IB/uverbs: Protect QP multicast list
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / md.c
blobf47f1f8ac44bc16677b212f35b398dae093dab87
1 /*
2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
7 Changes:
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
28 any later version.
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
55 #include "md.h"
56 #include "bitmap.h"
58 #ifndef MODULE
59 static void autostart_arrays(int part);
60 #endif
62 /* pers_list is a list of registered personalities protected
63 * by pers_lock.
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
67 static LIST_HEAD(pers_list);
68 static DEFINE_SPINLOCK(pers_lock);
70 static void md_print_devices(void);
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait);
73 static struct workqueue_struct *md_wq;
74 static struct workqueue_struct *md_misc_wq;
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Default number of read corrections we'll attempt on an rdev
80 * before ejecting it from the array. We divide the read error
81 * count by 2 for every hour elapsed between read errors.
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
85 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86 * is 1000 KB/sec, so the extra system load does not show up that much.
87 * Increase it if you want to have more _guaranteed_ speed. Note that
88 * the RAID driver will use the maximum available bandwidth if the IO
89 * subsystem is idle. There is also an 'absolute maximum' reconstruction
90 * speed limit - in case reconstruction slows down your system despite
91 * idle IO detection.
93 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94 * or /sys/block/mdX/md/sync_speed_{min,max}
97 static int sysctl_speed_limit_min = 1000;
98 static int sysctl_speed_limit_max = 200000;
99 static inline int speed_min(struct mddev *mddev)
101 return mddev->sync_speed_min ?
102 mddev->sync_speed_min : sysctl_speed_limit_min;
105 static inline int speed_max(struct mddev *mddev)
107 return mddev->sync_speed_max ?
108 mddev->sync_speed_max : sysctl_speed_limit_max;
111 static struct ctl_table_header *raid_table_header;
113 static ctl_table raid_table[] = {
115 .procname = "speed_limit_min",
116 .data = &sysctl_speed_limit_min,
117 .maxlen = sizeof(int),
118 .mode = S_IRUGO|S_IWUSR,
119 .proc_handler = proc_dointvec,
122 .procname = "speed_limit_max",
123 .data = &sysctl_speed_limit_max,
124 .maxlen = sizeof(int),
125 .mode = S_IRUGO|S_IWUSR,
126 .proc_handler = proc_dointvec,
131 static ctl_table raid_dir_table[] = {
133 .procname = "raid",
134 .maxlen = 0,
135 .mode = S_IRUGO|S_IXUGO,
136 .child = raid_table,
141 static ctl_table raid_root_table[] = {
143 .procname = "dev",
144 .maxlen = 0,
145 .mode = 0555,
146 .child = raid_dir_table,
151 static const struct block_device_operations md_fops;
153 static int start_readonly;
155 /* bio_clone_mddev
156 * like bio_clone, but with a local bio set
159 static void mddev_bio_destructor(struct bio *bio)
161 struct mddev *mddev, **mddevp;
163 mddevp = (void*)bio;
164 mddev = mddevp[-1];
166 bio_free(bio, mddev->bio_set);
169 struct bio *bio_alloc_mddev(gfp_t gfp_mask, int nr_iovecs,
170 struct mddev *mddev)
172 struct bio *b;
173 struct mddev **mddevp;
175 if (!mddev || !mddev->bio_set)
176 return bio_alloc(gfp_mask, nr_iovecs);
178 b = bio_alloc_bioset(gfp_mask, nr_iovecs,
179 mddev->bio_set);
180 if (!b)
181 return NULL;
182 mddevp = (void*)b;
183 mddevp[-1] = mddev;
184 b->bi_destructor = mddev_bio_destructor;
185 return b;
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev);
189 struct bio *bio_clone_mddev(struct bio *bio, gfp_t gfp_mask,
190 struct mddev *mddev)
192 struct bio *b;
193 struct mddev **mddevp;
195 if (!mddev || !mddev->bio_set)
196 return bio_clone(bio, gfp_mask);
198 b = bio_alloc_bioset(gfp_mask, bio->bi_max_vecs,
199 mddev->bio_set);
200 if (!b)
201 return NULL;
202 mddevp = (void*)b;
203 mddevp[-1] = mddev;
204 b->bi_destructor = mddev_bio_destructor;
205 __bio_clone(b, bio);
206 if (bio_integrity(bio)) {
207 int ret;
209 ret = bio_integrity_clone(b, bio, gfp_mask, mddev->bio_set);
211 if (ret < 0) {
212 bio_put(b);
213 return NULL;
217 return b;
219 EXPORT_SYMBOL_GPL(bio_clone_mddev);
221 void md_trim_bio(struct bio *bio, int offset, int size)
223 /* 'bio' is a cloned bio which we need to trim to match
224 * the given offset and size.
225 * This requires adjusting bi_sector, bi_size, and bi_io_vec
227 int i;
228 struct bio_vec *bvec;
229 int sofar = 0;
231 size <<= 9;
232 if (offset == 0 && size == bio->bi_size)
233 return;
235 bio->bi_sector += offset;
236 bio->bi_size = size;
237 offset <<= 9;
238 clear_bit(BIO_SEG_VALID, &bio->bi_flags);
240 while (bio->bi_idx < bio->bi_vcnt &&
241 bio->bi_io_vec[bio->bi_idx].bv_len <= offset) {
242 /* remove this whole bio_vec */
243 offset -= bio->bi_io_vec[bio->bi_idx].bv_len;
244 bio->bi_idx++;
246 if (bio->bi_idx < bio->bi_vcnt) {
247 bio->bi_io_vec[bio->bi_idx].bv_offset += offset;
248 bio->bi_io_vec[bio->bi_idx].bv_len -= offset;
250 /* avoid any complications with bi_idx being non-zero*/
251 if (bio->bi_idx) {
252 memmove(bio->bi_io_vec, bio->bi_io_vec+bio->bi_idx,
253 (bio->bi_vcnt - bio->bi_idx) * sizeof(struct bio_vec));
254 bio->bi_vcnt -= bio->bi_idx;
255 bio->bi_idx = 0;
257 /* Make sure vcnt and last bv are not too big */
258 bio_for_each_segment(bvec, bio, i) {
259 if (sofar + bvec->bv_len > size)
260 bvec->bv_len = size - sofar;
261 if (bvec->bv_len == 0) {
262 bio->bi_vcnt = i;
263 break;
265 sofar += bvec->bv_len;
268 EXPORT_SYMBOL_GPL(md_trim_bio);
271 * We have a system wide 'event count' that is incremented
272 * on any 'interesting' event, and readers of /proc/mdstat
273 * can use 'poll' or 'select' to find out when the event
274 * count increases.
276 * Events are:
277 * start array, stop array, error, add device, remove device,
278 * start build, activate spare
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters);
281 static atomic_t md_event_count;
282 void md_new_event(struct mddev *mddev)
284 atomic_inc(&md_event_count);
285 wake_up(&md_event_waiters);
287 EXPORT_SYMBOL_GPL(md_new_event);
289 /* Alternate version that can be called from interrupts
290 * when calling sysfs_notify isn't needed.
292 static void md_new_event_inintr(struct mddev *mddev)
294 atomic_inc(&md_event_count);
295 wake_up(&md_event_waiters);
299 * Enables to iterate over all existing md arrays
300 * all_mddevs_lock protects this list.
302 static LIST_HEAD(all_mddevs);
303 static DEFINE_SPINLOCK(all_mddevs_lock);
307 * iterates through all used mddevs in the system.
308 * We take care to grab the all_mddevs_lock whenever navigating
309 * the list, and to always hold a refcount when unlocked.
310 * Any code which breaks out of this loop while own
311 * a reference to the current mddev and must mddev_put it.
313 #define for_each_mddev(_mddev,_tmp) \
315 for (({ spin_lock(&all_mddevs_lock); \
316 _tmp = all_mddevs.next; \
317 _mddev = NULL;}); \
318 ({ if (_tmp != &all_mddevs) \
319 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 spin_unlock(&all_mddevs_lock); \
321 if (_mddev) mddev_put(_mddev); \
322 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
323 _tmp != &all_mddevs;}); \
324 ({ spin_lock(&all_mddevs_lock); \
325 _tmp = _tmp->next;}) \
329 /* Rather than calling directly into the personality make_request function,
330 * IO requests come here first so that we can check if the device is
331 * being suspended pending a reconfiguration.
332 * We hold a refcount over the call to ->make_request. By the time that
333 * call has finished, the bio has been linked into some internal structure
334 * and so is visible to ->quiesce(), so we don't need the refcount any more.
336 static void md_make_request(struct request_queue *q, struct bio *bio)
338 const int rw = bio_data_dir(bio);
339 struct mddev *mddev = q->queuedata;
340 int cpu;
341 unsigned int sectors;
343 if (mddev == NULL || mddev->pers == NULL
344 || !mddev->ready) {
345 bio_io_error(bio);
346 return;
348 smp_rmb(); /* Ensure implications of 'active' are visible */
349 rcu_read_lock();
350 if (mddev->suspended) {
351 DEFINE_WAIT(__wait);
352 for (;;) {
353 prepare_to_wait(&mddev->sb_wait, &__wait,
354 TASK_UNINTERRUPTIBLE);
355 if (!mddev->suspended)
356 break;
357 rcu_read_unlock();
358 schedule();
359 rcu_read_lock();
361 finish_wait(&mddev->sb_wait, &__wait);
363 atomic_inc(&mddev->active_io);
364 rcu_read_unlock();
367 * save the sectors now since our bio can
368 * go away inside make_request
370 sectors = bio_sectors(bio);
371 mddev->pers->make_request(mddev, bio);
373 cpu = part_stat_lock();
374 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
375 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw], sectors);
376 part_stat_unlock();
378 if (atomic_dec_and_test(&mddev->active_io) && mddev->suspended)
379 wake_up(&mddev->sb_wait);
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
386 * unused.
388 void mddev_suspend(struct mddev *mddev)
390 BUG_ON(mddev->suspended);
391 mddev->suspended = 1;
392 synchronize_rcu();
393 wait_event(mddev->sb_wait, atomic_read(&mddev->active_io) == 0);
394 mddev->pers->quiesce(mddev, 1);
396 EXPORT_SYMBOL_GPL(mddev_suspend);
398 void mddev_resume(struct mddev *mddev)
400 mddev->suspended = 0;
401 wake_up(&mddev->sb_wait);
402 mddev->pers->quiesce(mddev, 0);
404 md_wakeup_thread(mddev->thread);
405 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
407 EXPORT_SYMBOL_GPL(mddev_resume);
409 int mddev_congested(struct mddev *mddev, int bits)
411 return mddev->suspended;
413 EXPORT_SYMBOL(mddev_congested);
416 * Generic flush handling for md
419 static void md_end_flush(struct bio *bio, int err)
421 struct md_rdev *rdev = bio->bi_private;
422 struct mddev *mddev = rdev->mddev;
424 rdev_dec_pending(rdev, mddev);
426 if (atomic_dec_and_test(&mddev->flush_pending)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq, &mddev->flush_work);
430 bio_put(bio);
433 static void md_submit_flush_data(struct work_struct *ws);
435 static void submit_flushes(struct work_struct *ws)
437 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
438 struct md_rdev *rdev;
440 INIT_WORK(&mddev->flush_work, md_submit_flush_data);
441 atomic_set(&mddev->flush_pending, 1);
442 rcu_read_lock();
443 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
444 if (rdev->raid_disk >= 0 &&
445 !test_bit(Faulty, &rdev->flags)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
450 struct bio *bi;
451 atomic_inc(&rdev->nr_pending);
452 atomic_inc(&rdev->nr_pending);
453 rcu_read_unlock();
454 bi = bio_alloc_mddev(GFP_KERNEL, 0, mddev);
455 bi->bi_end_io = md_end_flush;
456 bi->bi_private = rdev;
457 bi->bi_bdev = rdev->bdev;
458 atomic_inc(&mddev->flush_pending);
459 submit_bio(WRITE_FLUSH, bi);
460 rcu_read_lock();
461 rdev_dec_pending(rdev, mddev);
463 rcu_read_unlock();
464 if (atomic_dec_and_test(&mddev->flush_pending))
465 queue_work(md_wq, &mddev->flush_work);
468 static void md_submit_flush_data(struct work_struct *ws)
470 struct mddev *mddev = container_of(ws, struct mddev, flush_work);
471 struct bio *bio = mddev->flush_bio;
473 if (bio->bi_size == 0)
474 /* an empty barrier - all done */
475 bio_endio(bio, 0);
476 else {
477 bio->bi_rw &= ~REQ_FLUSH;
478 mddev->pers->make_request(mddev, bio);
481 mddev->flush_bio = NULL;
482 wake_up(&mddev->sb_wait);
485 void md_flush_request(struct mddev *mddev, struct bio *bio)
487 spin_lock_irq(&mddev->write_lock);
488 wait_event_lock_irq(mddev->sb_wait,
489 !mddev->flush_bio,
490 mddev->write_lock, /*nothing*/);
491 mddev->flush_bio = bio;
492 spin_unlock_irq(&mddev->write_lock);
494 INIT_WORK(&mddev->flush_work, submit_flushes);
495 queue_work(md_wq, &mddev->flush_work);
497 EXPORT_SYMBOL(md_flush_request);
499 /* Support for plugging.
500 * This mirrors the plugging support in request_queue, but does not
501 * require having a whole queue or request structures.
502 * We allocate an md_plug_cb for each md device and each thread it gets
503 * plugged on. This links tot the private plug_handle structure in the
504 * personality data where we keep a count of the number of outstanding
505 * plugs so other code can see if a plug is active.
507 struct md_plug_cb {
508 struct blk_plug_cb cb;
509 struct mddev *mddev;
512 static void plugger_unplug(struct blk_plug_cb *cb)
514 struct md_plug_cb *mdcb = container_of(cb, struct md_plug_cb, cb);
515 if (atomic_dec_and_test(&mdcb->mddev->plug_cnt))
516 md_wakeup_thread(mdcb->mddev->thread);
517 kfree(mdcb);
520 /* Check that an unplug wakeup will come shortly.
521 * If not, wakeup the md thread immediately
523 int mddev_check_plugged(struct mddev *mddev)
525 struct blk_plug *plug = current->plug;
526 struct md_plug_cb *mdcb;
528 if (!plug)
529 return 0;
531 list_for_each_entry(mdcb, &plug->cb_list, cb.list) {
532 if (mdcb->cb.callback == plugger_unplug &&
533 mdcb->mddev == mddev) {
534 /* Already on the list, move to top */
535 if (mdcb != list_first_entry(&plug->cb_list,
536 struct md_plug_cb,
537 cb.list))
538 list_move(&mdcb->cb.list, &plug->cb_list);
539 return 1;
542 /* Not currently on the callback list */
543 mdcb = kmalloc(sizeof(*mdcb), GFP_ATOMIC);
544 if (!mdcb)
545 return 0;
547 mdcb->mddev = mddev;
548 mdcb->cb.callback = plugger_unplug;
549 atomic_inc(&mddev->plug_cnt);
550 list_add(&mdcb->cb.list, &plug->cb_list);
551 return 1;
553 EXPORT_SYMBOL_GPL(mddev_check_plugged);
555 static inline struct mddev *mddev_get(struct mddev *mddev)
557 atomic_inc(&mddev->active);
558 return mddev;
561 static void mddev_delayed_delete(struct work_struct *ws);
563 static void mddev_put(struct mddev *mddev)
565 struct bio_set *bs = NULL;
567 if (!atomic_dec_and_lock(&mddev->active, &all_mddevs_lock))
568 return;
569 if (!mddev->raid_disks && list_empty(&mddev->disks) &&
570 mddev->ctime == 0 && !mddev->hold_active) {
571 /* Array is not configured at all, and not held active,
572 * so destroy it */
573 list_del_init(&mddev->all_mddevs);
574 bs = mddev->bio_set;
575 mddev->bio_set = NULL;
576 if (mddev->gendisk) {
577 /* We did a probe so need to clean up. Call
578 * queue_work inside the spinlock so that
579 * flush_workqueue() after mddev_find will
580 * succeed in waiting for the work to be done.
582 INIT_WORK(&mddev->del_work, mddev_delayed_delete);
583 queue_work(md_misc_wq, &mddev->del_work);
584 } else
585 kfree(mddev);
587 spin_unlock(&all_mddevs_lock);
588 if (bs)
589 bioset_free(bs);
592 void mddev_init(struct mddev *mddev)
594 mutex_init(&mddev->open_mutex);
595 mutex_init(&mddev->reconfig_mutex);
596 mutex_init(&mddev->bitmap_info.mutex);
597 INIT_LIST_HEAD(&mddev->disks);
598 INIT_LIST_HEAD(&mddev->all_mddevs);
599 init_timer(&mddev->safemode_timer);
600 atomic_set(&mddev->active, 1);
601 atomic_set(&mddev->openers, 0);
602 atomic_set(&mddev->active_io, 0);
603 atomic_set(&mddev->plug_cnt, 0);
604 spin_lock_init(&mddev->write_lock);
605 atomic_set(&mddev->flush_pending, 0);
606 init_waitqueue_head(&mddev->sb_wait);
607 init_waitqueue_head(&mddev->recovery_wait);
608 mddev->reshape_position = MaxSector;
609 mddev->resync_min = 0;
610 mddev->resync_max = MaxSector;
611 mddev->level = LEVEL_NONE;
613 EXPORT_SYMBOL_GPL(mddev_init);
615 static struct mddev * mddev_find(dev_t unit)
617 struct mddev *mddev, *new = NULL;
619 if (unit && MAJOR(unit) != MD_MAJOR)
620 unit &= ~((1<<MdpMinorShift)-1);
622 retry:
623 spin_lock(&all_mddevs_lock);
625 if (unit) {
626 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
627 if (mddev->unit == unit) {
628 mddev_get(mddev);
629 spin_unlock(&all_mddevs_lock);
630 kfree(new);
631 return mddev;
634 if (new) {
635 list_add(&new->all_mddevs, &all_mddevs);
636 spin_unlock(&all_mddevs_lock);
637 new->hold_active = UNTIL_IOCTL;
638 return new;
640 } else if (new) {
641 /* find an unused unit number */
642 static int next_minor = 512;
643 int start = next_minor;
644 int is_free = 0;
645 int dev = 0;
646 while (!is_free) {
647 dev = MKDEV(MD_MAJOR, next_minor);
648 next_minor++;
649 if (next_minor > MINORMASK)
650 next_minor = 0;
651 if (next_minor == start) {
652 /* Oh dear, all in use. */
653 spin_unlock(&all_mddevs_lock);
654 kfree(new);
655 return NULL;
658 is_free = 1;
659 list_for_each_entry(mddev, &all_mddevs, all_mddevs)
660 if (mddev->unit == dev) {
661 is_free = 0;
662 break;
665 new->unit = dev;
666 new->md_minor = MINOR(dev);
667 new->hold_active = UNTIL_STOP;
668 list_add(&new->all_mddevs, &all_mddevs);
669 spin_unlock(&all_mddevs_lock);
670 return new;
672 spin_unlock(&all_mddevs_lock);
674 new = kzalloc(sizeof(*new), GFP_KERNEL);
675 if (!new)
676 return NULL;
678 new->unit = unit;
679 if (MAJOR(unit) == MD_MAJOR)
680 new->md_minor = MINOR(unit);
681 else
682 new->md_minor = MINOR(unit) >> MdpMinorShift;
684 mddev_init(new);
686 goto retry;
689 static inline int mddev_lock(struct mddev * mddev)
691 return mutex_lock_interruptible(&mddev->reconfig_mutex);
694 static inline int mddev_is_locked(struct mddev *mddev)
696 return mutex_is_locked(&mddev->reconfig_mutex);
699 static inline int mddev_trylock(struct mddev * mddev)
701 return mutex_trylock(&mddev->reconfig_mutex);
704 static struct attribute_group md_redundancy_group;
706 static void mddev_unlock(struct mddev * mddev)
708 if (mddev->to_remove) {
709 /* These cannot be removed under reconfig_mutex as
710 * an access to the files will try to take reconfig_mutex
711 * while holding the file unremovable, which leads to
712 * a deadlock.
713 * So hold set sysfs_active while the remove in happeing,
714 * and anything else which might set ->to_remove or my
715 * otherwise change the sysfs namespace will fail with
716 * -EBUSY if sysfs_active is still set.
717 * We set sysfs_active under reconfig_mutex and elsewhere
718 * test it under the same mutex to ensure its correct value
719 * is seen.
721 struct attribute_group *to_remove = mddev->to_remove;
722 mddev->to_remove = NULL;
723 mddev->sysfs_active = 1;
724 mutex_unlock(&mddev->reconfig_mutex);
726 if (mddev->kobj.sd) {
727 if (to_remove != &md_redundancy_group)
728 sysfs_remove_group(&mddev->kobj, to_remove);
729 if (mddev->pers == NULL ||
730 mddev->pers->sync_request == NULL) {
731 sysfs_remove_group(&mddev->kobj, &md_redundancy_group);
732 if (mddev->sysfs_action)
733 sysfs_put(mddev->sysfs_action);
734 mddev->sysfs_action = NULL;
737 mddev->sysfs_active = 0;
738 } else
739 mutex_unlock(&mddev->reconfig_mutex);
741 /* As we've dropped the mutex we need a spinlock to
742 * make sure the thread doesn't disappear
744 spin_lock(&pers_lock);
745 md_wakeup_thread(mddev->thread);
746 spin_unlock(&pers_lock);
749 static struct md_rdev * find_rdev_nr(struct mddev *mddev, int nr)
751 struct md_rdev *rdev;
753 list_for_each_entry(rdev, &mddev->disks, same_set)
754 if (rdev->desc_nr == nr)
755 return rdev;
757 return NULL;
760 static struct md_rdev * find_rdev(struct mddev * mddev, dev_t dev)
762 struct md_rdev *rdev;
764 list_for_each_entry(rdev, &mddev->disks, same_set)
765 if (rdev->bdev->bd_dev == dev)
766 return rdev;
768 return NULL;
771 static struct md_personality *find_pers(int level, char *clevel)
773 struct md_personality *pers;
774 list_for_each_entry(pers, &pers_list, list) {
775 if (level != LEVEL_NONE && pers->level == level)
776 return pers;
777 if (strcmp(pers->name, clevel)==0)
778 return pers;
780 return NULL;
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t calc_dev_sboffset(struct md_rdev *rdev)
786 sector_t num_sectors = i_size_read(rdev->bdev->bd_inode) / 512;
787 return MD_NEW_SIZE_SECTORS(num_sectors);
790 static int alloc_disk_sb(struct md_rdev * rdev)
792 if (rdev->sb_page)
793 MD_BUG();
795 rdev->sb_page = alloc_page(GFP_KERNEL);
796 if (!rdev->sb_page) {
797 printk(KERN_ALERT "md: out of memory.\n");
798 return -ENOMEM;
801 return 0;
804 static void free_disk_sb(struct md_rdev * rdev)
806 if (rdev->sb_page) {
807 put_page(rdev->sb_page);
808 rdev->sb_loaded = 0;
809 rdev->sb_page = NULL;
810 rdev->sb_start = 0;
811 rdev->sectors = 0;
813 if (rdev->bb_page) {
814 put_page(rdev->bb_page);
815 rdev->bb_page = NULL;
820 static void super_written(struct bio *bio, int error)
822 struct md_rdev *rdev = bio->bi_private;
823 struct mddev *mddev = rdev->mddev;
825 if (error || !test_bit(BIO_UPTODATE, &bio->bi_flags)) {
826 printk("md: super_written gets error=%d, uptodate=%d\n",
827 error, test_bit(BIO_UPTODATE, &bio->bi_flags));
828 WARN_ON(test_bit(BIO_UPTODATE, &bio->bi_flags));
829 md_error(mddev, rdev);
832 if (atomic_dec_and_test(&mddev->pending_writes))
833 wake_up(&mddev->sb_wait);
834 bio_put(bio);
837 void md_super_write(struct mddev *mddev, struct md_rdev *rdev,
838 sector_t sector, int size, struct page *page)
840 /* write first size bytes of page to sector of rdev
841 * Increment mddev->pending_writes before returning
842 * and decrement it on completion, waking up sb_wait
843 * if zero is reached.
844 * If an error occurred, call md_error
846 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, mddev);
848 bio->bi_bdev = rdev->meta_bdev ? rdev->meta_bdev : rdev->bdev;
849 bio->bi_sector = sector;
850 bio_add_page(bio, page, size, 0);
851 bio->bi_private = rdev;
852 bio->bi_end_io = super_written;
854 atomic_inc(&mddev->pending_writes);
855 submit_bio(WRITE_FLUSH_FUA, bio);
858 void md_super_wait(struct mddev *mddev)
860 /* wait for all superblock writes that were scheduled to complete */
861 DEFINE_WAIT(wq);
862 for(;;) {
863 prepare_to_wait(&mddev->sb_wait, &wq, TASK_UNINTERRUPTIBLE);
864 if (atomic_read(&mddev->pending_writes)==0)
865 break;
866 schedule();
868 finish_wait(&mddev->sb_wait, &wq);
871 static void bi_complete(struct bio *bio, int error)
873 complete((struct completion*)bio->bi_private);
876 int sync_page_io(struct md_rdev *rdev, sector_t sector, int size,
877 struct page *page, int rw, bool metadata_op)
879 struct bio *bio = bio_alloc_mddev(GFP_NOIO, 1, rdev->mddev);
880 struct completion event;
881 int ret;
883 rw |= REQ_SYNC;
885 bio->bi_bdev = (metadata_op && rdev->meta_bdev) ?
886 rdev->meta_bdev : rdev->bdev;
887 if (metadata_op)
888 bio->bi_sector = sector + rdev->sb_start;
889 else
890 bio->bi_sector = sector + rdev->data_offset;
891 bio_add_page(bio, page, size, 0);
892 init_completion(&event);
893 bio->bi_private = &event;
894 bio->bi_end_io = bi_complete;
895 submit_bio(rw, bio);
896 wait_for_completion(&event);
898 ret = test_bit(BIO_UPTODATE, &bio->bi_flags);
899 bio_put(bio);
900 return ret;
902 EXPORT_SYMBOL_GPL(sync_page_io);
904 static int read_disk_sb(struct md_rdev * rdev, int size)
906 char b[BDEVNAME_SIZE];
907 if (!rdev->sb_page) {
908 MD_BUG();
909 return -EINVAL;
911 if (rdev->sb_loaded)
912 return 0;
915 if (!sync_page_io(rdev, 0, size, rdev->sb_page, READ, true))
916 goto fail;
917 rdev->sb_loaded = 1;
918 return 0;
920 fail:
921 printk(KERN_WARNING "md: disabled device %s, could not read superblock.\n",
922 bdevname(rdev->bdev,b));
923 return -EINVAL;
926 static int uuid_equal(mdp_super_t *sb1, mdp_super_t *sb2)
928 return sb1->set_uuid0 == sb2->set_uuid0 &&
929 sb1->set_uuid1 == sb2->set_uuid1 &&
930 sb1->set_uuid2 == sb2->set_uuid2 &&
931 sb1->set_uuid3 == sb2->set_uuid3;
934 static int sb_equal(mdp_super_t *sb1, mdp_super_t *sb2)
936 int ret;
937 mdp_super_t *tmp1, *tmp2;
939 tmp1 = kmalloc(sizeof(*tmp1),GFP_KERNEL);
940 tmp2 = kmalloc(sizeof(*tmp2),GFP_KERNEL);
942 if (!tmp1 || !tmp2) {
943 ret = 0;
944 printk(KERN_INFO "md.c sb_equal(): failed to allocate memory!\n");
945 goto abort;
948 *tmp1 = *sb1;
949 *tmp2 = *sb2;
952 * nr_disks is not constant
954 tmp1->nr_disks = 0;
955 tmp2->nr_disks = 0;
957 ret = (memcmp(tmp1, tmp2, MD_SB_GENERIC_CONSTANT_WORDS * 4) == 0);
958 abort:
959 kfree(tmp1);
960 kfree(tmp2);
961 return ret;
965 static u32 md_csum_fold(u32 csum)
967 csum = (csum & 0xffff) + (csum >> 16);
968 return (csum & 0xffff) + (csum >> 16);
971 static unsigned int calc_sb_csum(mdp_super_t * sb)
973 u64 newcsum = 0;
974 u32 *sb32 = (u32*)sb;
975 int i;
976 unsigned int disk_csum, csum;
978 disk_csum = sb->sb_csum;
979 sb->sb_csum = 0;
981 for (i = 0; i < MD_SB_BYTES/4 ; i++)
982 newcsum += sb32[i];
983 csum = (newcsum & 0xffffffff) + (newcsum>>32);
986 #ifdef CONFIG_ALPHA
987 /* This used to use csum_partial, which was wrong for several
988 * reasons including that different results are returned on
989 * different architectures. It isn't critical that we get exactly
990 * the same return value as before (we always csum_fold before
991 * testing, and that removes any differences). However as we
992 * know that csum_partial always returned a 16bit value on
993 * alphas, do a fold to maximise conformity to previous behaviour.
995 sb->sb_csum = md_csum_fold(disk_csum);
996 #else
997 sb->sb_csum = disk_csum;
998 #endif
999 return csum;
1004 * Handle superblock details.
1005 * We want to be able to handle multiple superblock formats
1006 * so we have a common interface to them all, and an array of
1007 * different handlers.
1008 * We rely on user-space to write the initial superblock, and support
1009 * reading and updating of superblocks.
1010 * Interface methods are:
1011 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012 * loads and validates a superblock on dev.
1013 * if refdev != NULL, compare superblocks on both devices
1014 * Return:
1015 * 0 - dev has a superblock that is compatible with refdev
1016 * 1 - dev has a superblock that is compatible and newer than refdev
1017 * so dev should be used as the refdev in future
1018 * -EINVAL superblock incompatible or invalid
1019 * -othererror e.g. -EIO
1021 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022 * Verify that dev is acceptable into mddev.
1023 * The first time, mddev->raid_disks will be 0, and data from
1024 * dev should be merged in. Subsequent calls check that dev
1025 * is new enough. Return 0 or -EINVAL
1027 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028 * Update the superblock for rdev with data in mddev
1029 * This does not write to disc.
1033 struct super_type {
1034 char *name;
1035 struct module *owner;
1036 int (*load_super)(struct md_rdev *rdev, struct md_rdev *refdev,
1037 int minor_version);
1038 int (*validate_super)(struct mddev *mddev, struct md_rdev *rdev);
1039 void (*sync_super)(struct mddev *mddev, struct md_rdev *rdev);
1040 unsigned long long (*rdev_size_change)(struct md_rdev *rdev,
1041 sector_t num_sectors);
1045 * Check that the given mddev has no bitmap.
1047 * This function is called from the run method of all personalities that do not
1048 * support bitmaps. It prints an error message and returns non-zero if mddev
1049 * has a bitmap. Otherwise, it returns 0.
1052 int md_check_no_bitmap(struct mddev *mddev)
1054 if (!mddev->bitmap_info.file && !mddev->bitmap_info.offset)
1055 return 0;
1056 printk(KERN_ERR "%s: bitmaps are not supported for %s\n",
1057 mdname(mddev), mddev->pers->name);
1058 return 1;
1060 EXPORT_SYMBOL(md_check_no_bitmap);
1063 * load_super for 0.90.0
1065 static int super_90_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1067 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1068 mdp_super_t *sb;
1069 int ret;
1072 * Calculate the position of the superblock (512byte sectors),
1073 * it's at the end of the disk.
1075 * It also happens to be a multiple of 4Kb.
1077 rdev->sb_start = calc_dev_sboffset(rdev);
1079 ret = read_disk_sb(rdev, MD_SB_BYTES);
1080 if (ret) return ret;
1082 ret = -EINVAL;
1084 bdevname(rdev->bdev, b);
1085 sb = page_address(rdev->sb_page);
1087 if (sb->md_magic != MD_SB_MAGIC) {
1088 printk(KERN_ERR "md: invalid raid superblock magic on %s\n",
1090 goto abort;
1093 if (sb->major_version != 0 ||
1094 sb->minor_version < 90 ||
1095 sb->minor_version > 91) {
1096 printk(KERN_WARNING "Bad version number %d.%d on %s\n",
1097 sb->major_version, sb->minor_version,
1099 goto abort;
1102 if (sb->raid_disks <= 0)
1103 goto abort;
1105 if (md_csum_fold(calc_sb_csum(sb)) != md_csum_fold(sb->sb_csum)) {
1106 printk(KERN_WARNING "md: invalid superblock checksum on %s\n",
1108 goto abort;
1111 rdev->preferred_minor = sb->md_minor;
1112 rdev->data_offset = 0;
1113 rdev->sb_size = MD_SB_BYTES;
1114 rdev->badblocks.shift = -1;
1116 if (sb->level == LEVEL_MULTIPATH)
1117 rdev->desc_nr = -1;
1118 else
1119 rdev->desc_nr = sb->this_disk.number;
1121 if (!refdev) {
1122 ret = 1;
1123 } else {
1124 __u64 ev1, ev2;
1125 mdp_super_t *refsb = page_address(refdev->sb_page);
1126 if (!uuid_equal(refsb, sb)) {
1127 printk(KERN_WARNING "md: %s has different UUID to %s\n",
1128 b, bdevname(refdev->bdev,b2));
1129 goto abort;
1131 if (!sb_equal(refsb, sb)) {
1132 printk(KERN_WARNING "md: %s has same UUID"
1133 " but different superblock to %s\n",
1134 b, bdevname(refdev->bdev, b2));
1135 goto abort;
1137 ev1 = md_event(sb);
1138 ev2 = md_event(refsb);
1139 if (ev1 > ev2)
1140 ret = 1;
1141 else
1142 ret = 0;
1144 rdev->sectors = rdev->sb_start;
1145 /* Limit to 4TB as metadata cannot record more than that */
1146 if (rdev->sectors >= (2ULL << 32))
1147 rdev->sectors = (2ULL << 32) - 2;
1149 if (rdev->sectors < ((sector_t)sb->size) * 2 && sb->level >= 1)
1150 /* "this cannot possibly happen" ... */
1151 ret = -EINVAL;
1153 abort:
1154 return ret;
1158 * validate_super for 0.90.0
1160 static int super_90_validate(struct mddev *mddev, struct md_rdev *rdev)
1162 mdp_disk_t *desc;
1163 mdp_super_t *sb = page_address(rdev->sb_page);
1164 __u64 ev1 = md_event(sb);
1166 rdev->raid_disk = -1;
1167 clear_bit(Faulty, &rdev->flags);
1168 clear_bit(In_sync, &rdev->flags);
1169 clear_bit(WriteMostly, &rdev->flags);
1171 if (mddev->raid_disks == 0) {
1172 mddev->major_version = 0;
1173 mddev->minor_version = sb->minor_version;
1174 mddev->patch_version = sb->patch_version;
1175 mddev->external = 0;
1176 mddev->chunk_sectors = sb->chunk_size >> 9;
1177 mddev->ctime = sb->ctime;
1178 mddev->utime = sb->utime;
1179 mddev->level = sb->level;
1180 mddev->clevel[0] = 0;
1181 mddev->layout = sb->layout;
1182 mddev->raid_disks = sb->raid_disks;
1183 mddev->dev_sectors = ((sector_t)sb->size) * 2;
1184 mddev->events = ev1;
1185 mddev->bitmap_info.offset = 0;
1186 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
1188 if (mddev->minor_version >= 91) {
1189 mddev->reshape_position = sb->reshape_position;
1190 mddev->delta_disks = sb->delta_disks;
1191 mddev->new_level = sb->new_level;
1192 mddev->new_layout = sb->new_layout;
1193 mddev->new_chunk_sectors = sb->new_chunk >> 9;
1194 } else {
1195 mddev->reshape_position = MaxSector;
1196 mddev->delta_disks = 0;
1197 mddev->new_level = mddev->level;
1198 mddev->new_layout = mddev->layout;
1199 mddev->new_chunk_sectors = mddev->chunk_sectors;
1202 if (sb->state & (1<<MD_SB_CLEAN))
1203 mddev->recovery_cp = MaxSector;
1204 else {
1205 if (sb->events_hi == sb->cp_events_hi &&
1206 sb->events_lo == sb->cp_events_lo) {
1207 mddev->recovery_cp = sb->recovery_cp;
1208 } else
1209 mddev->recovery_cp = 0;
1212 memcpy(mddev->uuid+0, &sb->set_uuid0, 4);
1213 memcpy(mddev->uuid+4, &sb->set_uuid1, 4);
1214 memcpy(mddev->uuid+8, &sb->set_uuid2, 4);
1215 memcpy(mddev->uuid+12,&sb->set_uuid3, 4);
1217 mddev->max_disks = MD_SB_DISKS;
1219 if (sb->state & (1<<MD_SB_BITMAP_PRESENT) &&
1220 mddev->bitmap_info.file == NULL)
1221 mddev->bitmap_info.offset =
1222 mddev->bitmap_info.default_offset;
1224 } else if (mddev->pers == NULL) {
1225 /* Insist on good event counter while assembling, except
1226 * for spares (which don't need an event count) */
1227 ++ev1;
1228 if (sb->disks[rdev->desc_nr].state & (
1229 (1<<MD_DISK_SYNC) | (1 << MD_DISK_ACTIVE)))
1230 if (ev1 < mddev->events)
1231 return -EINVAL;
1232 } else if (mddev->bitmap) {
1233 /* if adding to array with a bitmap, then we can accept an
1234 * older device ... but not too old.
