_spin_lock_irq(&child_ctx->lock);
6727 perf_group_detach(child_event);
6728 raw_spin_unlock_irq(&child_ctx->lock);
6731 perf_remove_from_context(child_event);
6734 * It can happen that the parent exits first, and has events
6735 * that are still around due to the child reference. These
6736 * events need to be zapped.
6738 if (child_event->parent) {
6739 sync_child_event(child_event, child);
6740 free_event(child_event);
6744 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
6746 struct perf_event *child_event, *tmp;
6747 struct perf_event_context *child_ctx;
6748 unsigned long flags;
6750 if (likely(!child->perf_event_ctxp[ctxn])) {
6751 perf_event_task(child, NULL, 0);
6752 return;
6755 local_irq_save(flags);
6757 * We can't reschedule here because interrupts are disabled,
6758 * and either child is current or it is a task that can't be
6759 * scheduled, so we are now safe from rescheduling changing
6760 * our context.
6762 child_ctx = rcu_dereference_raw(child->perf_event_ctxp[ctxn]);
6763 task_ctx_sched_out(child_ctx, EVENT_ALL);
6766 * Take the context lock here so that if find_get_context is
6767 * reading child->perf_event_ctxp, we wait until it has
6768 * incremented the context's refcount before we do put_ctx below.
6770 raw_spin_lock(&child_ctx->lock);
6771 child->perf_event_ctxp[ctxn] = NULL;
6773 * If this context is a clone; unclone it so it can't get
6774 * swapped to another process while we're removing all
6775 * the events from it.
6777 unclone_ctx(child_ctx);
6778 update_context_time(child_ctx);
6779 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6782 * Report the task dead after unscheduling the events so that we
6783 * won't get any samples after PERF_RECORD_EXIT. We can however still
6784 * get a few PERF_RECORD_READ events.
6786 perf_event_task(child, child_ctx, 0);
6789 * We can recurse on the same lock type through:
6791 * __perf_event_exit_task()
6792 * sync_child_event()
6793 * fput(parent_event->filp)
6794 * perf_release()
6795 * mutex_lock(&ctx->mutex)
6797 * But since its the parent context it won't be the same instance.
6799 mutex_lock(&child_ctx->mutex);
6801 again:
6802 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6803 group_entry)
6804 __perf_event_exit_task(child_event, child_ctx, child);
6806 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6807 group_entry)
6808 __perf_event_exit_task(child_event, child_ctx, child);
6811 * If the last event was a group event, it will have appended all
6812 * its siblings to the list, but we obtained 'tmp' before that which
6813 * will still point to the list head terminating the iteration.
6815 if (!list_empty(&child_ctx->pinned_groups) ||
6816 !list_empty(&child_ctx->flexible_groups))
6817 goto again;
6819 mutex_unlock(&child_ctx->mutex);
6821 put_ctx(child_ctx);
6825 * When a child task exits, feed back event values to parent events.
6827 void perf_event_exit_task(struct task_struct *child)
6829 struct perf_event *event, *tmp;
6830 int ctxn;
6832 mutex_lock(&child->perf_event_mutex);
6833 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6834 owner_entry) {
6835 list_del_init(&event->owner_entry);
6838 * Ensure the list deletion is visible before we clear
6839 * the owner, closes a race against perf_release() where
6840 * we need to serialize on the owner->perf_event_mutex.
6842 smp_wmb();
6843 event->owner = NULL;
6845 mutex_unlock(&child->perf_event_mutex);
6847 for_each_task_context_nr(ctxn)
6848 perf_event_exit_task_context(child, ctxn);
6851 static void perf_free_event(struct perf_event *event,
6852 struct perf_event_context *ctx)
6854 struct perf_event *parent = event->parent;
6856 if (WARN_ON_ONCE(!parent))
6857 return;
6859 mutex_lock(&parent->child_mutex);
6860 list_del_init(&event->child_list);
6861 mutex_unlock(&parent->child_mutex);
6863 fput(parent->filp);
6865 perf_group_detach(event);
6866 list_del_event(event, ctx);
6867 free_event(event);
6871 * free an unexposed, unused context as created by inheritance by
6872 * perf_event_init_task below, used by fork() in case of fail.