1236 if (ev1 < mddev->bitmap->events_cleared)
1237 return 0;
1238 } else {
1239 if (ev1 < mddev->events)
1240 /* just a hot-add of a new device, leave raid_disk at -1 */
1241 return 0;
1244 if (mddev->level != LEVEL_MULTIPATH) {
1245 desc = sb->disks + rdev->desc_nr;
1247 if (desc->state & (1<<MD_DISK_FAULTY))
1248 set_bit(Faulty, &rdev->flags);
1249 else if (desc->state & (1<<MD_DISK_SYNC) /* &&
1250 desc->raid_disk < mddev->raid_disks */) {
1251 set_bit(In_sync, &rdev->flags);
1252 rdev->raid_disk = desc->raid_disk;
1253 } else if (desc->state & (1<<MD_DISK_ACTIVE)) {
1254 /* active but not in sync implies recovery up to
1255 * reshape position. We don't know exactly where
1256 * that is, so set to zero for now */
1257 if (mddev->minor_version >= 91) {
1258 rdev->recovery_offset = 0;
1259 rdev->raid_disk = desc->raid_disk;
1262 if (desc->state & (1<<MD_DISK_WRITEMOSTLY))
1263 set_bit(WriteMostly, &rdev->flags);
1264 } else /* MULTIPATH are always insync */
1265 set_bit(In_sync, &rdev->flags);
1266 return 0;
1270 * sync_super for 0.90.0
1272 static void super_90_sync(struct mddev *mddev, struct md_rdev *rdev)
1274 mdp_super_t *sb;
1275 struct md_rdev *rdev2;
1276 int next_spare = mddev->raid_disks;
1279 /* make rdev->sb match mddev data..
1281 * 1/ zero out disks
1282 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283 * 3/ any empty disks < next_spare become removed
1285 * disks[0] gets initialised to REMOVED because
1286 * we cannot be sure from other fields if it has
1287 * been initialised or not.
1289 int i;
1290 int active=0, working=0,failed=0,spare=0,nr_disks=0;
1292 rdev->sb_size = MD_SB_BYTES;
1294 sb = page_address(rdev->sb_page);
1296 memset(sb, 0, sizeof(*sb));
1298 sb->md_magic = MD_SB_MAGIC;
1299 sb->major_version = mddev->major_version;
1300 sb->patch_version = mddev->patch_version;
1301 sb->gvalid_words = 0; /* ignored */
1302 memcpy(&sb->set_uuid0, mddev->uuid+0, 4);
1303 memcpy(&sb->set_uuid1, mddev->uuid+4, 4);
1304 memcpy(&sb->set_uuid2, mddev->uuid+8, 4);
1305 memcpy(&sb->set_uuid3, mddev->uuid+12,4);
1307 sb->ctime = mddev->ctime;
1308 sb->level = mddev->level;
1309 sb->size = mddev->dev_sectors / 2;
1310 sb->raid_disks = mddev->raid_disks;
1311 sb->md_minor = mddev->md_minor;
1312 sb->not_persistent = 0;
1313 sb->utime = mddev->utime;
1314 sb->state = 0;
1315 sb->events_hi = (mddev->events>>32);
1316 sb->events_lo = (u32)mddev->events;
1318 if (mddev->reshape_position == MaxSector)
1319 sb->minor_version = 90;
1320 else {
1321 sb->minor_version = 91;
1322 sb->reshape_position = mddev->reshape_position;
1323 sb->new_level = mddev->new_level;
1324 sb->delta_disks = mddev->delta_disks;
1325 sb->new_layout = mddev->new_layout;
1326 sb->new_chunk = mddev->new_chunk_sectors << 9;
1328 mddev->minor_version = sb->minor_version;
1329 if (mddev->in_sync)
1331 sb->recovery_cp = mddev->recovery_cp;
1332 sb->cp_events_hi = (mddev->events>>32);
1333 sb->cp_events_lo = (u32)mddev->events;
1334 if (mddev->recovery_cp == MaxSector)
1335 sb->state = (1<< MD_SB_CLEAN);
1336 } else
1337 sb->recovery_cp = 0;
1339 sb->layout = mddev->layout;
1340 sb->chunk_size = mddev->chunk_sectors << 9;
1342 if (mddev->bitmap && mddev->bitmap_info.file == NULL)
1343 sb->state |= (1<<MD_SB_BITMAP_PRESENT);
1345 sb->disks[0].state = (1<<MD_DISK_REMOVED);
1346 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1347 mdp_disk_t *d;
1348 int desc_nr;
1349 int is_active = test_bit(In_sync, &rdev2->flags);
1351 if (rdev2->raid_disk >= 0 &&
1352 sb->minor_version >= 91)
1353 /* we have nowhere to store the recovery_offset,
1354 * but if it is not below the reshape_position,
1355 * we can piggy-back on that.
1357 is_active = 1;
1358 if (rdev2->raid_disk < 0 ||
1359 test_bit(Faulty, &rdev2->flags))
1360 is_active = 0;
1361 if (is_active)
1362 desc_nr = rdev2->raid_disk;
1363 else
1364 desc_nr = next_spare++;
1365 rdev2->desc_nr = desc_nr;
1366 d = &sb->disks[rdev2->desc_nr];
1367 nr_disks++;
1368 d->number = rdev2->desc_nr;
1369 d->major = MAJOR(rdev2->bdev->bd_dev);
1370 d->minor = MINOR(rdev2->bdev->bd_dev);
1371 if (is_active)
1372 d->raid_disk = rdev2->raid_disk;
1373 else
1374 d->raid_disk = rdev2->desc_nr; /* compatibility */
1375 if (test_bit(Faulty, &rdev2->flags))
1376 d->state = (1<<MD_DISK_FAULTY);
1377 else if (is_active) {
1378 d->state = (1<<MD_DISK_ACTIVE);
1379 if (test_bit(In_sync, &rdev2->flags))
1380 d->state |= (1<<MD_DISK_SYNC);
1381 active++;
1382 working++;
1383 } else {
1384 d->state = 0;
1385 spare++;
1386 working++;
1388 if (test_bit(WriteMostly, &rdev2->flags))
1389 d->state |= (1<<MD_DISK_WRITEMOSTLY);
1391 /* now set the "removed" and "faulty" bits on any missing devices */
1392 for (i=0 ; i < mddev->raid_disks ; i++) {
1393 mdp_disk_t *d = &sb->disks[i];
1394 if (d->state == 0 && d->number == 0) {
1395 d->number = i;
1396 d->raid_disk = i;
1397 d->state = (1<<MD_DISK_REMOVED);
1398 d->state |= (1<<MD_DISK_FAULTY);
1399 failed++;
1402 sb->nr_disks = nr_disks;
1403 sb->active_disks = active;
1404 sb->working_disks = working;
1405 sb->failed_disks = failed;
1406 sb->spare_disks = spare;
1408 sb->this_disk = sb->disks[rdev->desc_nr];
1409 sb->sb_csum = calc_sb_csum(sb);
1413 * rdev_size_change for 0.90.0
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1418 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1419 return 0; /* component must fit device */
1420 if (rdev->mddev->bitmap_info.offset)
1421 return 0; /* can't move bitmap */
1422 rdev->sb_start = calc_dev_sboffset(rdev);
1423 if (!num_sectors || num_sectors > rdev->sb_start)
1424 num_sectors = rdev->sb_start;
1425 /* Limit to 4TB as metadata cannot record more than that.
1426 * 4TB == 2^32 KB, or 2*2^32 sectors.
1428 if (num_sectors >= (2ULL << 32))
1429 num_sectors = (2ULL << 32) - 2;
1430 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1431 rdev->sb_page);
1432 md_super_wait(rdev->mddev);
1433 return num_sectors;
1438 * version 1 superblock
1441 static __le32 calc_sb_1_csum(struct mdp_superblock_1 * sb)
1443 __le32 disk_csum;
1444 u32 csum;
1445 unsigned long long newcsum;
1446 int size = 256 + le32_to_cpu(sb->max_dev)*2;
1447 __le32 *isuper = (__le32*)sb;
1448 int i;
1450 disk_csum = sb->sb_csum;
1451 sb->sb_csum = 0;
1452 newcsum = 0;
1453 for (i=0; size>=4; size -= 4 )
1454 newcsum += le32_to_cpu(*isuper++);
1456 if (size == 2)
1457 newcsum += le16_to_cpu(*(__le16*) isuper);
1459 csum = (newcsum & 0xffffffff) + (newcsum >> 32);
1460 sb->sb_csum = disk_csum;
1461 return cpu_to_le32(csum);
1464 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
1465 int acknowledged);
1466 static int super_1_load(struct md_rdev *rdev, struct md_rdev *refdev, int minor_version)
1468 struct mdp_superblock_1 *sb;
1469 int ret;
1470 sector_t sb_start;
1471 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
1472 int bmask;
1475 * Calculate the position of the superblock in 512byte sectors.
1476 * It is always aligned to a 4K boundary and
1477 * depeding on minor_version, it can be:
1478 * 0: At least 8K, but less than 12K, from end of device
1479 * 1: At start of device
1480 * 2: 4K from start of device.
1482 switch(minor_version) {
1483 case 0:
1484 sb_start = i_size_read(rdev->bdev->bd_inode) >> 9;
1485 sb_start -= 8*2;
1486 sb_start &= ~(sector_t)(4*2-1);
1487 break;
1488 case 1:
1489 sb_start = 0;
1490 break;
1491 case 2:
1492 sb_start = 8;
1493 break;
1494 default:
1495 return -EINVAL;
1497 rdev->sb_start = sb_start;
1499 /* superblock is rarely larger than 1K, but it can be larger,
1500 * and it is safe to read 4k, so we do that
1502 ret = read_disk_sb(rdev, 4096);
1503 if (ret) return ret;
1506 sb = page_address(rdev->sb_page);
1508 if (sb->magic != cpu_to_le32(MD_SB_MAGIC) ||
1509 sb->major_version != cpu_to_le32(1) ||
1510 le32_to_cpu(sb->max_dev) > (4096-256)/2 ||
1511 le64_to_cpu(sb->super_offset) != rdev->sb_start ||
1512 (le32_to_cpu(sb->feature_map) & ~MD_FEATURE_ALL) != 0)
1513 return -EINVAL;
1515 if (calc_sb_1_csum(sb) != sb->sb_csum) {
1516 printk("md: invalid superblock checksum on %s\n",
1517 bdevname(rdev->bdev,b));
1518 return -EINVAL;
1520 if (le64_to_cpu(sb->data_size) < 10) {
1521 printk("md: data_size too small on %s\n",
1522 bdevname(rdev->bdev,b));
1523 return -EINVAL;
1526 rdev->preferred_minor = 0xffff;
1527 rdev->data_offset = le64_to_cpu(sb->data_offset);
1528 atomic_set(&rdev->corrected_errors, le32_to_cpu(sb->cnt_corrected_read));
1530 rdev->sb_size = le32_to_cpu(sb->max_dev) * 2 + 256;
1531 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1532 if (rdev->sb_size & bmask)
1533 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1535 if (minor_version
1536 && rdev->data_offset < sb_start + (rdev->sb_size/512))
1537 return -EINVAL;
1539 if (sb->level == cpu_to_le32(LEVEL_MULTIPATH))
1540 rdev->desc_nr = -1;
1541 else
1542 rdev->desc_nr = le32_to_cpu(sb->dev_number);
1544 if (!rdev->bb_page) {
1545 rdev->bb_page = alloc_page(GFP_KERNEL);
1546 if (!rdev->bb_page)
1547 return -ENOMEM;
1549 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BAD_BLOCKS) &&
1550 rdev->badblocks.count == 0) {
1551 /* need to load the bad block list.
1552 * Currently we limit it to one page.
1554 s32 offset;
1555 sector_t bb_sector;
1556 u64 *bbp;
1557 int i;
1558 int sectors = le16_to_cpu(sb->bblog_size);
1559 if (sectors > (PAGE_SIZE / 512))
1560 return -EINVAL;
1561 offset = le32_to_cpu(sb->bblog_offset);
1562 if (offset == 0)
1563 return -EINVAL;
1564 bb_sector = (long long)offset;
1565 if (!sync_page_io(rdev, bb_sector, sectors << 9,
1566 rdev->bb_page, READ, true))
1567 return -EIO;
1568 bbp = (u64 *)page_address(rdev->bb_page);
1569 rdev->badblocks.shift = sb->bblog_shift;
1570 for (i = 0 ; i < (sectors << (9-3)) ; i++, bbp++) {
1571 u64 bb = le64_to_cpu(*bbp);
1572 int count = bb & (0x3ff);
1573 u64 sector = bb >> 10;
1574 sector <<= sb->bblog_shift;
1575 count <<= sb->bblog_shift;
1576 if (bb + 1 == 0)
1577 break;
1578 if (md_set_badblocks(&rdev->badblocks,
1579 sector, count, 1) == 0)
1580 return -EINVAL;
1582 } else if (sb->bblog_offset == 0)
1583 rdev->badblocks.shift = -1;
1585 if (!refdev) {
1586 ret = 1;
1587 } else {
1588 __u64 ev1, ev2;
1589 struct mdp_superblock_1 *refsb = page_address(refdev->sb_page);
1591 if (memcmp(sb->set_uuid, refsb->set_uuid, 16) != 0 ||
1592 sb->level != refsb->level ||
1593 sb->layout != refsb->layout ||
1594 sb->chunksize != refsb->chunksize) {
1595 printk(KERN_WARNING "md: %s has strangely different"
1596 " superblock to %s\n",
1597 bdevname(rdev->bdev,b),
1598 bdevname(refdev->bdev,b2));
1599 return -EINVAL;
1601 ev1 = le64_to_cpu(sb->events);
1602 ev2 = le64_to_cpu(refsb->events);
1604 if (ev1 > ev2)
1605 ret = 1;
1606 else
1607 ret = 0;
1609 if (minor_version)
1610 rdev->sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
1611 le64_to_cpu(sb->data_offset);
1612 else
1613 rdev->sectors = rdev->sb_start;
1614 if (rdev->sectors < le64_to_cpu(sb->data_size))
1615 return -EINVAL;
1616 rdev->sectors = le64_to_cpu(sb->data_size);
1617 if (le64_to_cpu(sb->size) > rdev->sectors)
1618 return -EINVAL;
1619 return ret;
1622 static int super_1_validate(struct mddev *mddev, struct md_rdev *rdev)
1624 struct mdp_superblock_1 *sb = page_address(rdev->sb_page);
1625 __u64 ev1 = le64_to_cpu(sb->events);
1627 rdev->raid_disk = -1;
1628 clear_bit(Faulty, &rdev->flags);
1629 clear_bit(In_sync, &rdev->flags);
1630 clear_bit(WriteMostly, &rdev->flags);
1632 if (mddev->raid_disks == 0) {
1633 mddev->major_version = 1;
1634 mddev->patch_version = 0;
1635 mddev->external = 0;
1636 mddev->chunk_sectors = le32_to_cpu(sb->chunksize);
1637 mddev->ctime = le64_to_cpu(sb->ctime) & ((1ULL << 32)-1);
1638 mddev->utime = le64_to_cpu(sb->utime) & ((1ULL << 32)-1);
1639 mddev->level = le32_to_cpu(sb->level);
1640 mddev->clevel[0] = 0;
1641 mddev->layout = le32_to_cpu(sb->layout);
1642 mddev->raid_disks = le32_to_cpu(sb->raid_disks);
1643 mddev->dev_sectors = le64_to_cpu(sb->size);
1644 mddev->events = ev1;
1645 mddev->bitmap_info.offset = 0;
1646 mddev->bitmap_info.default_offset = 1024 >> 9;
1648 mddev->recovery_cp = le64_to_cpu(sb->resync_offset);
1649 memcpy(mddev->uuid, sb->set_uuid, 16);
1651 mddev->max_disks = (4096-256)/2;
1653 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_BITMAP_OFFSET) &&
1654 mddev->bitmap_info.file == NULL )
1655 mddev->bitmap_info.offset =
1656 (__s32)le32_to_cpu(sb->bitmap_offset);
1658 if ((le32_to_cpu(sb->feature_map) & MD_FEATURE_RESHAPE_ACTIVE)) {
1659 mddev->reshape_position = le64_to_cpu(sb->reshape_position);
1660 mddev->delta_disks = le32_to_cpu(sb->delta_disks);
1661 mddev->new_level = le32_to_cpu(sb->new_level);
1662 mddev->new_layout = le32_to_cpu(sb->new_layout);
1663 mddev->new_chunk_sectors = le32_to_cpu(sb->new_chunk);
1664 } else {
1665 mddev->reshape_position = MaxSector;
1666 mddev->delta_disks = 0;
1667 mddev->new_level = mddev->level;
1668 mddev->new_layout = mddev->layout;
1669 mddev->new_chunk_sectors = mddev->chunk_sectors;
1672 } else if (mddev->pers == NULL) {
1673 /* Insist of good event counter while assembling, except for
1674 * spares (which don't need an event count) */
1675 ++ev1;
1676 if (rdev->desc_nr >= 0 &&
1677 rdev->desc_nr < le32_to_cpu(sb->max_dev) &&
1678 le16_to_cpu(sb->dev_roles[rdev->desc_nr]) < 0xfffe)
1679 if (ev1 < mddev->events)
1680 return -EINVAL;
1681 } else if (mddev->bitmap) {
1682 /* If adding to array with a bitmap, then we can accept an
1683 * older device, but not too old.
1685 if (ev1 < mddev->bitmap->events_cleared)
1686 return 0;
1687 } else {
1688 if (ev1 < mddev->events)
1689 /* just a hot-add of a new device, leave raid_disk at -1 */
1690 return 0;
1692 if (mddev->level != LEVEL_MULTIPATH) {
1693 int role;
1694 if (rdev->desc_nr < 0 ||
1695 rdev->desc_nr >= le32_to_cpu(sb->max_dev)) {
1696 role = 0xffff;
1697 rdev->desc_nr = -1;
1698 } else
1699 role = le16_to_cpu(sb->dev_roles[rdev->desc_nr]);
1700 switch(role) {
1701 case 0xffff: /* spare */
1702 break;
1703 case 0xfffe: /* faulty */
1704 set_bit(Faulty, &rdev->flags);
1705 break;
1706 default:
1707 if ((le32_to_cpu(sb->feature_map) &
1708 MD_FEATURE_RECOVERY_OFFSET))
1709 rdev->recovery_offset = le64_to_cpu(sb->recovery_offset);
1710 else
1711 set_bit(In_sync, &rdev->flags);
1712 rdev->raid_disk = role;
1713 break;
1715 if (sb->devflags & WriteMostly1)
1716 set_bit(WriteMostly, &rdev->flags);
1717 } else /* MULTIPATH are always insync */
1718 set_bit(In_sync, &rdev->flags);
1720 return 0;
1723 static void super_1_sync(struct mddev *mddev, struct md_rdev *rdev)
1725 struct mdp_superblock_1 *sb;
1726 struct md_rdev *rdev2;
1727 int max_dev, i;
1728 /* make rdev->sb match mddev and rdev data. */
1730 sb = page_address(rdev->sb_page);
1732 sb->feature_map = 0;
1733 sb->pad0 = 0;
1734 sb->recovery_offset = cpu_to_le64(0);
1735 memset(sb->pad1, 0, sizeof(sb->pad1));
1736 memset(sb->pad3, 0, sizeof(sb->pad3));
1738 sb->utime = cpu_to_le64((__u64)mddev->utime);
1739 sb->events = cpu_to_le64(mddev->events);
1740 if (mddev->in_sync)
1741 sb->resync_offset = cpu_to_le64(mddev->recovery_cp);
1742 else
1743 sb->resync_offset = cpu_to_le64(0);
1745 sb->cnt_corrected_read = cpu_to_le32(atomic_read(&rdev->corrected_errors));
1747 sb->raid_disks = cpu_to_le32(mddev->raid_disks);
1748 sb->size = cpu_to_le64(mddev->dev_sectors);
1749 sb->chunksize = cpu_to_le32(mddev->chunk_sectors);
1750 sb->level = cpu_to_le32(mddev->level);
1751 sb->layout = cpu_to_le32(mddev->layout);
1753 if (test_bit(WriteMostly, &rdev->flags))
1754 sb->devflags |= WriteMostly1;
1755 else
1756 sb->devflags &= ~WriteMostly1;
1758 if (mddev->bitmap && mddev->bitmap_info.file == NULL) {
1759 sb->bitmap_offset = cpu_to_le32((__u32)mddev->bitmap_info.offset);
1760 sb->feature_map = cpu_to_le32(MD_FEATURE_BITMAP_OFFSET);
1763 if (rdev->raid_disk >= 0 &&
1764 !test_bit(In_sync, &rdev->flags)) {
1765 sb->feature_map |=
1766 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET);
1767 sb->recovery_offset =
1768 cpu_to_le64(rdev->recovery_offset);
1771 if (mddev->reshape_position != MaxSector) {
1772 sb->feature_map |= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE);
1773 sb->reshape_position = cpu_to_le64(mddev->reshape_position);
1774 sb->new_layout = cpu_to_le32(mddev->new_layout);
1775 sb->delta_disks = cpu_to_le32(mddev->delta_disks);
1776 sb->new_level = cpu_to_le32(mddev->new_level);
1777 sb->new_chunk = cpu_to_le32(mddev->new_chunk_sectors);
1780 if (rdev->badblocks.count == 0)
1781 /* Nothing to do for bad blocks*/ ;
1782 else if (sb->bblog_offset == 0)
1783 /* Cannot record bad blocks on this device */
1784 md_error(mddev, rdev);
1785 else {
1786 struct badblocks *bb = &rdev->badblocks;
1787 u64 *bbp = (u64 *)page_address(rdev->bb_page);
1788 u64 *p = bb->page;
1789 sb->feature_map |= cpu_to_le32(MD_FEATURE_BAD_BLOCKS);
1790 if (bb->changed) {
1791 unsigned seq;
1793 retry:
1794 seq = read_seqbegin(&bb->lock);
1796 memset(bbp, 0xff, PAGE_SIZE);
1798 for (i = 0 ; i < bb->count ; i++) {
1799 u64 internal_bb = *p++;
1800 u64 store_bb = ((BB_OFFSET(internal_bb) << 10)
1801 | BB_LEN(internal_bb));
1802 *bbp++ = cpu_to_le64(store_bb);
1804 if (read_seqretry(&bb->lock, seq))
1805 goto retry;
1807 bb->sector = (rdev->sb_start +
1808 (int)le32_to_cpu(sb->bblog_offset));
1809 bb->size = le16_to_cpu(sb->bblog_size);
1810 bb->changed = 0;
1814 max_dev = 0;
1815 list_for_each_entry(rdev2, &mddev->disks, same_set)
1816 if (rdev2->desc_nr+1 > max_dev)
1817 max_dev = rdev2->desc_nr+1;
1819 if (max_dev > le32_to_cpu(sb->max_dev)) {
1820 int bmask;
1821 sb->max_dev = cpu_to_le32(max_dev);
1822 rdev->sb_size = max_dev * 2 + 256;
1823 bmask = queue_logical_block_size(rdev->bdev->bd_disk->queue)-1;
1824 if (rdev->sb_size & bmask)
1825 rdev->sb_size = (rdev->sb_size | bmask) + 1;
1826 } else
1827 max_dev = le32_to_cpu(sb->max_dev);
1829 for (i=0; i<max_dev;i++)
1830 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1832 list_for_each_entry(rdev2, &mddev->disks, same_set) {
1833 i = rdev2->desc_nr;
1834 if (test_bit(Faulty, &rdev2->flags))
1835 sb->dev_roles[i] = cpu_to_le16(0xfffe);
1836 else if (test_bit(In_sync, &rdev2->flags))
1837 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1838 else if (rdev2->raid_disk >= 0)
1839 sb->dev_roles[i] = cpu_to_le16(rdev2->raid_disk);
1840 else
1841 sb->dev_roles[i] = cpu_to_le16(0xffff);
1844 sb->sb_csum = calc_sb_1_csum(sb);
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev *rdev, sector_t num_sectors)
1850 struct mdp_superblock_1 *sb;
1851 sector_t max_sectors;
1852 if (num_sectors && num_sectors < rdev->mddev->dev_sectors)
1853 return 0; /* component must fit device */
1854 if (rdev->sb_start < rdev->data_offset) {
1855 /* minor versions 1 and 2; superblock before data */
1856 max_sectors = i_size_read(rdev->bdev->bd_inode) >> 9;
1857 max_sectors -= rdev->data_offset;
1858 if (!num_sectors || num_sectors > max_sectors)
1859 num_sectors = max_sectors;
1860 } else if (rdev->mddev->bitmap_info.offset) {
1861 /* minor version 0 with bitmap we can't move */
1862 return 0;
1863 } else {
1864 /* minor version 0; superblock after data */
1865 sector_t sb_start;
1866 sb_start = (i_size_read(rdev->bdev->bd_inode) >> 9) - 8*2;
1867 sb_start &= ~(sector_t)(4*2 - 1);
1868 max_sectors = rdev->sectors + sb_start - rdev->sb_start;
1869 if (!num_sectors || num_sectors > max_sectors)
1870 num_sectors = max_sectors;
1871 rdev->sb_start = sb_start;
1873 sb = page_address(rdev->sb_page);
1874 sb->data_size = cpu_to_le64(num_sectors);
1875 sb->super_offset = rdev->sb_start;
1876 sb->sb_csum = calc_sb_1_csum(sb);
1877 md_super_write(rdev->mddev, rdev, rdev->sb_start, rdev->sb_size,
1878 rdev->sb_page);
1879 md_super_wait(rdev->mddev);
1880 return num_sectors;
1883 static struct super_type super_types[] = {
1884 [0] = {
1885 .name = "0.90.0",
1886 .owner = THIS_MODULE,
1887 .load_super = super_90_load,
1888 .validate_super = super_90_validate,
1889 .sync_super = super_90_sync,
1890 .rdev_size_change = super_90_rdev_size_change,
1892 [1] = {
1893 .name = "md-1",
1894 .owner = THIS_MODULE,
1895 .load_super = super_1_load,
1896 .validate_super = super_1_validate,
1897 .sync_super = super_1_sync,
1898 .rdev_size_change = super_1_rdev_size_change,
1902 static void sync_super(struct mddev *mddev, struct md_rdev *rdev)
1904 if (mddev->sync_super) {
1905 mddev->sync_super(mddev, rdev);
1906 return;
1909 BUG_ON(mddev->major_version >= ARRAY_SIZE(super_types));
1911 super_types[mddev->major_version].sync_super(mddev, rdev);
1914 static int match_mddev_units(struct mddev *mddev1, struct mddev *mddev2)
1916 struct md_rdev *rdev, *rdev2;
1918 rcu_read_lock();
1919 rdev_for_each_rcu(rdev, mddev1)
1920 rdev_for_each_rcu(rdev2, mddev2)
1921 if (rdev->bdev->bd_contains ==
1922 rdev2->bdev->bd_contains) {
1923 rcu_read_unlock();
1924 return 1;
1926 rcu_read_unlock();
1927 return 0;
1930 static LIST_HEAD(pending_raid_disks);
1933 * Try to register data integrity profile for an mddev
1935 * This is called when an array is started and after a disk has been kicked
1936 * from the array. It only succeeds if all working and active component devices
1937 * are integrity capable with matching profiles.
1939 int md_integrity_register(struct mddev *mddev)
1941 struct md_rdev *rdev, *reference = NULL;
1943 if (list_empty(&mddev->disks))
1944 return 0; /* nothing to do */
1945 if (!mddev->gendisk || blk_get_integrity(mddev->gendisk))
1946 return 0; /* shouldn't register, or already is */
1947 list_for_each_entry(rdev, &mddev->disks, same_set) {
1948 /* skip spares and non-functional disks */
1949 if (test_bit(Faulty, &rdev->flags))
1950 continue;
1951 if (rdev->raid_disk < 0)
1952 continue;
1953 if (!reference) {
1954 /* Use the first rdev as the reference */
1955 reference = rdev;
1956 continue;
1958 /* does this rdev's profile match the reference profile? */
1959 if (blk_integrity_compare(reference->bdev->bd_disk,
1960 rdev->bdev->bd_disk) < 0)
1961 return -EINVAL;
1963 if (!reference || !bdev_get_integrity(reference->bdev))
1964 return 0;
1966 * All component devices are integrity capable and have matching
1967 * profiles, register the common profile for the md device.
1969 if (blk_integrity_register(mddev->gendisk,
1970 bdev_get_integrity(reference->bdev)) != 0) {
1971 printk(KERN_ERR "md: failed to register integrity for %s\n",
1972 mdname(mddev));
1973 return -EINVAL;
1975 printk(KERN_NOTICE "md: data integrity enabled on %s\n", mdname(mddev));
1976 if (bioset_integrity_create(mddev->bio_set, BIO_POOL_SIZE)) {
1977 printk(KERN_ERR "md: failed to create integrity pool for %s\n",
1978 mdname(mddev));
1979 return -EINVAL;
1981 return 0;
1983 EXPORT_SYMBOL(md_integrity_register);
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev *rdev, struct mddev *mddev)
1988 struct blk_integrity *bi_rdev = bdev_get_integrity(rdev->bdev);
1989 struct blk_integrity *bi_mddev = blk_get_integrity(mddev->gendisk);
1991 if (!bi_mddev) /* nothing to do */
1992 return;
1993 if (rdev->raid_disk < 0) /* skip spares */
1994 return;
1995 if (bi_rdev && blk_integrity_compare(mddev->gendisk,
1996 rdev->bdev->bd_disk) >= 0)
1997 return;
1998 printk(KERN_NOTICE "disabling data integrity on %s\n", mdname(mddev));
1999 blk_integrity_unregister(mddev->gendisk);
2001 EXPORT_SYMBOL(md_integrity_add_rdev);
2003 static int bind_rdev_to_array(struct md_rdev * rdev, struct mddev * mddev)
2005 char b[BDEVNAME_SIZE];
2006 struct kobject *ko;
2007 char *s;
2008 int err;
2010 if (rdev->mddev) {
2011 MD_BUG();
2012 return -EINVAL;
2015 /* prevent duplicates */
2016 if (find_rdev(mddev, rdev->bdev->bd_dev))
2017 return -EEXIST;
2019 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2020 if (rdev->sectors && (mddev->dev_sectors == 0 ||
2021 rdev->sectors < mddev->dev_sectors)) {
2022 if (mddev->pers) {
2023 /* Cannot change size, so fail
2024 * If mddev->level <= 0, then we don't care
2025 * about aligning sizes (e.g. linear)
2027 if (mddev->level > 0)
2028 return -ENOSPC;
2029 } else
2030 mddev->dev_sectors = rdev->sectors;
2033 /* Verify rdev->desc_nr is unique.