6874 void perf_event_free_task(struct task_struct *task)
6876 struct perf_event_context *ctx;
6877 struct perf_event *event, *tmp;
6878 int ctxn;
6880 for_each_task_context_nr(ctxn) {
6881 ctx = task->perf_event_ctxp[ctxn];
6882 if (!ctx)
6883 continue;
6885 mutex_lock(&ctx->mutex);
6886 again:
6887 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6888 group_entry)
6889 perf_free_event(event, ctx);
6891 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6892 group_entry)
6893 perf_free_event(event, ctx);
6895 if (!list_empty(&ctx->pinned_groups) ||
6896 !list_empty(&ctx->flexible_groups))
6897 goto again;
6899 mutex_unlock(&ctx->mutex);
6901 put_ctx(ctx);
6905 void perf_event_delayed_put(struct task_struct *task)
6907 int ctxn;
6909 for_each_task_context_nr(ctxn)
6910 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6914 * inherit a event from parent task to child task:
6916 static struct perf_event *
6917 inherit_event(struct perf_event *parent_event,
6918 struct task_struct *parent,
6919 struct perf_event_context *parent_ctx,
6920 struct task_struct *child,
6921 struct perf_event *group_leader,
6922 struct perf_event_context *child_ctx)
6924 struct perf_event *child_event;
6925 unsigned long flags;
6928 * Instead of creating recursive hierarchies of events,
6929 * we link inherited events back to the original parent,
6930 * which has a filp for sure, which we use as the reference
6931 * count:
6933 if (parent_event->parent)
6934 parent_event = parent_event->parent;
6936 child_event = perf_event_alloc(&parent_event->attr,
6937 parent_event->cpu,
6938 child,
6939 group_leader, parent_event,
6940 NULL);
6941 if (IS_ERR(child_event))
6942 return child_event;
6943 get_ctx(child_ctx);
6946 * Make the child state follow the state of the parent event,
6947 * not its attr.disabled bit. We hold the parent's mutex,
6948 * so we won't race with perf_event_{en, dis}able_family.
6950 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6951 child_event->state = PERF_EVENT_STATE_INACTIVE;
6952 else
6953 child_event->state = PERF_EVENT_STATE_OFF;
6955 if (parent_event->attr.freq) {
6956 u64 sample_period = parent_event->hw.sample_period;
6957 struct hw_perf_event *hwc = &child_event->hw;
6959 hwc->sample_period = sample_period;
6960 hwc->last_period = sample_period;
6962 local64_set(&hwc->period_left, sample_period);
6965 child_event->ctx = child_ctx;
6966 child_event->overflow_handler = parent_event->overflow_handler;
6969 * Precalculate sample_data sizes
6971 perf_event__header_size(child_event);
6972 perf_event__id_header_size(child_event);
6975 * Link it up in the child's context:
6977 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6978 add_event_to_ctx(child_event, child_ctx);
6979 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6982 * Get a reference to the parent filp - we will fput it
6983 * when the child event exits. This is safe to do because
6984 * we are in the parent and we know that the filp still
6985 * exists and has a nonzero count:
6987 atomic_long_inc(&parent_event->filp->f_count);
6990 * Link this into the parent event's child list
6992 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6993 mutex_lock(&parent_event->child_mutex);
6994 list_add_tail(&child_event->child_list, &parent_event->child_list);
6995 mutex_unlock(&parent_event->child_mutex);
6997 return child_event;
7000 static int inherit_group(struct perf_event *parent_event,
7001 struct task_struct *parent,
7002 struct perf_event_context *parent_ctx,
7003 struct task_struct *child,
7004 struct perf_event_context *child_ctx)