2034 * If it is -1, assign a free number, else
2035 * check number is not in use
2037 if (rdev->desc_nr < 0) {
2038 int choice = 0;
2039 if (mddev->pers) choice = mddev->raid_disks;
2040 while (find_rdev_nr(mddev, choice))
2041 choice++;
2042 rdev->desc_nr = choice;
2043 } else {
2044 if (find_rdev_nr(mddev, rdev->desc_nr))
2045 return -EBUSY;
2047 if (mddev->max_disks && rdev->desc_nr >= mddev->max_disks) {
2048 printk(KERN_WARNING "md: %s: array is limited to %d devices\n",
2049 mdname(mddev), mddev->max_disks);
2050 return -EBUSY;
2052 bdevname(rdev->bdev,b);
2053 while ( (s=strchr(b, '/')) != NULL)
2054 *s = '!';
2056 rdev->mddev = mddev;
2057 printk(KERN_INFO "md: bind<%s>\n", b);
2059 if ((err = kobject_add(&rdev->kobj, &mddev->kobj, "dev-%s", b)))
2060 goto fail;
2062 ko = &part_to_dev(rdev->bdev->bd_part)->kobj;
2063 if (sysfs_create_link(&rdev->kobj, ko, "block"))
2064 /* failure here is OK */;
2065 rdev->sysfs_state = sysfs_get_dirent_safe(rdev->kobj.sd, "state");
2067 list_add_rcu(&rdev->same_set, &mddev->disks);
2068 bd_link_disk_holder(rdev->bdev, mddev->gendisk);
2070 /* May as well allow recovery to be retried once */
2071 mddev->recovery_disabled++;
2073 return 0;
2075 fail:
2076 printk(KERN_WARNING "md: failed to register dev-%s for %s\n",
2077 b, mdname(mddev));
2078 return err;
2081 static void md_delayed_delete(struct work_struct *ws)
2083 struct md_rdev *rdev = container_of(ws, struct md_rdev, del_work);
2084 kobject_del(&rdev->kobj);
2085 kobject_put(&rdev->kobj);
2088 static void unbind_rdev_from_array(struct md_rdev * rdev)
2090 char b[BDEVNAME_SIZE];
2091 if (!rdev->mddev) {
2092 MD_BUG();
2093 return;
2095 bd_unlink_disk_holder(rdev->bdev, rdev->mddev->gendisk);
2096 list_del_rcu(&rdev->same_set);
2097 printk(KERN_INFO "md: unbind<%s>\n", bdevname(rdev->bdev,b));
2098 rdev->mddev = NULL;
2099 sysfs_remove_link(&rdev->kobj, "block");
2100 sysfs_put(rdev->sysfs_state);
2101 rdev->sysfs_state = NULL;
2102 kfree(rdev->badblocks.page);
2103 rdev->badblocks.count = 0;
2104 rdev->badblocks.page = NULL;
2105 /* We need to delay this, otherwise we can deadlock when
2106 * writing to 'remove' to "dev/state". We also need
2107 * to delay it due to rcu usage.
2109 synchronize_rcu();
2110 INIT_WORK(&rdev->del_work, md_delayed_delete);
2111 kobject_get(&rdev->kobj);
2112 queue_work(md_misc_wq, &rdev->del_work);
2116 * prevent the device from being mounted, repartitioned or
2117 * otherwise reused by a RAID array (or any other kernel
2118 * subsystem), by bd_claiming the device.
2120 static int lock_rdev(struct md_rdev *rdev, dev_t dev, int shared)
2122 int err = 0;
2123 struct block_device *bdev;
2124 char b[BDEVNAME_SIZE];
2126 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL,
2127 shared ? (struct md_rdev *)lock_rdev : rdev);
2128 if (IS_ERR(bdev)) {
2129 printk(KERN_ERR "md: could not open %s.\n",
2130 __bdevname(dev, b));
2131 return PTR_ERR(bdev);
2133 rdev->bdev = bdev;
2134 return err;
2137 static void unlock_rdev(struct md_rdev *rdev)
2139 struct block_device *bdev = rdev->bdev;
2140 rdev->bdev = NULL;
2141 if (!bdev)
2142 MD_BUG();
2143 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
2146 void md_autodetect_dev(dev_t dev);
2148 static void export_rdev(struct md_rdev * rdev)
2150 char b[BDEVNAME_SIZE];
2151 printk(KERN_INFO "md: export_rdev(%s)\n",
2152 bdevname(rdev->bdev,b));
2153 if (rdev->mddev)
2154 MD_BUG();
2155 free_disk_sb(rdev);
2156 #ifndef MODULE
2157 if (test_bit(AutoDetected, &rdev->flags))
2158 md_autodetect_dev(rdev->bdev->bd_dev);
2159 #endif
2160 unlock_rdev(rdev);
2161 kobject_put(&rdev->kobj);
2164 static void kick_rdev_from_array(struct md_rdev * rdev)
2166 unbind_rdev_from_array(rdev);
2167 export_rdev(rdev);
2170 static void export_array(struct mddev *mddev)
2172 struct md_rdev *rdev, *tmp;
2174 rdev_for_each(rdev, tmp, mddev) {
2175 if (!rdev->mddev) {
2176 MD_BUG();
2177 continue;
2179 kick_rdev_from_array(rdev);
2181 if (!list_empty(&mddev->disks))
2182 MD_BUG();
2183 mddev->raid_disks = 0;
2184 mddev->major_version = 0;
2187 static void print_desc(mdp_disk_t *desc)
2189 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc->number,
2190 desc->major,desc->minor,desc->raid_disk,desc->state);
2193 static void print_sb_90(mdp_super_t *sb)
2195 int i;
2197 printk(KERN_INFO
2198 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199 sb->major_version, sb->minor_version, sb->patch_version,
2200 sb->set_uuid0, sb->set_uuid1, sb->set_uuid2, sb->set_uuid3,
2201 sb->ctime);
2202 printk(KERN_INFO "md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203 sb->level, sb->size, sb->nr_disks, sb->raid_disks,
2204 sb->md_minor, sb->layout, sb->chunk_size);
2205 printk(KERN_INFO "md: UT:%08x ST:%d AD:%d WD:%d"
2206 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207 sb->utime, sb->state, sb->active_disks, sb->working_disks,
2208 sb->failed_disks, sb->spare_disks,
2209 sb->sb_csum, (unsigned long)sb->events_lo);
2211 printk(KERN_INFO);
2212 for (i = 0; i < MD_SB_DISKS; i++) {
2213 mdp_disk_t *desc;
2215 desc = sb->disks + i;
2216 if (desc->number || desc->major || desc->minor ||
2217 desc->raid_disk || (desc->state && (desc->state != 4))) {
2218 printk(" D %2d: ", i);
2219 print_desc(desc);
2222 printk(KERN_INFO "md: THIS: ");
2223 print_desc(&sb->this_disk);
2226 static void print_sb_1(struct mdp_superblock_1 *sb)
2228 __u8 *uuid;
2230 uuid = sb->set_uuid;
2231 printk(KERN_INFO
2232 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233 "md: Name: \"%s\" CT:%llu\n",
2234 le32_to_cpu(sb->major_version),
2235 le32_to_cpu(sb->feature_map),
2236 uuid,
2237 sb->set_name,
2238 (unsigned long long)le64_to_cpu(sb->ctime)
2239 & MD_SUPERBLOCK_1_TIME_SEC_MASK);
2241 uuid = sb->device_uuid;
2242 printk(KERN_INFO
2243 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2244 " RO:%llu\n"
2245 "md: Dev:%08x UUID: %pU\n"
2246 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247 "md: (MaxDev:%u) \n",
2248 le32_to_cpu(sb->level),
2249 (unsigned long long)le64_to_cpu(sb->size),
2250 le32_to_cpu(sb->raid_disks),
2251 le32_to_cpu(sb->layout),
2252 le32_to_cpu(sb->chunksize),
2253 (unsigned long long)le64_to_cpu(sb->data_offset),
2254 (unsigned long long)le64_to_cpu(sb->data_size),
2255 (unsigned long long)le64_to_cpu(sb->super_offset),
2256 (unsigned long long)le64_to_cpu(sb->recovery_offset),
2257 le32_to_cpu(sb->dev_number),
2258 uuid,
2259 sb->devflags,
2260 (unsigned long long)le64_to_cpu(sb->utime) & MD_SUPERBLOCK_1_TIME_SEC_MASK,
2261 (unsigned long long)le64_to_cpu(sb->events),
2262 (unsigned long long)le64_to_cpu(sb->resync_offset),
2263 le32_to_cpu(sb->sb_csum),
2264 le32_to_cpu(sb->max_dev)
2268 static void print_rdev(struct md_rdev *rdev, int major_version)
2270 char b[BDEVNAME_SIZE];
2271 printk(KERN_INFO "md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272 bdevname(rdev->bdev, b), (unsigned long long)rdev->sectors,
2273 test_bit(Faulty, &rdev->flags), test_bit(In_sync, &rdev->flags),
2274 rdev->desc_nr);
2275 if (rdev->sb_loaded) {
2276 printk(KERN_INFO "md: rdev superblock (MJ:%d):\n", major_version);
2277 switch (major_version) {
2278 case 0:
2279 print_sb_90(page_address(rdev->sb_page));
2280 break;
2281 case 1:
2282 print_sb_1(page_address(rdev->sb_page));
2283 break;
2285 } else
2286 printk(KERN_INFO "md: no rdev superblock!\n");
2289 static void md_print_devices(void)
2291 struct list_head *tmp;
2292 struct md_rdev *rdev;
2293 struct mddev *mddev;
2294 char b[BDEVNAME_SIZE];
2296 printk("\n");
2297 printk("md: **********************************\n");
2298 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2299 printk("md: **********************************\n");
2300 for_each_mddev(mddev, tmp) {
2302 if (mddev->bitmap)
2303 bitmap_print_sb(mddev->bitmap);
2304 else
2305 printk("%s: ", mdname(mddev));
2306 list_for_each_entry(rdev, &mddev->disks, same_set)
2307 printk("<%s>", bdevname(rdev->bdev,b));
2308 printk("\n");
2310 list_for_each_entry(rdev, &mddev->disks, same_set)
2311 print_rdev(rdev, mddev->major_version);
2313 printk("md: **********************************\n");
2314 printk("\n");
2318 static void sync_sbs(struct mddev * mddev, int nospares)
2320 /* Update each superblock (in-memory image), but
2321 * if we are allowed to, skip spares which already
2322 * have the right event counter, or have one earlier
2323 * (which would mean they aren't being marked as dirty
2324 * with the rest of the array)
2326 struct md_rdev *rdev;
2327 list_for_each_entry(rdev, &mddev->disks, same_set) {
2328 if (rdev->sb_events == mddev->events ||
2329 (nospares &&
2330 rdev->raid_disk < 0 &&
2331 rdev->sb_events+1 == mddev->events)) {
2332 /* Don't update this superblock */
2333 rdev->sb_loaded = 2;
2334 } else {
2335 sync_super(mddev, rdev);
2336 rdev->sb_loaded = 1;
2341 static void md_update_sb(struct mddev * mddev, int force_change)
2343 struct md_rdev *rdev;
2344 int sync_req;
2345 int nospares = 0;
2346 int any_badblocks_changed = 0;
2348 repeat:
2349 /* First make sure individual recovery_offsets are correct */
2350 list_for_each_entry(rdev, &mddev->disks, same_set) {
2351 if (rdev->raid_disk >= 0 &&
2352 mddev->delta_disks >= 0 &&
2353 !test_bit(In_sync, &rdev->flags) &&
2354 mddev->curr_resync_completed > rdev->recovery_offset)
2355 rdev->recovery_offset = mddev->curr_resync_completed;
2358 if (!mddev->persistent) {
2359 clear_bit(MD_CHANGE_CLEAN, &mddev->flags);
2360 clear_bit(MD_CHANGE_DEVS, &mddev->flags);
2361 if (!mddev->external) {
2362 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2363 list_for_each_entry(rdev, &mddev->disks, same_set) {
2364 if (rdev->badblocks.changed) {
2365 md_ack_all_badblocks(&rdev->badblocks);
2366 md_error(mddev, rdev);
2368 clear_bit(Blocked, &rdev->flags);
2369 clear_bit(BlockedBadBlocks, &rdev->flags);
2370 wake_up(&rdev->blocked_wait);
2373 wake_up(&mddev->sb_wait);
2374 return;
2377 spin_lock_irq(&mddev->write_lock);
2379 mddev->utime = get_seconds();
2381 if (test_and_clear_bit(MD_CHANGE_DEVS, &mddev->flags))
2382 force_change = 1;
2383 if (test_and_clear_bit(MD_CHANGE_CLEAN, &mddev->flags))
2384 /* just a clean<-> dirty transition, possibly leave spares alone,
2385 * though if events isn't the right even/odd, we will have to do
2386 * spares after all
2388 nospares = 1;
2389 if (force_change)
2390 nospares = 0;
2391 if (mddev->degraded)
2392 /* If the array is degraded, then skipping spares is both
2393 * dangerous and fairly pointless.
2394 * Dangerous because a device that was removed from the array
2395 * might have a event_count that still looks up-to-date,
2396 * so it can be re-added without a resync.
2397 * Pointless because if there are any spares to skip,
2398 * then a recovery will happen and soon that array won't
2399 * be degraded any more and the spare can go back to sleep then.
2401 nospares = 0;
2403 sync_req = mddev->in_sync;
2405 /* If this is just a dirty<->clean transition, and the array is clean
2406 * and 'events' is odd, we can roll back to the previous clean state */
2407 if (nospares
2408 && (mddev->in_sync && mddev->recovery_cp == MaxSector)
2409 && mddev->can_decrease_events
2410 && mddev->events != 1) {
2411 mddev->events--;
2412 mddev->can_decrease_events = 0;
2413 } else {
2414 /* otherwise we have to go forward and ... */
2415 mddev->events ++;
2416 mddev->can_decrease_events = nospares;
2419 if (!mddev->events) {
2421 * oops, this 64-bit counter should never wrap.
2422 * Either we are in around ~1 trillion A.C., assuming
2423 * 1 reboot per second, or we have a bug:
2425 MD_BUG();
2426 mddev->events --;
2429 list_for_each_entry(rdev, &mddev->disks, same_set) {
2430 if (rdev->badblocks.changed)
2431 any_badblocks_changed++;
2432 if (test_bit(Faulty, &rdev->flags))
2433 set_bit(FaultRecorded, &rdev->flags);
2436 sync_sbs(mddev, nospares);
2437 spin_unlock_irq(&mddev->write_lock);
2439 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2440 mdname(mddev), mddev->in_sync);
2442 bitmap_update_sb(mddev->bitmap);
2443 list_for_each_entry(rdev, &mddev->disks, same_set) {
2444 char b[BDEVNAME_SIZE];
2446 if (rdev->sb_loaded != 1)
2447 continue; /* no noise on spare devices */
2449 if (!test_bit(Faulty, &rdev->flags) &&
2450 rdev->saved_raid_disk == -1) {
2451 md_super_write(mddev,rdev,
2452 rdev->sb_start, rdev->sb_size,
2453 rdev->sb_page);
2454 pr_debug("md: (write) %s's sb offset: %llu\n",
2455 bdevname(rdev->bdev, b),
2456 (unsigned long long)rdev->sb_start);
2457 rdev->sb_events = mddev->events;
2458 if (rdev->badblocks.size) {
2459 md_super_write(mddev, rdev,
2460 rdev->badblocks.sector,
2461 rdev->badblocks.size << 9,
2462 rdev->bb_page);
2463 rdev->badblocks.size = 0;
2466 } else if (test_bit(Faulty, &rdev->flags))
2467 pr_debug("md: %s (skipping faulty)\n",
2468 bdevname(rdev->bdev, b));
2469 else
2470 pr_debug("(skipping incremental s/r ");
2472 if (mddev->level == LEVEL_MULTIPATH)
2473 /* only need to write one superblock... */
2474 break;
2476 md_super_wait(mddev);
2477 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2479 spin_lock_irq(&mddev->write_lock);
2480 if (mddev->in_sync != sync_req ||
2481 test_bit(MD_CHANGE_DEVS, &mddev->flags)) {
2482 /* have to write it out again */
2483 spin_unlock_irq(&mddev->write_lock);
2484 goto repeat;
2486 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
2487 spin_unlock_irq(&mddev->write_lock);
2488 wake_up(&mddev->sb_wait);
2489 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
2490 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
2492 list_for_each_entry(rdev, &mddev->disks, same_set) {
2493 if (test_and_clear_bit(FaultRecorded, &rdev->flags))
2494 clear_bit(Blocked, &rdev->flags);
2496 if (any_badblocks_changed)
2497 md_ack_all_badblocks(&rdev->badblocks);
2498 clear_bit(BlockedBadBlocks, &rdev->flags);
2499 wake_up(&rdev->blocked_wait);
2503 /* words written to sysfs files may, or may not, be \n terminated.
2504 * We want to accept with case. For this we use cmd_match.
2506 static int cmd_match(const char *cmd, const char *str)
2508 /* See if cmd, written into a sysfs file, matches
2509 * str. They must either be the same, or cmd can
2510 * have a trailing newline
2512 while (*cmd && *str && *cmd == *str) {
2513 cmd++;
2514 str++;
2516 if (*cmd == '\n')
2517 cmd++;
2518 if (*str || *cmd)
2519 return 0;
2520 return 1;
2523 struct rdev_sysfs_entry {
2524 struct attribute attr;
2525 ssize_t (*show)(struct md_rdev *, char *);
2526 ssize_t (*store)(struct md_rdev *, const char *, size_t);
2529 static ssize_t
2530 state_show(struct md_rdev *rdev, char *page)
2532 char *sep = "";
2533 size_t len = 0;
2535 if (test_bit(Faulty, &rdev->flags) ||
2536 rdev->badblocks.unacked_exist) {
2537 len+= sprintf(page+len, "%sfaulty",sep);
2538 sep = ",";
2540 if (test_bit(In_sync, &rdev->flags)) {
2541 len += sprintf(page+len, "%sin_sync",sep);
2542 sep = ",";
2544 if (test_bit(WriteMostly, &rdev->flags)) {
2545 len += sprintf(page+len, "%swrite_mostly",sep);
2546 sep = ",";
2548 if (test_bit(Blocked, &rdev->flags) ||
2549 (rdev->badblocks.unacked_exist
2550 && !test_bit(Faulty, &rdev->flags))) {
2551 len += sprintf(page+len, "%sblocked", sep);
2552 sep = ",";
2554 if (!test_bit(Faulty, &rdev->flags) &&
2555 !test_bit(In_sync, &rdev->flags)) {
2556 len += sprintf(page+len, "%sspare", sep);
2557 sep = ",";
2559 if (test_bit(WriteErrorSeen, &rdev->flags)) {
2560 len += sprintf(page+len, "%swrite_error", sep);
2561 sep = ",";
2563 return len+sprintf(page+len, "\n");
2566 static ssize_t
2567 state_store(struct md_rdev *rdev, const char *buf, size_t len)
2569 /* can write
2570 * faulty - simulates an error
2571 * remove - disconnects the device
2572 * writemostly - sets write_mostly
2573 * -writemostly - clears write_mostly
2574 * blocked - sets the Blocked flags
2575 * -blocked - clears the Blocked and possibly simulates an error
2576 * insync - sets Insync providing device isn't active
2577 * write_error - sets WriteErrorSeen
2578 * -write_error - clears WriteErrorSeen
2580 int err = -EINVAL;
2581 if (cmd_match(buf, "faulty") && rdev->mddev->pers) {
2582 md_error(rdev->mddev, rdev);
2583 if (test_bit(Faulty, &rdev->flags))
2584 err = 0;
2585 else
2586 err = -EBUSY;
2587 } else if (cmd_match(buf, "remove")) {
2588 if (rdev->raid_disk >= 0)
2589 err = -EBUSY;
2590 else {
2591 struct mddev *mddev = rdev->mddev;
2592 kick_rdev_from_array(rdev);
2593 if (mddev->pers)
2594 md_update_sb(mddev, 1);
2595 md_new_event(mddev);
2596 err = 0;
2598 } else if (cmd_match(buf, "writemostly")) {
2599 set_bit(WriteMostly, &rdev->flags);
2600 err = 0;
2601 } else if (cmd_match(buf, "-writemostly")) {
2602 clear_bit(WriteMostly, &rdev->flags);
2603 err = 0;
2604 } else if (cmd_match(buf, "blocked")) {
2605 set_bit(Blocked, &rdev->flags);
2606 err = 0;
2607 } else if (cmd_match(buf, "-blocked")) {
2608 if (!test_bit(Faulty, &rdev->flags) &&
2609 rdev->badblocks.unacked_exist) {
2610 /* metadata handler doesn't understand badblocks,
2611 * so we need to fail the device
2613 md_error(rdev->mddev, rdev);
2615 clear_bit(Blocked, &rdev->flags);
2616 clear_bit(BlockedBadBlocks, &rdev->flags);
2617 wake_up(&rdev->blocked_wait);
2618 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2619 md_wakeup_thread(rdev->mddev->thread);
2621 err = 0;
2622 } else if (cmd_match(buf, "insync") && rdev->raid_disk == -1) {
2623 set_bit(In_sync, &rdev->flags);
2624 err = 0;
2625 } else if (cmd_match(buf, "write_error")) {
2626 set_bit(WriteErrorSeen, &rdev->flags);
2627 err = 0;
2628 } else if (cmd_match(buf, "-write_error")) {
2629 clear_bit(WriteErrorSeen, &rdev->flags);
2630 err = 0;
2632 if (!err)
2633 sysfs_notify_dirent_safe(rdev->sysfs_state);
2634 return err ? err : len;
2636 static struct rdev_sysfs_entry rdev_state =
2637 __ATTR(state, S_IRUGO|S_IWUSR, state_show, state_store);
2639 static ssize_t
2640 errors_show(struct md_rdev *rdev, char *page)
2642 return sprintf(page, "%d\n", atomic_read(&rdev->corrected_errors));
2645 static ssize_t
2646 errors_store(struct md_rdev *rdev, const char *buf, size_t len)
2648 char *e;
2649 unsigned long n = simple_strtoul(buf, &e, 10);
2650 if (*buf && (*e == 0 || *e == '\n')) {
2651 atomic_set(&rdev->corrected_errors, n);
2652 return len;
2654 return -EINVAL;
2656 static struct rdev_sysfs_entry rdev_errors =
2657 __ATTR(errors, S_IRUGO|S_IWUSR, errors_show, errors_store);
2659 static ssize_t
2660 slot_show(struct md_rdev *rdev, char *page)
2662 if (rdev->raid_disk < 0)
2663 return sprintf(page, "none\n");
2664 else
2665 return sprintf(page, "%d\n", rdev->raid_disk);
2668 static ssize_t
2669 slot_store(struct md_rdev *rdev, const char *buf, size_t len)
2671 char *e;
2672 int err;
2673 int slot = simple_strtoul(buf, &e, 10);
2674 if (strncmp(buf, "none", 4)==0)
2675 slot = -1;
2676 else if (e==buf || (*e && *e!= '\n'))
2677 return -EINVAL;
2678 if (rdev->mddev->pers && slot == -1) {
2679 /* Setting 'slot' on an active array requires also
2680 * updating the 'rd%d' link, and communicating
2681 * with the personality with ->hot_*_disk.
2682 * For now we only support removing
2683 * failed/spare devices. This normally happens automatically,
2684 * but not when the metadata is externally managed.
2686 if (rdev->raid_disk == -1)
2687 return -EEXIST;
2688 /* personality does all needed checks */
2689 if (rdev->mddev->pers->hot_remove_disk == NULL)
2690 return -EINVAL;
2691 err = rdev->mddev->pers->
2692 hot_remove_disk(rdev->mddev, rdev->raid_disk);
2693 if (err)
2694 return err;
2695 sysfs_unlink_rdev(rdev->mddev, rdev);
2696 rdev->raid_disk = -1;
2697 set_bit(MD_RECOVERY_NEEDED, &rdev->mddev->recovery);
2698 md_wakeup_thread(rdev->mddev->thread);
2699 } else if (rdev->mddev->pers) {
2700 struct md_rdev *rdev2;
2701 /* Activating a spare .. or possibly reactivating
2702 * if we ever get bitmaps working here.
2705 if (rdev->raid_disk != -1)
2706 return -EBUSY;
2708 if (test_bit(MD_RECOVERY_RUNNING, &rdev->mddev->recovery))
2709 return -EBUSY;
2711 if (rdev->mddev->pers->hot_add_disk == NULL)
2712 return -EINVAL;
2714 list_for_each_entry(rdev2, &rdev->mddev->disks, same_set)
2715 if (rdev2->raid_disk == slot)
2716 return -EEXIST;
2718 if (slot >= rdev->mddev->raid_disks &&
2719 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2720 return -ENOSPC;
2722 rdev->raid_disk = slot;
2723 if (test_bit(In_sync, &rdev->flags))
2724 rdev->saved_raid_disk = slot;
2725 else
2726 rdev->saved_raid_disk = -1;
2727 clear_bit(In_sync, &rdev->flags);
2728 err = rdev->mddev->pers->
2729 hot_add_disk(rdev->mddev, rdev);
2730 if (err) {
2731 rdev->raid_disk = -1;
2732 return err;
2733 } else
2734 sysfs_notify_dirent_safe(rdev->sysfs_state);
2735 if (sysfs_link_rdev(rdev->mddev, rdev))
2736 /* failure here is OK */;
2737 /* don't wakeup anyone, leave that to userspace. */
2738 } else {
2739 if (slot >= rdev->mddev->raid_disks &&
2740 slot >= rdev->mddev->raid_disks + rdev->mddev->delta_disks)
2741 return -ENOSPC;
2742 rdev->raid_disk = slot;
2743 /* assume it is working */
2744 clear_bit(Faulty, &rdev->flags);
2745 clear_bit(WriteMostly, &rdev->flags);
2746 set_bit(In_sync, &rdev->flags);
2747 sysfs_notify_dirent_safe(rdev->sysfs_state);
2749 return len;
2753 static struct rdev_sysfs_entry rdev_slot =
2754 __ATTR(slot, S_IRUGO|S_IWUSR, slot_show, slot_store);
2756 static ssize_t
2757 offset_show(struct md_rdev *rdev, char *page)
2759 return sprintf(page, "%llu\n", (unsigned long long)rdev->data_offset);
2762 static ssize_t
2763 offset_store(struct md_rdev *rdev, const char *buf, size_t len)
2765 char *e;
2766 unsigned long long offset = simple_strtoull(buf, &e, 10);
2767 if (e==buf || (*e && *e != '\n'))
2768 return -EINVAL;
2769 if (rdev->mddev->pers && rdev->raid_disk >= 0)
2770 return -EBUSY;
2771 if (rdev->sectors && rdev->mddev->external)
2772 /* Must set offset before size, so overlap checks
2773 * can be sane */
2774 return -EBUSY;
2775 rdev->data_offset = offset;
2776 return len;
2779 static struct rdev_sysfs_entry rdev_offset =
2780 __ATTR(offset, S_IRUGO|S_IWUSR, offset_show, offset_store);
2782 static ssize_t
2783 rdev_size_show(struct md_rdev *rdev, char *page)
2785 return sprintf(page, "%llu\n", (unsigned long long)rdev->sectors / 2);
2788 static int overlaps(sector_t s1, sector_t l1, sector_t s2, sector_t l2)
2790 /* check if two start/length pairs overlap */
2791 if (s1+l1 <= s2)
2792 return 0;
2793 if (s2+l2 <= s1)
2794 return 0;
2795 return 1;
2798 static int strict_blocks_to_sectors(const char *buf, sector_t *sectors)
2800 unsigned long long blocks;
2801 sector_t new;
2803 if (strict_strtoull(buf, 10, &blocks) < 0)
2804 return -EINVAL;
2806 if (blocks & 1ULL << (8 * sizeof(blocks) - 1))
2807 return -EINVAL; /* sector conversion overflow */
2809 new = blocks * 2;
2810 if (new != blocks * 2)
2811 return -EINVAL; /* unsigned long long to sector_t overflow */
2813 *sectors = new;
2814 return 0;
2817 static ssize_t
2818 rdev_size_store(struct md_rdev *rdev, const char *buf, size_t len)
2820 struct mddev *my_mddev = rdev->mddev;
2821 sector_t oldsectors = rdev->sectors;
2822 sector_t sectors;
2824 if (strict_blocks_to_sectors(buf, &sectors) < 0)
2825 return -EINVAL;
2826 if (my_mddev->pers && rdev->raid_disk >= 0) {
2827 if (my_mddev->persistent) {
2828 sectors = super_types[my_mddev->major_version].
2829 rdev_size_change(rdev, sectors);
2830 if (!sectors)
2831 return -EBUSY;
2832 } else if (!sectors)
2833 sectors = (i_size_read(rdev->bdev->bd_inode) >> 9) -
2834 rdev->data_offset;
2836 if (sectors < my_mddev->dev_sectors)
2837 return -EINVAL; /* component must fit device */
2839 rdev->sectors = sectors;
2840 if (sectors > oldsectors && my_mddev->external) {
2841 /* need to check that all other rdevs with the same ->bdev
2842 * do not overlap. We need to unlock the mddev to avoid
2843 * a deadlock. We have already changed rdev->sectors, and if
2844 * we have to change it back, we will have the lock again.
2846 struct mddev *mddev;
2847 int overlap = 0;
2848 struct list_head *tmp;
2850 mddev_unlock(my_mddev);
2851 for_each_mddev(mddev, tmp) {
2852 struct md_rdev *rdev2;
2854 mddev_lock(mddev);
2855 list_for_each_entry(rdev2, &mddev->disks, same_set)
2856 if (rdev->bdev == rdev2->bdev &&
2857 rdev != rdev2 &&
2858 overlaps(rdev->data_offset, rdev->sectors,
2859 rdev2->data_offset,
2860 rdev2->sectors)) {
2861 overlap = 1;
2862 break;
2864 mddev_unlock(mddev);
2865 if (overlap) {
2866 mddev_put(mddev);
2867 break;
2870 mddev_lock(my_mddev);
2871 if (overlap) {
2872 /* Someone else could have slipped in a size
2873 * change here, but doing so is just silly.
2874 * We put oldsectors back because we *know* it is
2875 * safe, and trust userspace not to race with
2876 * itself
2878 rdev->sectors = oldsectors;
2879 return -EBUSY;
2882 return len;
2885 static struct rdev_sysfs_entry rdev_size =
2886 __ATTR(size, S_IRUGO|S_IWUSR, rdev_size_show, rdev_size_store);
2889 static ssize_t recovery_start_show(struct md_rdev *rdev, char *page)
2891 unsigned long long recovery_start = rdev->recovery_offset;
2893 if (test_bit(In_sync, &rdev->flags) ||
2894 recovery_start == MaxSector)
2895 return sprintf(page, "none\n");
2897 return sprintf(page, "%llu\n", recovery_start);
2900 static ssize_t recovery_start_store(struct md_rdev *rdev, const char *buf, size_t len)
2902 unsigned long long recovery_start;
2904 if (cmd_match(buf, "none"))
2905 recovery_start = MaxSector;
2906 else if (strict_strtoull(buf, 10, &recovery_start))
2907 return -EINVAL;
2909 if (rdev->mddev->pers &&
2910 rdev->raid_disk >= 0)
2911 return -EBUSY;
2913 rdev->recovery_offset = recovery_start;
2914 if (recovery_start == MaxSector)
2915 set_bit(In_sync, &rdev->flags);
2916 else
2917 clear_bit(In_sync, &rdev->flags);
2918 return len;
2921 static struct rdev_sysfs_entry rdev_recovery_start =
2922 __ATTR(recovery_start, S_IRUGO|S_IWUSR, recovery_start_show, recovery_start_store);
2925 static ssize_t
2926 badblocks_show(struct badblocks *bb, char *page, int unack);
2927 static ssize_t
2928 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack);
2930 static ssize_t bb_show(struct md_rdev *rdev, char *page)
2932 return badblocks_show(&rdev->badblocks, page, 0);
2934 static ssize_t bb_store(struct md_rdev *rdev, const char *page, size_t len)
2936 int rv = badblocks_store(&rdev->badblocks, page, len, 0);
2937 /* Maybe that ack was all we needed */
2938 if (test_and_clear_bit(BlockedBadBlocks, &rdev->flags))
2939 wake_up(&rdev->blocked_wait);
2940 return rv;
2942 static struct rdev_sysfs_entry rdev_bad_blocks =
2943 __ATTR(bad_blocks, S_IRUGO|S_IWUSR, bb_show, bb_store);
2946 static ssize_t ubb_show(struct md_rdev *rdev, char *page)
2948 return badblocks_show(&rdev->badblocks, page, 1);
2950 static ssize_t ubb_store(struct md_rdev *rdev, const char *page, size_t len)
2952 return badblocks_store(&rdev->badblocks, page, len, 1);
2954 static struct rdev_sysfs_entry rdev_unack_bad_blocks =
2955 __ATTR(unacknowledged_bad_blocks, S_IRUGO|S_IWUSR, ubb_show, ubb_store);
2957 static struct attribute *rdev_default_attrs[] = {
2958 &rdev_state.attr,
2959 &rdev_errors.attr,
2960 &rdev_slot.attr,
2961 &rdev_offset.attr,
2962 &rdev_size.attr,
2963 &rdev_recovery_start.attr,
2964 &rdev_bad_blocks.attr,
2965 &rdev_unack_bad_blocks.attr,
2966 NULL,
2968 static ssize_t
2969 rdev_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
2971 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2972 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2973 struct mddev *mddev = rdev->mddev;
2974 ssize_t rv;
2976 if (!entry->show)
2977 return -EIO;
2979 rv = mddev ? mddev_lock(mddev) : -EBUSY;
2980 if (!rv) {
2981 if (rdev->mddev == NULL)
2982 rv = -EBUSY;
2983 else
2984 rv = entry->show(rdev, page);
2985 mddev_unlock(mddev);
2987 return rv;
2990 static ssize_t
2991 rdev_attr_store(struct kobject *kobj, struct attribute *attr,
2992 const char *page, size_t length)
2994 struct rdev_sysfs_entry *entry = container_of(attr, struct rdev_sysfs_entry, attr);
2995 struct md_rdev *rdev = container_of(kobj, struct md_rdev, kobj);
2996 ssize_t rv;
2997 struct mddev *mddev = rdev->mddev;
2999 if (!entry->store)
3000 return -EIO;
3001 if (!capable(CAP_SYS_ADMIN))
3002 return -EACCES;
3003 rv = mddev ? mddev_lock(mddev): -EBUSY;
3004 if (!rv) {
3005 if (rdev->mddev == NULL)
3006 rv = -EBUSY;
3007 else
3008 rv = entry->store(rdev, page, length);
3009 mddev_unlock(mddev);
3011 return rv;
3014 static void rdev_free(struct kobject *ko)
3016 struct md_rdev *rdev = container_of(ko, struct md_rdev, kobj);
3017 kfree(rdev);
3019 static const struct sysfs_ops rdev_sysfs_ops = {
3020 .show = rdev_attr_show,
3021 .store = rdev_attr_store,
3023 static struct kobj_type rdev_ktype = {
3024 .release = rdev_free,
3025 .sysfs_ops = &rdev_sysfs_ops,
3026 .default_attrs = rdev_default_attrs,
3029 int md_rdev_init(struct md_rdev *rdev)
3031 rdev->desc_nr = -1;
3032 rdev->saved_raid_disk = -1;
3033 rdev->raid_disk = -1;
3034 rdev->flags = 0;
3035 rdev->data_offset = 0;
3036 rdev->sb_events = 0;
3037 rdev->last_read_error.tv_sec = 0;
3038 rdev->last_read_error.tv_nsec = 0;
3039 rdev->sb_loaded = 0;
3040 rdev->bb_page = NULL;
3041 atomic_set(&rdev->nr_pending, 0);
3042 atomic_set(&rdev->read_errors, 0);
3043 atomic_set(&rdev->corrected_errors, 0);
3045 INIT_LIST_HEAD(&rdev->same_set);
3046 init_waitqueue_head(&rdev->blocked_wait);
3048 /* Add space to store bad block list.