7006 struct perf_event *leader;
7007 struct perf_event *sub;
7008 struct perf_event *child_ctr;
7010 leader = inherit_event(parent_event, parent, parent_ctx,
7011 child, NULL, child_ctx);
7012 if (IS_ERR(leader))
7013 return PTR_ERR(leader);
7014 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
7015 child_ctr = inherit_event(sub, parent, parent_ctx,
7016 child, leader, child_ctx);
7017 if (IS_ERR(child_ctr))
7018 return PTR_ERR(child_ctr);
7020 return 0;
7023 static int
7024 inherit_task_group(struct perf_event *event, struct task_struct *parent,
7025 struct perf_event_context *parent_ctx,
7026 struct task_struct *child, int ctxn,
7027 int *inherited_all)
7029 int ret;
7030 struct perf_event_context *child_ctx;
7032 if (!event->attr.inherit) {
7033 *inherited_all = 0;
7034 return 0;
7037 child_ctx = child->perf_event_ctxp[ctxn];
7038 if (!child_ctx) {
7040 * This is executed from the parent task context, so
7041 * inherit events that have been marked for cloning.
7042 * First allocate and initialize a context for the
7043 * child.
7046 child_ctx = alloc_perf_context(event->pmu, child);
7047 if (!child_ctx)
7048 return -ENOMEM;
7050 child->perf_event_ctxp[ctxn] = child_ctx;
7053 ret = inherit_group(event, parent, parent_ctx,
7054 child, child_ctx);
7056 if (ret)
7057 *inherited_all = 0;
7059 return ret;
7063 * Initialize the perf_event context in task_struct
7065 int perf_event_init_context(struct task_struct *child, int ctxn)
7067 struct perf_event_context *child_ctx, *parent_ctx;
7068 struct perf_event_context *cloned_ctx;
7069 struct perf_event *event;
7070 struct task_struct *parent = current;
7071 int inherited_all = 1;
7072 unsigned long flags;
7073 int ret = 0;
7075 if (likely(!parent->perf_event_ctxp[ctxn]))
7076 return 0;
7079 * If the parent's context is a clone, pin it so it won't get
7080 * swapped under us.
7082 parent_ctx = perf_pin_task_context(parent, ctxn);
7085 * No need to check if parent_ctx != NULL here; since we saw
7086 * it non-NULL earlier, the only reason for it to become NULL
7087 * is if we exit, and since we're currently in the middle of
7088 * a fork we can't be exiting at the same time.
7092 * Lock the parent list. No need to lock the child - not PID
7093 * hashed yet and not running, so nobody can access it.
7095 mutex_lock(&parent_ctx->mutex);
7098 * We dont have to disable NMIs - we are only looking at
7099 * the list, not manipulating it:
7101 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
7102 ret = inherit_task_group(event, parent, parent_ctx,
7103 child, ctxn, &inherited_all);
7104 if (ret)
7105 break;
7109 * We can't hold ctx->lock when iterating the ->flexible_group list due
7110 * to allocations, but we need to prevent rotation because
7111 * rotate_ctx() will change the list from interrupt context.
7113 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7114 parent_ctx->rotate_disable = 1;
7115 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7117 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
7118 ret = inherit_task_group(event, parent, parent_ctx,
7119 child, ctxn, &inherited_all);
7120 if (ret)
7121 break;
7124 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
7125 parent_ctx->rotate_disable = 0;
7127 child_ctx = child->perf_event_ctxp[ctxn];
7129 if (child_ctx && inherited_all) {
7131 * Mark the child context as a clone of the parent
7132 * context, or of whatever the parent is a clone of.
7134 * Note that if the parent is a clone, the holding of
7135 * parent_ctx->lock avoids it from being uncloned.