3049 * This reserves the space even on arrays where it cannot
3050 * be used - I wonder if that matters
3052 rdev->badblocks.count = 0;
3053 rdev->badblocks.shift = 0;
3054 rdev->badblocks.page = kmalloc(PAGE_SIZE, GFP_KERNEL);
3055 seqlock_init(&rdev->badblocks.lock);
3056 if (rdev->badblocks.page == NULL)
3057 return -ENOMEM;
3059 return 0;
3061 EXPORT_SYMBOL_GPL(md_rdev_init);
3063 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3065 * mark the device faulty if:
3067 * - the device is nonexistent (zero size)
3068 * - the device has no valid superblock
3070 * a faulty rdev _never_ has rdev->sb set.
3072 static struct md_rdev *md_import_device(dev_t newdev, int super_format, int super_minor)
3074 char b[BDEVNAME_SIZE];
3075 int err;
3076 struct md_rdev *rdev;
3077 sector_t size;
3079 rdev = kzalloc(sizeof(*rdev), GFP_KERNEL);
3080 if (!rdev) {
3081 printk(KERN_ERR "md: could not alloc mem for new device!\n");
3082 return ERR_PTR(-ENOMEM);
3085 err = md_rdev_init(rdev);
3086 if (err)
3087 goto abort_free;
3088 err = alloc_disk_sb(rdev);
3089 if (err)
3090 goto abort_free;
3092 err = lock_rdev(rdev, newdev, super_format == -2);
3093 if (err)
3094 goto abort_free;
3096 kobject_init(&rdev->kobj, &rdev_ktype);
3098 size = i_size_read(rdev->bdev->bd_inode) >> BLOCK_SIZE_BITS;
3099 if (!size) {
3100 printk(KERN_WARNING
3101 "md: %s has zero or unknown size, marking faulty!\n",
3102 bdevname(rdev->bdev,b));
3103 err = -EINVAL;
3104 goto abort_free;
3107 if (super_format >= 0) {
3108 err = super_types[super_format].
3109 load_super(rdev, NULL, super_minor);
3110 if (err == -EINVAL) {
3111 printk(KERN_WARNING
3112 "md: %s does not have a valid v%d.%d "
3113 "superblock, not importing!\n",
3114 bdevname(rdev->bdev,b),
3115 super_format, super_minor);
3116 goto abort_free;
3118 if (err < 0) {
3119 printk(KERN_WARNING
3120 "md: could not read %s's sb, not importing!\n",
3121 bdevname(rdev->bdev,b));
3122 goto abort_free;
3125 if (super_format == -1)
3126 /* hot-add for 0.90, or non-persistent: so no badblocks */
3127 rdev->badblocks.shift = -1;
3129 return rdev;
3131 abort_free:
3132 if (rdev->bdev)
3133 unlock_rdev(rdev);
3134 free_disk_sb(rdev);
3135 kfree(rdev->badblocks.page);
3136 kfree(rdev);
3137 return ERR_PTR(err);
3141 * Check a full RAID array for plausibility
3145 static void analyze_sbs(struct mddev * mddev)
3147 int i;
3148 struct md_rdev *rdev, *freshest, *tmp;
3149 char b[BDEVNAME_SIZE];
3151 freshest = NULL;
3152 rdev_for_each(rdev, tmp, mddev)
3153 switch (super_types[mddev->major_version].
3154 load_super(rdev, freshest, mddev->minor_version)) {
3155 case 1:
3156 freshest = rdev;
3157 break;
3158 case 0:
3159 break;
3160 default:
3161 printk( KERN_ERR \
3162 "md: fatal superblock inconsistency in %s"
3163 " -- removing from array\n",
3164 bdevname(rdev->bdev,b));
3165 kick_rdev_from_array(rdev);
3169 super_types[mddev->major_version].
3170 validate_super(mddev, freshest);
3172 i = 0;
3173 rdev_for_each(rdev, tmp, mddev) {
3174 if (mddev->max_disks &&
3175 (rdev->desc_nr >= mddev->max_disks ||
3176 i > mddev->max_disks)) {
3177 printk(KERN_WARNING
3178 "md: %s: %s: only %d devices permitted\n",
3179 mdname(mddev), bdevname(rdev->bdev, b),
3180 mddev->max_disks);
3181 kick_rdev_from_array(rdev);
3182 continue;
3184 if (rdev != freshest)
3185 if (super_types[mddev->major_version].
3186 validate_super(mddev, rdev)) {
3187 printk(KERN_WARNING "md: kicking non-fresh %s"
3188 " from array!\n",
3189 bdevname(rdev->bdev,b));
3190 kick_rdev_from_array(rdev);
3191 continue;
3193 if (mddev->level == LEVEL_MULTIPATH) {
3194 rdev->desc_nr = i++;
3195 rdev->raid_disk = rdev->desc_nr;
3196 set_bit(In_sync, &rdev->flags);
3197 } else if (rdev->raid_disk >= (mddev->raid_disks - min(0, mddev->delta_disks))) {
3198 rdev->raid_disk = -1;
3199 clear_bit(In_sync, &rdev->flags);
3204 /* Read a fixed-point number.
3205 * Numbers in sysfs attributes should be in "standard" units where
3206 * possible, so time should be in seconds.
3207 * However we internally use a a much smaller unit such as
3208 * milliseconds or jiffies.
3209 * This function takes a decimal number with a possible fractional
3210 * component, and produces an integer which is the result of
3211 * multiplying that number by 10^'scale'.
3212 * all without any floating-point arithmetic.
3214 int strict_strtoul_scaled(const char *cp, unsigned long *res, int scale)
3216 unsigned long result = 0;
3217 long decimals = -1;
3218 while (isdigit(*cp) || (*cp == '.' && decimals < 0)) {
3219 if (*cp == '.')
3220 decimals = 0;
3221 else if (decimals < scale) {
3222 unsigned int value;
3223 value = *cp - '0';
3224 result = result * 10 + value;
3225 if (decimals >= 0)
3226 decimals++;
3228 cp++;
3230 if (*cp == '\n')
3231 cp++;
3232 if (*cp)
3233 return -EINVAL;
3234 if (decimals < 0)
3235 decimals = 0;
3236 while (decimals < scale) {
3237 result *= 10;
3238 decimals ++;
3240 *res = result;
3241 return 0;
3245 static void md_safemode_timeout(unsigned long data);
3247 static ssize_t
3248 safe_delay_show(struct mddev *mddev, char *page)
3250 int msec = (mddev->safemode_delay*1000)/HZ;
3251 return sprintf(page, "%d.%03d\n", msec/1000, msec%1000);
3253 static ssize_t
3254 safe_delay_store(struct mddev *mddev, const char *cbuf, size_t len)
3256 unsigned long msec;
3258 if (strict_strtoul_scaled(cbuf, &msec, 3) < 0)
3259 return -EINVAL;
3260 if (msec == 0)
3261 mddev->safemode_delay = 0;
3262 else {
3263 unsigned long old_delay = mddev->safemode_delay;
3264 mddev->safemode_delay = (msec*HZ)/1000;
3265 if (mddev->safemode_delay == 0)
3266 mddev->safemode_delay = 1;
3267 if (mddev->safemode_delay < old_delay)
3268 md_safemode_timeout((unsigned long)mddev);
3270 return len;
3272 static struct md_sysfs_entry md_safe_delay =
3273 __ATTR(safe_mode_delay, S_IRUGO|S_IWUSR,safe_delay_show, safe_delay_store);
3275 static ssize_t
3276 level_show(struct mddev *mddev, char *page)
3278 struct md_personality *p = mddev->pers;
3279 if (p)
3280 return sprintf(page, "%s\n", p->name);
3281 else if (mddev->clevel[0])
3282 return sprintf(page, "%s\n", mddev->clevel);
3283 else if (mddev->level != LEVEL_NONE)
3284 return sprintf(page, "%d\n", mddev->level);
3285 else
3286 return 0;
3289 static ssize_t
3290 level_store(struct mddev *mddev, const char *buf, size_t len)
3292 char clevel[16];
3293 ssize_t rv = len;
3294 struct md_personality *pers;
3295 long level;
3296 void *priv;
3297 struct md_rdev *rdev;
3299 if (mddev->pers == NULL) {
3300 if (len == 0)
3301 return 0;
3302 if (len >= sizeof(mddev->clevel))
3303 return -ENOSPC;
3304 strncpy(mddev->clevel, buf, len);
3305 if (mddev->clevel[len-1] == '\n')
3306 len--;
3307 mddev->clevel[len] = 0;
3308 mddev->level = LEVEL_NONE;
3309 return rv;
3312 /* request to change the personality. Need to ensure:
3313 * - array is not engaged in resync/recovery/reshape
3314 * - old personality can be suspended
3315 * - new personality will access other array.
3318 if (mddev->sync_thread ||
3319 mddev->reshape_position != MaxSector ||
3320 mddev->sysfs_active)
3321 return -EBUSY;
3323 if (!mddev->pers->quiesce) {
3324 printk(KERN_WARNING "md: %s: %s does not support online personality change\n",
3325 mdname(mddev), mddev->pers->name);
3326 return -EINVAL;
3329 /* Now find the new personality */
3330 if (len == 0 || len >= sizeof(clevel))
3331 return -EINVAL;
3332 strncpy(clevel, buf, len);
3333 if (clevel[len-1] == '\n')
3334 len--;
3335 clevel[len] = 0;
3336 if (strict_strtol(clevel, 10, &level))
3337 level = LEVEL_NONE;
3339 if (request_module("md-%s", clevel) != 0)
3340 request_module("md-level-%s", clevel);
3341 spin_lock(&pers_lock);
3342 pers = find_pers(level, clevel);
3343 if (!pers || !try_module_get(pers->owner)) {
3344 spin_unlock(&pers_lock);
3345 printk(KERN_WARNING "md: personality %s not loaded\n", clevel);
3346 return -EINVAL;
3348 spin_unlock(&pers_lock);
3350 if (pers == mddev->pers) {
3351 /* Nothing to do! */
3352 module_put(pers->owner);
3353 return rv;
3355 if (!pers->takeover) {
3356 module_put(pers->owner);
3357 printk(KERN_WARNING "md: %s: %s does not support personality takeover\n",
3358 mdname(mddev), clevel);
3359 return -EINVAL;
3362 list_for_each_entry(rdev, &mddev->disks, same_set)
3363 rdev->new_raid_disk = rdev->raid_disk;
3365 /* ->takeover must set new_* and/or delta_disks
3366 * if it succeeds, and may set them when it fails.
3368 priv = pers->takeover(mddev);
3369 if (IS_ERR(priv)) {
3370 mddev->new_level = mddev->level;
3371 mddev->new_layout = mddev->layout;
3372 mddev->new_chunk_sectors = mddev->chunk_sectors;
3373 mddev->raid_disks -= mddev->delta_disks;
3374 mddev->delta_disks = 0;
3375 module_put(pers->owner);
3376 printk(KERN_WARNING "md: %s: %s would not accept array\n",
3377 mdname(mddev), clevel);
3378 return PTR_ERR(priv);
3381 /* Looks like we have a winner */
3382 mddev_suspend(mddev);
3383 mddev->pers->stop(mddev);
3385 if (mddev->pers->sync_request == NULL &&
3386 pers->sync_request != NULL) {
3387 /* need to add the md_redundancy_group */
3388 if (sysfs_create_group(&mddev->kobj, &md_redundancy_group))
3389 printk(KERN_WARNING
3390 "md: cannot register extra attributes for %s\n",
3391 mdname(mddev));
3392 mddev->sysfs_action = sysfs_get_dirent(mddev->kobj.sd, NULL, "sync_action");
3394 if (mddev->pers->sync_request != NULL &&
3395 pers->sync_request == NULL) {
3396 /* need to remove the md_redundancy_group */
3397 if (mddev->to_remove == NULL)
3398 mddev->to_remove = &md_redundancy_group;
3401 if (mddev->pers->sync_request == NULL &&
3402 mddev->external) {
3403 /* We are converting from a no-redundancy array
3404 * to a redundancy array and metadata is managed
3405 * externally so we need to be sure that writes
3406 * won't block due to a need to transition
3407 * clean->dirty
3408 * until external management is started.
3410 mddev->in_sync = 0;
3411 mddev->safemode_delay = 0;
3412 mddev->safemode = 0;
3415 list_for_each_entry(rdev, &mddev->disks, same_set) {
3416 if (rdev->raid_disk < 0)
3417 continue;
3418 if (rdev->new_raid_disk >= mddev->raid_disks)
3419 rdev->new_raid_disk = -1;
3420 if (rdev->new_raid_disk == rdev->raid_disk)
3421 continue;
3422 sysfs_unlink_rdev(mddev, rdev);
3424 list_for_each_entry(rdev, &mddev->disks, same_set) {
3425 if (rdev->raid_disk < 0)
3426 continue;
3427 if (rdev->new_raid_disk == rdev->raid_disk)
3428 continue;
3429 rdev->raid_disk = rdev->new_raid_disk;
3430 if (rdev->raid_disk < 0)
3431 clear_bit(In_sync, &rdev->flags);
3432 else {
3433 if (sysfs_link_rdev(mddev, rdev))
3434 printk(KERN_WARNING "md: cannot register rd%d"
3435 " for %s after level change\n",
3436 rdev->raid_disk, mdname(mddev));
3440 module_put(mddev->pers->owner);
3441 mddev->pers = pers;
3442 mddev->private = priv;
3443 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
3444 mddev->level = mddev->new_level;
3445 mddev->layout = mddev->new_layout;
3446 mddev->chunk_sectors = mddev->new_chunk_sectors;
3447 mddev->delta_disks = 0;
3448 mddev->degraded = 0;
3449 if (mddev->pers->sync_request == NULL) {
3450 /* this is now an array without redundancy, so
3451 * it must always be in_sync
3453 mddev->in_sync = 1;
3454 del_timer_sync(&mddev->safemode_timer);
3456 pers->run(mddev);
3457 mddev_resume(mddev);
3458 set_bit(MD_CHANGE_DEVS, &mddev->flags);
3459 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
3460 md_wakeup_thread(mddev->thread);
3461 sysfs_notify(&mddev->kobj, NULL, "level");
3462 md_new_event(mddev);
3463 return rv;
3466 static struct md_sysfs_entry md_level =
3467 __ATTR(level, S_IRUGO|S_IWUSR, level_show, level_store);
3470 static ssize_t
3471 layout_show(struct mddev *mddev, char *page)
3473 /* just a number, not meaningful for all levels */
3474 if (mddev->reshape_position != MaxSector &&
3475 mddev->layout != mddev->new_layout)
3476 return sprintf(page, "%d (%d)\n",
3477 mddev->new_layout, mddev->layout);
3478 return sprintf(page, "%d\n", mddev->layout);
3481 static ssize_t
3482 layout_store(struct mddev *mddev, const char *buf, size_t len)
3484 char *e;
3485 unsigned long n = simple_strtoul(buf, &e, 10);
3487 if (!*buf || (*e && *e != '\n'))
3488 return -EINVAL;
3490 if (mddev->pers) {
3491 int err;
3492 if (mddev->pers->check_reshape == NULL)
3493 return -EBUSY;
3494 mddev->new_layout = n;
3495 err = mddev->pers->check_reshape(mddev);
3496 if (err) {
3497 mddev->new_layout = mddev->layout;
3498 return err;
3500 } else {
3501 mddev->new_layout = n;
3502 if (mddev->reshape_position == MaxSector)
3503 mddev->layout = n;
3505 return len;
3507 static struct md_sysfs_entry md_layout =
3508 __ATTR(layout, S_IRUGO|S_IWUSR, layout_show, layout_store);
3511 static ssize_t
3512 raid_disks_show(struct mddev *mddev, char *page)
3514 if (mddev->raid_disks == 0)
3515 return 0;
3516 if (mddev->reshape_position != MaxSector &&
3517 mddev->delta_disks != 0)
3518 return sprintf(page, "%d (%d)\n", mddev->raid_disks,
3519 mddev->raid_disks - mddev->delta_disks);
3520 return sprintf(page, "%d\n", mddev->raid_disks);
3523 static int update_raid_disks(struct mddev *mddev, int raid_disks);
3525 static ssize_t
3526 raid_disks_store(struct mddev *mddev, const char *buf, size_t len)
3528 char *e;
3529 int rv = 0;
3530 unsigned long n = simple_strtoul(buf, &e, 10);
3532 if (!*buf || (*e && *e != '\n'))
3533 return -EINVAL;
3535 if (mddev->pers)
3536 rv = update_raid_disks(mddev, n);
3537 else if (mddev->reshape_position != MaxSector) {
3538 int olddisks = mddev->raid_disks - mddev->delta_disks;
3539 mddev->delta_disks = n - olddisks;
3540 mddev->raid_disks = n;
3541 } else
3542 mddev->raid_disks = n;
3543 return rv ? rv : len;
3545 static struct md_sysfs_entry md_raid_disks =
3546 __ATTR(raid_disks, S_IRUGO|S_IWUSR, raid_disks_show, raid_disks_store);
3548 static ssize_t
3549 chunk_size_show(struct mddev *mddev, char *page)
3551 if (mddev->reshape_position != MaxSector &&
3552 mddev->chunk_sectors != mddev->new_chunk_sectors)
3553 return sprintf(page, "%d (%d)\n",
3554 mddev->new_chunk_sectors << 9,
3555 mddev->chunk_sectors << 9);
3556 return sprintf(page, "%d\n", mddev->chunk_sectors << 9);
3559 static ssize_t
3560 chunk_size_store(struct mddev *mddev, const char *buf, size_t len)
3562 char *e;
3563 unsigned long n = simple_strtoul(buf, &e, 10);
3565 if (!*buf || (*e && *e != '\n'))
3566 return -EINVAL;
3568 if (mddev->pers) {
3569 int err;
3570 if (mddev->pers->check_reshape == NULL)
3571 return -EBUSY;
3572 mddev->new_chunk_sectors = n >> 9;
3573 err = mddev->pers->check_reshape(mddev);
3574 if (err) {
3575 mddev->new_chunk_sectors = mddev->chunk_sectors;
3576 return err;
3578 } else {
3579 mddev->new_chunk_sectors = n >> 9;
3580 if (mddev->reshape_position == MaxSector)
3581 mddev->chunk_sectors = n >> 9;
3583 return len;
3585 static struct md_sysfs_entry md_chunk_size =
3586 __ATTR(chunk_size, S_IRUGO|S_IWUSR, chunk_size_show, chunk_size_store);
3588 static ssize_t
3589 resync_start_show(struct mddev *mddev, char *page)
3591 if (mddev->recovery_cp == MaxSector)
3592 return sprintf(page, "none\n");
3593 return sprintf(page, "%llu\n", (unsigned long long)mddev->recovery_cp);
3596 static ssize_t
3597 resync_start_store(struct mddev *mddev, const char *buf, size_t len)
3599 char *e;
3600 unsigned long long n = simple_strtoull(buf, &e, 10);
3602 if (mddev->pers && !test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
3603 return -EBUSY;
3604 if (cmd_match(buf, "none"))
3605 n = MaxSector;
3606 else if (!*buf || (*e && *e != '\n'))
3607 return -EINVAL;
3609 mddev->recovery_cp = n;
3610 return len;
3612 static struct md_sysfs_entry md_resync_start =
3613 __ATTR(resync_start, S_IRUGO|S_IWUSR, resync_start_show, resync_start_store);
3616 * The array state can be:
3618 * clear
3619 * No devices, no size, no level
3620 * Equivalent to STOP_ARRAY ioctl
3621 * inactive
3622 * May have some settings, but array is not active
3623 * all IO results in error
3624 * When written, doesn't tear down array, but just stops it
3625 * suspended (not supported yet)
3626 * All IO requests will block. The array can be reconfigured.
3627 * Writing this, if accepted, will block until array is quiescent
3628 * readonly
3629 * no resync can happen. no superblocks get written.
3630 * write requests fail
3631 * read-auto
3632 * like readonly, but behaves like 'clean' on a write request.
3634 * clean - no pending writes, but otherwise active.
3635 * When written to inactive array, starts without resync
3636 * If a write request arrives then
3637 * if metadata is known, mark 'dirty' and switch to 'active'.
3638 * if not known, block and switch to write-pending
3639 * If written to an active array that has pending writes, then fails.
3640 * active
3641 * fully active: IO and resync can be happening.
3642 * When written to inactive array, starts with resync
3644 * write-pending
3645 * clean, but writes are blocked waiting for 'active' to be written.
3647 * active-idle
3648 * like active, but no writes have been seen for a while (100msec).
3651 enum array_state { clear, inactive, suspended, readonly, read_auto, clean, active,
3652 write_pending, active_idle, bad_word};
3653 static char *array_states[] = {
3654 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3655 "write-pending", "active-idle", NULL };
3657 static int match_word(const char *word, char **list)
3659 int n;
3660 for (n=0; list[n]; n++)
3661 if (cmd_match(word, list[n]))
3662 break;
3663 return n;
3666 static ssize_t
3667 array_state_show(struct mddev *mddev, char *page)
3669 enum array_state st = inactive;
3671 if (mddev->pers)
3672 switch(mddev->ro) {
3673 case 1:
3674 st = readonly;
3675 break;
3676 case 2:
3677 st = read_auto;
3678 break;
3679 case 0:
3680 if (mddev->in_sync)
3681 st = clean;
3682 else if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
3683 st = write_pending;
3684 else if (mddev->safemode)
3685 st = active_idle;
3686 else
3687 st = active;
3689 else {
3690 if (list_empty(&mddev->disks) &&
3691 mddev->raid_disks == 0 &&
3692 mddev->dev_sectors == 0)
3693 st = clear;
3694 else
3695 st = inactive;
3697 return sprintf(page, "%s\n", array_states[st]);
3700 static int do_md_stop(struct mddev * mddev, int ro, int is_open);
3701 static int md_set_readonly(struct mddev * mddev, int is_open);
3702 static int do_md_run(struct mddev * mddev);
3703 static int restart_array(struct mddev *mddev);
3705 static ssize_t
3706 array_state_store(struct mddev *mddev, const char *buf, size_t len)
3708 int err = -EINVAL;
3709 enum array_state st = match_word(buf, array_states);
3710 switch(st) {
3711 case bad_word:
3712 break;
3713 case clear:
3714 /* stopping an active array */
3715 if (atomic_read(&mddev->openers) > 0)
3716 return -EBUSY;
3717 err = do_md_stop(mddev, 0, 0);
3718 break;
3719 case inactive:
3720 /* stopping an active array */
3721 if (mddev->pers) {
3722 if (atomic_read(&mddev->openers) > 0)
3723 return -EBUSY;
3724 err = do_md_stop(mddev, 2, 0);
3725 } else
3726 err = 0; /* already inactive */
3727 break;
3728 case suspended:
3729 break; /* not supported yet */
3730 case readonly:
3731 if (mddev->pers)
3732 err = md_set_readonly(mddev, 0);
3733 else {
3734 mddev->ro = 1;
3735 set_disk_ro(mddev->gendisk, 1);
3736 err = do_md_run(mddev);
3738 break;
3739 case read_auto:
3740 if (mddev->pers) {
3741 if (mddev->ro == 0)
3742 err = md_set_readonly(mddev, 0);
3743 else if (mddev->ro == 1)
3744 err = restart_array(mddev);
3745 if (err == 0) {
3746 mddev->ro = 2;
3747 set_disk_ro(mddev->gendisk, 0);
3749 } else {
3750 mddev->ro = 2;
3751 err = do_md_run(mddev);
3753 break;
3754 case clean:
3755 if (mddev->pers) {
3756 restart_array(mddev);
3757 spin_lock_irq(&mddev->write_lock);
3758 if (atomic_read(&mddev->writes_pending) == 0) {
3759 if (mddev->in_sync == 0) {
3760 mddev->in_sync = 1;
3761 if (mddev->safemode == 1)
3762 mddev->safemode = 0;
3763 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
3765 err = 0;
3766 } else
3767 err = -EBUSY;
3768 spin_unlock_irq(&mddev->write_lock);
3769 } else
3770 err = -EINVAL;
3771 break;
3772 case active:
3773 if (mddev->pers) {
3774 restart_array(mddev);
3775 clear_bit(MD_CHANGE_PENDING, &mddev->flags);
3776 wake_up(&mddev->sb_wait);
3777 err = 0;
3778 } else {
3779 mddev->ro = 0;
3780 set_disk_ro(mddev->gendisk, 0);
3781 err = do_md_run(mddev);
3783 break;
3784 case write_pending:
3785 case active_idle:
3786 /* these cannot be set */
3787 break;
3789 if (err)
3790 return err;
3791 else {
3792 if (mddev->hold_active == UNTIL_IOCTL)
3793 mddev->hold_active = 0;
3794 sysfs_notify_dirent_safe(mddev->sysfs_state);
3795 return len;
3798 static struct md_sysfs_entry md_array_state =
3799 __ATTR(array_state, S_IRUGO|S_IWUSR, array_state_show, array_state_store);
3801 static ssize_t
3802 max_corrected_read_errors_show(struct mddev *mddev, char *page) {
3803 return sprintf(page, "%d\n",
3804 atomic_read(&mddev->max_corr_read_errors));
3807 static ssize_t
3808 max_corrected_read_errors_store(struct mddev *mddev, const char *buf, size_t len)
3810 char *e;
3811 unsigned long n = simple_strtoul(buf, &e, 10);
3813 if (*buf && (*e == 0 || *e == '\n')) {
3814 atomic_set(&mddev->max_corr_read_errors, n);
3815 return len;
3817 return -EINVAL;
3820 static struct md_sysfs_entry max_corr_read_errors =
3821 __ATTR(max_read_errors, S_IRUGO|S_IWUSR, max_corrected_read_errors_show,
3822 max_corrected_read_errors_store);
3824 static ssize_t
3825 null_show(struct mddev *mddev, char *page)
3827 return -EINVAL;
3830 static ssize_t
3831 new_dev_store(struct mddev *mddev, const char *buf, size_t len)
3833 /* buf must be %d:%d\n? giving major and minor numbers */
3834 /* The new device is added to the array.
3835 * If the array has a persistent superblock, we read the
3836 * superblock to initialise info and check validity.
3837 * Otherwise, only checking done is that in bind_rdev_to_array,
3838 * which mainly checks size.
3840 char *e;
3841 int major = simple_strtoul(buf, &e, 10);
3842 int minor;
3843 dev_t dev;
3844 struct md_rdev *rdev;
3845 int err;
3847 if (!*buf || *e != ':' || !e[1] || e[1] == '\n')
3848 return -EINVAL;
3849 minor = simple_strtoul(e+1, &e, 10);
3850 if (*e && *e != '\n')
3851 return -EINVAL;
3852 dev = MKDEV(major, minor);
3853 if (major != MAJOR(dev) ||
3854 minor != MINOR(dev))
3855 return -EOVERFLOW;
3858 if (mddev->persistent) {
3859 rdev = md_import_device(dev, mddev->major_version,
3860 mddev->minor_version);
3861 if (!IS_ERR(rdev) && !list_empty(&mddev->disks)) {
3862 struct md_rdev *rdev0
3863 = list_entry(mddev->disks.next,
3864 struct md_rdev, same_set);
3865 err = super_types[mddev->major_version]
3866 .load_super(rdev, rdev0, mddev->minor_version);
3867 if (err < 0)
3868 goto out;
3870 } else if (mddev->external)
3871 rdev = md_import_device(dev, -2, -1);
3872 else
3873 rdev = md_import_device(dev, -1, -1);
3875 if (IS_ERR(rdev))
3876 return PTR_ERR(rdev);
3877 err = bind_rdev_to_array(rdev, mddev);
3878 out:
3879 if (err)
3880 export_rdev(rdev);
3881 return err ? err : len;
3884 static struct md_sysfs_entry md_new_device =
3885 __ATTR(new_dev, S_IWUSR, null_show, new_dev_store);
3887 static ssize_t
3888 bitmap_store(struct mddev *mddev, const char *buf, size_t len)
3890 char *end;
3891 unsigned long chunk, end_chunk;
3893 if (!mddev->bitmap)
3894 goto out;
3895 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3896 while (*buf) {
3897 chunk = end_chunk = simple_strtoul(buf, &end, 0);
3898 if (buf == end) break;
3899 if (*end == '-') { /* range */
3900 buf = end + 1;
3901 end_chunk = simple_strtoul(buf, &end, 0);
3902 if (buf == end) break;
3904 if (*end && !isspace(*end)) break;
3905 bitmap_dirty_bits(mddev->bitmap, chunk, end_chunk);
3906 buf = skip_spaces(end);
3908 bitmap_unplug(mddev->bitmap); /* flush the bits to disk */
3909 out:
3910 return len;
3913 static struct md_sysfs_entry md_bitmap =
3914 __ATTR(bitmap_set_bits, S_IWUSR, null_show, bitmap_store);
3916 static ssize_t
3917 size_show(struct mddev *mddev, char *page)
3919 return sprintf(page, "%llu\n",
3920 (unsigned long long)mddev->dev_sectors / 2);
3923 static int update_size(struct mddev *mddev, sector_t num_sectors);
3925 static ssize_t
3926 size_store(struct mddev *mddev, const char *buf, size_t len)
3928 /* If array is inactive, we can reduce the component size, but
3929 * not increase it (except from 0).
3930 * If array is active, we can try an on-line resize
3932 sector_t sectors;
3933 int err = strict_blocks_to_sectors(buf, &sectors);
3935 if (err < 0)
3936 return err;
3937 if (mddev->pers) {
3938 err = update_size(mddev, sectors);
3939 md_update_sb(mddev, 1);
3940 } else {
3941 if (mddev->dev_sectors == 0 ||
3942 mddev->dev_sectors > sectors)
3943 mddev->dev_sectors = sectors;
3944 else
3945 err = -ENOSPC;
3947 return err ? err : len;
3950 static struct md_sysfs_entry md_size =
3951 __ATTR(component_size, S_IRUGO|S_IWUSR, size_show, size_store);
3954 /* Metdata version.
3955 * This is one of
3956 * 'none' for arrays with no metadata (good luck...)
3957 * 'external' for arrays with externally managed metadata,
3958 * or N.M for internally known formats
3960 static ssize_t
3961 metadata_show(struct mddev *mddev, char *page)
3963 if (mddev->persistent)
3964 return sprintf(page, "%d.%d\n",
3965 mddev->major_version, mddev->minor_version);
3966 else if (mddev->external)
3967 return sprintf(page, "external:%s\n", mddev->metadata_type);
3968 else
3969 return sprintf(page, "none\n");
3972 static ssize_t
3973 metadata_store(struct mddev *mddev, const char *buf, size_t len)
3975 int major, minor;
3976 char *e;
3977 /* Changing the details of 'external' metadata is
3978 * always permitted. Otherwise there must be
3979 * no devices attached to the array.
3981 if (mddev->external && strncmp(buf, "external:", 9) == 0)
3983 else if (!list_empty(&mddev->disks))
3984 return -EBUSY;
3986 if (cmd_match(buf, "none")) {
3987 mddev->persistent = 0;
3988 mddev->external = 0;
3989 mddev->major_version = 0;
3990 mddev->minor_version = 90;
3991 return len;
3993 if (strncmp(buf, "external:", 9) == 0) {
3994 size_t namelen = len-9;
3995 if (namelen >= sizeof(mddev->metadata_type))
3996 namelen = sizeof(mddev->metadata_type)-1;
3997 strncpy(mddev->metadata_type, buf+9, namelen);
3998 mddev->metadata_type[namelen] = 0;
3999 if (namelen && mddev->metadata_type[namelen-1] == '\n')
4000 mddev->metadata_type[--namelen] = 0;
4001 mddev->persistent = 0;
4002 mddev->external = 1;
4003 mddev->major_version = 0;
4004 mddev->minor_version = 90;
4005 return len;
4007 major = simple_strtoul(buf, &e, 10);
4008 if (e==buf || *e != '.')
4009 return -EINVAL;
4010 buf = e+1;
4011 minor = simple_strtoul(buf, &e, 10);
4012 if (e==buf || (*e && *e != '\n') )
4013 return -EINVAL;
4014 if (major >= ARRAY_SIZE(super_types) || super_types[major].name == NULL)
4015 return -ENOENT;
4016 mddev->major_version = major;
4017 mddev->minor_version = minor;
4018 mddev->persistent = 1;
4019 mddev->external = 0;
4020 return len;
4023 static struct md_sysfs_entry md_metadata =
4024 __ATTR(metadata_version, S_IRUGO|S_IWUSR, metadata_show, metadata_store);
4026 static ssize_t
4027 action_show(struct mddev *mddev, char *page)
4029 char *type = "idle";
4030 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
4031 type = "frozen";
4032 else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4033 (!mddev->ro && test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))) {
4034 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4035 type = "reshape";
4036 else if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4037 if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
4038 type = "resync";
4039 else if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
4040 type = "check";
4041 else
4042 type = "repair";
4043 } else if (test_bit(MD_RECOVERY_RECOVER, &mddev->recovery))
4044 type = "recover";
4046 return sprintf(page, "%s\n", type);
4049 static void reap_sync_thread(struct mddev *mddev);
4051 static ssize_t
4052 action_store(struct mddev *mddev, const char *page, size_t len)
4054 if (!mddev->pers || !mddev->pers->sync_request)
4055 return -EINVAL;
4057 if (cmd_match(page, "frozen"))
4058 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4059 else
4060 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
4062 if (cmd_match(page, "idle") || cmd_match(page, "frozen")) {
4063 if (mddev->sync_thread) {
4064 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
4065 reap_sync_thread(mddev);
4067 } else if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) ||
4068 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
4069 return -EBUSY;
4070 else if (cmd_match(page, "resync"))
4071 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4072 else if (cmd_match(page, "recover")) {
4073 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
4074 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4075 } else if (cmd_match(page, "reshape")) {
4076 int err;
4077 if (mddev->pers->start_reshape == NULL)
4078 return -EINVAL;
4079 err = mddev->pers->start_reshape(mddev);
4080 if (err)
4081 return err;
4082 sysfs_notify(&mddev->kobj, NULL, "degraded");
4083 } else {
4084 if (cmd_match(page, "check"))
4085 set_bit(MD_RECOVERY_CHECK, &mddev->recovery);
4086 else if (!cmd_match(page, "repair"))
4087 return -EINVAL;
4088 set_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
4089 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
4091 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4092 md_wakeup_thread(mddev->thread);
4093 sysfs_notify_dirent_safe(mddev->sysfs_action);
4094 return len;
4097 static ssize_t
4098 mismatch_cnt_show(struct mddev *mddev, char *page)
4100 return sprintf(page, "%llu\n",
4101 (unsigned long long) mddev->resync_mismatches);
4104 static struct md_sysfs_entry md_scan_mode =
4105 __ATTR(sync_action, S_IRUGO|S_IWUSR, action_show, action_store);
4108 static struct md_sysfs_entry md_mismatches = __ATTR_RO(mismatch_cnt);
4110 static ssize_t
4111 sync_min_show(struct mddev *mddev, char *page)
4113 return sprintf(page, "%d (%s)\n", speed_min(mddev),
4114 mddev->sync_speed_min ? "local": "system");
4117 static ssize_t
4118 sync_min_store(struct mddev *mddev, const char *buf, size_t len)
4120 int min;
4121 char *e;
4122 if (strncmp(buf, "system", 6)==0) {
4123 mddev->sync_speed_min = 0;
4124 return len;
4126 min = simple_strtoul(buf, &e, 10);
4127 if (buf == e || (*e && *e != '\n') || min <= 0)
4128 return -EINVAL;
4129 mddev->sync_speed_min = min;
4130 return len;
4133 static struct md_sysfs_entry md_sync_min =
4134 __ATTR(sync_speed_min, S_IRUGO|S_IWUSR, sync_min_show, sync_min_store);
4136 static ssize_t
4137 sync_max_show(struct mddev *mddev, char *page)
4139 return sprintf(page, "%d (%s)\n", speed_max(mddev),
4140 mddev->sync_speed_max ? "local": "system");
4143 static ssize_t
4144 sync_max_store(struct mddev *mddev, const char *buf, size_t len)
4146 int max;
4147 char *e;
4148 if (strncmp(buf, "system", 6)==0) {
4149 mddev->sync_speed_max = 0;
4150 return len;
4152 max = simple_strtoul(buf, &e, 10);
4153 if (buf == e || (*e && *e != '\n') || max <= 0)
4154 return -EINVAL;
4155 mddev->sync_speed_max = max;
4156 return len;
4159 static struct md_sysfs_entry md_sync_max =
4160 __ATTR(sync_speed_max, S_IRUGO|S_IWUSR, sync_max_show, sync_max_store);
4162 static ssize_t
4163 degraded_show(struct mddev *mddev, char *page)
4165 return sprintf(page, "%d\n", mddev->degraded);
4167 static struct md_sysfs_entry md_degraded = __ATTR_RO(degraded);
4169 static ssize_t
4170 sync_force_parallel_show(struct mddev *mddev, char *page)
4172 return sprintf(page, "%d\n", mddev->parallel_resync);
4175 static ssize_t
4176 sync_force_parallel_store(struct mddev *mddev, const char *buf, size_t len)
4178 long n;
4180 if (strict_strtol(buf, 10, &n))
4181 return -EINVAL;
4183 if (n != 0 && n != 1)
4184 return -EINVAL;
4186 mddev->parallel_resync = n;
4188 if (mddev->sync_thread)
4189 wake_up(&resync_wait);
4191 return len;
4194 /* force parallel resync, even with shared block devices */
4195 static struct md_sysfs_entry md_sync_force_parallel =
4196 __ATTR(sync_force_parallel, S_IRUGO|S_IWUSR,
4197 sync_force_parallel_show, sync_force_parallel_store);
4199 static ssize_t
4200 sync_speed_show(struct mddev *mddev, char *page)
4202 unsigned long resync, dt, db;
4203 if (mddev->curr_resync == 0)
4204 return sprintf(page, "none\n");
4205 resync = mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active);
4206 dt = (jiffies - mddev->resync_mark) / HZ;
4207 if (!dt) dt++;
4208 db = resync - mddev->resync_mark_cnt;
4209 return sprintf(page, "%lu\n", db/dt/2); /* K/sec */
4212 static struct md_sysfs_entry md_sync_speed = __ATTR_RO(sync_speed);
4214 static ssize_t
4215 sync_completed_show(struct mddev *mddev, char *page)
4217 unsigned long long max_sectors, resync;
4219 if (!test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4220 return sprintf(page, "none\n");
4222 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
4223 max_sectors = mddev->resync_max_sectors;
4224 else
4225 max_sectors = mddev->dev_sectors;
4227 resync = mddev->curr_resync_completed;
4228 return sprintf(page, "%llu / %llu\n", resync, max_sectors);
4231 static struct md_sysfs_entry md_sync_completed = __ATTR_RO(sync_completed);
4233 static ssize_t
4234 min_sync_show(struct mddev *mddev, char *page)
4236 return sprintf(page, "%llu\n",
4237 (unsigned long long)mddev->resync_min);
4239 static ssize_t
4240 min_sync_store(struct mddev *mddev, const char *buf, size_t len)
4242 unsigned long long min;
4243 if (strict_strtoull(buf, 10, &min))
4244 return -EINVAL;
4245 if (min > mddev->resync_max)
4246 return -EINVAL;
4247 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4248 return -EBUSY;
4250 /* Must be a multiple of chunk_size */
4251 if (mddev->chunk_sectors) {
4252 sector_t temp = min;
4253 if (sector_div(temp, mddev->chunk_sectors))
4254 return -EINVAL;
4256 mddev->resync_min = min;
4258 return len;
4261 static struct md_sysfs_entry md_min_sync =
4262 __ATTR(sync_min, S_IRUGO|S_IWUSR, min_sync_show, min_sync_store);
4264 static ssize_t
4265 max_sync_show(struct mddev *mddev, char *page)
4267 if (mddev->resync_max == MaxSector)
4268 return sprintf(page, "max\n");
4269 else
4270 return sprintf(page, "%llu\n",
4271 (unsigned long long)mddev->resync_max);
4273 static ssize_t
4274 max_sync_store(struct mddev *mddev, const char *buf, size_t len)
4276 if (strncmp(buf, "max", 3) == 0)
4277 mddev->resync_max = MaxSector;
4278 else {
4279 unsigned long long max;
4280 if (strict_strtoull(buf, 10, &max))
4281 return -EINVAL;
4282 if (max < mddev->resync_min)
4283 return -EINVAL;
4284 if (max < mddev->resync_max &&
4285 mddev->ro == 0 &&
4286 test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
4287 return -EBUSY;
4289 /* Must be a multiple of chunk_size */
4290 if (mddev->chunk_sectors) {
4291 sector_t temp = max;
4292 if (sector_div(temp, mddev->chunk_sectors))
4293 return -EINVAL;
4295 mddev->resync_max = max;
4297 wake_up(&mddev->recovery_wait);
4298 return len;
4301 static struct md_sysfs_entry md_max_sync =
4302 __ATTR(sync_max, S_IRUGO|S_IWUSR, max_sync_show, max_sync_store);
4304 static ssize_t
4305 suspend_lo_show(struct mddev *mddev, char *page)
4307 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_lo);
4310 static ssize_t
4311 suspend_lo_store(struct mddev *mddev, const char *buf, size_t len)
4313 char *e;
4314 unsigned long long new = simple_strtoull(buf, &e, 10);
4315 unsigned long long old = mddev->suspend_lo;
4317 if (mddev->pers == NULL ||
4318 mddev->pers->quiesce == NULL)
4319 return -EINVAL;
4320 if (buf == e || (*e && *e != '\n'))
4321 return -EINVAL;
4323 mddev->suspend_lo = new;
4324 if (new >= old)
4325 /* Shrinking suspended region */
4326 mddev->pers->quiesce(mddev, 2);
4327 else {
4328 /* Expanding suspended region - need to wait */
4329 mddev->pers->quiesce(mddev, 1);
4330 mddev->pers->quiesce(mddev, 0);
4332 return len;
4334 static struct md_sysfs_entry md_suspend_lo =
4335 __ATTR(suspend_lo, S_IRUGO|S_IWUSR, suspend_lo_show, suspend_lo_store);
4338 static ssize_t
4339 suspend_hi_show(struct mddev *mddev, char *page)
4341 return sprintf(page, "%llu\n", (unsigned long long)mddev->suspend_hi);
4344 static ssize_t
4345 suspend_hi_store(struct mddev *mddev, const char *buf, size_t len)
4347 char *e;
4348 unsigned long long new = simple_strtoull(buf, &e, 10);
4349 unsigned long long old = mddev->suspend_hi;
4351 if (mddev->pers == NULL ||
4352 mddev->pers->quiesce == NULL)
4353 return -EINVAL;
4354 if (buf == e || (*e && *e != '\n'))
4355 return -EINVAL;
4357 mddev->suspend_hi = new;
4358 if (new <= old)
4359 /* Shrinking suspended region */
4360 mddev->pers->quiesce(mddev, 2);
4361 else {
4362 /* Expanding suspended region - need to wait */
4363 mddev->pers->quiesce(mddev, 1);
4364 mddev->pers->quiesce(mddev, 0);
4366 return len;
4368 static struct md_sysfs_entry md_suspend_hi =
4369 __ATTR(suspend_hi, S_IRUGO|S_IWUSR, suspend_hi_show, suspend_hi_store);
4371 static ssize_t
4372 reshape_position_show(struct mddev *mddev, char *page)
4374 if (mddev->reshape_position != MaxSector)
4375 return sprintf(page, "%llu\n",
4376 (unsigned long long)mddev->reshape_position);
4377 strcpy(page, "none\n");
4378 return 5;
4381 static ssize_t
4382 reshape_position_store(struct mddev *mddev, const char *buf, size_t len)
4384 char *e;
4385 unsigned long long new = simple_strtoull(buf, &e, 10);
4386 if (mddev->pers)
4387 return -EBUSY;
4388 if (buf == e || (*e && *e != '\n'))
4389 return -EINVAL;
4390 mddev->reshape_position = new;
4391 mddev->delta_disks = 0;
4392 mddev->new_level = mddev->level;
4393 mddev->new_layout = mddev->layout;
4394 mddev->new_chunk_sectors = mddev->chunk_sectors;
4395 return len;
4398 static struct md_sysfs_entry md_reshape_position =
4399 __ATTR(reshape_position, S_IRUGO|S_IWUSR, reshape_position_show,
4400 reshape_position_store);
4402 static ssize_t
4403 array_size_show(struct mddev *mddev, char *page)
4405 if (mddev->external_size)
4406 return sprintf(page, "%llu\n",
4407 (unsigned long long)mddev->array_sectors/2);
4408 else
4409 return sprintf(page, "default\n");
4412 static ssize_t
4413 array_size_store(struct mddev *mddev, const char *buf, size_t len)
4415 sector_t sectors;
4417 if (strncmp(buf, "default", 7) == 0) {
4418 if (mddev->pers)
4419 sectors = mddev->pers->size(mddev, 0, 0);
4420 else
4421 sectors = mddev->array_sectors;
4423 mddev->external_size = 0;
4424 } else {
4425 if (strict_blocks_to_sectors(buf, &sectors) < 0)
4426 return -EINVAL;
4427 if (mddev->pers && mddev->pers->size(mddev, 0, 0) < sectors)
4428 return -E2BIG;
4430 mddev->external_size = 1;
4433 mddev->array_sectors = sectors;
4434 if (mddev->pers) {
4435 set_capacity(mddev->gendisk, mddev->array_sectors);
4436 revalidate_disk(mddev->gendisk);
4438 return len;
4441 static struct md_sysfs_entry md_array_size =
4442 __ATTR(array_size, S_IRUGO|S_IWUSR, array_size_show,
4443 array_size_store);
4445 static struct attribute *md_default_attrs[] = {
4446 &md_level.attr,
4447 &md_layout.attr,
4448 &md_raid_disks.attr,
4449 &md_chunk_size.attr,
4450 &md_size.attr,
4451 &md_resync_start.attr,
4452 &md_metadata.attr,
4453 &md_new_device.attr,
4454 &md_safe_delay.attr,
4455 &md_array_state.attr,
4456 &md_reshape_position.attr,
4457 &md_array_size.attr,
4458 &max_corr_read_errors.attr,
4459 NULL,
4462 static struct attribute *md_redundancy_attrs[] = {
4463 &md_scan_mode.attr,
4464 &md_mismatches.attr,
4465 &md_sync_min.attr,
4466 &md_sync_max.attr,
4467 &md_sync_speed.attr,
4468 &md_sync_force_parallel.attr,
4469 &md_sync_completed.attr,
4470 &md_min_sync.attr,
4471 &md_max_sync.attr,
4472 &md_suspend_lo.attr,
4473 &md_suspend_hi.attr,
4474 &md_bitmap.attr,
4475 &md_degraded.attr,
4476 NULL,
4478 static struct attribute_group md_redundancy_group = {
4479 .name = NULL,
4480 .attrs = md_redundancy_attrs,
4484 static ssize_t
4485 md_attr_show(struct kobject *kobj, struct attribute *attr, char *page)
4487 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4488 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4489 ssize_t rv;
4491 if (!entry->show)
4492 return -EIO;
4493 spin_lock(&all_mddevs_lock);
4494 if (list_empty(&mddev->all_mddevs)) {
4495 spin_unlock(&all_mddevs_lock);
4496 return -EBUSY;
4498 mddev_get(mddev);
4499 spin_unlock(&all_mddevs_lock);
4501 rv = mddev_lock(mddev);
4502 if (!rv) {
4503 rv = entry->show(mddev, page);
4504 mddev_unlock(mddev);
4506 mddev_put(mddev);
4507 return rv;
4510 static ssize_t
4511 md_attr_store(struct kobject *kobj, struct attribute *attr,
4512 const char *page, size_t length)
4514 struct md_sysfs_entry *entry = container_of(attr, struct md_sysfs_entry, attr);
4515 struct mddev *mddev = container_of(kobj, struct mddev, kobj);
4516 ssize_t rv;
4518 if (!entry->store)
4519 return -EIO;
4520 if (!capable(CAP_SYS_ADMIN))
4521 return -EACCES;
4522 spin_lock(&all_mddevs_lock);
4523 if (list_empty(&mddev->all_mddevs)) {
4524 spin_unlock(&all_mddevs_lock);
4525 return -EBUSY;
4527 mddev_get(mddev);
4528 spin_unlock(&all_mddevs_lock);
4529 rv = mddev_lock(mddev);
4530 if (!rv) {
4531 rv = entry->store(mddev, page, length);
4532 mddev_unlock(mddev);
4534 mddev_put(mddev);
4535 return rv;
4538 static void md_free(struct kobject *ko)
4540 struct mddev *mddev = container_of(ko, struct mddev, kobj);
4542 if (mddev->sysfs_state)
4543 sysfs_put(mddev->sysfs_state);
4545 if (mddev->gendisk) {
4546 del_gendisk(mddev->gendisk);
4547 put_disk(mddev->gendisk);
4549 if (mddev->queue)
4550 blk_cleanup_queue(mddev->queue);
4552 kfree(mddev);
4555 static const struct sysfs_ops md_sysfs_ops = {
4556 .show = md_attr_show,
4557 .store = md_attr_store,
4559 static struct kobj_type md_ktype = {
4560 .release = md_free,
4561 .sysfs_ops = &md_sysfs_ops,
4562 .default_attrs = md_default_attrs,
4565 int mdp_major = 0;
4567 static void mddev_delayed_delete(struct work_struct *ws)
4569 struct mddev *mddev = container_of(ws, struct mddev, del_work);
4571 sysfs_remove_group(&mddev->kobj, &md_bitmap_group);
4572 kobject_del(&mddev->kobj);
4573 kobject_put(&mddev->kobj);
4576 static int md_alloc(dev_t dev, char *name)
4578 static DEFINE_MUTEX(disks_mutex);
4579 struct mddev *mddev = mddev_find(dev);
4580 struct gendisk *disk;
4581 int partitioned;
4582 int shift;
4583 int unit;
4584 int error;
4586 if (!mddev)
4587 return -ENODEV;
4589 partitioned = (MAJOR(mddev->unit) != MD_MAJOR);
4590 shift = partitioned ? MdpMinorShift : 0;
4591 unit = MINOR(mddev->unit) >> shift;
4593 /* wait for any previous instance of this device to be
4594 * completely removed (mddev_delayed_delete).
4596 flush_workqueue(md_misc_wq);
4598 mutex_lock(&disks_mutex);
4599 error = -EEXIST;
4600 if (mddev->gendisk)
4601 goto abort;
4603 if (name) {
4604 /* Need to ensure that 'name' is not a duplicate.
4606 struct mddev *mddev2;
4607 spin_lock(&all_mddevs_lock);
4609 list_for_each_entry(mddev2, &all_mddevs, all_mddevs)
4610 if (mddev2->gendisk &&
4611 strcmp(mddev2->gendisk->disk_name, name) == 0) {
4612 spin_unlock(&all_mddevs_lock);
4613 goto abort;
4615 spin_unlock(&all_mddevs_lock);
4618 error = -ENOMEM;
4619 mddev->queue = blk_alloc_queue(GFP_KERNEL);
4620 if (!mddev->queue)
4621 goto abort;
4622 mddev->queue->queuedata = mddev;
4624 blk_queue_make_request(mddev->queue, md_make_request);
4626 disk = alloc_disk(1 << shift);
4627 if (!disk) {
4628 blk_cleanup_queue(mddev->queue);
4629 mddev->queue = NULL;
4630 goto abort;
4632 disk->major = MAJOR(mddev->unit);
4633 disk->first_minor = unit << shift;
4634 if (name)
4635 strcpy(disk->disk_name, name);
4636 else if (partitioned)
4637 sprintf(disk->disk_name, "md_d%d", unit);
4638 else
4639 sprintf(disk->disk_name, "md%d", unit);
4640 disk->fops = &md_fops;
4641 disk->private_data = mddev;
4642 disk->queue = mddev->queue;
4643 blk_queue_flush(mddev->queue, REQ_FLUSH | REQ_FUA);
4644 /* Allow extended partitions. This makes the
4645 * 'mdp' device redundant, but we can't really
4646 * remove it now.
4648 disk->flags |= GENHD_FL_EXT_DEVT;
4649 mddev->gendisk = disk;
4650 /* As soon as we call add_disk(), another thread could get
4651 * through to md_open, so make sure it doesn't get too far
4653 mutex_lock(&mddev->open_mutex);
4654 add_disk(disk);
4656 error = kobject_init_and_add(&mddev->kobj, &md_ktype,
4657 &disk_to_dev(disk)->kobj, "%s", "md");
4658 if (error) {
4659 /* This isn't possible, but as kobject_init_and_add is marked
4660 * __must_check, we must do something with the result
4662 printk(KERN_WARNING "md: cannot register %s/md - name in use\n",
4663 disk->disk_name);
4664 error = 0;
4666 if (mddev->kobj.sd &&
4667 sysfs_create_group(&mddev->kobj, &md_bitmap_group))
4668 printk(KERN_DEBUG "pointless warning\n");
4669 mutex_unlock(&mddev->open_mutex);
4670 abort:
4671 mutex_unlock(&disks_mutex);
4672 if (!error && mddev->kobj.sd) {
4673 kobject_uevent(&mddev->kobj, KOBJ_ADD);
4674 mddev->sysfs_state = sysfs_get_dirent_safe(mddev->kobj.sd, "array_state");
4676 mddev_put(mddev);
4677 return error;
4680 static struct kobject *md_probe(dev_t dev, int *part, void *data)
4682 md_alloc(dev, NULL);
4683 return NULL;
4686 static int add_named_array(const char *val, struct kernel_param *kp)
4688 /* val must be "md_*" where * is not all digits.
4689 * We allocate an array with a large free minor number, and
4690 * set the name to val. val must not already be an active name.
4692 int len = strlen(val);
4693 char buf[DISK_NAME_LEN];
4695 while (len && val[len-1] == '\n')
4696 len--;
4697 if (len >= DISK_NAME_LEN)
4698 return -E2BIG;
4699 strlcpy(buf, val, len+1);
4700 if (strncmp(buf, "md_", 3) != 0)
4701 return -EINVAL;
4702 return md_alloc(0, buf);
4705 static void md_safemode_timeout(unsigned long data)
4707 struct mddev *mddev = (struct mddev *) data;
4709 if (!atomic_read(&mddev->writes_pending)) {
4710 mddev->safemode = 1;
4711 if (mddev->external)
4712 sysfs_notify_dirent_safe(mddev->sysfs_state);
4714 md_wakeup_thread(mddev->thread);
4717 static int start_dirty_degraded;
4719 int md_run(struct mddev *mddev)
4721 int err;
4722 struct md_rdev *rdev;
4723 struct md_personality *pers;
4725 if (list_empty(&mddev->disks))
4726 /* cannot run an array with no devices.. */
4727 return -EINVAL;
4729 if (mddev->pers)
4730 return -EBUSY;
4731 /* Cannot run until previous stop completes properly */
4732 if (mddev->sysfs_active)
4733 return -EBUSY;
4736 * Analyze all RAID superblock(s)
4738 if (!mddev->raid_disks) {
4739 if (!mddev->persistent)
4740 return -EINVAL;
4741 analyze_sbs(mddev);
4744 if (mddev->level != LEVEL_NONE)
4745 request_module("md-level-%d", mddev->level);
4746 else if (mddev->clevel[0])
4747 request_module("md-%s", mddev->clevel);
4750 * Drop all container device buffers, from now on
4751 * the only valid external interface is through the md
4752 * device.
4754 list_for_each_entry(rdev, &mddev->disks, same_set) {
4755 if (test_bit(Faulty, &rdev->flags))
4756 continue;
4757 sync_blockdev(rdev->bdev);
4758 invalidate_bdev(rdev->bdev);
4760 /* perform some consistency tests on the device.
4761 * We don't want the data to overlap the metadata,
4762 * Internal Bitmap issues have been handled elsewhere.
4764 if (rdev->meta_bdev) {
4765 /* Nothing to check */;
4766 } else if (rdev->data_offset < rdev->sb_start) {
4767 if (mddev->dev_sectors &&
4768 rdev->data_offset + mddev->dev_sectors
4769 > rdev->sb_start) {
4770 printk("md: %s: data overlaps metadata\n",
4771 mdname(mddev));
4772 return -EINVAL;
4774 } else {
4775 if (rdev->sb_start + rdev->sb_size/512
4776 > rdev->data_offset) {
4777 printk("md: %s: metadata overlaps data\n",
4778 mdname(mddev));
4779 return -EINVAL;
4782 sysfs_notify_dirent_safe(rdev->sysfs_state);
4785 if (mddev->bio_set == NULL)
4786 mddev->bio_set = bioset_create(BIO_POOL_SIZE,
4787 sizeof(struct mddev *));
4789 spin_lock(&pers_lock);
4790 pers = find_pers(mddev->level, mddev->clevel);
4791 if (!pers || !try_module_get(pers->owner)) {
4792 spin_unlock(&pers_lock);
4793 if (mddev->level != LEVEL_NONE)
4794 printk(KERN_WARNING "md: personality for level %d is not loaded!\n",
4795 mddev->level);
4796 else
4797 printk(KERN_WARNING "md: personality for level %s is not loaded!\n",
4798 mddev->clevel);
4799 return -EINVAL;
4801 mddev->pers = pers;
4802 spin_unlock(&pers_lock);
4803 if (mddev->level != pers->level) {
4804 mddev->level = pers->level;
4805 mddev->new_level = pers->level;
4807 strlcpy(mddev->clevel, pers->name, sizeof(mddev->clevel));
4809 if (mddev->reshape_position != MaxSector &&
4810 pers->start_reshape == NULL) {
4811 /* This personality cannot handle reshaping... */
4812 mddev->pers = NULL;
4813 module_put(pers->owner);
4814 return -EINVAL;
4817 if (pers->sync_request) {
4818 /* Warn if this is a potentially silly
4819 * configuration.
4821 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
4822 struct md_rdev *rdev2;
4823 int warned = 0;
4825 list_for_each_entry(rdev, &mddev->disks, same_set)
4826 list_for_each_entry(rdev2, &mddev->disks, same_set) {
4827 if (rdev < rdev2 &&
4828 rdev->bdev->bd_contains ==
4829 rdev2->bdev->bd_contains) {
4830 printk(KERN_WARNING
4831 "%s: WARNING: %s appears to be"
4832 " on the same physical disk as"
4833 " %s.\n",
4834 mdname(mddev),
4835 bdevname(rdev->bdev,b),
4836 bdevname(rdev2->bdev,b2));
4837 warned = 1;
4841 if (warned)
4842 printk(KERN_WARNING
4843 "True protection against single-disk"
4844 " failure might be compromised.\n");
4847 mddev->recovery = 0;
4848 /* may be over-ridden by personality */
4849 mddev->resync_max_sectors = mddev->dev_sectors;
4851 mddev->ok_start_degraded = start_dirty_degraded;
4853 if (start_readonly && mddev->ro == 0)
4854 mddev->ro = 2; /* read-only, but switch on first write */
4856 err = mddev->pers->run(mddev);
4857 if (err)
4858 printk(KERN_ERR "md: pers->run() failed ...\n");
4859 else if (mddev->pers->size(mddev, 0, 0) < mddev->array_sectors) {
4860 WARN_ONCE(!mddev->external_size, "%s: default size too small,"
4861 " but 'external_size' not in effect?\n", __func__);
4862 printk(KERN_ERR
4863 "md: invalid array_size %llu > default size %llu\n",
4864 (unsigned long long)mddev->array_sectors / 2,
4865 (unsigned long long)mddev->pers->size(mddev, 0, 0) / 2);
4866 err = -EINVAL;
4867 mddev->pers->stop(mddev);
4869 if (err == 0 && mddev->pers->sync_request) {
4870 err = bitmap_create(mddev);
4871 if (err) {
4872 printk(KERN_ERR "%s: failed to create bitmap (%d)\n",
4873 mdname(mddev), err);
4874 mddev->pers->stop(mddev);
4877 if (err) {
4878 module_put(mddev->pers->owner);
4879 mddev->pers = NULL;
4880 bitmap_destroy(mddev);
4881 return err;
4883 if (mddev->pers->sync_request) {
4884 if (mddev->kobj.sd &&
4885 sysfs_create_group(&mddev->kobj, &md_redundancy_group))
4886 printk(KERN_WARNING
4887 "md: cannot register extra attributes for %s\n",
4888 mdname(mddev));
4889 mddev->sysfs_action = sysfs_get_dirent_safe(mddev->kobj.sd, "sync_action");
4890 } else if (mddev->ro == 2) /* auto-readonly not meaningful */
4891 mddev->ro = 0;
4893 atomic_set(&mddev->writes_pending,0);
4894 atomic_set(&mddev->max_corr_read_errors,
4895 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS);
4896 mddev->safemode = 0;
4897 mddev->safemode_timer.function = md_safemode_timeout;
4898 mddev->safemode_timer.data = (unsigned long) mddev;
4899 mddev->safemode_delay = (200 * HZ)/1000 +1; /* 200 msec delay */
4900 mddev->in_sync = 1;
4901 smp_wmb();
4902 mddev->ready = 1;
4903 list_for_each_entry(rdev, &mddev->disks, same_set)
4904 if (rdev->raid_disk >= 0)
4905 if (sysfs_link_rdev(mddev, rdev))
4906 /* failure here is OK */;
4908 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4910 if (mddev->flags)
4911 md_update_sb(mddev, 0);
4913 md_new_event(mddev);
4914 sysfs_notify_dirent_safe(mddev->sysfs_state);
4915 sysfs_notify_dirent_safe(mddev->sysfs_action);
4916 sysfs_notify(&mddev->kobj, NULL, "degraded");
4917 return 0;
4919 EXPORT_SYMBOL_GPL(md_run);
4921 static int do_md_run(struct mddev *mddev)
4923 int err;
4925 err = md_run(mddev);
4926 if (err)
4927 goto out;
4928 err = bitmap_load(mddev);
4929 if (err) {
4930 bitmap_destroy(mddev);
4931 goto out;
4934 md_wakeup_thread(mddev->thread);
4935 md_wakeup_thread(mddev->sync_thread); /* possibly kick off a reshape */
4937 set_capacity(mddev->gendisk, mddev->array_sectors);
4938 revalidate_disk(mddev->gendisk);
4939 mddev->changed = 1;
4940 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
4941 out:
4942 return err;
4945 static int restart_array(struct mddev *mddev)
4947 struct gendisk *disk = mddev->gendisk;
4949 /* Complain if it has no devices */
4950 if (list_empty(&mddev->disks))
4951 return -ENXIO;
4952 if (!mddev->pers)
4953 return -EINVAL;
4954 if (!mddev->ro)
4955 return -EBUSY;
4956 mddev->safemode = 0;
4957 mddev->ro = 0;
4958 set_disk_ro(disk, 0);
4959 printk(KERN_INFO "md: %s switched to read-write mode.\n",
4960 mdname(mddev));
4961 /* Kick recovery or resync if necessary */
4962 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
4963 md_wakeup_thread(mddev->thread);
4964 md_wakeup_thread(mddev->sync_thread);
4965 sysfs_notify_dirent_safe(mddev->sysfs_state);
4966 return 0;
4969 /* similar to deny_write_access, but accounts for our holding a reference
4970 * to the file ourselves */
4971 static int deny_bitmap_write_access(struct file * file)
4973 struct inode *inode = file->f_mapping->host;
4975 spin_lock(&inode->i_lock);
4976 if (atomic_read(&inode->i_writecount) > 1) {
4977 spin_unlock(&inode->i_lock);
4978 return -ETXTBSY;
4980 atomic_set(&inode->i_writecount, -1);
4981 spin_unlock(&inode->i_lock);
4983 return 0;
4986 void restore_bitmap_write_access(struct file *file)
4988 struct inode *inode = file->f_mapping->host;
4990 spin_lock(&inode->i_lock);
4991 atomic_set(&inode->i_writecount, 1);
4992 spin_unlock(&inode->i_lock);
4995 static void md_clean(struct mddev *mddev)
4997 mddev->array_sectors = 0;
4998 mddev->external_size = 0;
4999 mddev->dev_sectors = 0;
5000 mddev->raid_disks = 0;
5001 mddev->recovery_cp = 0;
5002 mddev->resync_min = 0;
5003 mddev->resync_max = MaxSector;
5004 mddev->reshape_position = MaxSector;
5005 mddev->external = 0;
5006 mddev->persistent = 0;
5007 mddev->level = LEVEL_NONE;
5008 mddev->clevel[0] = 0;
5009 mddev->flags = 0;
5010 mddev->ro = 0;
5011 mddev->metadata_type[0] = 0;
5012 mddev->chunk_sectors = 0;
5013 mddev->ctime = mddev->utime = 0;
5014 mddev->layout = 0;
5015 mddev->max_disks = 0;
5016 mddev->events = 0;
5017 mddev->can_decrease_events = 0;
5018 mddev->delta_disks = 0;
5019 mddev->new_level = LEVEL_NONE;
5020 mddev->new_layout = 0;
5021 mddev->new_chunk_sectors = 0;
5022 mddev->curr_resync = 0;
5023 mddev->resync_mismatches = 0;
5024 mddev->suspend_lo = mddev->suspend_hi = 0;
5025 mddev->sync_speed_min = mddev->sync_speed_max = 0;
5026 mddev->recovery = 0;
5027 mddev->in_sync = 0;
5028 mddev->changed = 0;
5029 mddev->degraded = 0;
5030 mddev->safemode = 0;
5031 mddev->bitmap_info.offset = 0;
5032 mddev->bitmap_info.default_offset = 0;
5033 mddev->bitmap_info.chunksize = 0;
5034 mddev->bitmap_info.daemon_sleep = 0;
5035 mddev->bitmap_info.max_write_behind = 0;
5038 static void __md_stop_writes(struct mddev *mddev)
5040 if (mddev->sync_thread) {
5041 set_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5042 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
5043 reap_sync_thread(mddev);
5046 del_timer_sync(&mddev->safemode_timer);
5048 bitmap_flush(mddev);
5049 md_super_wait(mddev);
5051 if (!mddev->in_sync || mddev->flags) {
5052 /* mark array as shutdown cleanly */
5053 mddev->in_sync = 1;
5054 md_update_sb(mddev, 1);
5058 void md_stop_writes(struct mddev *mddev)
5060 mddev_lock(mddev);
5061 __md_stop_writes(mddev);
5062 mddev_unlock(mddev);
5064 EXPORT_SYMBOL_GPL(md_stop_writes);
5066 void md_stop(struct mddev *mddev)
5068 mddev->ready = 0;
5069 mddev->pers->stop(mddev);
5070 if (mddev->pers->sync_request && mddev->to_remove == NULL)
5071 mddev->to_remove = &md_redundancy_group;
5072 module_put(mddev->pers->owner);
5073 mddev->pers = NULL;
5074 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5076 EXPORT_SYMBOL_GPL(md_stop);
5078 static int md_set_readonly(struct mddev *mddev, int is_open)
5080 int err = 0;
5081 mutex_lock(&mddev->open_mutex);
5082 if (atomic_read(&mddev->openers) > is_open) {
5083 printk("md: %s still in use.\n",mdname(mddev));
5084 err = -EBUSY;
5085 goto out;
5087 if (mddev->pers) {
5088 __md_stop_writes(mddev);
5090 err = -ENXIO;
5091 if (mddev->ro==1)
5092 goto out;
5093 mddev->ro = 1;
5094 set_disk_ro(mddev->gendisk, 1);
5095 clear_bit(MD_RECOVERY_FROZEN, &mddev->recovery);
5096 sysfs_notify_dirent_safe(mddev->sysfs_state);
5097 err = 0;
5099 out:
5100 mutex_unlock(&mddev->open_mutex);
5101 return err;
5104 /* mode:
5105 * 0 - completely stop and dis-assemble array
5106 * 2 - stop but do not disassemble array
5108 static int do_md_stop(struct mddev * mddev, int mode, int is_open)
5110 struct gendisk *disk = mddev->gendisk;
5111 struct md_rdev *rdev;
5113 mutex_lock(&mddev->open_mutex);
5114 if (atomic_read(&mddev->openers) > is_open ||
5115 mddev->sysfs_active) {
5116 printk("md: %s still in use.\n",mdname(mddev));
5117 mutex_unlock(&mddev->open_mutex);
5118 return -EBUSY;
5121 if (mddev->pers) {
5122 if (mddev->ro)
5123 set_disk_ro(disk, 0);
5125 __md_stop_writes(mddev);
5126 md_stop(mddev);
5127 mddev->queue->merge_bvec_fn = NULL;
5128 mddev->queue->backing_dev_info.congested_fn = NULL;
5130 /* tell userspace to handle 'inactive' */
5131 sysfs_notify_dirent_safe(mddev->sysfs_state);
5133 list_for_each_entry(rdev, &mddev->disks, same_set)
5134 if (rdev->raid_disk >= 0)
5135 sysfs_unlink_rdev(mddev, rdev);
5137 set_capacity(disk, 0);
5138 mutex_unlock(&mddev->open_mutex);
5139 mddev->changed = 1;
5140 revalidate_disk(disk);
5142 if (mddev->ro)
5143 mddev->ro = 0;
5144 } else
5145 mutex_unlock(&mddev->open_mutex);
5147 * Free resources if final stop
5149 if (mode == 0) {
5150 printk(KERN_INFO "md: %s stopped.\n", mdname(mddev));
5152 bitmap_destroy(mddev);
5153 if (mddev->bitmap_info.file) {
5154 restore_bitmap_write_access(mddev->bitmap_info.file);
5155 fput(mddev->bitmap_info.file);
5156 mddev->bitmap_info.file = NULL;
5158 mddev->bitmap_info.offset = 0;
5160 export_array(mddev);
5162 md_clean(mddev);
5163 kobject_uevent(&disk_to_dev(mddev->gendisk)->kobj, KOBJ_CHANGE);
5164 if (mddev->hold_active == UNTIL_STOP)
5165 mddev->hold_active = 0;
5167 blk_integrity_unregister(disk);
5168 md_new_event(mddev);
5169 sysfs_notify_dirent_safe(mddev->sysfs_state);
5170 return 0;
5173 #ifndef MODULE
5174 static void autorun_array(struct mddev *mddev)
5176 struct md_rdev *rdev;
5177 int err;
5179 if (list_empty(&mddev->disks))
5180 return;
5182 printk(KERN_INFO "md: running: ");
5184 list_for_each_entry(rdev, &mddev->disks, same_set) {
5185 char b[BDEVNAME_SIZE];
5186 printk("<%s>", bdevname(rdev->bdev,b));
5188 printk("\n");
5190 err = do_md_run(mddev);
5191 if (err) {
5192 printk(KERN_WARNING "md: do_md_run() returned %d\n", err);
5193 do_md_stop(mddev, 0, 0);
5198 * lets try to run arrays based on all disks that have arrived
5199 * until now. (those are in pending_raid_disks)
5201 * the method: pick the first pending disk, collect all disks with
5202 * the same UUID, remove all from the pending list and put them into
5203 * the 'same_array' list. Then order this list based on superblock
5204 * update time (freshest comes first), kick out 'old' disks and
5205 * compare superblocks. If everything's fine then run it.