7137 cloned_ctx = parent_ctx->parent_ctx;
7138 if (cloned_ctx) {
7139 child_ctx->parent_ctx = cloned_ctx;
7140 child_ctx->parent_gen = parent_ctx->parent_gen;
7141 } else {
7142 child_ctx->parent_ctx = parent_ctx;
7143 child_ctx->parent_gen = parent_ctx->generation;
7145 get_ctx(child_ctx->parent_ctx);
7148 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
7149 mutex_unlock(&parent_ctx->mutex);
7151 perf_unpin_context(parent_ctx);
7152 put_ctx(parent_ctx);
7154 return ret;
7158 * Initialize the perf_event context in task_struct
7160 int perf_event_init_task(struct task_struct *child)
7162 int ctxn, ret;
7164 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
7165 mutex_init(&child->perf_event_mutex);
7166 INIT_LIST_HEAD(&child->perf_event_list);
7168 for_each_task_context_nr(ctxn) {
7169 ret = perf_event_init_context(child, ctxn);
7170 if (ret)
7171 return ret;
7174 return 0;
7177 static void __init perf_event_init_all_cpus(void)
7179 struct swevent_htable *swhash;
7180 int cpu;
7182 for_each_possible_cpu(cpu) {
7183 swhash = &per_cpu(swevent_htable, cpu);
7184 mutex_init(&swhash->hlist_mutex);
7185 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
7189 static void __cpuinit perf_event_init_cpu(int cpu)
7191 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7193 mutex_lock(&swhash->hlist_mutex);
7194 if (swhash->hlist_refcount > 0) {
7195 struct swevent_hlist *hlist;
7197 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
7198 WARN_ON(!hlist);
7199 rcu_assign_pointer(swhash->swevent_hlist, hlist);
7201 mutex_unlock(&swhash->hlist_mutex);
7204 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
7205 static void perf_pmu_rotate_stop(struct pmu *pmu)
7207 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
7209 WARN_ON(!irqs_disabled());
7211 list_del_init(&cpuctx->rotation_list);
7214 static void __perf_event_exit_context(void *__info)
7216 struct perf_event_context *ctx = __info;
7217 struct perf_event *event, *tmp;
7219 perf_pmu_rotate_stop(ctx->pmu);
7221 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
7222 __perf_remove_from_context(event);
7223 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
7224 __perf_remove_from_context(event);
7227 static void perf_event_exit_cpu_context(int cpu)
7229 struct perf_event_context *ctx;
7230 struct pmu *pmu;
7231 int idx;
7233 idx = srcu_read_lock(&pmus_srcu);
7234 list_for_each_entry_rcu(pmu, &pmus, entry) {
7235 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
7237 mutex_lock(&ctx->mutex);
7238 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
7239 mutex_unlock(&ctx->mutex);
7241 srcu_read_unlock(&pmus_srcu, idx);
7244 static void perf_event_exit_cpu(int cpu)
7246 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
7248 mutex_lock(&swhash->hlist_mutex);
7249 swevent_hlist_release(swhash);
7250 mutex_unlock(&swhash->hlist_mutex);
7252 perf_event_exit_cpu_context(cpu);
7254 #else
7255 static inline void perf_event_exit_cpu(int cpu) { }
7256 #endif
7258 static int
7259 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
7261 int cpu;
7263 for_each_online_cpu(cpu)
7264 perf_event_exit_cpu(cpu);
7266 return NOTIFY_OK;
7270 * Run the perf reboot notifier at the very last possible moment so that
7271 * the generic watchdog code runs as long as possible.