5207 * If "unit" is allocated, then bump its reference count
5209 static void autorun_devices(int part)
5211 struct md_rdev *rdev0, *rdev, *tmp;
5212 struct mddev *mddev;
5213 char b[BDEVNAME_SIZE];
5215 printk(KERN_INFO "md: autorun ...\n");
5216 while (!list_empty(&pending_raid_disks)) {
5217 int unit;
5218 dev_t dev;
5219 LIST_HEAD(candidates);
5220 rdev0 = list_entry(pending_raid_disks.next,
5221 struct md_rdev, same_set);
5223 printk(KERN_INFO "md: considering %s ...\n",
5224 bdevname(rdev0->bdev,b));
5225 INIT_LIST_HEAD(&candidates);
5226 rdev_for_each_list(rdev, tmp, &pending_raid_disks)
5227 if (super_90_load(rdev, rdev0, 0) >= 0) {
5228 printk(KERN_INFO "md: adding %s ...\n",
5229 bdevname(rdev->bdev,b));
5230 list_move(&rdev->same_set, &candidates);
5233 * now we have a set of devices, with all of them having
5234 * mostly sane superblocks. It's time to allocate the
5235 * mddev.
5237 if (part) {
5238 dev = MKDEV(mdp_major,
5239 rdev0->preferred_minor << MdpMinorShift);
5240 unit = MINOR(dev) >> MdpMinorShift;
5241 } else {
5242 dev = MKDEV(MD_MAJOR, rdev0->preferred_minor);
5243 unit = MINOR(dev);
5245 if (rdev0->preferred_minor != unit) {
5246 printk(KERN_INFO "md: unit number in %s is bad: %d\n",
5247 bdevname(rdev0->bdev, b), rdev0->preferred_minor);
5248 break;
5251 md_probe(dev, NULL, NULL);
5252 mddev = mddev_find(dev);
5253 if (!mddev || !mddev->gendisk) {
5254 if (mddev)
5255 mddev_put(mddev);
5256 printk(KERN_ERR
5257 "md: cannot allocate memory for md drive.\n");
5258 break;
5260 if (mddev_lock(mddev))
5261 printk(KERN_WARNING "md: %s locked, cannot run\n",
5262 mdname(mddev));
5263 else if (mddev->raid_disks || mddev->major_version
5264 || !list_empty(&mddev->disks)) {
5265 printk(KERN_WARNING
5266 "md: %s already running, cannot run %s\n",
5267 mdname(mddev), bdevname(rdev0->bdev,b));
5268 mddev_unlock(mddev);
5269 } else {
5270 printk(KERN_INFO "md: created %s\n", mdname(mddev));
5271 mddev->persistent = 1;
5272 rdev_for_each_list(rdev, tmp, &candidates) {
5273 list_del_init(&rdev->same_set);
5274 if (bind_rdev_to_array(rdev, mddev))
5275 export_rdev(rdev);
5277 autorun_array(mddev);
5278 mddev_unlock(mddev);
5280 /* on success, candidates will be empty, on error
5281 * it won't...
5283 rdev_for_each_list(rdev, tmp, &candidates) {
5284 list_del_init(&rdev->same_set);
5285 export_rdev(rdev);
5287 mddev_put(mddev);
5289 printk(KERN_INFO "md: ... autorun DONE.\n");
5291 #endif /* !MODULE */
5293 static int get_version(void __user * arg)
5295 mdu_version_t ver;
5297 ver.major = MD_MAJOR_VERSION;
5298 ver.minor = MD_MINOR_VERSION;
5299 ver.patchlevel = MD_PATCHLEVEL_VERSION;
5301 if (copy_to_user(arg, &ver, sizeof(ver)))
5302 return -EFAULT;
5304 return 0;
5307 static int get_array_info(struct mddev * mddev, void __user * arg)
5309 mdu_array_info_t info;
5310 int nr,working,insync,failed,spare;
5311 struct md_rdev *rdev;
5313 nr=working=insync=failed=spare=0;
5314 list_for_each_entry(rdev, &mddev->disks, same_set) {
5315 nr++;
5316 if (test_bit(Faulty, &rdev->flags))
5317 failed++;
5318 else {
5319 working++;
5320 if (test_bit(In_sync, &rdev->flags))
5321 insync++;
5322 else
5323 spare++;
5327 info.major_version = mddev->major_version;
5328 info.minor_version = mddev->minor_version;
5329 info.patch_version = MD_PATCHLEVEL_VERSION;
5330 info.ctime = mddev->ctime;
5331 info.level = mddev->level;
5332 info.size = mddev->dev_sectors / 2;
5333 if (info.size != mddev->dev_sectors / 2) /* overflow */
5334 info.size = -1;
5335 info.nr_disks = nr;
5336 info.raid_disks = mddev->raid_disks;
5337 info.md_minor = mddev->md_minor;
5338 info.not_persistent= !mddev->persistent;
5340 info.utime = mddev->utime;
5341 info.state = 0;
5342 if (mddev->in_sync)
5343 info.state = (1<<MD_SB_CLEAN);
5344 if (mddev->bitmap && mddev->bitmap_info.offset)
5345 info.state = (1<<MD_SB_BITMAP_PRESENT);
5346 info.active_disks = insync;
5347 info.working_disks = working;
5348 info.failed_disks = failed;
5349 info.spare_disks = spare;
5351 info.layout = mddev->layout;
5352 info.chunk_size = mddev->chunk_sectors << 9;
5354 if (copy_to_user(arg, &info, sizeof(info)))
5355 return -EFAULT;
5357 return 0;
5360 static int get_bitmap_file(struct mddev * mddev, void __user * arg)
5362 mdu_bitmap_file_t *file = NULL; /* too big for stack allocation */
5363 char *ptr, *buf = NULL;
5364 int err = -ENOMEM;
5366 if (md_allow_write(mddev))
5367 file = kmalloc(sizeof(*file), GFP_NOIO);
5368 else
5369 file = kmalloc(sizeof(*file), GFP_KERNEL);
5371 if (!file)
5372 goto out;
5374 /* bitmap disabled, zero the first byte and copy out */
5375 if (!mddev->bitmap || !mddev->bitmap->file) {
5376 file->pathname[0] = '\0';
5377 goto copy_out;
5380 buf = kmalloc(sizeof(file->pathname), GFP_KERNEL);
5381 if (!buf)
5382 goto out;
5384 ptr = d_path(&mddev->bitmap->file->f_path, buf, sizeof(file->pathname));
5385 if (IS_ERR(ptr))
5386 goto out;
5388 strcpy(file->pathname, ptr);
5390 copy_out:
5391 err = 0;
5392 if (copy_to_user(arg, file, sizeof(*file)))
5393 err = -EFAULT;
5394 out:
5395 kfree(buf);
5396 kfree(file);
5397 return err;
5400 static int get_disk_info(struct mddev * mddev, void __user * arg)
5402 mdu_disk_info_t info;
5403 struct md_rdev *rdev;
5405 if (copy_from_user(&info, arg, sizeof(info)))
5406 return -EFAULT;
5408 rdev = find_rdev_nr(mddev, info.number);
5409 if (rdev) {
5410 info.major = MAJOR(rdev->bdev->bd_dev);
5411 info.minor = MINOR(rdev->bdev->bd_dev);
5412 info.raid_disk = rdev->raid_disk;
5413 info.state = 0;
5414 if (test_bit(Faulty, &rdev->flags))
5415 info.state |= (1<<MD_DISK_FAULTY);
5416 else if (test_bit(In_sync, &rdev->flags)) {
5417 info.state |= (1<<MD_DISK_ACTIVE);
5418 info.state |= (1<<MD_DISK_SYNC);
5420 if (test_bit(WriteMostly, &rdev->flags))
5421 info.state |= (1<<MD_DISK_WRITEMOSTLY);
5422 } else {
5423 info.major = info.minor = 0;
5424 info.raid_disk = -1;
5425 info.state = (1<<MD_DISK_REMOVED);
5428 if (copy_to_user(arg, &info, sizeof(info)))
5429 return -EFAULT;
5431 return 0;
5434 static int add_new_disk(struct mddev * mddev, mdu_disk_info_t *info)
5436 char b[BDEVNAME_SIZE], b2[BDEVNAME_SIZE];
5437 struct md_rdev *rdev;
5438 dev_t dev = MKDEV(info->major,info->minor);
5440 if (info->major != MAJOR(dev) || info->minor != MINOR(dev))
5441 return -EOVERFLOW;
5443 if (!mddev->raid_disks) {
5444 int err;
5445 /* expecting a device which has a superblock */
5446 rdev = md_import_device(dev, mddev->major_version, mddev->minor_version);
5447 if (IS_ERR(rdev)) {
5448 printk(KERN_WARNING
5449 "md: md_import_device returned %ld\n",
5450 PTR_ERR(rdev));
5451 return PTR_ERR(rdev);
5453 if (!list_empty(&mddev->disks)) {
5454 struct md_rdev *rdev0
5455 = list_entry(mddev->disks.next,
5456 struct md_rdev, same_set);
5457 err = super_types[mddev->major_version]
5458 .load_super(rdev, rdev0, mddev->minor_version);
5459 if (err < 0) {
5460 printk(KERN_WARNING
5461 "md: %s has different UUID to %s\n",
5462 bdevname(rdev->bdev,b),
5463 bdevname(rdev0->bdev,b2));
5464 export_rdev(rdev);
5465 return -EINVAL;
5468 err = bind_rdev_to_array(rdev, mddev);
5469 if (err)
5470 export_rdev(rdev);
5471 return err;
5475 * add_new_disk can be used once the array is assembled
5476 * to add "hot spares". They must already have a superblock
5477 * written
5479 if (mddev->pers) {
5480 int err;
5481 if (!mddev->pers->hot_add_disk) {
5482 printk(KERN_WARNING
5483 "%s: personality does not support diskops!\n",
5484 mdname(mddev));
5485 return -EINVAL;
5487 if (mddev->persistent)
5488 rdev = md_import_device(dev, mddev->major_version,
5489 mddev->minor_version);
5490 else
5491 rdev = md_import_device(dev, -1, -1);
5492 if (IS_ERR(rdev)) {
5493 printk(KERN_WARNING
5494 "md: md_import_device returned %ld\n",
5495 PTR_ERR(rdev));
5496 return PTR_ERR(rdev);
5498 /* set saved_raid_disk if appropriate */
5499 if (!mddev->persistent) {
5500 if (info->state & (1<<MD_DISK_SYNC) &&
5501 info->raid_disk < mddev->raid_disks) {
5502 rdev->raid_disk = info->raid_disk;
5503 set_bit(In_sync, &rdev->flags);
5504 } else
5505 rdev->raid_disk = -1;
5506 } else
5507 super_types[mddev->major_version].
5508 validate_super(mddev, rdev);
5509 if ((info->state & (1<<MD_DISK_SYNC)) &&
5510 (!test_bit(In_sync, &rdev->flags) ||
5511 rdev->raid_disk != info->raid_disk)) {
5512 /* This was a hot-add request, but events doesn't
5513 * match, so reject it.
5515 export_rdev(rdev);
5516 return -EINVAL;
5519 if (test_bit(In_sync, &rdev->flags))
5520 rdev->saved_raid_disk = rdev->raid_disk;
5521 else
5522 rdev->saved_raid_disk = -1;
5524 clear_bit(In_sync, &rdev->flags); /* just to be sure */
5525 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5526 set_bit(WriteMostly, &rdev->flags);
5527 else
5528 clear_bit(WriteMostly, &rdev->flags);
5530 rdev->raid_disk = -1;
5531 err = bind_rdev_to_array(rdev, mddev);
5532 if (!err && !mddev->pers->hot_remove_disk) {
5533 /* If there is hot_add_disk but no hot_remove_disk
5534 * then added disks for geometry changes,
5535 * and should be added immediately.
5537 super_types[mddev->major_version].
5538 validate_super(mddev, rdev);
5539 err = mddev->pers->hot_add_disk(mddev, rdev);
5540 if (err)
5541 unbind_rdev_from_array(rdev);
5543 if (err)
5544 export_rdev(rdev);
5545 else
5546 sysfs_notify_dirent_safe(rdev->sysfs_state);
5548 md_update_sb(mddev, 1);
5549 if (mddev->degraded)
5550 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
5551 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5552 if (!err)
5553 md_new_event(mddev);
5554 md_wakeup_thread(mddev->thread);
5555 return err;
5558 /* otherwise, add_new_disk is only allowed
5559 * for major_version==0 superblocks
5561 if (mddev->major_version != 0) {
5562 printk(KERN_WARNING "%s: ADD_NEW_DISK not supported\n",
5563 mdname(mddev));
5564 return -EINVAL;
5567 if (!(info->state & (1<<MD_DISK_FAULTY))) {
5568 int err;
5569 rdev = md_import_device(dev, -1, 0);
5570 if (IS_ERR(rdev)) {
5571 printk(KERN_WARNING
5572 "md: error, md_import_device() returned %ld\n",
5573 PTR_ERR(rdev));
5574 return PTR_ERR(rdev);
5576 rdev->desc_nr = info->number;
5577 if (info->raid_disk < mddev->raid_disks)
5578 rdev->raid_disk = info->raid_disk;
5579 else
5580 rdev->raid_disk = -1;
5582 if (rdev->raid_disk < mddev->raid_disks)
5583 if (info->state & (1<<MD_DISK_SYNC))
5584 set_bit(In_sync, &rdev->flags);
5586 if (info->state & (1<<MD_DISK_WRITEMOSTLY))
5587 set_bit(WriteMostly, &rdev->flags);
5589 if (!mddev->persistent) {
5590 printk(KERN_INFO "md: nonpersistent superblock ...\n");
5591 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5592 } else
5593 rdev->sb_start = calc_dev_sboffset(rdev);
5594 rdev->sectors = rdev->sb_start;
5596 err = bind_rdev_to_array(rdev, mddev);
5597 if (err) {
5598 export_rdev(rdev);
5599 return err;
5603 return 0;
5606 static int hot_remove_disk(struct mddev * mddev, dev_t dev)
5608 char b[BDEVNAME_SIZE];
5609 struct md_rdev *rdev;
5611 rdev = find_rdev(mddev, dev);
5612 if (!rdev)
5613 return -ENXIO;
5615 if (rdev->raid_disk >= 0)
5616 goto busy;
5618 kick_rdev_from_array(rdev);
5619 md_update_sb(mddev, 1);
5620 md_new_event(mddev);
5622 return 0;
5623 busy:
5624 printk(KERN_WARNING "md: cannot remove active disk %s from %s ...\n",
5625 bdevname(rdev->bdev,b), mdname(mddev));
5626 return -EBUSY;
5629 static int hot_add_disk(struct mddev * mddev, dev_t dev)
5631 char b[BDEVNAME_SIZE];
5632 int err;
5633 struct md_rdev *rdev;
5635 if (!mddev->pers)
5636 return -ENODEV;
5638 if (mddev->major_version != 0) {
5639 printk(KERN_WARNING "%s: HOT_ADD may only be used with"
5640 " version-0 superblocks.\n",
5641 mdname(mddev));
5642 return -EINVAL;
5644 if (!mddev->pers->hot_add_disk) {
5645 printk(KERN_WARNING
5646 "%s: personality does not support diskops!\n",
5647 mdname(mddev));
5648 return -EINVAL;
5651 rdev = md_import_device(dev, -1, 0);
5652 if (IS_ERR(rdev)) {
5653 printk(KERN_WARNING
5654 "md: error, md_import_device() returned %ld\n",
5655 PTR_ERR(rdev));
5656 return -EINVAL;
5659 if (mddev->persistent)
5660 rdev->sb_start = calc_dev_sboffset(rdev);
5661 else
5662 rdev->sb_start = i_size_read(rdev->bdev->bd_inode) / 512;
5664 rdev->sectors = rdev->sb_start;
5666 if (test_bit(Faulty, &rdev->flags)) {
5667 printk(KERN_WARNING
5668 "md: can not hot-add faulty %s disk to %s!\n",
5669 bdevname(rdev->bdev,b), mdname(mddev));
5670 err = -EINVAL;
5671 goto abort_export;
5673 clear_bit(In_sync, &rdev->flags);
5674 rdev->desc_nr = -1;
5675 rdev->saved_raid_disk = -1;
5676 err = bind_rdev_to_array(rdev, mddev);
5677 if (err)
5678 goto abort_export;
5681 * The rest should better be atomic, we can have disk failures
5682 * noticed in interrupt contexts ...
5685 rdev->raid_disk = -1;
5687 md_update_sb(mddev, 1);
5690 * Kick recovery, maybe this spare has to be added to the
5691 * array immediately.
5693 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5694 md_wakeup_thread(mddev->thread);
5695 md_new_event(mddev);
5696 return 0;
5698 abort_export:
5699 export_rdev(rdev);
5700 return err;
5703 static int set_bitmap_file(struct mddev *mddev, int fd)
5705 int err;
5707 if (mddev->pers) {
5708 if (!mddev->pers->quiesce)
5709 return -EBUSY;
5710 if (mddev->recovery || mddev->sync_thread)
5711 return -EBUSY;
5712 /* we should be able to change the bitmap.. */
5716 if (fd >= 0) {
5717 if (mddev->bitmap)
5718 return -EEXIST; /* cannot add when bitmap is present */
5719 mddev->bitmap_info.file = fget(fd);
5721 if (mddev->bitmap_info.file == NULL) {
5722 printk(KERN_ERR "%s: error: failed to get bitmap file\n",
5723 mdname(mddev));
5724 return -EBADF;
5727 err = deny_bitmap_write_access(mddev->bitmap_info.file);
5728 if (err) {
5729 printk(KERN_ERR "%s: error: bitmap file is already in use\n",
5730 mdname(mddev));
5731 fput(mddev->bitmap_info.file);
5732 mddev->bitmap_info.file = NULL;
5733 return err;
5735 mddev->bitmap_info.offset = 0; /* file overrides offset */
5736 } else if (mddev->bitmap == NULL)
5737 return -ENOENT; /* cannot remove what isn't there */
5738 err = 0;
5739 if (mddev->pers) {
5740 mddev->pers->quiesce(mddev, 1);
5741 if (fd >= 0) {
5742 err = bitmap_create(mddev);
5743 if (!err)
5744 err = bitmap_load(mddev);
5746 if (fd < 0 || err) {
5747 bitmap_destroy(mddev);
5748 fd = -1; /* make sure to put the file */
5750 mddev->pers->quiesce(mddev, 0);
5752 if (fd < 0) {
5753 if (mddev->bitmap_info.file) {
5754 restore_bitmap_write_access(mddev->bitmap_info.file);
5755 fput(mddev->bitmap_info.file);
5757 mddev->bitmap_info.file = NULL;
5760 return err;
5764 * set_array_info is used two different ways
5765 * The original usage is when creating a new array.
5766 * In this usage, raid_disks is > 0 and it together with
5767 * level, size, not_persistent,layout,chunksize determine the
5768 * shape of the array.
5769 * This will always create an array with a type-0.90.0 superblock.
5770 * The newer usage is when assembling an array.
5771 * In this case raid_disks will be 0, and the major_version field is
5772 * use to determine which style super-blocks are to be found on the devices.
5773 * The minor and patch _version numbers are also kept incase the
5774 * super_block handler wishes to interpret them.
5776 static int set_array_info(struct mddev * mddev, mdu_array_info_t *info)
5779 if (info->raid_disks == 0) {
5780 /* just setting version number for superblock loading */
5781 if (info->major_version < 0 ||
5782 info->major_version >= ARRAY_SIZE(super_types) ||
5783 super_types[info->major_version].name == NULL) {
5784 /* maybe try to auto-load a module? */
5785 printk(KERN_INFO
5786 "md: superblock version %d not known\n",
5787 info->major_version);
5788 return -EINVAL;
5790 mddev->major_version = info->major_version;
5791 mddev->minor_version = info->minor_version;
5792 mddev->patch_version = info->patch_version;
5793 mddev->persistent = !info->not_persistent;
5794 /* ensure mddev_put doesn't delete this now that there
5795 * is some minimal configuration.
5797 mddev->ctime = get_seconds();
5798 return 0;
5800 mddev->major_version = MD_MAJOR_VERSION;
5801 mddev->minor_version = MD_MINOR_VERSION;
5802 mddev->patch_version = MD_PATCHLEVEL_VERSION;
5803 mddev->ctime = get_seconds();
5805 mddev->level = info->level;
5806 mddev->clevel[0] = 0;
5807 mddev->dev_sectors = 2 * (sector_t)info->size;
5808 mddev->raid_disks = info->raid_disks;
5809 /* don't set md_minor, it is determined by which /dev/md* was
5810 * openned
5812 if (info->state & (1<<MD_SB_CLEAN))
5813 mddev->recovery_cp = MaxSector;
5814 else
5815 mddev->recovery_cp = 0;
5816 mddev->persistent = ! info->not_persistent;
5817 mddev->external = 0;
5819 mddev->layout = info->layout;
5820 mddev->chunk_sectors = info->chunk_size >> 9;
5822 mddev->max_disks = MD_SB_DISKS;
5824 if (mddev->persistent)
5825 mddev->flags = 0;
5826 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5828 mddev->bitmap_info.default_offset = MD_SB_BYTES >> 9;
5829 mddev->bitmap_info.offset = 0;
5831 mddev->reshape_position = MaxSector;
5834 * Generate a 128 bit UUID
5836 get_random_bytes(mddev->uuid, 16);
5838 mddev->new_level = mddev->level;
5839 mddev->new_chunk_sectors = mddev->chunk_sectors;
5840 mddev->new_layout = mddev->layout;
5841 mddev->delta_disks = 0;
5843 return 0;
5846 void md_set_array_sectors(struct mddev *mddev, sector_t array_sectors)
5848 WARN(!mddev_is_locked(mddev), "%s: unlocked mddev!\n", __func__);
5850 if (mddev->external_size)
5851 return;
5853 mddev->array_sectors = array_sectors;
5855 EXPORT_SYMBOL(md_set_array_sectors);
5857 static int update_size(struct mddev *mddev, sector_t num_sectors)
5859 struct md_rdev *rdev;
5860 int rv;
5861 int fit = (num_sectors == 0);
5863 if (mddev->pers->resize == NULL)
5864 return -EINVAL;
5865 /* The "num_sectors" is the number of sectors of each device that
5866 * is used. This can only make sense for arrays with redundancy.
5867 * linear and raid0 always use whatever space is available. We can only
5868 * consider changing this number if no resync or reconstruction is
5869 * happening, and if the new size is acceptable. It must fit before the
5870 * sb_start or, if that is <data_offset, it must fit before the size
5871 * of each device. If num_sectors is zero, we find the largest size
5872 * that fits.
5874 if (mddev->sync_thread)
5875 return -EBUSY;
5876 if (mddev->bitmap)
5877 /* Sorry, cannot grow a bitmap yet, just remove it,
5878 * grow, and re-add.
5880 return -EBUSY;
5881 list_for_each_entry(rdev, &mddev->disks, same_set) {
5882 sector_t avail = rdev->sectors;
5884 if (fit && (num_sectors == 0 || num_sectors > avail))
5885 num_sectors = avail;
5886 if (avail < num_sectors)
5887 return -ENOSPC;
5889 rv = mddev->pers->resize(mddev, num_sectors);
5890 if (!rv)
5891 revalidate_disk(mddev->gendisk);
5892 return rv;
5895 static int update_raid_disks(struct mddev *mddev, int raid_disks)
5897 int rv;
5898 /* change the number of raid disks */
5899 if (mddev->pers->check_reshape == NULL)
5900 return -EINVAL;
5901 if (raid_disks <= 0 ||
5902 (mddev->max_disks && raid_disks >= mddev->max_disks))
5903 return -EINVAL;
5904 if (mddev->sync_thread || mddev->reshape_position != MaxSector)
5905 return -EBUSY;
5906 mddev->delta_disks = raid_disks - mddev->raid_disks;
5908 rv = mddev->pers->check_reshape(mddev);
5909 if (rv < 0)
5910 mddev->delta_disks = 0;
5911 return rv;
5916 * update_array_info is used to change the configuration of an
5917 * on-line array.
5918 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5919 * fields in the info are checked against the array.
5920 * Any differences that cannot be handled will cause an error.
5921 * Normally, only one change can be managed at a time.
5923 static int update_array_info(struct mddev *mddev, mdu_array_info_t *info)
5925 int rv = 0;
5926 int cnt = 0;
5927 int state = 0;
5929 /* calculate expected state,ignoring low bits */
5930 if (mddev->bitmap && mddev->bitmap_info.offset)
5931 state |= (1 << MD_SB_BITMAP_PRESENT);
5933 if (mddev->major_version != info->major_version ||
5934 mddev->minor_version != info->minor_version ||
5935 /* mddev->patch_version != info->patch_version || */
5936 mddev->ctime != info->ctime ||
5937 mddev->level != info->level ||
5938 /* mddev->layout != info->layout || */
5939 !mddev->persistent != info->not_persistent||
5940 mddev->chunk_sectors != info->chunk_size >> 9 ||
5941 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5942 ((state^info->state) & 0xfffffe00)
5944 return -EINVAL;
5945 /* Check there is only one change */
5946 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5947 cnt++;
5948 if (mddev->raid_disks != info->raid_disks)
5949 cnt++;
5950 if (mddev->layout != info->layout)
5951 cnt++;
5952 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT))
5953 cnt++;
5954 if (cnt == 0)
5955 return 0;
5956 if (cnt > 1)
5957 return -EINVAL;
5959 if (mddev->layout != info->layout) {
5960 /* Change layout
5961 * we don't need to do anything at the md level, the
5962 * personality will take care of it all.
5964 if (mddev->pers->check_reshape == NULL)
5965 return -EINVAL;
5966 else {
5967 mddev->new_layout = info->layout;
5968 rv = mddev->pers->check_reshape(mddev);
5969 if (rv)
5970 mddev->new_layout = mddev->layout;
5971 return rv;
5974 if (info->size >= 0 && mddev->dev_sectors / 2 != info->size)
5975 rv = update_size(mddev, (sector_t)info->size * 2);
5977 if (mddev->raid_disks != info->raid_disks)
5978 rv = update_raid_disks(mddev, info->raid_disks);
5980 if ((state ^ info->state) & (1<<MD_SB_BITMAP_PRESENT)) {
5981 if (mddev->pers->quiesce == NULL)
5982 return -EINVAL;
5983 if (mddev->recovery || mddev->sync_thread)
5984 return -EBUSY;
5985 if (info->state & (1<<MD_SB_BITMAP_PRESENT)) {
5986 /* add the bitmap */
5987 if (mddev->bitmap)
5988 return -EEXIST;
5989 if (mddev->bitmap_info.default_offset == 0)
5990 return -EINVAL;
5991 mddev->bitmap_info.offset =
5992 mddev->bitmap_info.default_offset;
5993 mddev->pers->quiesce(mddev, 1);
5994 rv = bitmap_create(mddev);
5995 if (!rv)
5996 rv = bitmap_load(mddev);
5997 if (rv)
5998 bitmap_destroy(mddev);
5999 mddev->pers->quiesce(mddev, 0);
6000 } else {
6001 /* remove the bitmap */
6002 if (!mddev->bitmap)
6003 return -ENOENT;
6004 if (mddev->bitmap->file)
6005 return -EINVAL;
6006 mddev->pers->quiesce(mddev, 1);
6007 bitmap_destroy(mddev);
6008 mddev->pers->quiesce(mddev, 0);
6009 mddev->bitmap_info.offset = 0;
6012 md_update_sb(mddev, 1);
6013 return rv;
6016 static int set_disk_faulty(struct mddev *mddev, dev_t dev)
6018 struct md_rdev *rdev;
6020 if (mddev->pers == NULL)
6021 return -ENODEV;
6023 rdev = find_rdev(mddev, dev);
6024 if (!rdev)
6025 return -ENODEV;
6027 md_error(mddev, rdev);
6028 if (!test_bit(Faulty, &rdev->flags))
6029 return -EBUSY;
6030 return 0;
6034 * We have a problem here : there is no easy way to give a CHS
6035 * virtual geometry. We currently pretend that we have a 2 heads
6036 * 4 sectors (with a BIG number of cylinders...). This drives
6037 * dosfs just mad... ;-)
6039 static int md_getgeo(struct block_device *bdev, struct hd_geometry *geo)
6041 struct mddev *mddev = bdev->bd_disk->private_data;
6043 geo->heads = 2;
6044 geo->sectors = 4;
6045 geo->cylinders = mddev->array_sectors / 8;
6046 return 0;
6049 static int md_ioctl(struct block_device *bdev, fmode_t mode,
6050 unsigned int cmd, unsigned long arg)
6052 int err = 0;
6053 void __user *argp = (void __user *)arg;
6054 struct mddev *mddev = NULL;
6055 int ro;
6057 if (!capable(CAP_SYS_ADMIN))
6058 return -EACCES;
6061 * Commands dealing with the RAID driver but not any
6062 * particular array:
6064 switch (cmd)
6066 case RAID_VERSION:
6067 err = get_version(argp);
6068 goto done;
6070 case PRINT_RAID_DEBUG:
6071 err = 0;
6072 md_print_devices();
6073 goto done;
6075 #ifndef MODULE
6076 case RAID_AUTORUN:
6077 err = 0;
6078 autostart_arrays(arg);
6079 goto done;
6080 #endif
6081 default:;
6085 * Commands creating/starting a new array:
6088 mddev = bdev->bd_disk->private_data;
6090 if (!mddev) {
6091 BUG();
6092 goto abort;
6095 err = mddev_lock(mddev);
6096 if (err) {
6097 printk(KERN_INFO
6098 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6099 err, cmd);
6100 goto abort;
6103 switch (cmd)
6105 case SET_ARRAY_INFO:
6107 mdu_array_info_t info;
6108 if (!arg)
6109 memset(&info, 0, sizeof(info));
6110 else if (copy_from_user(&info, argp, sizeof(info))) {
6111 err = -EFAULT;
6112 goto abort_unlock;
6114 if (mddev->pers) {
6115 err = update_array_info(mddev, &info);
6116 if (err) {
6117 printk(KERN_WARNING "md: couldn't update"
6118 " array info. %d\n", err);
6119 goto abort_unlock;
6121 goto done_unlock;
6123 if (!list_empty(&mddev->disks)) {
6124 printk(KERN_WARNING
6125 "md: array %s already has disks!\n",
6126 mdname(mddev));
6127 err = -EBUSY;
6128 goto abort_unlock;
6130 if (mddev->raid_disks) {
6131 printk(KERN_WARNING
6132 "md: array %s already initialised!\n",
6133 mdname(mddev));
6134 err = -EBUSY;
6135 goto abort_unlock;
6137 err = set_array_info(mddev, &info);
6138 if (err) {
6139 printk(KERN_WARNING "md: couldn't set"
6140 " array info. %d\n", err);
6141 goto abort_unlock;
6144 goto done_unlock;
6146 default:;
6150 * Commands querying/configuring an existing array:
6152 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6153 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6154 if ((!mddev->raid_disks && !mddev->external)
6155 && cmd != ADD_NEW_DISK && cmd != STOP_ARRAY
6156 && cmd != RUN_ARRAY && cmd != SET_BITMAP_FILE
6157 && cmd != GET_BITMAP_FILE) {
6158 err = -ENODEV;
6159 goto abort_unlock;
6163 * Commands even a read-only array can execute:
6165 switch (cmd)
6167 case GET_ARRAY_INFO:
6168 err = get_array_info(mddev, argp);
6169 goto done_unlock;
6171 case GET_BITMAP_FILE:
6172 err = get_bitmap_file(mddev, argp);
6173 goto done_unlock;
6175 case GET_DISK_INFO:
6176 err = get_disk_info(mddev, argp);
6177 goto done_unlock;
6179 case RESTART_ARRAY_RW:
6180 err = restart_array(mddev);
6181 goto done_unlock;
6183 case STOP_ARRAY:
6184 err = do_md_stop(mddev, 0, 1);
6185 goto done_unlock;
6187 case STOP_ARRAY_RO:
6188 err = md_set_readonly(mddev, 1);
6189 goto done_unlock;
6191 case BLKROSET:
6192 if (get_user(ro, (int __user *)(arg))) {
6193 err = -EFAULT;
6194 goto done_unlock;
6196 err = -EINVAL;
6198 /* if the bdev is going readonly the value of mddev->ro
6199 * does not matter, no writes are coming
6201 if (ro)
6202 goto done_unlock;
6204 /* are we are already prepared for writes? */
6205 if (mddev->ro != 1)
6206 goto done_unlock;
6208 /* transitioning to readauto need only happen for
6209 * arrays that call md_write_start
6211 if (mddev->pers) {
6212 err = restart_array(mddev);
6213 if (err == 0) {
6214 mddev->ro = 2;
6215 set_disk_ro(mddev->gendisk, 0);
6218 goto done_unlock;
6222 * The remaining ioctls are changing the state of the
6223 * superblock, so we do not allow them on read-only arrays.
6224 * However non-MD ioctls (e.g. get-size) will still come through
6225 * here and hit the 'default' below, so only disallow
6226 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6228 if (_IOC_TYPE(cmd) == MD_MAJOR && mddev->ro && mddev->pers) {
6229 if (mddev->ro == 2) {
6230 mddev->ro = 0;
6231 sysfs_notify_dirent_safe(mddev->sysfs_state);
6232 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6233 md_wakeup_thread(mddev->thread);
6234 } else {
6235 err = -EROFS;
6236 goto abort_unlock;
6240 switch (cmd)
6242 case ADD_NEW_DISK:
6244 mdu_disk_info_t info;
6245 if (copy_from_user(&info, argp, sizeof(info)))
6246 err = -EFAULT;
6247 else
6248 err = add_new_disk(mddev, &info);
6249 goto done_unlock;
6252 case HOT_REMOVE_DISK:
6253 err = hot_remove_disk(mddev, new_decode_dev(arg));
6254 goto done_unlock;
6256 case HOT_ADD_DISK:
6257 err = hot_add_disk(mddev, new_decode_dev(arg));
6258 goto done_unlock;
6260 case SET_DISK_FAULTY:
6261 err = set_disk_faulty(mddev, new_decode_dev(arg));
6262 goto done_unlock;
6264 case RUN_ARRAY:
6265 err = do_md_run(mddev);
6266 goto done_unlock;
6268 case SET_BITMAP_FILE:
6269 err = set_bitmap_file(mddev, (int)arg);
6270 goto done_unlock;
6272 default:
6273 err = -EINVAL;
6274 goto abort_unlock;
6277 done_unlock:
6278 abort_unlock:
6279 if (mddev->hold_active == UNTIL_IOCTL &&
6280 err != -EINVAL)
6281 mddev->hold_active = 0;
6282 mddev_unlock(mddev);
6284 return err;
6285 done:
6286 if (err)
6287 MD_BUG();
6288 abort:
6289 return err;
6291 #ifdef CONFIG_COMPAT
6292 static int md_compat_ioctl(struct block_device *bdev, fmode_t mode,
6293 unsigned int cmd, unsigned long arg)
6295 switch (cmd) {
6296 case HOT_REMOVE_DISK:
6297 case HOT_ADD_DISK:
6298 case SET_DISK_FAULTY:
6299 case SET_BITMAP_FILE:
6300 /* These take in integer arg, do not convert */
6301 break;
6302 default:
6303 arg = (unsigned long)compat_ptr(arg);
6304 break;
6307 return md_ioctl(bdev, mode, cmd, arg);
6309 #endif /* CONFIG_COMPAT */
6311 static int md_open(struct block_device *bdev, fmode_t mode)
6314 * Succeed if we can lock the mddev, which confirms that
6315 * it isn't being stopped right now.
6317 struct mddev *mddev = mddev_find(bdev->bd_dev);
6318 int err;
6320 if (mddev->gendisk != bdev->bd_disk) {
6321 /* we are racing with mddev_put which is discarding this
6322 * bd_disk.
6324 mddev_put(mddev);
6325 /* Wait until bdev->bd_disk is definitely gone */
6326 flush_workqueue(md_misc_wq);
6327 /* Then retry the open from the top */
6328 return -ERESTARTSYS;
6330 BUG_ON(mddev != bdev->bd_disk->private_data);
6332 if ((err = mutex_lock_interruptible(&mddev->open_mutex)))
6333 goto out;
6335 err = 0;
6336 atomic_inc(&mddev->openers);
6337 mutex_unlock(&mddev->open_mutex);
6339 check_disk_change(bdev);
6340 out:
6341 return err;
6344 static int md_release(struct gendisk *disk, fmode_t mode)
6346 struct mddev *mddev = disk->private_data;
6348 BUG_ON(!mddev);
6349 atomic_dec(&mddev->openers);
6350 mddev_put(mddev);
6352 return 0;
6355 static int md_media_changed(struct gendisk *disk)
6357 struct mddev *mddev = disk->private_data;
6359 return mddev->changed;
6362 static int md_revalidate(struct gendisk *disk)
6364 struct mddev *mddev = disk->private_data;
6366 mddev->changed = 0;
6367 return 0;
6369 static const struct block_device_operations md_fops =
6371 .owner = THIS_MODULE,
6372 .open = md_open,
6373 .release = md_release,
6374 .ioctl = md_ioctl,
6375 #ifdef CONFIG_COMPAT
6376 .compat_ioctl = md_compat_ioctl,
6377 #endif
6378 .getgeo = md_getgeo,
6379 .media_changed = md_media_changed,
6380 .revalidate_disk= md_revalidate,
6383 static int md_thread(void * arg)
6385 struct md_thread *thread = arg;
6388 * md_thread is a 'system-thread', it's priority should be very
6389 * high. We avoid resource deadlocks individually in each
6390 * raid personality. (RAID5 does preallocation) We also use RR and
6391 * the very same RT priority as kswapd, thus we will never get
6392 * into a priority inversion deadlock.
6394 * we definitely have to have equal or higher priority than
6395 * bdflush, otherwise bdflush will deadlock if there are too
6396 * many dirty RAID5 blocks.
6399 allow_signal(SIGKILL);
6400 while (!kthread_should_stop()) {
6402 /* We need to wait INTERRUPTIBLE so that
6403 * we don't add to the load-average.
6404 * That means we need to be sure no signals are
6405 * pending
6407 if (signal_pending(current))
6408 flush_signals(current);
6410 wait_event_interruptible_timeout
6411 (thread->wqueue,
6412 test_bit(THREAD_WAKEUP, &thread->flags)
6413 || kthread_should_stop(),
6414 thread->timeout);
6416 clear_bit(THREAD_WAKEUP, &thread->flags);
6417 if (!kthread_should_stop())
6418 thread->run(thread->mddev);
6421 return 0;
6424 void md_wakeup_thread(struct md_thread *thread)
6426 if (thread) {
6427 pr_debug("md: waking up MD thread %s.\n", thread->tsk->comm);
6428 set_bit(THREAD_WAKEUP, &thread->flags);
6429 wake_up(&thread->wqueue);
6433 struct md_thread *md_register_thread(void (*run) (struct mddev *), struct mddev *mddev,
6434 const char *name)
6436 struct md_thread *thread;
6438 thread = kzalloc(sizeof(struct md_thread), GFP_KERNEL);
6439 if (!thread)
6440 return NULL;
6442 init_waitqueue_head(&thread->wqueue);
6444 thread->run = run;
6445 thread->mddev = mddev;
6446 thread->timeout = MAX_SCHEDULE_TIMEOUT;
6447 thread->tsk = kthread_run(md_thread, thread,
6448 "%s_%s",
6449 mdname(thread->mddev),
6450 name ?: mddev->pers->name);
6451 if (IS_ERR(thread->tsk)) {
6452 kfree(thread);
6453 return NULL;
6455 return thread;
6458 void md_unregister_thread(struct md_thread **threadp)
6460 struct md_thread *thread = *threadp;
6461 if (!thread)
6462 return;
6463 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread->tsk));
6464 /* Locking ensures that mddev_unlock does not wake_up a
6465 * non-existent thread
6467 spin_lock(&pers_lock);
6468 *threadp = NULL;
6469 spin_unlock(&pers_lock);
6471 kthread_stop(thread->tsk);
6472 kfree(thread);
6475 void md_error(struct mddev *mddev, struct md_rdev *rdev)
6477 if (!mddev) {
6478 MD_BUG();
6479 return;
6482 if (!rdev || test_bit(Faulty, &rdev->flags))
6483 return;
6485 if (!mddev->pers || !mddev->pers->error_handler)
6486 return;
6487 mddev->pers->error_handler(mddev,rdev);
6488 if (mddev->degraded)
6489 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
6490 sysfs_notify_dirent_safe(rdev->sysfs_state);
6491 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6492 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6493 md_wakeup_thread(mddev->thread);
6494 if (mddev->event_work.func)
6495 queue_work(md_misc_wq, &mddev->event_work);
6496 md_new_event_inintr(mddev);
6499 /* seq_file implementation /proc/mdstat */
6501 static void status_unused(struct seq_file *seq)
6503 int i = 0;
6504 struct md_rdev *rdev;
6506 seq_printf(seq, "unused devices: ");
6508 list_for_each_entry(rdev, &pending_raid_disks, same_set) {
6509 char b[BDEVNAME_SIZE];
6510 i++;
6511 seq_printf(seq, "%s ",
6512 bdevname(rdev->bdev,b));
6514 if (!i)
6515 seq_printf(seq, "<none>");
6517 seq_printf(seq, "\n");
6521 static void status_resync(struct seq_file *seq, struct mddev * mddev)
6523 sector_t max_sectors, resync, res;
6524 unsigned long dt, db;
6525 sector_t rt;
6526 int scale;
6527 unsigned int per_milli;
6529 resync = mddev->curr_resync - atomic_read(&mddev->recovery_active);
6531 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
6532 max_sectors = mddev->resync_max_sectors;
6533 else
6534 max_sectors = mddev->dev_sectors;
6537 * Should not happen.
6539 if (!max_sectors) {
6540 MD_BUG();
6541 return;
6543 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6544 * in a sector_t, and (max_sectors>>scale) will fit in a
6545 * u32, as those are the requirements for sector_div.
6546 * Thus 'scale' must be at least 10
6548 scale = 10;
6549 if (sizeof(sector_t) > sizeof(unsigned long)) {
6550 while ( max_sectors/2 > (1ULL<<(scale+32)))
6551 scale++;
6553 res = (resync>>scale)*1000;
6554 sector_div(res, (u32)((max_sectors>>scale)+1));
6556 per_milli = res;
6558 int i, x = per_milli/50, y = 20-x;
6559 seq_printf(seq, "[");
6560 for (i = 0; i < x; i++)
6561 seq_printf(seq, "=");
6562 seq_printf(seq, ">");
6563 for (i = 0; i < y; i++)
6564 seq_printf(seq, ".");
6565 seq_printf(seq, "] ");
6567 seq_printf(seq, " %s =%3u.%u%% (%llu/%llu)",
6568 (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)?
6569 "reshape" :
6570 (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)?
6571 "check" :
6572 (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) ?
6573 "resync" : "recovery"))),
6574 per_milli/10, per_milli % 10,
6575 (unsigned long long) resync/2,
6576 (unsigned long long) max_sectors/2);
6579 * dt: time from mark until now
6580 * db: blocks written from mark until now
6581 * rt: remaining time
6583 * rt is a sector_t, so could be 32bit or 64bit.
6584 * So we divide before multiply in case it is 32bit and close
6585 * to the limit.
6586 * We scale the divisor (db) by 32 to avoid losing precision
6587 * near the end of resync when the number of remaining sectors
6588 * is close to 'db'.
6589 * We then divide rt by 32 after multiplying by db to compensate.
6590 * The '+1' avoids division by zero if db is very small.
6592 dt = ((jiffies - mddev->resync_mark) / HZ);
6593 if (!dt) dt++;
6594 db = (mddev->curr_mark_cnt - atomic_read(&mddev->recovery_active))
6595 - mddev->resync_mark_cnt;
6597 rt = max_sectors - resync; /* number of remaining sectors */
6598 sector_div(rt, db/32+1);
6599 rt *= dt;
6600 rt >>= 5;
6602 seq_printf(seq, " finish=%lu.%lumin", (unsigned long)rt / 60,
6603 ((unsigned long)rt % 60)/6);
6605 seq_printf(seq, " speed=%ldK/sec", db/2/dt);
6608 static void *md_seq_start(struct seq_file *seq, loff_t *pos)
6610 struct list_head *tmp;
6611 loff_t l = *pos;
6612 struct mddev *mddev;
6614 if (l >= 0x10000)
6615 return NULL;
6616 if (!l--)
6617 /* header */
6618 return (void*)1;
6620 spin_lock(&all_mddevs_lock);
6621 list_for_each(tmp,&all_mddevs)
6622 if (!l--) {
6623 mddev = list_entry(tmp, struct mddev, all_mddevs);
6624 mddev_get(mddev);
6625 spin_unlock(&all_mddevs_lock);
6626 return mddev;
6628 spin_unlock(&all_mddevs_lock);
6629 if (!l--)
6630 return (void*)2;/* tail */
6631 return NULL;
6634 static void *md_seq_next(struct seq_file *seq, void *v, loff_t *pos)
6636 struct list_head *tmp;
6637 struct mddev *next_mddev, *mddev = v;
6639 ++*pos;
6640 if (v == (void*)2)
6641 return NULL;
6643 spin_lock(&all_mddevs_lock);
6644 if (v == (void*)1)
6645 tmp = all_mddevs.next;
6646 else
6647 tmp = mddev->all_mddevs.next;
6648 if (tmp != &all_mddevs)
6649 next_mddev = mddev_get(list_entry(tmp,struct mddev,all_mddevs));
6650 else {
6651 next_mddev = (void*)2;
6652 *pos = 0x10000;
6654 spin_unlock(&all_mddevs_lock);
6656 if (v != (void*)1)
6657 mddev_put(mddev);
6658 return next_mddev;
6662 static void md_seq_stop(struct seq_file *seq, void *v)
6664 struct mddev *mddev = v;
6666 if (mddev && v != (void*)1 && v != (void*)2)
6667 mddev_put(mddev);
6670 static int md_seq_show(struct seq_file *seq, void *v)
6672 struct mddev *mddev = v;
6673 sector_t sectors;
6674 struct md_rdev *rdev;
6675 struct bitmap *bitmap;
6677 if (v == (void*)1) {
6678 struct md_personality *pers;
6679 seq_printf(seq, "Personalities : ");
6680 spin_lock(&pers_lock);
6681 list_for_each_entry(pers, &pers_list, list)
6682 seq_printf(seq, "[%s] ", pers->name);
6684 spin_unlock(&pers_lock);
6685 seq_printf(seq, "\n");
6686 seq->poll_event = atomic_read(&md_event_count);
6687 return 0;
6689 if (v == (void*)2) {
6690 status_unused(seq);
6691 return 0;
6694 if (mddev_lock(mddev) < 0)
6695 return -EINTR;
6697 if (mddev->pers || mddev->raid_disks || !list_empty(&mddev->disks)) {
6698 seq_printf(seq, "%s : %sactive", mdname(mddev),
6699 mddev->pers ? "" : "in");
6700 if (mddev->pers) {
6701 if (mddev->ro==1)
6702 seq_printf(seq, " (read-only)");
6703 if (mddev->ro==2)
6704 seq_printf(seq, " (auto-read-only)");
6705 seq_printf(seq, " %s", mddev->pers->name);
6708 sectors = 0;
6709 list_for_each_entry(rdev, &mddev->disks, same_set) {
6710 char b[BDEVNAME_SIZE];
6711 seq_printf(seq, " %s[%d]",
6712 bdevname(rdev->bdev,b), rdev->desc_nr);
6713 if (test_bit(WriteMostly, &rdev->flags))
6714 seq_printf(seq, "(W)");
6715 if (test_bit(Faulty, &rdev->flags)) {
6716 seq_printf(seq, "(F)");
6717 continue;
6718 } else if (rdev->raid_disk < 0)
6719 seq_printf(seq, "(S)"); /* spare */
6720 sectors += rdev->sectors;
6723 if (!list_empty(&mddev->disks)) {
6724 if (mddev->pers)
6725 seq_printf(seq, "\n %llu blocks",
6726 (unsigned long long)
6727 mddev->array_sectors / 2);
6728 else
6729 seq_printf(seq, "\n %llu blocks",
6730 (unsigned long long)sectors / 2);
6732 if (mddev->persistent) {
6733 if (mddev->major_version != 0 ||
6734 mddev->minor_version != 90) {
6735 seq_printf(seq," super %d.%d",
6736 mddev->major_version,
6737 mddev->minor_version);
6739 } else if (mddev->external)
6740 seq_printf(seq, " super external:%s",
6741 mddev->metadata_type);
6742 else
6743 seq_printf(seq, " super non-persistent");
6745 if (mddev->pers) {
6746 mddev->pers->status(seq, mddev);
6747 seq_printf(seq, "\n ");
6748 if (mddev->pers->sync_request) {
6749 if (mddev->curr_resync > 2) {
6750 status_resync(seq, mddev);
6751 seq_printf(seq, "\n ");
6752 } else if (mddev->curr_resync == 1 || mddev->curr_resync == 2)
6753 seq_printf(seq, "\tresync=DELAYED\n ");
6754 else if (mddev->recovery_cp < MaxSector)
6755 seq_printf(seq, "\tresync=PENDING\n ");
6757 } else
6758 seq_printf(seq, "\n ");
6760 if ((bitmap = mddev->bitmap)) {
6761 unsigned long chunk_kb;
6762 unsigned long flags;
6763 spin_lock_irqsave(&bitmap->lock, flags);
6764 chunk_kb = mddev->bitmap_info.chunksize >> 10;
6765 seq_printf(seq, "bitmap: %lu/%lu pages [%luKB], "
6766 "%lu%s chunk",
6767 bitmap->pages - bitmap->missing_pages,
6768 bitmap->pages,
6769 (bitmap->pages - bitmap->missing_pages)
6770 << (PAGE_SHIFT - 10),
6771 chunk_kb ? chunk_kb : mddev->bitmap_info.chunksize,
6772 chunk_kb ? "KB" : "B");
6773 if (bitmap->file) {
6774 seq_printf(seq, ", file: ");
6775 seq_path(seq, &bitmap->file->f_path, " \t\n");
6778 seq_printf(seq, "\n");
6779 spin_unlock_irqrestore(&bitmap->lock, flags);
6782 seq_printf(seq, "\n");
6784 mddev_unlock(mddev);
6786 return 0;
6789 static const struct seq_operations md_seq_ops = {
6790 .start = md_seq_start,
6791 .next = md_seq_next,
6792 .stop = md_seq_stop,
6793 .show = md_seq_show,
6796 static int md_seq_open(struct inode *inode, struct file *file)
6798 struct seq_file *seq;
6799 int error;
6801 error = seq_open(file, &md_seq_ops);
6802 if (error)
6803 return error;
6805 seq = file->private_data;
6806 seq->poll_event = atomic_read(&md_event_count);
6807 return error;
6810 static unsigned int mdstat_poll(struct file *filp, poll_table *wait)
6812 struct seq_file *seq = filp->private_data;
6813 int mask;
6815 poll_wait(filp, &md_event_waiters, wait);
6817 /* always allow read */
6818 mask = POLLIN | POLLRDNORM;
6820 if (seq->poll_event != atomic_read(&md_event_count))
6821 mask |= POLLERR | POLLPRI;
6822 return mask;
6825 static const struct file_operations md_seq_fops = {
6826 .owner = THIS_MODULE,
6827 .open = md_seq_open,
6828 .read = seq_read,
6829 .llseek = seq_lseek,
6830 .release = seq_release_private,
6831 .poll = mdstat_poll,
6834 int register_md_personality(struct md_personality *p)
6836 spin_lock(&pers_lock);
6837 list_add_tail(&p->list, &pers_list);
6838 printk(KERN_INFO "md: %s personality registered for level %d\n", p->name, p->level);
6839 spin_unlock(&pers_lock);
6840 return 0;
6843 int unregister_md_personality(struct md_personality *p)
6845 printk(KERN_INFO "md: %s personality unregistered\n", p->name);
6846 spin_lock(&pers_lock);
6847 list_del_init(&p->list);
6848 spin_unlock(&pers_lock);
6849 return 0;
6852 static int is_mddev_idle(struct mddev *mddev, int init)
6854 struct md_rdev * rdev;
6855 int idle;
6856 int curr_events;
6858 idle = 1;
6859 rcu_read_lock();
6860 rdev_for_each_rcu(rdev, mddev) {
6861 struct gendisk *disk = rdev->bdev->bd_contains->bd_disk;
6862 curr_events = (int)part_stat_read(&disk->part0, sectors[0]) +
6863 (int)part_stat_read(&disk->part0, sectors[1]) -
6864 atomic_read(&disk->sync_io);
6865 /* sync IO will cause sync_io to increase before the disk_stats
6866 * as sync_io is counted when a request starts, and
6867 * disk_stats is counted when it completes.
6868 * So resync activity will cause curr_events to be smaller than
6869 * when there was no such activity.
6870 * non-sync IO will cause disk_stat to increase without
6871 * increasing sync_io so curr_events will (eventually)
6872 * be larger than it was before. Once it becomes
6873 * substantially larger, the test below will cause
6874 * the array to appear non-idle, and resync will slow
6875 * down.
6876 * If there is a lot of outstanding resync activity when
6877 * we set last_event to curr_events, then all that activity
6878 * completing might cause the array to appear non-idle
6879 * and resync will be slowed down even though there might
6880 * not have been non-resync activity. This will only
6881 * happen once though. 'last_events' will soon reflect
6882 * the state where there is little or no outstanding
6883 * resync requests, and further resync activity will
6884 * always make curr_events less than last_events.
6887 if (init || curr_events - rdev->last_events > 64) {
6888 rdev->last_events = curr_events;
6889 idle = 0;
6892 rcu_read_unlock();
6893 return idle;
6896 void md_done_sync(struct mddev *mddev, int blocks, int ok)
6898 /* another "blocks" (512byte) blocks have been synced */
6899 atomic_sub(blocks, &mddev->recovery_active);
6900 wake_up(&mddev->recovery_wait);
6901 if (!ok) {
6902 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
6903 md_wakeup_thread(mddev->thread);
6904 // stop recovery, signal do_sync ....
6909 /* md_write_start(mddev, bi)
6910 * If we need to update some array metadata (e.g. 'active' flag
6911 * in superblock) before writing, schedule a superblock update
6912 * and wait for it to complete.
6914 void md_write_start(struct mddev *mddev, struct bio *bi)
6916 int did_change = 0;
6917 if (bio_data_dir(bi) != WRITE)
6918 return;
6920 BUG_ON(mddev->ro == 1);
6921 if (mddev->ro == 2) {
6922 /* need to switch to read/write */
6923 mddev->ro = 0;
6924 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
6925 md_wakeup_thread(mddev->thread);
6926 md_wakeup_thread(mddev->sync_thread);
6927 did_change = 1;
6929 atomic_inc(&mddev->writes_pending);
6930 if (mddev->safemode == 1)
6931 mddev->safemode = 0;
6932 if (mddev->in_sync) {
6933 spin_lock_irq(&mddev->write_lock);
6934 if (mddev->in_sync) {
6935 mddev->in_sync = 0;
6936 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6937 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6938 md_wakeup_thread(mddev->thread);
6939 did_change = 1;
6941 spin_unlock_irq(&mddev->write_lock);
6943 if (did_change)
6944 sysfs_notify_dirent_safe(mddev->sysfs_state);
6945 wait_event(mddev->sb_wait,
6946 !test_bit(MD_CHANGE_PENDING, &mddev->flags));
6949 void md_write_end(struct mddev *mddev)
6951 if (atomic_dec_and_test(&mddev->writes_pending)) {
6952 if (mddev->safemode == 2)
6953 md_wakeup_thread(mddev->thread);
6954 else if (mddev->safemode_delay)
6955 mod_timer(&mddev->safemode_timer, jiffies + mddev->safemode_delay);
6959 /* md_allow_write(mddev)
6960 * Calling this ensures that the array is marked 'active' so that writes
6961 * may proceed without blocking. It is important to call this before
6962 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6963 * Must be called with mddev_lock held.
6965 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6966 * is dropped, so return -EAGAIN after notifying userspace.
6968 int md_allow_write(struct mddev *mddev)
6970 if (!mddev->pers)
6971 return 0;
6972 if (mddev->ro)
6973 return 0;
6974 if (!mddev->pers->sync_request)
6975 return 0;
6977 spin_lock_irq(&mddev->write_lock);
6978 if (mddev->in_sync) {
6979 mddev->in_sync = 0;
6980 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
6981 set_bit(MD_CHANGE_PENDING, &mddev->flags);
6982 if (mddev->safemode_delay &&
6983 mddev->safemode == 0)
6984 mddev->safemode = 1;
6985 spin_unlock_irq(&mddev->write_lock);
6986 md_update_sb(mddev, 0);
6987 sysfs_notify_dirent_safe(mddev->sysfs_state);
6988 } else
6989 spin_unlock_irq(&mddev->write_lock);
6991 if (test_bit(MD_CHANGE_PENDING, &mddev->flags))
6992 return -EAGAIN;
6993 else
6994 return 0;
6996 EXPORT_SYMBOL_GPL(md_allow_write);
6998 #define SYNC_MARKS 10
6999 #define SYNC_MARK_STEP (3*HZ)
7000 void md_do_sync(struct mddev *mddev)
7002 struct mddev *mddev2;
7003 unsigned int currspeed = 0,
7004 window;
7005 sector_t max_sectors,j, io_sectors;
7006 unsigned long mark[SYNC_MARKS];
7007 sector_t mark_cnt[SYNC_MARKS];
7008 int last_mark,m;
7009 struct list_head *tmp;
7010 sector_t last_check;
7011 int skipped = 0;
7012 struct md_rdev *rdev;
7013 char *desc;
7015 /* just incase thread restarts... */
7016 if (test_bit(MD_RECOVERY_DONE, &mddev->recovery))
7017 return;
7018 if (mddev->ro) /* never try to sync a read-only array */
7019 return;
7021 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7022 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
7023 desc = "data-check";
7024 else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7025 desc = "requested-resync";
7026 else
7027 desc = "resync";
7028 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7029 desc = "reshape";
7030 else
7031 desc = "recovery";
7033 /* we overload curr_resync somewhat here.
7034 * 0 == not engaged in resync at all
7035 * 2 == checking that there is no conflict with another sync
7036 * 1 == like 2, but have yielded to allow conflicting resync to
7037 * commense
7038 * other == active in resync - this many blocks
7040 * Before starting a resync we must have set curr_resync to
7041 * 2, and then checked that every "conflicting" array has curr_resync
7042 * less than ours. When we find one that is the same or higher
7043 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7044 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7045 * This will mean we have to start checking from the beginning again.
7049 do {
7050 mddev->curr_resync = 2;
7052 try_again:
7053 if (kthread_should_stop())
7054 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7056 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7057 goto skip;
7058 for_each_mddev(mddev2, tmp) {
7059 if (mddev2 == mddev)
7060 continue;
7061 if (!mddev->parallel_resync
7062 && mddev2->curr_resync
7063 && match_mddev_units(mddev, mddev2)) {
7064 DEFINE_WAIT(wq);
7065 if (mddev < mddev2 && mddev->curr_resync == 2) {
7066 /* arbitrarily yield */
7067 mddev->curr_resync = 1;
7068 wake_up(&resync_wait);
7070 if (mddev > mddev2 && mddev->curr_resync == 1)
7071 /* no need to wait here, we can wait the next
7072 * time 'round when curr_resync == 2
7074 continue;
7075 /* We need to wait 'interruptible' so as not to
7076 * contribute to the load average, and not to
7077 * be caught by 'softlockup'
7079 prepare_to_wait(&resync_wait, &wq, TASK_INTERRUPTIBLE);
7080 if (!kthread_should_stop() &&
7081 mddev2->curr_resync >= mddev->curr_resync) {
7082 printk(KERN_INFO "md: delaying %s of %s"
7083 " until %s has finished (they"
7084 " share one or more physical units)\n",
7085 desc, mdname(mddev), mdname(mddev2));
7086 mddev_put(mddev2);
7087 if (signal_pending(current))
7088 flush_signals(current);
7089 schedule();
7090 finish_wait(&resync_wait, &wq);
7091 goto try_again;
7093 finish_wait(&resync_wait, &wq);
7096 } while (mddev->curr_resync < 2);
7098 j = 0;
7099 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7100 /* resync follows the size requested by the personality,
7101 * which defaults to physical size, but can be virtual size
7103 max_sectors = mddev->resync_max_sectors;
7104 mddev->resync_mismatches = 0;
7105 /* we don't use the checkpoint if there's a bitmap */
7106 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7107 j = mddev->resync_min;
7108 else if (!mddev->bitmap)
7109 j = mddev->recovery_cp;
7111 } else if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
7112 max_sectors = mddev->dev_sectors;
7113 else {
7114 /* recovery follows the physical size of devices */
7115 max_sectors = mddev->dev_sectors;
7116 j = MaxSector;
7117 rcu_read_lock();
7118 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7119 if (rdev->raid_disk >= 0 &&
7120 !test_bit(Faulty, &rdev->flags) &&
7121 !test_bit(In_sync, &rdev->flags) &&
7122 rdev->recovery_offset < j)
7123 j = rdev->recovery_offset;
7124 rcu_read_unlock();
7127 printk(KERN_INFO "md: %s of RAID array %s\n", desc, mdname(mddev));
7128 printk(KERN_INFO "md: minimum _guaranteed_ speed:"
7129 " %d KB/sec/disk.\n", speed_min(mddev));
7130 printk(KERN_INFO "md: using maximum available idle IO bandwidth "
7131 "(but not more than %d KB/sec) for %s.\n",
7132 speed_max(mddev), desc);
7134 is_mddev_idle(mddev, 1); /* this initializes IO event counters */
7136 io_sectors = 0;
7137 for (m = 0; m < SYNC_MARKS; m++) {
7138 mark[m] = jiffies;
7139 mark_cnt[m] = io_sectors;
7141 last_mark = 0;
7142 mddev->resync_mark = mark[last_mark];
7143 mddev->resync_mark_cnt = mark_cnt[last_mark];
7146 * Tune reconstruction:
7148 window = 32*(PAGE_SIZE/512);
7149 printk(KERN_INFO "md: using %dk window, over a total of %lluk.\n",
7150 window/2, (unsigned long long)max_sectors/2);
7152 atomic_set(&mddev->recovery_active, 0);
7153 last_check = 0;
7155 if (j>2) {
7156 printk(KERN_INFO
7157 "md: resuming %s of %s from checkpoint.\n",
7158 desc, mdname(mddev));
7159 mddev->curr_resync = j;
7161 mddev->curr_resync_completed = j;
7163 while (j < max_sectors) {
7164 sector_t sectors;
7166 skipped = 0;
7168 if (!test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7169 ((mddev->curr_resync > mddev->curr_resync_completed &&
7170 (mddev->curr_resync - mddev->curr_resync_completed)
7171 > (max_sectors >> 4)) ||
7172 (j - mddev->curr_resync_completed)*2
7173 >= mddev->resync_max - mddev->curr_resync_completed
7174 )) {
7175 /* time to update curr_resync_completed */
7176 wait_event(mddev->recovery_wait,
7177 atomic_read(&mddev->recovery_active) == 0);
7178 mddev->curr_resync_completed = j;
7179 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7180 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
7183 while (j >= mddev->resync_max && !kthread_should_stop()) {
7184 /* As this condition is controlled by user-space,
7185 * we can block indefinitely, so use '_interruptible'
7186 * to avoid triggering warnings.
7188 flush_signals(current); /* just in case */
7189 wait_event_interruptible(mddev->recovery_wait,
7190 mddev->resync_max > j
7191 || kthread_should_stop());
7194 if (kthread_should_stop())
7195 goto interrupted;
7197 sectors = mddev->pers->sync_request(mddev, j, &skipped,
7198 currspeed < speed_min(mddev));
7199 if (sectors == 0) {
7200 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7201 goto out;
7204 if (!skipped) { /* actual IO requested */
7205 io_sectors += sectors;
7206 atomic_add(sectors, &mddev->recovery_active);
7209 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7210 break;
7212 j += sectors;
7213 if (j>1) mddev->curr_resync = j;
7214 mddev->curr_mark_cnt = io_sectors;
7215 if (last_check == 0)
7216 /* this is the earliest that rebuild will be
7217 * visible in /proc/mdstat
7219 md_new_event(mddev);
7221 if (last_check + window > io_sectors || j == max_sectors)
7222 continue;
7224 last_check = io_sectors;
7225 repeat:
7226 if (time_after_eq(jiffies, mark[last_mark] + SYNC_MARK_STEP )) {
7227 /* step marks */
7228 int next = (last_mark+1) % SYNC_MARKS;
7230 mddev->resync_mark = mark[next];
7231 mddev->resync_mark_cnt = mark_cnt[next];
7232 mark[next] = jiffies;
7233 mark_cnt[next] = io_sectors - atomic_read(&mddev->recovery_active);
7234 last_mark = next;
7238 if (kthread_should_stop())
7239 goto interrupted;
7243 * this loop exits only if either when we are slower than
7244 * the 'hard' speed limit, or the system was IO-idle for
7245 * a jiffy.