7273 static struct notifier_block perf_reboot_notifier = {
7274 .notifier_call = perf_reboot,
7275 .priority = INT_MIN,
7278 static int __cpuinit
7279 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
7281 unsigned int cpu = (long)hcpu;
7283 switch (action & ~CPU_TASKS_FROZEN) {
7285 case CPU_UP_PREPARE:
7286 case CPU_DOWN_FAILED:
7287 perf_event_init_cpu(cpu);
7288 break;
7290 case CPU_UP_CANCELED:
7291 case CPU_DOWN_PREPARE:
7292 perf_event_exit_cpu(cpu);
7293 break;
7295 default:
7296 break;
7299 return NOTIFY_OK;
7302 void __init perf_event_init(void)
7304 int ret;
7306 idr_init(&pmu_idr);
7308 perf_event_init_all_cpus();
7309 init_srcu_struct(&pmus_srcu);
7310 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
7311 perf_pmu_register(&perf_cpu_clock, NULL, -1);
7312 perf_pmu_register(&perf_task_clock, NULL, -1);
7313 perf_tp_register();
7314 perf_cpu_notifier(perf_cpu_notify);
7315 register_reboot_notifier(&perf_reboot_notifier);
7317 ret = init_hw_breakpoint();
7318 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
7321 static int __init perf_event_sysfs_init(void)
7323 struct pmu *pmu;
7324 int ret;
7326 mutex_lock(&pmus_lock);
7328 ret = bus_register(&pmu_bus);
7329 if (ret)
7330 goto unlock;
7332 list_for_each_entry(pmu, &pmus, entry) {
7333 if (!pmu->name || pmu->type < 0)
7334 continue;
7336 ret = pmu_dev_alloc(pmu);
7337 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
7339 pmu_bus_running = 1;
7340 ret = 0;
7342 unlock:
7343 mutex_unlock(&pmus_lock);
7345 return ret;
7347 device_initcall(perf_event_sysfs_init);
7349 #ifdef CONFIG_CGROUP_PERF
7350 static struct cgroup_subsys_state *perf_cgroup_create(
7351 struct cgroup_subsys *ss, struct cgroup *cont)
7353 struct perf_cgroup *jc;
7355 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
7356 if (!jc)
7357 return ERR_PTR(-ENOMEM);
7359 jc->info = alloc_percpu(struct perf_cgroup_info);
7360 if (!jc->info) {
7361 kfree(jc);
7362 return ERR_PTR(-ENOMEM);
7365 return &jc->css;
7368 static void perf_cgroup_destroy(struct cgroup_subsys *ss,
7369 struct cgroup *cont)
7371 struct perf_cgroup *jc;
7372 jc = container_of(cgroup_subsys_state(cont, perf_subsys_id),
7373 struct perf_cgroup, css);
7374 free_percpu(jc->info);
7375 kfree(jc);
7378 static int __perf_cgroup_move(void *info)
7380 struct task_struct *task = info;
7381 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
7382 return 0;
7385 static void perf_cgroup_move(struct task_struct *task)
7387 task_function_call(task, __perf_cgroup_move, task);
7390 static void perf_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
7391 struct cgroup *old_cgrp, struct task_struct *task,
7392 bool threadgroup)
7394 perf_cgroup_move(task);
7395 if (threadgroup) {
7396 struct task_struct *c;
7397 rcu_read_lock();
7398 list_for_each_entry_rcu(c, &task->thread_group, thread_group) {
7399 perf_cgroup_move(c);
7401 rcu_read_unlock();
7405 static void perf_cgroup_exit(struct cgroup_subsys *ss, struct cgroup *cgrp,
7406 struct cgroup *old_cgrp, struct task_struct *task)
7409 * cgroup_exit() is called in the copy_process() failure path.
7410 * Ignore this case since the task hasn't ran yet, this avoids
7411 * trying to poke a half freed task state from generic code.
7413 if (!(task->flags & PF_EXITING))
7414 return;
7416 perf_cgroup_move(task);
7419 struct cgroup_subsys perf_subsys = {
7420 .name = "perf_event",
7421 .subsys_id = perf_subsys_id,
7422 .create = perf_cgroup_create,
7423 .destroy = perf_cgroup_destroy,
7424 .exit = perf_cgroup_exit,
7425 .attach = perf_cgroup_attach,
7427 #endif /* CONFIG_CGROUP_PERF */