7246 * the system might be non-idle CPU-wise, but we only care
7247 * about not overloading the IO subsystem. (things like an
7248 * e2fsck being done on the RAID array should execute fast)
7250 cond_resched();
7252 currspeed = ((unsigned long)(io_sectors-mddev->resync_mark_cnt))/2
7253 /((jiffies-mddev->resync_mark)/HZ +1) +1;
7255 if (currspeed > speed_min(mddev)) {
7256 if ((currspeed > speed_max(mddev)) ||
7257 !is_mddev_idle(mddev, 0)) {
7258 msleep(500);
7259 goto repeat;
7263 printk(KERN_INFO "md: %s: %s done.\n",mdname(mddev), desc);
7265 * this also signals 'finished resyncing' to md_stop
7267 out:
7268 wait_event(mddev->recovery_wait, !atomic_read(&mddev->recovery_active));
7270 /* tell personality that we are finished */
7271 mddev->pers->sync_request(mddev, max_sectors, &skipped, 1);
7273 if (!test_bit(MD_RECOVERY_CHECK, &mddev->recovery) &&
7274 mddev->curr_resync > 2) {
7275 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
7276 if (test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7277 if (mddev->curr_resync >= mddev->recovery_cp) {
7278 printk(KERN_INFO
7279 "md: checkpointing %s of %s.\n",
7280 desc, mdname(mddev));
7281 mddev->recovery_cp = mddev->curr_resync;
7283 } else
7284 mddev->recovery_cp = MaxSector;
7285 } else {
7286 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery))
7287 mddev->curr_resync = MaxSector;
7288 rcu_read_lock();
7289 list_for_each_entry_rcu(rdev, &mddev->disks, same_set)
7290 if (rdev->raid_disk >= 0 &&
7291 mddev->delta_disks >= 0 &&
7292 !test_bit(Faulty, &rdev->flags) &&
7293 !test_bit(In_sync, &rdev->flags) &&
7294 rdev->recovery_offset < mddev->curr_resync)
7295 rdev->recovery_offset = mddev->curr_resync;
7296 rcu_read_unlock();
7299 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7301 skip:
7302 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
7303 /* We completed so min/max setting can be forgotten if used. */
7304 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7305 mddev->resync_min = 0;
7306 mddev->resync_max = MaxSector;
7307 } else if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
7308 mddev->resync_min = mddev->curr_resync_completed;
7309 mddev->curr_resync = 0;
7310 wake_up(&resync_wait);
7311 set_bit(MD_RECOVERY_DONE, &mddev->recovery);
7312 md_wakeup_thread(mddev->thread);
7313 return;
7315 interrupted:
7317 * got a signal, exit.
7319 printk(KERN_INFO
7320 "md: md_do_sync() got signal ... exiting\n");
7321 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
7322 goto out;
7325 EXPORT_SYMBOL_GPL(md_do_sync);
7327 static int remove_and_add_spares(struct mddev *mddev)
7329 struct md_rdev *rdev;
7330 int spares = 0;
7332 mddev->curr_resync_completed = 0;
7334 list_for_each_entry(rdev, &mddev->disks, same_set)
7335 if (rdev->raid_disk >= 0 &&
7336 !test_bit(Blocked, &rdev->flags) &&
7337 (test_bit(Faulty, &rdev->flags) ||
7338 ! test_bit(In_sync, &rdev->flags)) &&
7339 atomic_read(&rdev->nr_pending)==0) {
7340 if (mddev->pers->hot_remove_disk(
7341 mddev, rdev->raid_disk)==0) {
7342 sysfs_unlink_rdev(mddev, rdev);
7343 rdev->raid_disk = -1;
7347 if (mddev->degraded) {
7348 list_for_each_entry(rdev, &mddev->disks, same_set) {
7349 if (rdev->raid_disk >= 0 &&
7350 !test_bit(In_sync, &rdev->flags) &&
7351 !test_bit(Faulty, &rdev->flags))
7352 spares++;
7353 if (rdev->raid_disk < 0
7354 && !test_bit(Faulty, &rdev->flags)) {
7355 rdev->recovery_offset = 0;
7356 if (mddev->pers->
7357 hot_add_disk(mddev, rdev) == 0) {
7358 if (sysfs_link_rdev(mddev, rdev))
7359 /* failure here is OK */;
7360 spares++;
7361 md_new_event(mddev);
7362 set_bit(MD_CHANGE_DEVS, &mddev->flags);
7367 return spares;
7370 static void reap_sync_thread(struct mddev *mddev)
7372 struct md_rdev *rdev;
7374 /* resync has finished, collect result */
7375 md_unregister_thread(&mddev->sync_thread);
7376 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery) &&
7377 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
7378 /* success...*/
7379 /* activate any spares */
7380 if (mddev->pers->spare_active(mddev))
7381 sysfs_notify(&mddev->kobj, NULL,
7382 "degraded");
7384 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery) &&
7385 mddev->pers->finish_reshape)
7386 mddev->pers->finish_reshape(mddev);
7388 /* If array is no-longer degraded, then any saved_raid_disk
7389 * information must be scrapped. Also if any device is now
7390 * In_sync we must scrape the saved_raid_disk for that device
7391 * do the superblock for an incrementally recovered device
7392 * written out.
7394 list_for_each_entry(rdev, &mddev->disks, same_set)
7395 if (!mddev->degraded ||
7396 test_bit(In_sync, &rdev->flags))
7397 rdev->saved_raid_disk = -1;
7399 md_update_sb(mddev, 1);
7400 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7401 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7402 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7403 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7404 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7405 /* flag recovery needed just to double check */
7406 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7407 sysfs_notify_dirent_safe(mddev->sysfs_action);
7408 md_new_event(mddev);
7409 if (mddev->event_work.func)
7410 queue_work(md_misc_wq, &mddev->event_work);
7414 * This routine is regularly called by all per-raid-array threads to
7415 * deal with generic issues like resync and super-block update.
7416 * Raid personalities that don't have a thread (linear/raid0) do not
7417 * need this as they never do any recovery or update the superblock.
7419 * It does not do any resync itself, but rather "forks" off other threads
7420 * to do that as needed.
7421 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7422 * "->recovery" and create a thread at ->sync_thread.
7423 * When the thread finishes it sets MD_RECOVERY_DONE
7424 * and wakeups up this thread which will reap the thread and finish up.
7425 * This thread also removes any faulty devices (with nr_pending == 0).
7427 * The overall approach is:
7428 * 1/ if the superblock needs updating, update it.
7429 * 2/ If a recovery thread is running, don't do anything else.
7430 * 3/ If recovery has finished, clean up, possibly marking spares active.
7431 * 4/ If there are any faulty devices, remove them.
7432 * 5/ If array is degraded, try to add spares devices
7433 * 6/ If array has spares or is not in-sync, start a resync thread.
7435 void md_check_recovery(struct mddev *mddev)
7437 if (mddev->suspended)
7438 return;
7440 if (mddev->bitmap)
7441 bitmap_daemon_work(mddev);
7443 if (signal_pending(current)) {
7444 if (mddev->pers->sync_request && !mddev->external) {
7445 printk(KERN_INFO "md: %s in immediate safe mode\n",
7446 mdname(mddev));
7447 mddev->safemode = 2;
7449 flush_signals(current);
7452 if (mddev->ro && !test_bit(MD_RECOVERY_NEEDED, &mddev->recovery))
7453 return;
7454 if ( ! (
7455 (mddev->flags & ~ (1<<MD_CHANGE_PENDING)) ||
7456 test_bit(MD_RECOVERY_NEEDED, &mddev->recovery) ||
7457 test_bit(MD_RECOVERY_DONE, &mddev->recovery) ||
7458 (mddev->external == 0 && mddev->safemode == 1) ||
7459 (mddev->safemode == 2 && ! atomic_read(&mddev->writes_pending)
7460 && !mddev->in_sync && mddev->recovery_cp == MaxSector)
7462 return;
7464 if (mddev_trylock(mddev)) {
7465 int spares = 0;
7467 if (mddev->ro) {
7468 /* Only thing we do on a ro array is remove
7469 * failed devices.
7471 struct md_rdev *rdev;
7472 list_for_each_entry(rdev, &mddev->disks, same_set)
7473 if (rdev->raid_disk >= 0 &&
7474 !test_bit(Blocked, &rdev->flags) &&
7475 test_bit(Faulty, &rdev->flags) &&
7476 atomic_read(&rdev->nr_pending)==0) {
7477 if (mddev->pers->hot_remove_disk(
7478 mddev, rdev->raid_disk)==0) {
7479 sysfs_unlink_rdev(mddev, rdev);
7480 rdev->raid_disk = -1;
7483 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7484 goto unlock;
7487 if (!mddev->external) {
7488 int did_change = 0;
7489 spin_lock_irq(&mddev->write_lock);
7490 if (mddev->safemode &&
7491 !atomic_read(&mddev->writes_pending) &&
7492 !mddev->in_sync &&
7493 mddev->recovery_cp == MaxSector) {
7494 mddev->in_sync = 1;
7495 did_change = 1;
7496 set_bit(MD_CHANGE_CLEAN, &mddev->flags);
7498 if (mddev->safemode == 1)
7499 mddev->safemode = 0;
7500 spin_unlock_irq(&mddev->write_lock);
7501 if (did_change)
7502 sysfs_notify_dirent_safe(mddev->sysfs_state);
7505 if (mddev->flags)
7506 md_update_sb(mddev, 0);
7508 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery) &&
7509 !test_bit(MD_RECOVERY_DONE, &mddev->recovery)) {
7510 /* resync/recovery still happening */
7511 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7512 goto unlock;
7514 if (mddev->sync_thread) {
7515 reap_sync_thread(mddev);
7516 goto unlock;
7518 /* Set RUNNING before clearing NEEDED to avoid
7519 * any transients in the value of "sync_action".
7521 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7522 clear_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7523 /* Clear some bits that don't mean anything, but
7524 * might be left set
7526 clear_bit(MD_RECOVERY_INTR, &mddev->recovery);
7527 clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7529 if (test_bit(MD_RECOVERY_FROZEN, &mddev->recovery))
7530 goto unlock;
7531 /* no recovery is running.
7532 * remove any failed drives, then
7533 * add spares if possible.
7534 * Spare are also removed and re-added, to allow
7535 * the personality to fail the re-add.
7538 if (mddev->reshape_position != MaxSector) {
7539 if (mddev->pers->check_reshape == NULL ||
7540 mddev->pers->check_reshape(mddev) != 0)
7541 /* Cannot proceed */
7542 goto unlock;
7543 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7544 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7545 } else if ((spares = remove_and_add_spares(mddev))) {
7546 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7547 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7548 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7549 set_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7550 } else if (mddev->recovery_cp < MaxSector) {
7551 set_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7552 clear_bit(MD_RECOVERY_RECOVER, &mddev->recovery);
7553 } else if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
7554 /* nothing to be done ... */
7555 goto unlock;
7557 if (mddev->pers->sync_request) {
7558 if (spares && mddev->bitmap && ! mddev->bitmap->file) {
7559 /* We are adding a device or devices to an array
7560 * which has the bitmap stored on all devices.
7561 * So make sure all bitmap pages get written
7563 bitmap_write_all(mddev->bitmap);
7565 mddev->sync_thread = md_register_thread(md_do_sync,
7566 mddev,
7567 "resync");
7568 if (!mddev->sync_thread) {
7569 printk(KERN_ERR "%s: could not start resync"
7570 " thread...\n",
7571 mdname(mddev));
7572 /* leave the spares where they are, it shouldn't hurt */
7573 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7574 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7575 clear_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7576 clear_bit(MD_RECOVERY_REQUESTED, &mddev->recovery);
7577 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7578 } else
7579 md_wakeup_thread(mddev->sync_thread);
7580 sysfs_notify_dirent_safe(mddev->sysfs_action);
7581 md_new_event(mddev);
7583 unlock:
7584 if (!mddev->sync_thread) {
7585 clear_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7586 if (test_and_clear_bit(MD_RECOVERY_RECOVER,
7587 &mddev->recovery))
7588 if (mddev->sysfs_action)
7589 sysfs_notify_dirent_safe(mddev->sysfs_action);
7591 mddev_unlock(mddev);
7595 void md_wait_for_blocked_rdev(struct md_rdev *rdev, struct mddev *mddev)
7597 sysfs_notify_dirent_safe(rdev->sysfs_state);
7598 wait_event_timeout(rdev->blocked_wait,
7599 !test_bit(Blocked, &rdev->flags) &&
7600 !test_bit(BlockedBadBlocks, &rdev->flags),
7601 msecs_to_jiffies(5000));
7602 rdev_dec_pending(rdev, mddev);
7604 EXPORT_SYMBOL(md_wait_for_blocked_rdev);
7607 /* Bad block management.
7608 * We can record which blocks on each device are 'bad' and so just
7609 * fail those blocks, or that stripe, rather than the whole device.
7610 * Entries in the bad-block table are 64bits wide. This comprises:
7611 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7612 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7613 * A 'shift' can be set so that larger blocks are tracked and
7614 * consequently larger devices can be covered.
7615 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7617 * Locking of the bad-block table uses a seqlock so md_is_badblock
7618 * might need to retry if it is very unlucky.
7619 * We will sometimes want to check for bad blocks in a bi_end_io function,
7620 * so we use the write_seqlock_irq variant.
7622 * When looking for a bad block we specify a range and want to
7623 * know if any block in the range is bad. So we binary-search
7624 * to the last range that starts at-or-before the given endpoint,
7625 * (or "before the sector after the target range")
7626 * then see if it ends after the given start.
7627 * We return
7628 * 0 if there are no known bad blocks in the range
7629 * 1 if there are known bad block which are all acknowledged
7630 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7631 * plus the start/length of the first bad section we overlap.
7633 int md_is_badblock(struct badblocks *bb, sector_t s, int sectors,
7634 sector_t *first_bad, int *bad_sectors)
7636 int hi;
7637 int lo = 0;
7638 u64 *p = bb->page;
7639 int rv = 0;
7640 sector_t target = s + sectors;
7641 unsigned seq;
7643 if (bb->shift > 0) {
7644 /* round the start down, and the end up */
7645 s >>= bb->shift;
7646 target += (1<<bb->shift) - 1;
7647 target >>= bb->shift;
7648 sectors = target - s;
7650 /* 'target' is now the first block after the bad range */
7652 retry:
7653 seq = read_seqbegin(&bb->lock);
7655 hi = bb->count;
7657 /* Binary search between lo and hi for 'target'
7658 * i.e. for the last range that starts before 'target'
7660 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7661 * are known not to be the last range before target.
7662 * VARIANT: hi-lo is the number of possible
7663 * ranges, and decreases until it reaches 1
7665 while (hi - lo > 1) {
7666 int mid = (lo + hi) / 2;
7667 sector_t a = BB_OFFSET(p[mid]);
7668 if (a < target)
7669 /* This could still be the one, earlier ranges
7670 * could not. */
7671 lo = mid;
7672 else
7673 /* This and later ranges are definitely out. */
7674 hi = mid;
7676 /* 'lo' might be the last that started before target, but 'hi' isn't */
7677 if (hi > lo) {
7678 /* need to check all range that end after 's' to see if
7679 * any are unacknowledged.
7681 while (lo >= 0 &&
7682 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7683 if (BB_OFFSET(p[lo]) < target) {
7684 /* starts before the end, and finishes after
7685 * the start, so they must overlap
7687 if (rv != -1 && BB_ACK(p[lo]))
7688 rv = 1;
7689 else
7690 rv = -1;
7691 *first_bad = BB_OFFSET(p[lo]);
7692 *bad_sectors = BB_LEN(p[lo]);
7694 lo--;
7698 if (read_seqretry(&bb->lock, seq))
7699 goto retry;
7701 return rv;
7703 EXPORT_SYMBOL_GPL(md_is_badblock);
7706 * Add a range of bad blocks to the table.
7707 * This might extend the table, or might contract it
7708 * if two adjacent ranges can be merged.
7709 * We binary-search to find the 'insertion' point, then
7710 * decide how best to handle it.
7712 static int md_set_badblocks(struct badblocks *bb, sector_t s, int sectors,
7713 int acknowledged)
7715 u64 *p;
7716 int lo, hi;
7717 int rv = 1;
7719 if (bb->shift < 0)
7720 /* badblocks are disabled */
7721 return 0;
7723 if (bb->shift) {
7724 /* round the start down, and the end up */
7725 sector_t next = s + sectors;
7726 s >>= bb->shift;
7727 next += (1<<bb->shift) - 1;
7728 next >>= bb->shift;
7729 sectors = next - s;
7732 write_seqlock_irq(&bb->lock);
7734 p = bb->page;
7735 lo = 0;
7736 hi = bb->count;
7737 /* Find the last range that starts at-or-before 's' */
7738 while (hi - lo > 1) {
7739 int mid = (lo + hi) / 2;
7740 sector_t a = BB_OFFSET(p[mid]);
7741 if (a <= s)
7742 lo = mid;
7743 else
7744 hi = mid;
7746 if (hi > lo && BB_OFFSET(p[lo]) > s)
7747 hi = lo;
7749 if (hi > lo) {
7750 /* we found a range that might merge with the start
7751 * of our new range
7753 sector_t a = BB_OFFSET(p[lo]);
7754 sector_t e = a + BB_LEN(p[lo]);
7755 int ack = BB_ACK(p[lo]);
7756 if (e >= s) {
7757 /* Yes, we can merge with a previous range */
7758 if (s == a && s + sectors >= e)
7759 /* new range covers old */
7760 ack = acknowledged;
7761 else
7762 ack = ack && acknowledged;
7764 if (e < s + sectors)
7765 e = s + sectors;
7766 if (e - a <= BB_MAX_LEN) {
7767 p[lo] = BB_MAKE(a, e-a, ack);
7768 s = e;
7769 } else {
7770 /* does not all fit in one range,
7771 * make p[lo] maximal
7773 if (BB_LEN(p[lo]) != BB_MAX_LEN)
7774 p[lo] = BB_MAKE(a, BB_MAX_LEN, ack);
7775 s = a + BB_MAX_LEN;
7777 sectors = e - s;
7780 if (sectors && hi < bb->count) {
7781 /* 'hi' points to the first range that starts after 's'.
7782 * Maybe we can merge with the start of that range */
7783 sector_t a = BB_OFFSET(p[hi]);
7784 sector_t e = a + BB_LEN(p[hi]);
7785 int ack = BB_ACK(p[hi]);
7786 if (a <= s + sectors) {
7787 /* merging is possible */
7788 if (e <= s + sectors) {
7789 /* full overlap */
7790 e = s + sectors;
7791 ack = acknowledged;
7792 } else
7793 ack = ack && acknowledged;
7795 a = s;
7796 if (e - a <= BB_MAX_LEN) {
7797 p[hi] = BB_MAKE(a, e-a, ack);
7798 s = e;
7799 } else {
7800 p[hi] = BB_MAKE(a, BB_MAX_LEN, ack);
7801 s = a + BB_MAX_LEN;
7803 sectors = e - s;
7804 lo = hi;
7805 hi++;
7808 if (sectors == 0 && hi < bb->count) {
7809 /* we might be able to combine lo and hi */
7810 /* Note: 's' is at the end of 'lo' */
7811 sector_t a = BB_OFFSET(p[hi]);
7812 int lolen = BB_LEN(p[lo]);
7813 int hilen = BB_LEN(p[hi]);
7814 int newlen = lolen + hilen - (s - a);
7815 if (s >= a && newlen < BB_MAX_LEN) {
7816 /* yes, we can combine them */
7817 int ack = BB_ACK(p[lo]) && BB_ACK(p[hi]);
7818 p[lo] = BB_MAKE(BB_OFFSET(p[lo]), newlen, ack);
7819 memmove(p + hi, p + hi + 1,
7820 (bb->count - hi - 1) * 8);
7821 bb->count--;
7824 while (sectors) {
7825 /* didn't merge (it all).
7826 * Need to add a range just before 'hi' */
7827 if (bb->count >= MD_MAX_BADBLOCKS) {
7828 /* No room for more */
7829 rv = 0;
7830 break;
7831 } else {
7832 int this_sectors = sectors;
7833 memmove(p + hi + 1, p + hi,
7834 (bb->count - hi) * 8);
7835 bb->count++;
7837 if (this_sectors > BB_MAX_LEN)
7838 this_sectors = BB_MAX_LEN;
7839 p[hi] = BB_MAKE(s, this_sectors, acknowledged);
7840 sectors -= this_sectors;
7841 s += this_sectors;
7845 bb->changed = 1;
7846 if (!acknowledged)
7847 bb->unacked_exist = 1;
7848 write_sequnlock_irq(&bb->lock);
7850 return rv;
7853 int rdev_set_badblocks(struct md_rdev *rdev, sector_t s, int sectors,
7854 int acknowledged)
7856 int rv = md_set_badblocks(&rdev->badblocks,
7857 s + rdev->data_offset, sectors, acknowledged);
7858 if (rv) {
7859 /* Make sure they get written out promptly */
7860 sysfs_notify_dirent_safe(rdev->sysfs_state);
7861 set_bit(MD_CHANGE_CLEAN, &rdev->mddev->flags);
7862 md_wakeup_thread(rdev->mddev->thread);
7864 return rv;
7866 EXPORT_SYMBOL_GPL(rdev_set_badblocks);
7869 * Remove a range of bad blocks from the table.
7870 * This may involve extending the table if we spilt a region,
7871 * but it must not fail. So if the table becomes full, we just
7872 * drop the remove request.
7874 static int md_clear_badblocks(struct badblocks *bb, sector_t s, int sectors)
7876 u64 *p;
7877 int lo, hi;
7878 sector_t target = s + sectors;
7879 int rv = 0;
7881 if (bb->shift > 0) {
7882 /* When clearing we round the start up and the end down.
7883 * This should not matter as the shift should align with
7884 * the block size and no rounding should ever be needed.
7885 * However it is better the think a block is bad when it
7886 * isn't than to think a block is not bad when it is.
7888 s += (1<<bb->shift) - 1;
7889 s >>= bb->shift;
7890 target >>= bb->shift;
7891 sectors = target - s;
7894 write_seqlock_irq(&bb->lock);
7896 p = bb->page;
7897 lo = 0;
7898 hi = bb->count;
7899 /* Find the last range that starts before 'target' */
7900 while (hi - lo > 1) {
7901 int mid = (lo + hi) / 2;
7902 sector_t a = BB_OFFSET(p[mid]);
7903 if (a < target)
7904 lo = mid;
7905 else
7906 hi = mid;
7908 if (hi > lo) {
7909 /* p[lo] is the last range that could overlap the
7910 * current range. Earlier ranges could also overlap,
7911 * but only this one can overlap the end of the range.
7913 if (BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > target) {
7914 /* Partial overlap, leave the tail of this range */
7915 int ack = BB_ACK(p[lo]);
7916 sector_t a = BB_OFFSET(p[lo]);
7917 sector_t end = a + BB_LEN(p[lo]);
7919 if (a < s) {
7920 /* we need to split this range */
7921 if (bb->count >= MD_MAX_BADBLOCKS) {
7922 rv = 0;
7923 goto out;
7925 memmove(p+lo+1, p+lo, (bb->count - lo) * 8);
7926 bb->count++;
7927 p[lo] = BB_MAKE(a, s-a, ack);
7928 lo++;
7930 p[lo] = BB_MAKE(target, end - target, ack);
7931 /* there is no longer an overlap */
7932 hi = lo;
7933 lo--;
7935 while (lo >= 0 &&
7936 BB_OFFSET(p[lo]) + BB_LEN(p[lo]) > s) {
7937 /* This range does overlap */
7938 if (BB_OFFSET(p[lo]) < s) {
7939 /* Keep the early parts of this range. */
7940 int ack = BB_ACK(p[lo]);
7941 sector_t start = BB_OFFSET(p[lo]);
7942 p[lo] = BB_MAKE(start, s - start, ack);
7943 /* now low doesn't overlap, so.. */
7944 break;
7946 lo--;
7948 /* 'lo' is strictly before, 'hi' is strictly after,
7949 * anything between needs to be discarded
7951 if (hi - lo > 1) {
7952 memmove(p+lo+1, p+hi, (bb->count - hi) * 8);
7953 bb->count -= (hi - lo - 1);
7957 bb->changed = 1;
7958 out:
7959 write_sequnlock_irq(&bb->lock);
7960 return rv;
7963 int rdev_clear_badblocks(struct md_rdev *rdev, sector_t s, int sectors)
7965 return md_clear_badblocks(&rdev->badblocks,
7966 s + rdev->data_offset,
7967 sectors);
7969 EXPORT_SYMBOL_GPL(rdev_clear_badblocks);
7972 * Acknowledge all bad blocks in a list.
7973 * This only succeeds if ->changed is clear. It is used by
7974 * in-kernel metadata updates
7976 void md_ack_all_badblocks(struct badblocks *bb)
7978 if (bb->page == NULL || bb->changed)
7979 /* no point even trying */
7980 return;
7981 write_seqlock_irq(&bb->lock);
7983 if (bb->changed == 0) {
7984 u64 *p = bb->page;
7985 int i;
7986 for (i = 0; i < bb->count ; i++) {
7987 if (!BB_ACK(p[i])) {
7988 sector_t start = BB_OFFSET(p[i]);
7989 int len = BB_LEN(p[i]);
7990 p[i] = BB_MAKE(start, len, 1);
7993 bb->unacked_exist = 0;
7995 write_sequnlock_irq(&bb->lock);
7997 EXPORT_SYMBOL_GPL(md_ack_all_badblocks);
7999 /* sysfs access to bad-blocks list.
8000 * We present two files.
8001 * 'bad-blocks' lists sector numbers and lengths of ranges that
8002 * are recorded as bad. The list is truncated to fit within
8003 * the one-page limit of sysfs.
8004 * Writing "sector length" to this file adds an acknowledged
8005 * bad block list.
8006 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8007 * been acknowledged. Writing to this file adds bad blocks
8008 * without acknowledging them. This is largely for testing.
8011 static ssize_t
8012 badblocks_show(struct badblocks *bb, char *page, int unack)
8014 size_t len;
8015 int i;
8016 u64 *p = bb->page;
8017 unsigned seq;
8019 if (bb->shift < 0)
8020 return 0;
8022 retry:
8023 seq = read_seqbegin(&bb->lock);
8025 len = 0;
8026 i = 0;
8028 while (len < PAGE_SIZE && i < bb->count) {
8029 sector_t s = BB_OFFSET(p[i]);
8030 unsigned int length = BB_LEN(p[i]);
8031 int ack = BB_ACK(p[i]);
8032 i++;
8034 if (unack && ack)
8035 continue;
8037 len += snprintf(page+len, PAGE_SIZE-len, "%llu %u\n",
8038 (unsigned long long)s << bb->shift,
8039 length << bb->shift);
8041 if (unack && len == 0)
8042 bb->unacked_exist = 0;
8044 if (read_seqretry(&bb->lock, seq))
8045 goto retry;
8047 return len;
8050 #define DO_DEBUG 1
8052 static ssize_t
8053 badblocks_store(struct badblocks *bb, const char *page, size_t len, int unack)
8055 unsigned long long sector;
8056 int length;
8057 char newline;
8058 #ifdef DO_DEBUG
8059 /* Allow clearing via sysfs *only* for testing/debugging.
8060 * Normally only a successful write may clear a badblock
8062 int clear = 0;
8063 if (page[0] == '-') {
8064 clear = 1;
8065 page++;
8067 #endif /* DO_DEBUG */
8069 switch (sscanf(page, "%llu %d%c", &sector, &length, &newline)) {
8070 case 3:
8071 if (newline != '\n')
8072 return -EINVAL;
8073 case 2:
8074 if (length <= 0)
8075 return -EINVAL;
8076 break;
8077 default:
8078 return -EINVAL;
8081 #ifdef DO_DEBUG
8082 if (clear) {
8083 md_clear_badblocks(bb, sector, length);
8084 return len;
8086 #endif /* DO_DEBUG */
8087 if (md_set_badblocks(bb, sector, length, !unack))
8088 return len;
8089 else
8090 return -ENOSPC;
8093 static int md_notify_reboot(struct notifier_block *this,
8094 unsigned long code, void *x)
8096 struct list_head *tmp;
8097 struct mddev *mddev;
8098 int need_delay = 0;
8100 if ((code == SYS_DOWN) || (code == SYS_HALT) || (code == SYS_POWER_OFF)) {
8102 printk(KERN_INFO "md: stopping all md devices.\n");
8104 for_each_mddev(mddev, tmp) {
8105 if (mddev_trylock(mddev)) {
8106 /* Force a switch to readonly even array
8107 * appears to still be in use. Hence
8108 * the '100'.
8110 md_set_readonly(mddev, 100);
8111 mddev_unlock(mddev);
8113 need_delay = 1;
8116 * certain more exotic SCSI devices are known to be
8117 * volatile wrt too early system reboots. While the
8118 * right place to handle this issue is the given
8119 * driver, we do want to have a safe RAID driver ...
8121 if (need_delay)
8122 mdelay(1000*1);
8124 return NOTIFY_DONE;
8127 static struct notifier_block md_notifier = {
8128 .notifier_call = md_notify_reboot,
8129 .next = NULL,
8130 .priority = INT_MAX, /* before any real devices */
8133 static void md_geninit(void)
8135 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t));
8137 proc_create("mdstat", S_IRUGO, NULL, &md_seq_fops);
8140 static int __init md_init(void)
8142 int ret = -ENOMEM;
8144 md_wq = alloc_workqueue("md", WQ_MEM_RECLAIM, 0);
8145 if (!md_wq)
8146 goto err_wq;
8148 md_misc_wq = alloc_workqueue("md_misc", 0, 0);
8149 if (!md_misc_wq)
8150 goto err_misc_wq;
8152 if ((ret = register_blkdev(MD_MAJOR, "md")) < 0)
8153 goto err_md;
8155 if ((ret = register_blkdev(0, "mdp")) < 0)
8156 goto err_mdp;
8157 mdp_major = ret;
8159 blk_register_region(MKDEV(MD_MAJOR, 0), 1UL<<MINORBITS, THIS_MODULE,
8160 md_probe, NULL, NULL);
8161 blk_register_region(MKDEV(mdp_major, 0), 1UL<<MINORBITS, THIS_MODULE,
8162 md_probe, NULL, NULL);
8164 register_reboot_notifier(&md_notifier);
8165 raid_table_header = register_sysctl_table(raid_root_table);
8167 md_geninit();
8168 return 0;
8170 err_mdp:
8171 unregister_blkdev(MD_MAJOR, "md");
8172 err_md:
8173 destroy_workqueue(md_misc_wq);
8174 err_misc_wq:
8175 destroy_workqueue(md_wq);
8176 err_wq:
8177 return ret;
8180 #ifndef MODULE
8183 * Searches all registered partitions for autorun RAID arrays
8184 * at boot time.
8187 static LIST_HEAD(all_detected_devices);
8188 struct detected_devices_node {
8189 struct list_head list;
8190 dev_t dev;
8193 void md_autodetect_dev(dev_t dev)
8195 struct detected_devices_node *node_detected_dev;
8197 node_detected_dev = kzalloc(sizeof(*node_detected_dev), GFP_KERNEL);
8198 if (node_detected_dev) {
8199 node_detected_dev->dev = dev;
8200 list_add_tail(&node_detected_dev->list, &all_detected_devices);
8201 } else {
8202 printk(KERN_CRIT "md: md_autodetect_dev: kzalloc failed"
8203 ", skipping dev(%d,%d)\n", MAJOR(dev), MINOR(dev));
8208 static void autostart_arrays(int part)
8210 struct md_rdev *rdev;
8211 struct detected_devices_node *node_detected_dev;
8212 dev_t dev;
8213 int i_scanned, i_passed;
8215 i_scanned = 0;
8216 i_passed = 0;
8218 printk(KERN_INFO "md: Autodetecting RAID arrays.\n");
8220 while (!list_empty(&all_detected_devices) && i_scanned < INT_MAX) {
8221 i_scanned++;
8222 node_detected_dev = list_entry(all_detected_devices.next,
8223 struct detected_devices_node, list);
8224 list_del(&node_detected_dev->list);
8225 dev = node_detected_dev->dev;
8226 kfree(node_detected_dev);
8227 rdev = md_import_device(dev,0, 90);
8228 if (IS_ERR(rdev))
8229 continue;
8231 if (test_bit(Faulty, &rdev->flags)) {
8232 MD_BUG();
8233 continue;
8235 set_bit(AutoDetected, &rdev->flags);
8236 list_add(&rdev->same_set, &pending_raid_disks);
8237 i_passed++;
8240 printk(KERN_INFO "md: Scanned %d and added %d devices.\n",
8241 i_scanned, i_passed);
8243 autorun_devices(part);
8246 #endif /* !MODULE */
8248 static __exit void md_exit(void)
8250 struct mddev *mddev;
8251 struct list_head *tmp;
8253 blk_unregister_region(MKDEV(MD_MAJOR,0), 1U << MINORBITS);
8254 blk_unregister_region(MKDEV(mdp_major,0), 1U << MINORBITS);
8256 unregister_blkdev(MD_MAJOR,"md");
8257 unregister_blkdev(mdp_major, "mdp");
8258 unregister_reboot_notifier(&md_notifier);
8259 unregister_sysctl_table(raid_table_header);
8260 remove_proc_entry("mdstat", NULL);
8261 for_each_mddev(mddev, tmp) {
8262 export_array(mddev);
8263 mddev->hold_active = 0;
8265 destroy_workqueue(md_misc_wq);
8266 destroy_workqueue(md_wq);
8269 subsys_initcall(md_init);
8270 module_exit(md_exit)
8272 static int get_ro(char *buffer, struct kernel_param *kp)
8274 return sprintf(buffer, "%d", start_readonly);
8276 static int set_ro(const char *val, struct kernel_param *kp)
8278 char *e;
8279 int num = simple_strtoul(val, &e, 10);
8280 if (*val && (*e == '\0' || *e == '\n')) {
8281 start_readonly = num;
8282 return 0;
8284 return -EINVAL;
8287 module_param_call(start_ro, set_ro, get_ro, NULL, S_IRUSR|S_IWUSR);
8288 module_param(start_dirty_degraded, int, S_IRUGO|S_IWUSR);
8290 module_param_call(new_array, add_named_array, NULL, NULL, S_IWUSR);
8292 EXPORT_SYMBOL(register_md_personality);
8293 EXPORT_SYMBOL(unregister_md_personality);
8294 EXPORT_SYMBOL(md_error);
8295 EXPORT_SYMBOL(md_done_sync);
8296 EXPORT_SYMBOL(md_write_start);
8297 EXPORT_SYMBOL(md_write_end);
8298 EXPORT_SYMBOL(md_register_thread);
8299 EXPORT_SYMBOL(md_unregister_thread);
8300 EXPORT_SYMBOL(md_wakeup_thread);
8301 EXPORT_SYMBOL(md_check_recovery);
8302 MODULE_LICENSE("GPL");
8303 MODULE_DESCRIPTION("MD RAID framework");
8304 MODULE_ALIAS("md");
8305 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR);