2 md.c : Multiple Devices driver for Linux
3 Copyright (C) 1998, 1999, 2000 Ingo Molnar
5 completely rewritten, based on the MD driver code from Marc Zyngier
9 - RAID-1/RAID-5 extensions by Miguel de Icaza, Gadi Oxman, Ingo Molnar
10 - RAID-6 extensions by H. Peter Anvin <hpa@zytor.com>
11 - boot support for linear and striped mode by Harald Hoyer <HarryH@Royal.Net>
12 - kerneld support by Boris Tobotras <boris@xtalk.msk.su>
13 - kmod support by: Cyrus Durgin
14 - RAID0 bugfixes: Mark Anthony Lisher <markal@iname.com>
15 - Devfs support by Richard Gooch <rgooch@atnf.csiro.au>
17 - lots of fixes and improvements to the RAID1/RAID5 and generic
18 RAID code (such as request based resynchronization):
20 Neil Brown <neilb@cse.unsw.edu.au>.
22 - persistent bitmap code
23 Copyright (C) 2003-2004, Paul Clements, SteelEye Technology, Inc.
25 This program is free software; you can redistribute it and/or modify
26 it under the terms of the GNU General Public License as published by
27 the Free Software Foundation; either version 2, or (at your option)
30 You should have received a copy of the GNU General Public License
31 (for example /usr/src/linux/COPYING); if not, write to the Free
32 Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
35 #include <linux/kthread.h>
36 #include <linux/blkdev.h>
37 #include <linux/sysctl.h>
38 #include <linux/seq_file.h>
39 #include <linux/mutex.h>
40 #include <linux/buffer_head.h> /* for invalidate_bdev */
41 #include <linux/poll.h>
42 #include <linux/ctype.h>
43 #include <linux/string.h>
44 #include <linux/hdreg.h>
45 #include <linux/proc_fs.h>
46 #include <linux/random.h>
47 #include <linux/module.h>
48 #include <linux/reboot.h>
49 #include <linux/file.h>
50 #include <linux/compat.h>
51 #include <linux/delay.h>
52 #include <linux/raid/md_p.h>
53 #include <linux/raid/md_u.h>
54 #include <linux/slab.h>
59 static void autostart_arrays(int part
);
62 /* pers_list is a list of registered personalities protected
64 * pers_lock does extra service to protect accesses to
65 * mddev->thread when the mutex cannot be held.
67 static LIST_HEAD(pers_list
);
68 static DEFINE_SPINLOCK(pers_lock
);
70 static void md_print_devices(void);
72 static DECLARE_WAIT_QUEUE_HEAD(resync_wait
);
73 static struct workqueue_struct
*md_wq
;
74 static struct workqueue_struct
*md_misc_wq
;
76 #define MD_BUG(x...) { printk("md: bug in file %s, line %d\n", __FILE__, __LINE__); md_print_devices(); }
79 * Default number of read corrections we'll attempt on an rdev
80 * before ejecting it from the array. We divide the read error
81 * count by 2 for every hour elapsed between read errors.
83 #define MD_DEFAULT_MAX_CORRECTED_READ_ERRORS 20
85 * Current RAID-1,4,5 parallel reconstruction 'guaranteed speed limit'
86 * is 1000 KB/sec, so the extra system load does not show up that much.
87 * Increase it if you want to have more _guaranteed_ speed. Note that
88 * the RAID driver will use the maximum available bandwidth if the IO
89 * subsystem is idle. There is also an 'absolute maximum' reconstruction
90 * speed limit - in case reconstruction slows down your system despite
93 * you can change it via /proc/sys/dev/raid/speed_limit_min and _max.
94 * or /sys/block/mdX/md/sync_speed_{min,max}
97 static int sysctl_speed_limit_min
= 1000;
98 static int sysctl_speed_limit_max
= 200000;
99 static inline int speed_min(struct mddev
*mddev
)
101 return mddev
->sync_speed_min
?
102 mddev
->sync_speed_min
: sysctl_speed_limit_min
;
105 static inline int speed_max(struct mddev
*mddev
)
107 return mddev
->sync_speed_max
?
108 mddev
->sync_speed_max
: sysctl_speed_limit_max
;
111 static struct ctl_table_header
*raid_table_header
;
113 static ctl_table raid_table
[] = {
115 .procname
= "speed_limit_min",
116 .data
= &sysctl_speed_limit_min
,
117 .maxlen
= sizeof(int),
118 .mode
= S_IRUGO
|S_IWUSR
,
119 .proc_handler
= proc_dointvec
,
122 .procname
= "speed_limit_max",
123 .data
= &sysctl_speed_limit_max
,
124 .maxlen
= sizeof(int),
125 .mode
= S_IRUGO
|S_IWUSR
,
126 .proc_handler
= proc_dointvec
,
131 static ctl_table raid_dir_table
[] = {
135 .mode
= S_IRUGO
|S_IXUGO
,
141 static ctl_table raid_root_table
[] = {
146 .child
= raid_dir_table
,
151 static const struct block_device_operations md_fops
;
153 static int start_readonly
;
156 * like bio_clone, but with a local bio set
159 static void mddev_bio_destructor(struct bio
*bio
)
161 struct mddev
*mddev
, **mddevp
;
166 bio_free(bio
, mddev
->bio_set
);
169 struct bio
*bio_alloc_mddev(gfp_t gfp_mask
, int nr_iovecs
,
173 struct mddev
**mddevp
;
175 if (!mddev
|| !mddev
->bio_set
)
176 return bio_alloc(gfp_mask
, nr_iovecs
);
178 b
= bio_alloc_bioset(gfp_mask
, nr_iovecs
,
184 b
->bi_destructor
= mddev_bio_destructor
;
187 EXPORT_SYMBOL_GPL(bio_alloc_mddev
);
189 struct bio
*bio_clone_mddev(struct bio
*bio
, gfp_t gfp_mask
,
193 struct mddev
**mddevp
;
195 if (!mddev
|| !mddev
->bio_set
)
196 return bio_clone(bio
, gfp_mask
);
198 b
= bio_alloc_bioset(gfp_mask
, bio
->bi_max_vecs
,
204 b
->bi_destructor
= mddev_bio_destructor
;
206 if (bio_integrity(bio
)) {
209 ret
= bio_integrity_clone(b
, bio
, gfp_mask
, mddev
->bio_set
);
219 EXPORT_SYMBOL_GPL(bio_clone_mddev
);
221 void md_trim_bio(struct bio
*bio
, int offset
, int size
)
223 /* 'bio' is a cloned bio which we need to trim to match
224 * the given offset and size.
225 * This requires adjusting bi_sector, bi_size, and bi_io_vec
228 struct bio_vec
*bvec
;
232 if (offset
== 0 && size
== bio
->bi_size
)
235 bio
->bi_sector
+= offset
;
238 clear_bit(BIO_SEG_VALID
, &bio
->bi_flags
);
240 while (bio
->bi_idx
< bio
->bi_vcnt
&&
241 bio
->bi_io_vec
[bio
->bi_idx
].bv_len
<= offset
) {
242 /* remove this whole bio_vec */
243 offset
-= bio
->bi_io_vec
[bio
->bi_idx
].bv_len
;
246 if (bio
->bi_idx
< bio
->bi_vcnt
) {
247 bio
->bi_io_vec
[bio
->bi_idx
].bv_offset
+= offset
;
248 bio
->bi_io_vec
[bio
->bi_idx
].bv_len
-= offset
;
250 /* avoid any complications with bi_idx being non-zero*/
252 memmove(bio
->bi_io_vec
, bio
->bi_io_vec
+bio
->bi_idx
,
253 (bio
->bi_vcnt
- bio
->bi_idx
) * sizeof(struct bio_vec
));
254 bio
->bi_vcnt
-= bio
->bi_idx
;
257 /* Make sure vcnt and last bv are not too big */
258 bio_for_each_segment(bvec
, bio
, i
) {
259 if (sofar
+ bvec
->bv_len
> size
)
260 bvec
->bv_len
= size
- sofar
;
261 if (bvec
->bv_len
== 0) {
265 sofar
+= bvec
->bv_len
;
268 EXPORT_SYMBOL_GPL(md_trim_bio
);
271 * We have a system wide 'event count' that is incremented
272 * on any 'interesting' event, and readers of /proc/mdstat
273 * can use 'poll' or 'select' to find out when the event
277 * start array, stop array, error, add device, remove device,
278 * start build, activate spare
280 static DECLARE_WAIT_QUEUE_HEAD(md_event_waiters
);
281 static atomic_t md_event_count
;
282 void md_new_event(struct mddev
*mddev
)
284 atomic_inc(&md_event_count
);
285 wake_up(&md_event_waiters
);
287 EXPORT_SYMBOL_GPL(md_new_event
);
289 /* Alternate version that can be called from interrupts
290 * when calling sysfs_notify isn't needed.
292 static void md_new_event_inintr(struct mddev
*mddev
)
294 atomic_inc(&md_event_count
);
295 wake_up(&md_event_waiters
);
299 * Enables to iterate over all existing md arrays
300 * all_mddevs_lock protects this list.
302 static LIST_HEAD(all_mddevs
);
303 static DEFINE_SPINLOCK(all_mddevs_lock
);
307 * iterates through all used mddevs in the system.
308 * We take care to grab the all_mddevs_lock whenever navigating
309 * the list, and to always hold a refcount when unlocked.
310 * Any code which breaks out of this loop while own
311 * a reference to the current mddev and must mddev_put it.
313 #define for_each_mddev(_mddev,_tmp) \
315 for (({ spin_lock(&all_mddevs_lock); \
316 _tmp = all_mddevs.next; \
318 ({ if (_tmp != &all_mddevs) \
319 mddev_get(list_entry(_tmp, struct mddev, all_mddevs));\
320 spin_unlock(&all_mddevs_lock); \
321 if (_mddev) mddev_put(_mddev); \
322 _mddev = list_entry(_tmp, struct mddev, all_mddevs); \
323 _tmp != &all_mddevs;}); \
324 ({ spin_lock(&all_mddevs_lock); \
325 _tmp = _tmp->next;}) \
329 /* Rather than calling directly into the personality make_request function,
330 * IO requests come here first so that we can check if the device is
331 * being suspended pending a reconfiguration.
332 * We hold a refcount over the call to ->make_request. By the time that
333 * call has finished, the bio has been linked into some internal structure
334 * and so is visible to ->quiesce(), so we don't need the refcount any more.
336 static void md_make_request(struct request_queue
*q
, struct bio
*bio
)
338 const int rw
= bio_data_dir(bio
);
339 struct mddev
*mddev
= q
->queuedata
;
341 unsigned int sectors
;
343 if (mddev
== NULL
|| mddev
->pers
== NULL
348 smp_rmb(); /* Ensure implications of 'active' are visible */
350 if (mddev
->suspended
) {
353 prepare_to_wait(&mddev
->sb_wait
, &__wait
,
354 TASK_UNINTERRUPTIBLE
);
355 if (!mddev
->suspended
)
361 finish_wait(&mddev
->sb_wait
, &__wait
);
363 atomic_inc(&mddev
->active_io
);
367 * save the sectors now since our bio can
368 * go away inside make_request
370 sectors
= bio_sectors(bio
);
371 mddev
->pers
->make_request(mddev
, bio
);
373 cpu
= part_stat_lock();
374 part_stat_inc(cpu
, &mddev
->gendisk
->part0
, ios
[rw
]);
375 part_stat_add(cpu
, &mddev
->gendisk
->part0
, sectors
[rw
], sectors
);
378 if (atomic_dec_and_test(&mddev
->active_io
) && mddev
->suspended
)
379 wake_up(&mddev
->sb_wait
);
382 /* mddev_suspend makes sure no new requests are submitted
383 * to the device, and that any requests that have been submitted
384 * are completely handled.
385 * Once ->stop is called and completes, the module will be completely
388 void mddev_suspend(struct mddev
*mddev
)
390 BUG_ON(mddev
->suspended
);
391 mddev
->suspended
= 1;
393 wait_event(mddev
->sb_wait
, atomic_read(&mddev
->active_io
) == 0);
394 mddev
->pers
->quiesce(mddev
, 1);
396 EXPORT_SYMBOL_GPL(mddev_suspend
);
398 void mddev_resume(struct mddev
*mddev
)
400 mddev
->suspended
= 0;
401 wake_up(&mddev
->sb_wait
);
402 mddev
->pers
->quiesce(mddev
, 0);
404 md_wakeup_thread(mddev
->thread
);
405 md_wakeup_thread(mddev
->sync_thread
); /* possibly kick off a reshape */
407 EXPORT_SYMBOL_GPL(mddev_resume
);
409 int mddev_congested(struct mddev
*mddev
, int bits
)
411 return mddev
->suspended
;
413 EXPORT_SYMBOL(mddev_congested
);
416 * Generic flush handling for md
419 static void md_end_flush(struct bio
*bio
, int err
)
421 struct md_rdev
*rdev
= bio
->bi_private
;
422 struct mddev
*mddev
= rdev
->mddev
;
424 rdev_dec_pending(rdev
, mddev
);
426 if (atomic_dec_and_test(&mddev
->flush_pending
)) {
427 /* The pre-request flush has finished */
428 queue_work(md_wq
, &mddev
->flush_work
);
433 static void md_submit_flush_data(struct work_struct
*ws
);
435 static void submit_flushes(struct work_struct
*ws
)
437 struct mddev
*mddev
= container_of(ws
, struct mddev
, flush_work
);
438 struct md_rdev
*rdev
;
440 INIT_WORK(&mddev
->flush_work
, md_submit_flush_data
);
441 atomic_set(&mddev
->flush_pending
, 1);
443 list_for_each_entry_rcu(rdev
, &mddev
->disks
, same_set
)
444 if (rdev
->raid_disk
>= 0 &&
445 !test_bit(Faulty
, &rdev
->flags
)) {
446 /* Take two references, one is dropped
447 * when request finishes, one after
448 * we reclaim rcu_read_lock
451 atomic_inc(&rdev
->nr_pending
);
452 atomic_inc(&rdev
->nr_pending
);
454 bi
= bio_alloc_mddev(GFP_KERNEL
, 0, mddev
);
455 bi
->bi_end_io
= md_end_flush
;
456 bi
->bi_private
= rdev
;
457 bi
->bi_bdev
= rdev
->bdev
;
458 atomic_inc(&mddev
->flush_pending
);
459 submit_bio(WRITE_FLUSH
, bi
);
461 rdev_dec_pending(rdev
, mddev
);
464 if (atomic_dec_and_test(&mddev
->flush_pending
))
465 queue_work(md_wq
, &mddev
->flush_work
);
468 static void md_submit_flush_data(struct work_struct
*ws
)
470 struct mddev
*mddev
= container_of(ws
, struct mddev
, flush_work
);
471 struct bio
*bio
= mddev
->flush_bio
;
473 if (bio
->bi_size
== 0)
474 /* an empty barrier - all done */
477 bio
->bi_rw
&= ~REQ_FLUSH
;
478 mddev
->pers
->make_request(mddev
, bio
);
481 mddev
->flush_bio
= NULL
;
482 wake_up(&mddev
->sb_wait
);
485 void md_flush_request(struct mddev
*mddev
, struct bio
*bio
)
487 spin_lock_irq(&mddev
->write_lock
);
488 wait_event_lock_irq(mddev
->sb_wait
,
490 mddev
->write_lock
, /*nothing*/);
491 mddev
->flush_bio
= bio
;
492 spin_unlock_irq(&mddev
->write_lock
);
494 INIT_WORK(&mddev
->flush_work
, submit_flushes
);
495 queue_work(md_wq
, &mddev
->flush_work
);
497 EXPORT_SYMBOL(md_flush_request
);
499 /* Support for plugging.
500 * This mirrors the plugging support in request_queue, but does not
501 * require having a whole queue or request structures.
502 * We allocate an md_plug_cb for each md device and each thread it gets
503 * plugged on. This links tot the private plug_handle structure in the
504 * personality data where we keep a count of the number of outstanding
505 * plugs so other code can see if a plug is active.
508 struct blk_plug_cb cb
;
512 static void plugger_unplug(struct blk_plug_cb
*cb
)
514 struct md_plug_cb
*mdcb
= container_of(cb
, struct md_plug_cb
, cb
);
515 if (atomic_dec_and_test(&mdcb
->mddev
->plug_cnt
))
516 md_wakeup_thread(mdcb
->mddev
->thread
);
520 /* Check that an unplug wakeup will come shortly.
521 * If not, wakeup the md thread immediately
523 int mddev_check_plugged(struct mddev
*mddev
)
525 struct blk_plug
*plug
= current
->plug
;
526 struct md_plug_cb
*mdcb
;
531 list_for_each_entry(mdcb
, &plug
->cb_list
, cb
.list
) {
532 if (mdcb
->cb
.callback
== plugger_unplug
&&
533 mdcb
->mddev
== mddev
) {
534 /* Already on the list, move to top */
535 if (mdcb
!= list_first_entry(&plug
->cb_list
,
538 list_move(&mdcb
->cb
.list
, &plug
->cb_list
);
542 /* Not currently on the callback list */
543 mdcb
= kmalloc(sizeof(*mdcb
), GFP_ATOMIC
);
548 mdcb
->cb
.callback
= plugger_unplug
;
549 atomic_inc(&mddev
->plug_cnt
);
550 list_add(&mdcb
->cb
.list
, &plug
->cb_list
);
553 EXPORT_SYMBOL_GPL(mddev_check_plugged
);
555 static inline struct mddev
*mddev_get(struct mddev
*mddev
)
557 atomic_inc(&mddev
->active
);
561 static void mddev_delayed_delete(struct work_struct
*ws
);
563 static void mddev_put(struct mddev
*mddev
)
565 struct bio_set
*bs
= NULL
;
567 if (!atomic_dec_and_lock(&mddev
->active
, &all_mddevs_lock
))
569 if (!mddev
->raid_disks
&& list_empty(&mddev
->disks
) &&
570 mddev
->ctime
== 0 && !mddev
->hold_active
) {
571 /* Array is not configured at all, and not held active,
573 list_del_init(&mddev
->all_mddevs
);
575 mddev
->bio_set
= NULL
;
576 if (mddev
->gendisk
) {
577 /* We did a probe so need to clean up. Call
578 * queue_work inside the spinlock so that
579 * flush_workqueue() after mddev_find will
580 * succeed in waiting for the work to be done.
582 INIT_WORK(&mddev
->del_work
, mddev_delayed_delete
);
583 queue_work(md_misc_wq
, &mddev
->del_work
);
587 spin_unlock(&all_mddevs_lock
);
592 void mddev_init(struct mddev
*mddev
)
594 mutex_init(&mddev
->open_mutex
);
595 mutex_init(&mddev
->reconfig_mutex
);
596 mutex_init(&mddev
->bitmap_info
.mutex
);
597 INIT_LIST_HEAD(&mddev
->disks
);
598 INIT_LIST_HEAD(&mddev
->all_mddevs
);
599 init_timer(&mddev
->safemode_timer
);
600 atomic_set(&mddev
->active
, 1);
601 atomic_set(&mddev
->openers
, 0);
602 atomic_set(&mddev
->active_io
, 0);
603 atomic_set(&mddev
->plug_cnt
, 0);
604 spin_lock_init(&mddev
->write_lock
);
605 atomic_set(&mddev
->flush_pending
, 0);
606 init_waitqueue_head(&mddev
->sb_wait
);
607 init_waitqueue_head(&mddev
->recovery_wait
);
608 mddev
->reshape_position
= MaxSector
;
609 mddev
->resync_min
= 0;
610 mddev
->resync_max
= MaxSector
;
611 mddev
->level
= LEVEL_NONE
;
613 EXPORT_SYMBOL_GPL(mddev_init
);
615 static struct mddev
* mddev_find(dev_t unit
)
617 struct mddev
*mddev
, *new = NULL
;
619 if (unit
&& MAJOR(unit
) != MD_MAJOR
)
620 unit
&= ~((1<<MdpMinorShift
)-1);
623 spin_lock(&all_mddevs_lock
);
626 list_for_each_entry(mddev
, &all_mddevs
, all_mddevs
)
627 if (mddev
->unit
== unit
) {
629 spin_unlock(&all_mddevs_lock
);
635 list_add(&new->all_mddevs
, &all_mddevs
);
636 spin_unlock(&all_mddevs_lock
);
637 new->hold_active
= UNTIL_IOCTL
;
641 /* find an unused unit number */
642 static int next_minor
= 512;
643 int start
= next_minor
;
647 dev
= MKDEV(MD_MAJOR
, next_minor
);
649 if (next_minor
> MINORMASK
)
651 if (next_minor
== start
) {
652 /* Oh dear, all in use. */
653 spin_unlock(&all_mddevs_lock
);
659 list_for_each_entry(mddev
, &all_mddevs
, all_mddevs
)
660 if (mddev
->unit
== dev
) {
666 new->md_minor
= MINOR(dev
);
667 new->hold_active
= UNTIL_STOP
;
668 list_add(&new->all_mddevs
, &all_mddevs
);
669 spin_unlock(&all_mddevs_lock
);
672 spin_unlock(&all_mddevs_lock
);
674 new = kzalloc(sizeof(*new), GFP_KERNEL
);
679 if (MAJOR(unit
) == MD_MAJOR
)
680 new->md_minor
= MINOR(unit
);
682 new->md_minor
= MINOR(unit
) >> MdpMinorShift
;
689 static inline int mddev_lock(struct mddev
* mddev
)
691 return mutex_lock_interruptible(&mddev
->reconfig_mutex
);
694 static inline int mddev_is_locked(struct mddev
*mddev
)
696 return mutex_is_locked(&mddev
->reconfig_mutex
);
699 static inline int mddev_trylock(struct mddev
* mddev
)
701 return mutex_trylock(&mddev
->reconfig_mutex
);
704 static struct attribute_group md_redundancy_group
;
706 static void mddev_unlock(struct mddev
* mddev
)
708 if (mddev
->to_remove
) {
709 /* These cannot be removed under reconfig_mutex as
710 * an access to the files will try to take reconfig_mutex
711 * while holding the file unremovable, which leads to
713 * So hold set sysfs_active while the remove in happeing,
714 * and anything else which might set ->to_remove or my
715 * otherwise change the sysfs namespace will fail with
716 * -EBUSY if sysfs_active is still set.
717 * We set sysfs_active under reconfig_mutex and elsewhere
718 * test it under the same mutex to ensure its correct value
721 struct attribute_group
*to_remove
= mddev
->to_remove
;
722 mddev
->to_remove
= NULL
;
723 mddev
->sysfs_active
= 1;
724 mutex_unlock(&mddev
->reconfig_mutex
);
726 if (mddev
->kobj
.sd
) {
727 if (to_remove
!= &md_redundancy_group
)
728 sysfs_remove_group(&mddev
->kobj
, to_remove
);
729 if (mddev
->pers
== NULL
||
730 mddev
->pers
->sync_request
== NULL
) {
731 sysfs_remove_group(&mddev
->kobj
, &md_redundancy_group
);
732 if (mddev
->sysfs_action
)
733 sysfs_put(mddev
->sysfs_action
);
734 mddev
->sysfs_action
= NULL
;
737 mddev
->sysfs_active
= 0;
739 mutex_unlock(&mddev
->reconfig_mutex
);
741 /* As we've dropped the mutex we need a spinlock to
742 * make sure the thread doesn't disappear
744 spin_lock(&pers_lock
);
745 md_wakeup_thread(mddev
->thread
);
746 spin_unlock(&pers_lock
);
749 static struct md_rdev
* find_rdev_nr(struct mddev
*mddev
, int nr
)
751 struct md_rdev
*rdev
;
753 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
754 if (rdev
->desc_nr
== nr
)
760 static struct md_rdev
* find_rdev(struct mddev
* mddev
, dev_t dev
)
762 struct md_rdev
*rdev
;
764 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
765 if (rdev
->bdev
->bd_dev
== dev
)
771 static struct md_personality
*find_pers(int level
, char *clevel
)
773 struct md_personality
*pers
;
774 list_for_each_entry(pers
, &pers_list
, list
) {
775 if (level
!= LEVEL_NONE
&& pers
->level
== level
)
777 if (strcmp(pers
->name
, clevel
)==0)
783 /* return the offset of the super block in 512byte sectors */
784 static inline sector_t
calc_dev_sboffset(struct md_rdev
*rdev
)
786 sector_t num_sectors
= i_size_read(rdev
->bdev
->bd_inode
) / 512;
787 return MD_NEW_SIZE_SECTORS(num_sectors
);
790 static int alloc_disk_sb(struct md_rdev
* rdev
)
795 rdev
->sb_page
= alloc_page(GFP_KERNEL
);
796 if (!rdev
->sb_page
) {
797 printk(KERN_ALERT
"md: out of memory.\n");
804 static void free_disk_sb(struct md_rdev
* rdev
)
807 put_page(rdev
->sb_page
);
809 rdev
->sb_page
= NULL
;
814 put_page(rdev
->bb_page
);
815 rdev
->bb_page
= NULL
;
820 static void super_written(struct bio
*bio
, int error
)
822 struct md_rdev
*rdev
= bio
->bi_private
;
823 struct mddev
*mddev
= rdev
->mddev
;
825 if (error
|| !test_bit(BIO_UPTODATE
, &bio
->bi_flags
)) {
826 printk("md: super_written gets error=%d, uptodate=%d\n",
827 error
, test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
828 WARN_ON(test_bit(BIO_UPTODATE
, &bio
->bi_flags
));
829 md_error(mddev
, rdev
);
832 if (atomic_dec_and_test(&mddev
->pending_writes
))
833 wake_up(&mddev
->sb_wait
);
837 void md_super_write(struct mddev
*mddev
, struct md_rdev
*rdev
,
838 sector_t sector
, int size
, struct page
*page
)
840 /* write first size bytes of page to sector of rdev
841 * Increment mddev->pending_writes before returning
842 * and decrement it on completion, waking up sb_wait
843 * if zero is reached.
844 * If an error occurred, call md_error
846 struct bio
*bio
= bio_alloc_mddev(GFP_NOIO
, 1, mddev
);
848 bio
->bi_bdev
= rdev
->meta_bdev
? rdev
->meta_bdev
: rdev
->bdev
;
849 bio
->bi_sector
= sector
;
850 bio_add_page(bio
, page
, size
, 0);
851 bio
->bi_private
= rdev
;
852 bio
->bi_end_io
= super_written
;
854 atomic_inc(&mddev
->pending_writes
);
855 submit_bio(WRITE_FLUSH_FUA
, bio
);
858 void md_super_wait(struct mddev
*mddev
)
860 /* wait for all superblock writes that were scheduled to complete */
863 prepare_to_wait(&mddev
->sb_wait
, &wq
, TASK_UNINTERRUPTIBLE
);
864 if (atomic_read(&mddev
->pending_writes
)==0)
868 finish_wait(&mddev
->sb_wait
, &wq
);
871 static void bi_complete(struct bio
*bio
, int error
)
873 complete((struct completion
*)bio
->bi_private
);
876 int sync_page_io(struct md_rdev
*rdev
, sector_t sector
, int size
,
877 struct page
*page
, int rw
, bool metadata_op
)
879 struct bio
*bio
= bio_alloc_mddev(GFP_NOIO
, 1, rdev
->mddev
);
880 struct completion event
;
885 bio
->bi_bdev
= (metadata_op
&& rdev
->meta_bdev
) ?
886 rdev
->meta_bdev
: rdev
->bdev
;
888 bio
->bi_sector
= sector
+ rdev
->sb_start
;
890 bio
->bi_sector
= sector
+ rdev
->data_offset
;
891 bio_add_page(bio
, page
, size
, 0);
892 init_completion(&event
);
893 bio
->bi_private
= &event
;
894 bio
->bi_end_io
= bi_complete
;
896 wait_for_completion(&event
);
898 ret
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
902 EXPORT_SYMBOL_GPL(sync_page_io
);
904 static int read_disk_sb(struct md_rdev
* rdev
, int size
)
906 char b
[BDEVNAME_SIZE
];
907 if (!rdev
->sb_page
) {
915 if (!sync_page_io(rdev
, 0, size
, rdev
->sb_page
, READ
, true))
921 printk(KERN_WARNING
"md: disabled device %s, could not read superblock.\n",
922 bdevname(rdev
->bdev
,b
));
926 static int uuid_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
928 return sb1
->set_uuid0
== sb2
->set_uuid0
&&
929 sb1
->set_uuid1
== sb2
->set_uuid1
&&
930 sb1
->set_uuid2
== sb2
->set_uuid2
&&
931 sb1
->set_uuid3
== sb2
->set_uuid3
;
934 static int sb_equal(mdp_super_t
*sb1
, mdp_super_t
*sb2
)
937 mdp_super_t
*tmp1
, *tmp2
;
939 tmp1
= kmalloc(sizeof(*tmp1
),GFP_KERNEL
);
940 tmp2
= kmalloc(sizeof(*tmp2
),GFP_KERNEL
);
942 if (!tmp1
|| !tmp2
) {
944 printk(KERN_INFO
"md.c sb_equal(): failed to allocate memory!\n");
952 * nr_disks is not constant
957 ret
= (memcmp(tmp1
, tmp2
, MD_SB_GENERIC_CONSTANT_WORDS
* 4) == 0);
965 static u32
md_csum_fold(u32 csum
)
967 csum
= (csum
& 0xffff) + (csum
>> 16);
968 return (csum
& 0xffff) + (csum
>> 16);
971 static unsigned int calc_sb_csum(mdp_super_t
* sb
)
974 u32
*sb32
= (u32
*)sb
;
976 unsigned int disk_csum
, csum
;
978 disk_csum
= sb
->sb_csum
;
981 for (i
= 0; i
< MD_SB_BYTES
/4 ; i
++)
983 csum
= (newcsum
& 0xffffffff) + (newcsum
>>32);
987 /* This used to use csum_partial, which was wrong for several
988 * reasons including that different results are returned on
989 * different architectures. It isn't critical that we get exactly
990 * the same return value as before (we always csum_fold before
991 * testing, and that removes any differences). However as we
992 * know that csum_partial always returned a 16bit value on
993 * alphas, do a fold to maximise conformity to previous behaviour.
995 sb
->sb_csum
= md_csum_fold(disk_csum
);
997 sb
->sb_csum
= disk_csum
;
1004 * Handle superblock details.
1005 * We want to be able to handle multiple superblock formats
1006 * so we have a common interface to them all, and an array of
1007 * different handlers.
1008 * We rely on user-space to write the initial superblock, and support
1009 * reading and updating of superblocks.
1010 * Interface methods are:
1011 * int load_super(struct md_rdev *dev, struct md_rdev *refdev, int minor_version)
1012 * loads and validates a superblock on dev.
1013 * if refdev != NULL, compare superblocks on both devices
1015 * 0 - dev has a superblock that is compatible with refdev
1016 * 1 - dev has a superblock that is compatible and newer than refdev
1017 * so dev should be used as the refdev in future
1018 * -EINVAL superblock incompatible or invalid
1019 * -othererror e.g. -EIO
1021 * int validate_super(struct mddev *mddev, struct md_rdev *dev)
1022 * Verify that dev is acceptable into mddev.
1023 * The first time, mddev->raid_disks will be 0, and data from
1024 * dev should be merged in. Subsequent calls check that dev
1025 * is new enough. Return 0 or -EINVAL
1027 * void sync_super(struct mddev *mddev, struct md_rdev *dev)
1028 * Update the superblock for rdev with data in mddev
1029 * This does not write to disc.
1035 struct module
*owner
;
1036 int (*load_super
)(struct md_rdev
*rdev
, struct md_rdev
*refdev
,
1038 int (*validate_super
)(struct mddev
*mddev
, struct md_rdev
*rdev
);
1039 void (*sync_super
)(struct mddev
*mddev
, struct md_rdev
*rdev
);
1040 unsigned long long (*rdev_size_change
)(struct md_rdev
*rdev
,
1041 sector_t num_sectors
);
1045 * Check that the given mddev has no bitmap.
1047 * This function is called from the run method of all personalities that do not
1048 * support bitmaps. It prints an error message and returns non-zero if mddev
1049 * has a bitmap. Otherwise, it returns 0.
1052 int md_check_no_bitmap(struct mddev
*mddev
)
1054 if (!mddev
->bitmap_info
.file
&& !mddev
->bitmap_info
.offset
)
1056 printk(KERN_ERR
"%s: bitmaps are not supported for %s\n",
1057 mdname(mddev
), mddev
->pers
->name
);
1060 EXPORT_SYMBOL(md_check_no_bitmap
);
1063 * load_super for 0.90.0
1065 static int super_90_load(struct md_rdev
*rdev
, struct md_rdev
*refdev
, int minor_version
)
1067 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
1072 * Calculate the position of the superblock (512byte sectors),
1073 * it's at the end of the disk.
1075 * It also happens to be a multiple of 4Kb.
1077 rdev
->sb_start
= calc_dev_sboffset(rdev
);
1079 ret
= read_disk_sb(rdev
, MD_SB_BYTES
);
1080 if (ret
) return ret
;
1084 bdevname(rdev
->bdev
, b
);
1085 sb
= page_address(rdev
->sb_page
);
1087 if (sb
->md_magic
!= MD_SB_MAGIC
) {
1088 printk(KERN_ERR
"md: invalid raid superblock magic on %s\n",
1093 if (sb
->major_version
!= 0 ||
1094 sb
->minor_version
< 90 ||
1095 sb
->minor_version
> 91) {
1096 printk(KERN_WARNING
"Bad version number %d.%d on %s\n",
1097 sb
->major_version
, sb
->minor_version
,
1102 if (sb
->raid_disks
<= 0)
1105 if (md_csum_fold(calc_sb_csum(sb
)) != md_csum_fold(sb
->sb_csum
)) {
1106 printk(KERN_WARNING
"md: invalid superblock checksum on %s\n",
1111 rdev
->preferred_minor
= sb
->md_minor
;
1112 rdev
->data_offset
= 0;
1113 rdev
->sb_size
= MD_SB_BYTES
;
1114 rdev
->badblocks
.shift
= -1;
1116 if (sb
->level
== LEVEL_MULTIPATH
)
1119 rdev
->desc_nr
= sb
->this_disk
.number
;
1125 mdp_super_t
*refsb
= page_address(refdev
->sb_page
);
1126 if (!uuid_equal(refsb
, sb
)) {
1127 printk(KERN_WARNING
"md: %s has different UUID to %s\n",
1128 b
, bdevname(refdev
->bdev
,b2
));
1131 if (!sb_equal(refsb
, sb
)) {
1132 printk(KERN_WARNING
"md: %s has same UUID"
1133 " but different superblock to %s\n",
1134 b
, bdevname(refdev
->bdev
, b2
));
1138 ev2
= md_event(refsb
);
1144 rdev
->sectors
= rdev
->sb_start
;
1145 /* Limit to 4TB as metadata cannot record more than that */
1146 if (rdev
->sectors
>= (2ULL << 32))
1147 rdev
->sectors
= (2ULL << 32) - 2;
1149 if (rdev
->sectors
< ((sector_t
)sb
->size
) * 2 && sb
->level
>= 1)
1150 /* "this cannot possibly happen" ... */
1158 * validate_super for 0.90.0
1160 static int super_90_validate(struct mddev
*mddev
, struct md_rdev
*rdev
)
1163 mdp_super_t
*sb
= page_address(rdev
->sb_page
);
1164 __u64 ev1
= md_event(sb
);
1166 rdev
->raid_disk
= -1;
1167 clear_bit(Faulty
, &rdev
->flags
);
1168 clear_bit(In_sync
, &rdev
->flags
);
1169 clear_bit(WriteMostly
, &rdev
->flags
);
1171 if (mddev
->raid_disks
== 0) {
1172 mddev
->major_version
= 0;
1173 mddev
->minor_version
= sb
->minor_version
;
1174 mddev
->patch_version
= sb
->patch_version
;
1175 mddev
->external
= 0;
1176 mddev
->chunk_sectors
= sb
->chunk_size
>> 9;
1177 mddev
->ctime
= sb
->ctime
;
1178 mddev
->utime
= sb
->utime
;
1179 mddev
->level
= sb
->level
;
1180 mddev
->clevel
[0] = 0;
1181 mddev
->layout
= sb
->layout
;
1182 mddev
->raid_disks
= sb
->raid_disks
;
1183 mddev
->dev_sectors
= ((sector_t
)sb
->size
) * 2;
1184 mddev
->events
= ev1
;
1185 mddev
->bitmap_info
.offset
= 0;
1186 mddev
->bitmap_info
.default_offset
= MD_SB_BYTES
>> 9;
1188 if (mddev
->minor_version
>= 91) {
1189 mddev
->reshape_position
= sb
->reshape_position
;
1190 mddev
->delta_disks
= sb
->delta_disks
;
1191 mddev
->new_level
= sb
->new_level
;
1192 mddev
->new_layout
= sb
->new_layout
;
1193 mddev
->new_chunk_sectors
= sb
->new_chunk
>> 9;
1195 mddev
->reshape_position
= MaxSector
;
1196 mddev
->delta_disks
= 0;
1197 mddev
->new_level
= mddev
->level
;
1198 mddev
->new_layout
= mddev
->layout
;
1199 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
1202 if (sb
->state
& (1<<MD_SB_CLEAN
))
1203 mddev
->recovery_cp
= MaxSector
;
1205 if (sb
->events_hi
== sb
->cp_events_hi
&&
1206 sb
->events_lo
== sb
->cp_events_lo
) {
1207 mddev
->recovery_cp
= sb
->recovery_cp
;
1209 mddev
->recovery_cp
= 0;
1212 memcpy(mddev
->uuid
+0, &sb
->set_uuid0
, 4);
1213 memcpy(mddev
->uuid
+4, &sb
->set_uuid1
, 4);
1214 memcpy(mddev
->uuid
+8, &sb
->set_uuid2
, 4);
1215 memcpy(mddev
->uuid
+12,&sb
->set_uuid3
, 4);
1217 mddev
->max_disks
= MD_SB_DISKS
;
1219 if (sb
->state
& (1<<MD_SB_BITMAP_PRESENT
) &&
1220 mddev
->bitmap_info
.file
== NULL
)
1221 mddev
->bitmap_info
.offset
=
1222 mddev
->bitmap_info
.default_offset
;
1224 } else if (mddev
->pers
== NULL
) {
1225 /* Insist on good event counter while assembling, except
1226 * for spares (which don't need an event count) */
1228 if (sb
->disks
[rdev
->desc_nr
].state
& (
1229 (1<<MD_DISK_SYNC
) | (1 << MD_DISK_ACTIVE
)))
1230 if (ev1
< mddev
->events
)
1232 } else if (mddev
->bitmap
) {
1233 /* if adding to array with a bitmap, then we can accept an
1234 * older device ... but not too old.
1236 if (ev1
< mddev
->bitmap
->events_cleared
)
1239 if (ev1
< mddev
->events
)
1240 /* just a hot-add of a new device, leave raid_disk at -1 */
1244 if (mddev
->level
!= LEVEL_MULTIPATH
) {
1245 desc
= sb
->disks
+ rdev
->desc_nr
;
1247 if (desc
->state
& (1<<MD_DISK_FAULTY
))
1248 set_bit(Faulty
, &rdev
->flags
);
1249 else if (desc
->state
& (1<<MD_DISK_SYNC
) /* &&
1250 desc->raid_disk < mddev->raid_disks */) {
1251 set_bit(In_sync
, &rdev
->flags
);
1252 rdev
->raid_disk
= desc
->raid_disk
;
1253 } else if (desc
->state
& (1<<MD_DISK_ACTIVE
)) {
1254 /* active but not in sync implies recovery up to
1255 * reshape position. We don't know exactly where
1256 * that is, so set to zero for now */
1257 if (mddev
->minor_version
>= 91) {
1258 rdev
->recovery_offset
= 0;
1259 rdev
->raid_disk
= desc
->raid_disk
;
1262 if (desc
->state
& (1<<MD_DISK_WRITEMOSTLY
))
1263 set_bit(WriteMostly
, &rdev
->flags
);
1264 } else /* MULTIPATH are always insync */
1265 set_bit(In_sync
, &rdev
->flags
);
1270 * sync_super for 0.90.0
1272 static void super_90_sync(struct mddev
*mddev
, struct md_rdev
*rdev
)
1275 struct md_rdev
*rdev2
;
1276 int next_spare
= mddev
->raid_disks
;
1279 /* make rdev->sb match mddev data..
1282 * 2/ Add info for each disk, keeping track of highest desc_nr (next_spare);
1283 * 3/ any empty disks < next_spare become removed
1285 * disks[0] gets initialised to REMOVED because
1286 * we cannot be sure from other fields if it has
1287 * been initialised or not.
1290 int active
=0, working
=0,failed
=0,spare
=0,nr_disks
=0;
1292 rdev
->sb_size
= MD_SB_BYTES
;
1294 sb
= page_address(rdev
->sb_page
);
1296 memset(sb
, 0, sizeof(*sb
));
1298 sb
->md_magic
= MD_SB_MAGIC
;
1299 sb
->major_version
= mddev
->major_version
;
1300 sb
->patch_version
= mddev
->patch_version
;
1301 sb
->gvalid_words
= 0; /* ignored */
1302 memcpy(&sb
->set_uuid0
, mddev
->uuid
+0, 4);
1303 memcpy(&sb
->set_uuid1
, mddev
->uuid
+4, 4);
1304 memcpy(&sb
->set_uuid2
, mddev
->uuid
+8, 4);
1305 memcpy(&sb
->set_uuid3
, mddev
->uuid
+12,4);
1307 sb
->ctime
= mddev
->ctime
;
1308 sb
->level
= mddev
->level
;
1309 sb
->size
= mddev
->dev_sectors
/ 2;
1310 sb
->raid_disks
= mddev
->raid_disks
;
1311 sb
->md_minor
= mddev
->md_minor
;
1312 sb
->not_persistent
= 0;
1313 sb
->utime
= mddev
->utime
;
1315 sb
->events_hi
= (mddev
->events
>>32);
1316 sb
->events_lo
= (u32
)mddev
->events
;
1318 if (mddev
->reshape_position
== MaxSector
)
1319 sb
->minor_version
= 90;
1321 sb
->minor_version
= 91;
1322 sb
->reshape_position
= mddev
->reshape_position
;
1323 sb
->new_level
= mddev
->new_level
;
1324 sb
->delta_disks
= mddev
->delta_disks
;
1325 sb
->new_layout
= mddev
->new_layout
;
1326 sb
->new_chunk
= mddev
->new_chunk_sectors
<< 9;
1328 mddev
->minor_version
= sb
->minor_version
;
1331 sb
->recovery_cp
= mddev
->recovery_cp
;
1332 sb
->cp_events_hi
= (mddev
->events
>>32);
1333 sb
->cp_events_lo
= (u32
)mddev
->events
;
1334 if (mddev
->recovery_cp
== MaxSector
)
1335 sb
->state
= (1<< MD_SB_CLEAN
);
1337 sb
->recovery_cp
= 0;
1339 sb
->layout
= mddev
->layout
;
1340 sb
->chunk_size
= mddev
->chunk_sectors
<< 9;
1342 if (mddev
->bitmap
&& mddev
->bitmap_info
.file
== NULL
)
1343 sb
->state
|= (1<<MD_SB_BITMAP_PRESENT
);
1345 sb
->disks
[0].state
= (1<<MD_DISK_REMOVED
);
1346 list_for_each_entry(rdev2
, &mddev
->disks
, same_set
) {
1349 int is_active
= test_bit(In_sync
, &rdev2
->flags
);
1351 if (rdev2
->raid_disk
>= 0 &&
1352 sb
->minor_version
>= 91)
1353 /* we have nowhere to store the recovery_offset,
1354 * but if it is not below the reshape_position,
1355 * we can piggy-back on that.
1358 if (rdev2
->raid_disk
< 0 ||
1359 test_bit(Faulty
, &rdev2
->flags
))
1362 desc_nr
= rdev2
->raid_disk
;
1364 desc_nr
= next_spare
++;
1365 rdev2
->desc_nr
= desc_nr
;
1366 d
= &sb
->disks
[rdev2
->desc_nr
];
1368 d
->number
= rdev2
->desc_nr
;
1369 d
->major
= MAJOR(rdev2
->bdev
->bd_dev
);
1370 d
->minor
= MINOR(rdev2
->bdev
->bd_dev
);
1372 d
->raid_disk
= rdev2
->raid_disk
;
1374 d
->raid_disk
= rdev2
->desc_nr
; /* compatibility */
1375 if (test_bit(Faulty
, &rdev2
->flags
))
1376 d
->state
= (1<<MD_DISK_FAULTY
);
1377 else if (is_active
) {
1378 d
->state
= (1<<MD_DISK_ACTIVE
);
1379 if (test_bit(In_sync
, &rdev2
->flags
))
1380 d
->state
|= (1<<MD_DISK_SYNC
);
1388 if (test_bit(WriteMostly
, &rdev2
->flags
))
1389 d
->state
|= (1<<MD_DISK_WRITEMOSTLY
);
1391 /* now set the "removed" and "faulty" bits on any missing devices */
1392 for (i
=0 ; i
< mddev
->raid_disks
; i
++) {
1393 mdp_disk_t
*d
= &sb
->disks
[i
];
1394 if (d
->state
== 0 && d
->number
== 0) {
1397 d
->state
= (1<<MD_DISK_REMOVED
);
1398 d
->state
|= (1<<MD_DISK_FAULTY
);
1402 sb
->nr_disks
= nr_disks
;
1403 sb
->active_disks
= active
;
1404 sb
->working_disks
= working
;
1405 sb
->failed_disks
= failed
;
1406 sb
->spare_disks
= spare
;
1408 sb
->this_disk
= sb
->disks
[rdev
->desc_nr
];
1409 sb
->sb_csum
= calc_sb_csum(sb
);
1413 * rdev_size_change for 0.90.0
1415 static unsigned long long
1416 super_90_rdev_size_change(struct md_rdev
*rdev
, sector_t num_sectors
)
1418 if (num_sectors
&& num_sectors
< rdev
->mddev
->dev_sectors
)
1419 return 0; /* component must fit device */
1420 if (rdev
->mddev
->bitmap_info
.offset
)
1421 return 0; /* can't move bitmap */
1422 rdev
->sb_start
= calc_dev_sboffset(rdev
);
1423 if (!num_sectors
|| num_sectors
> rdev
->sb_start
)
1424 num_sectors
= rdev
->sb_start
;
1425 /* Limit to 4TB as metadata cannot record more than that.
1426 * 4TB == 2^32 KB, or 2*2^32 sectors.
1428 if (num_sectors
>= (2ULL << 32))
1429 num_sectors
= (2ULL << 32) - 2;
1430 md_super_write(rdev
->mddev
, rdev
, rdev
->sb_start
, rdev
->sb_size
,
1432 md_super_wait(rdev
->mddev
);
1438 * version 1 superblock
1441 static __le32
calc_sb_1_csum(struct mdp_superblock_1
* sb
)
1445 unsigned long long newcsum
;
1446 int size
= 256 + le32_to_cpu(sb
->max_dev
)*2;
1447 __le32
*isuper
= (__le32
*)sb
;
1450 disk_csum
= sb
->sb_csum
;
1453 for (i
=0; size
>=4; size
-= 4 )
1454 newcsum
+= le32_to_cpu(*isuper
++);
1457 newcsum
+= le16_to_cpu(*(__le16
*) isuper
);
1459 csum
= (newcsum
& 0xffffffff) + (newcsum
>> 32);
1460 sb
->sb_csum
= disk_csum
;
1461 return cpu_to_le32(csum
);
1464 static int md_set_badblocks(struct badblocks
*bb
, sector_t s
, int sectors
,
1466 static int super_1_load(struct md_rdev
*rdev
, struct md_rdev
*refdev
, int minor_version
)
1468 struct mdp_superblock_1
*sb
;
1471 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
1475 * Calculate the position of the superblock in 512byte sectors.
1476 * It is always aligned to a 4K boundary and
1477 * depeding on minor_version, it can be:
1478 * 0: At least 8K, but less than 12K, from end of device
1479 * 1: At start of device
1480 * 2: 4K from start of device.
1482 switch(minor_version
) {
1484 sb_start
= i_size_read(rdev
->bdev
->bd_inode
) >> 9;
1486 sb_start
&= ~(sector_t
)(4*2-1);
1497 rdev
->sb_start
= sb_start
;
1499 /* superblock is rarely larger than 1K, but it can be larger,
1500 * and it is safe to read 4k, so we do that
1502 ret
= read_disk_sb(rdev
, 4096);
1503 if (ret
) return ret
;
1506 sb
= page_address(rdev
->sb_page
);
1508 if (sb
->magic
!= cpu_to_le32(MD_SB_MAGIC
) ||
1509 sb
->major_version
!= cpu_to_le32(1) ||
1510 le32_to_cpu(sb
->max_dev
) > (4096-256)/2 ||
1511 le64_to_cpu(sb
->super_offset
) != rdev
->sb_start
||
1512 (le32_to_cpu(sb
->feature_map
) & ~MD_FEATURE_ALL
) != 0)
1515 if (calc_sb_1_csum(sb
) != sb
->sb_csum
) {
1516 printk("md: invalid superblock checksum on %s\n",
1517 bdevname(rdev
->bdev
,b
));
1520 if (le64_to_cpu(sb
->data_size
) < 10) {
1521 printk("md: data_size too small on %s\n",
1522 bdevname(rdev
->bdev
,b
));
1526 rdev
->preferred_minor
= 0xffff;
1527 rdev
->data_offset
= le64_to_cpu(sb
->data_offset
);
1528 atomic_set(&rdev
->corrected_errors
, le32_to_cpu(sb
->cnt_corrected_read
));
1530 rdev
->sb_size
= le32_to_cpu(sb
->max_dev
) * 2 + 256;
1531 bmask
= queue_logical_block_size(rdev
->bdev
->bd_disk
->queue
)-1;
1532 if (rdev
->sb_size
& bmask
)
1533 rdev
->sb_size
= (rdev
->sb_size
| bmask
) + 1;
1536 && rdev
->data_offset
< sb_start
+ (rdev
->sb_size
/512))
1539 if (sb
->level
== cpu_to_le32(LEVEL_MULTIPATH
))
1542 rdev
->desc_nr
= le32_to_cpu(sb
->dev_number
);
1544 if (!rdev
->bb_page
) {
1545 rdev
->bb_page
= alloc_page(GFP_KERNEL
);
1549 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_BAD_BLOCKS
) &&
1550 rdev
->badblocks
.count
== 0) {
1551 /* need to load the bad block list.
1552 * Currently we limit it to one page.
1558 int sectors
= le16_to_cpu(sb
->bblog_size
);
1559 if (sectors
> (PAGE_SIZE
/ 512))
1561 offset
= le32_to_cpu(sb
->bblog_offset
);
1564 bb_sector
= (long long)offset
;
1565 if (!sync_page_io(rdev
, bb_sector
, sectors
<< 9,
1566 rdev
->bb_page
, READ
, true))
1568 bbp
= (u64
*)page_address(rdev
->bb_page
);
1569 rdev
->badblocks
.shift
= sb
->bblog_shift
;
1570 for (i
= 0 ; i
< (sectors
<< (9-3)) ; i
++, bbp
++) {
1571 u64 bb
= le64_to_cpu(*bbp
);
1572 int count
= bb
& (0x3ff);
1573 u64 sector
= bb
>> 10;
1574 sector
<<= sb
->bblog_shift
;
1575 count
<<= sb
->bblog_shift
;
1578 if (md_set_badblocks(&rdev
->badblocks
,
1579 sector
, count
, 1) == 0)
1582 } else if (sb
->bblog_offset
== 0)
1583 rdev
->badblocks
.shift
= -1;
1589 struct mdp_superblock_1
*refsb
= page_address(refdev
->sb_page
);
1591 if (memcmp(sb
->set_uuid
, refsb
->set_uuid
, 16) != 0 ||
1592 sb
->level
!= refsb
->level
||
1593 sb
->layout
!= refsb
->layout
||
1594 sb
->chunksize
!= refsb
->chunksize
) {
1595 printk(KERN_WARNING
"md: %s has strangely different"
1596 " superblock to %s\n",
1597 bdevname(rdev
->bdev
,b
),
1598 bdevname(refdev
->bdev
,b2
));
1601 ev1
= le64_to_cpu(sb
->events
);
1602 ev2
= le64_to_cpu(refsb
->events
);
1610 rdev
->sectors
= (i_size_read(rdev
->bdev
->bd_inode
) >> 9) -
1611 le64_to_cpu(sb
->data_offset
);
1613 rdev
->sectors
= rdev
->sb_start
;
1614 if (rdev
->sectors
< le64_to_cpu(sb
->data_size
))
1616 rdev
->sectors
= le64_to_cpu(sb
->data_size
);
1617 if (le64_to_cpu(sb
->size
) > rdev
->sectors
)
1622 static int super_1_validate(struct mddev
*mddev
, struct md_rdev
*rdev
)
1624 struct mdp_superblock_1
*sb
= page_address(rdev
->sb_page
);
1625 __u64 ev1
= le64_to_cpu(sb
->events
);
1627 rdev
->raid_disk
= -1;
1628 clear_bit(Faulty
, &rdev
->flags
);
1629 clear_bit(In_sync
, &rdev
->flags
);
1630 clear_bit(WriteMostly
, &rdev
->flags
);
1632 if (mddev
->raid_disks
== 0) {
1633 mddev
->major_version
= 1;
1634 mddev
->patch_version
= 0;
1635 mddev
->external
= 0;
1636 mddev
->chunk_sectors
= le32_to_cpu(sb
->chunksize
);
1637 mddev
->ctime
= le64_to_cpu(sb
->ctime
) & ((1ULL << 32)-1);
1638 mddev
->utime
= le64_to_cpu(sb
->utime
) & ((1ULL << 32)-1);
1639 mddev
->level
= le32_to_cpu(sb
->level
);
1640 mddev
->clevel
[0] = 0;
1641 mddev
->layout
= le32_to_cpu(sb
->layout
);
1642 mddev
->raid_disks
= le32_to_cpu(sb
->raid_disks
);
1643 mddev
->dev_sectors
= le64_to_cpu(sb
->size
);
1644 mddev
->events
= ev1
;
1645 mddev
->bitmap_info
.offset
= 0;
1646 mddev
->bitmap_info
.default_offset
= 1024 >> 9;
1648 mddev
->recovery_cp
= le64_to_cpu(sb
->resync_offset
);
1649 memcpy(mddev
->uuid
, sb
->set_uuid
, 16);
1651 mddev
->max_disks
= (4096-256)/2;
1653 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_BITMAP_OFFSET
) &&
1654 mddev
->bitmap_info
.file
== NULL
)
1655 mddev
->bitmap_info
.offset
=
1656 (__s32
)le32_to_cpu(sb
->bitmap_offset
);
1658 if ((le32_to_cpu(sb
->feature_map
) & MD_FEATURE_RESHAPE_ACTIVE
)) {
1659 mddev
->reshape_position
= le64_to_cpu(sb
->reshape_position
);
1660 mddev
->delta_disks
= le32_to_cpu(sb
->delta_disks
);
1661 mddev
->new_level
= le32_to_cpu(sb
->new_level
);
1662 mddev
->new_layout
= le32_to_cpu(sb
->new_layout
);
1663 mddev
->new_chunk_sectors
= le32_to_cpu(sb
->new_chunk
);
1665 mddev
->reshape_position
= MaxSector
;
1666 mddev
->delta_disks
= 0;
1667 mddev
->new_level
= mddev
->level
;
1668 mddev
->new_layout
= mddev
->layout
;
1669 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
1672 } else if (mddev
->pers
== NULL
) {
1673 /* Insist of good event counter while assembling, except for
1674 * spares (which don't need an event count) */
1676 if (rdev
->desc_nr
>= 0 &&
1677 rdev
->desc_nr
< le32_to_cpu(sb
->max_dev
) &&
1678 le16_to_cpu(sb
->dev_roles
[rdev
->desc_nr
]) < 0xfffe)
1679 if (ev1
< mddev
->events
)
1681 } else if (mddev
->bitmap
) {
1682 /* If adding to array with a bitmap, then we can accept an
1683 * older device, but not too old.
1685 if (ev1
< mddev
->bitmap
->events_cleared
)
1688 if (ev1
< mddev
->events
)
1689 /* just a hot-add of a new device, leave raid_disk at -1 */
1692 if (mddev
->level
!= LEVEL_MULTIPATH
) {
1694 if (rdev
->desc_nr
< 0 ||
1695 rdev
->desc_nr
>= le32_to_cpu(sb
->max_dev
)) {
1699 role
= le16_to_cpu(sb
->dev_roles
[rdev
->desc_nr
]);
1701 case 0xffff: /* spare */
1703 case 0xfffe: /* faulty */
1704 set_bit(Faulty
, &rdev
->flags
);
1707 if ((le32_to_cpu(sb
->feature_map
) &
1708 MD_FEATURE_RECOVERY_OFFSET
))
1709 rdev
->recovery_offset
= le64_to_cpu(sb
->recovery_offset
);
1711 set_bit(In_sync
, &rdev
->flags
);
1712 rdev
->raid_disk
= role
;
1715 if (sb
->devflags
& WriteMostly1
)
1716 set_bit(WriteMostly
, &rdev
->flags
);
1717 } else /* MULTIPATH are always insync */
1718 set_bit(In_sync
, &rdev
->flags
);
1723 static void super_1_sync(struct mddev
*mddev
, struct md_rdev
*rdev
)
1725 struct mdp_superblock_1
*sb
;
1726 struct md_rdev
*rdev2
;
1728 /* make rdev->sb match mddev and rdev data. */
1730 sb
= page_address(rdev
->sb_page
);
1732 sb
->feature_map
= 0;
1734 sb
->recovery_offset
= cpu_to_le64(0);
1735 memset(sb
->pad1
, 0, sizeof(sb
->pad1
));
1736 memset(sb
->pad3
, 0, sizeof(sb
->pad3
));
1738 sb
->utime
= cpu_to_le64((__u64
)mddev
->utime
);
1739 sb
->events
= cpu_to_le64(mddev
->events
);
1741 sb
->resync_offset
= cpu_to_le64(mddev
->recovery_cp
);
1743 sb
->resync_offset
= cpu_to_le64(0);
1745 sb
->cnt_corrected_read
= cpu_to_le32(atomic_read(&rdev
->corrected_errors
));
1747 sb
->raid_disks
= cpu_to_le32(mddev
->raid_disks
);
1748 sb
->size
= cpu_to_le64(mddev
->dev_sectors
);
1749 sb
->chunksize
= cpu_to_le32(mddev
->chunk_sectors
);
1750 sb
->level
= cpu_to_le32(mddev
->level
);
1751 sb
->layout
= cpu_to_le32(mddev
->layout
);
1753 if (test_bit(WriteMostly
, &rdev
->flags
))
1754 sb
->devflags
|= WriteMostly1
;
1756 sb
->devflags
&= ~WriteMostly1
;
1758 if (mddev
->bitmap
&& mddev
->bitmap_info
.file
== NULL
) {
1759 sb
->bitmap_offset
= cpu_to_le32((__u32
)mddev
->bitmap_info
.offset
);
1760 sb
->feature_map
= cpu_to_le32(MD_FEATURE_BITMAP_OFFSET
);
1763 if (rdev
->raid_disk
>= 0 &&
1764 !test_bit(In_sync
, &rdev
->flags
)) {
1766 cpu_to_le32(MD_FEATURE_RECOVERY_OFFSET
);
1767 sb
->recovery_offset
=
1768 cpu_to_le64(rdev
->recovery_offset
);
1771 if (mddev
->reshape_position
!= MaxSector
) {
1772 sb
->feature_map
|= cpu_to_le32(MD_FEATURE_RESHAPE_ACTIVE
);
1773 sb
->reshape_position
= cpu_to_le64(mddev
->reshape_position
);
1774 sb
->new_layout
= cpu_to_le32(mddev
->new_layout
);
1775 sb
->delta_disks
= cpu_to_le32(mddev
->delta_disks
);
1776 sb
->new_level
= cpu_to_le32(mddev
->new_level
);
1777 sb
->new_chunk
= cpu_to_le32(mddev
->new_chunk_sectors
);
1780 if (rdev
->badblocks
.count
== 0)
1781 /* Nothing to do for bad blocks*/ ;
1782 else if (sb
->bblog_offset
== 0)
1783 /* Cannot record bad blocks on this device */
1784 md_error(mddev
, rdev
);
1786 struct badblocks
*bb
= &rdev
->badblocks
;
1787 u64
*bbp
= (u64
*)page_address(rdev
->bb_page
);
1789 sb
->feature_map
|= cpu_to_le32(MD_FEATURE_BAD_BLOCKS
);
1794 seq
= read_seqbegin(&bb
->lock
);
1796 memset(bbp
, 0xff, PAGE_SIZE
);
1798 for (i
= 0 ; i
< bb
->count
; i
++) {
1799 u64 internal_bb
= *p
++;
1800 u64 store_bb
= ((BB_OFFSET(internal_bb
) << 10)
1801 | BB_LEN(internal_bb
));
1802 *bbp
++ = cpu_to_le64(store_bb
);
1804 if (read_seqretry(&bb
->lock
, seq
))
1807 bb
->sector
= (rdev
->sb_start
+
1808 (int)le32_to_cpu(sb
->bblog_offset
));
1809 bb
->size
= le16_to_cpu(sb
->bblog_size
);
1815 list_for_each_entry(rdev2
, &mddev
->disks
, same_set
)
1816 if (rdev2
->desc_nr
+1 > max_dev
)
1817 max_dev
= rdev2
->desc_nr
+1;
1819 if (max_dev
> le32_to_cpu(sb
->max_dev
)) {
1821 sb
->max_dev
= cpu_to_le32(max_dev
);
1822 rdev
->sb_size
= max_dev
* 2 + 256;
1823 bmask
= queue_logical_block_size(rdev
->bdev
->bd_disk
->queue
)-1;
1824 if (rdev
->sb_size
& bmask
)
1825 rdev
->sb_size
= (rdev
->sb_size
| bmask
) + 1;
1827 max_dev
= le32_to_cpu(sb
->max_dev
);
1829 for (i
=0; i
<max_dev
;i
++)
1830 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
1832 list_for_each_entry(rdev2
, &mddev
->disks
, same_set
) {
1834 if (test_bit(Faulty
, &rdev2
->flags
))
1835 sb
->dev_roles
[i
] = cpu_to_le16(0xfffe);
1836 else if (test_bit(In_sync
, &rdev2
->flags
))
1837 sb
->dev_roles
[i
] = cpu_to_le16(rdev2
->raid_disk
);
1838 else if (rdev2
->raid_disk
>= 0)
1839 sb
->dev_roles
[i
] = cpu_to_le16(rdev2
->raid_disk
);
1841 sb
->dev_roles
[i
] = cpu_to_le16(0xffff);
1844 sb
->sb_csum
= calc_sb_1_csum(sb
);
1847 static unsigned long long
1848 super_1_rdev_size_change(struct md_rdev
*rdev
, sector_t num_sectors
)
1850 struct mdp_superblock_1
*sb
;
1851 sector_t max_sectors
;
1852 if (num_sectors
&& num_sectors
< rdev
->mddev
->dev_sectors
)
1853 return 0; /* component must fit device */
1854 if (rdev
->sb_start
< rdev
->data_offset
) {
1855 /* minor versions 1 and 2; superblock before data */
1856 max_sectors
= i_size_read(rdev
->bdev
->bd_inode
) >> 9;
1857 max_sectors
-= rdev
->data_offset
;
1858 if (!num_sectors
|| num_sectors
> max_sectors
)
1859 num_sectors
= max_sectors
;
1860 } else if (rdev
->mddev
->bitmap_info
.offset
) {
1861 /* minor version 0 with bitmap we can't move */
1864 /* minor version 0; superblock after data */
1866 sb_start
= (i_size_read(rdev
->bdev
->bd_inode
) >> 9) - 8*2;
1867 sb_start
&= ~(sector_t
)(4*2 - 1);
1868 max_sectors
= rdev
->sectors
+ sb_start
- rdev
->sb_start
;
1869 if (!num_sectors
|| num_sectors
> max_sectors
)
1870 num_sectors
= max_sectors
;
1871 rdev
->sb_start
= sb_start
;
1873 sb
= page_address(rdev
->sb_page
);
1874 sb
->data_size
= cpu_to_le64(num_sectors
);
1875 sb
->super_offset
= rdev
->sb_start
;
1876 sb
->sb_csum
= calc_sb_1_csum(sb
);
1877 md_super_write(rdev
->mddev
, rdev
, rdev
->sb_start
, rdev
->sb_size
,
1879 md_super_wait(rdev
->mddev
);
1883 static struct super_type super_types
[] = {
1886 .owner
= THIS_MODULE
,
1887 .load_super
= super_90_load
,
1888 .validate_super
= super_90_validate
,
1889 .sync_super
= super_90_sync
,
1890 .rdev_size_change
= super_90_rdev_size_change
,
1894 .owner
= THIS_MODULE
,
1895 .load_super
= super_1_load
,
1896 .validate_super
= super_1_validate
,
1897 .sync_super
= super_1_sync
,
1898 .rdev_size_change
= super_1_rdev_size_change
,
1902 static void sync_super(struct mddev
*mddev
, struct md_rdev
*rdev
)
1904 if (mddev
->sync_super
) {
1905 mddev
->sync_super(mddev
, rdev
);
1909 BUG_ON(mddev
->major_version
>= ARRAY_SIZE(super_types
));
1911 super_types
[mddev
->major_version
].sync_super(mddev
, rdev
);
1914 static int match_mddev_units(struct mddev
*mddev1
, struct mddev
*mddev2
)
1916 struct md_rdev
*rdev
, *rdev2
;
1919 rdev_for_each_rcu(rdev
, mddev1
)
1920 rdev_for_each_rcu(rdev2
, mddev2
)
1921 if (rdev
->bdev
->bd_contains
==
1922 rdev2
->bdev
->bd_contains
) {
1930 static LIST_HEAD(pending_raid_disks
);
1933 * Try to register data integrity profile for an mddev
1935 * This is called when an array is started and after a disk has been kicked
1936 * from the array. It only succeeds if all working and active component devices
1937 * are integrity capable with matching profiles.
1939 int md_integrity_register(struct mddev
*mddev
)
1941 struct md_rdev
*rdev
, *reference
= NULL
;
1943 if (list_empty(&mddev
->disks
))
1944 return 0; /* nothing to do */
1945 if (!mddev
->gendisk
|| blk_get_integrity(mddev
->gendisk
))
1946 return 0; /* shouldn't register, or already is */
1947 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
1948 /* skip spares and non-functional disks */
1949 if (test_bit(Faulty
, &rdev
->flags
))
1951 if (rdev
->raid_disk
< 0)
1954 /* Use the first rdev as the reference */
1958 /* does this rdev's profile match the reference profile? */
1959 if (blk_integrity_compare(reference
->bdev
->bd_disk
,
1960 rdev
->bdev
->bd_disk
) < 0)
1963 if (!reference
|| !bdev_get_integrity(reference
->bdev
))
1966 * All component devices are integrity capable and have matching
1967 * profiles, register the common profile for the md device.
1969 if (blk_integrity_register(mddev
->gendisk
,
1970 bdev_get_integrity(reference
->bdev
)) != 0) {
1971 printk(KERN_ERR
"md: failed to register integrity for %s\n",
1975 printk(KERN_NOTICE
"md: data integrity enabled on %s\n", mdname(mddev
));
1976 if (bioset_integrity_create(mddev
->bio_set
, BIO_POOL_SIZE
)) {
1977 printk(KERN_ERR
"md: failed to create integrity pool for %s\n",
1983 EXPORT_SYMBOL(md_integrity_register
);
1985 /* Disable data integrity if non-capable/non-matching disk is being added */
1986 void md_integrity_add_rdev(struct md_rdev
*rdev
, struct mddev
*mddev
)
1988 struct blk_integrity
*bi_rdev
= bdev_get_integrity(rdev
->bdev
);
1989 struct blk_integrity
*bi_mddev
= blk_get_integrity(mddev
->gendisk
);
1991 if (!bi_mddev
) /* nothing to do */
1993 if (rdev
->raid_disk
< 0) /* skip spares */
1995 if (bi_rdev
&& blk_integrity_compare(mddev
->gendisk
,
1996 rdev
->bdev
->bd_disk
) >= 0)
1998 printk(KERN_NOTICE
"disabling data integrity on %s\n", mdname(mddev
));
1999 blk_integrity_unregister(mddev
->gendisk
);
2001 EXPORT_SYMBOL(md_integrity_add_rdev
);
2003 static int bind_rdev_to_array(struct md_rdev
* rdev
, struct mddev
* mddev
)
2005 char b
[BDEVNAME_SIZE
];
2015 /* prevent duplicates */
2016 if (find_rdev(mddev
, rdev
->bdev
->bd_dev
))
2019 /* make sure rdev->sectors exceeds mddev->dev_sectors */
2020 if (rdev
->sectors
&& (mddev
->dev_sectors
== 0 ||
2021 rdev
->sectors
< mddev
->dev_sectors
)) {
2023 /* Cannot change size, so fail
2024 * If mddev->level <= 0, then we don't care
2025 * about aligning sizes (e.g. linear)
2027 if (mddev
->level
> 0)
2030 mddev
->dev_sectors
= rdev
->sectors
;
2033 /* Verify rdev->desc_nr is unique.
2034 * If it is -1, assign a free number, else
2035 * check number is not in use
2037 if (rdev
->desc_nr
< 0) {
2039 if (mddev
->pers
) choice
= mddev
->raid_disks
;
2040 while (find_rdev_nr(mddev
, choice
))
2042 rdev
->desc_nr
= choice
;
2044 if (find_rdev_nr(mddev
, rdev
->desc_nr
))
2047 if (mddev
->max_disks
&& rdev
->desc_nr
>= mddev
->max_disks
) {
2048 printk(KERN_WARNING
"md: %s: array is limited to %d devices\n",
2049 mdname(mddev
), mddev
->max_disks
);
2052 bdevname(rdev
->bdev
,b
);
2053 while ( (s
=strchr(b
, '/')) != NULL
)
2056 rdev
->mddev
= mddev
;
2057 printk(KERN_INFO
"md: bind<%s>\n", b
);
2059 if ((err
= kobject_add(&rdev
->kobj
, &mddev
->kobj
, "dev-%s", b
)))
2062 ko
= &part_to_dev(rdev
->bdev
->bd_part
)->kobj
;
2063 if (sysfs_create_link(&rdev
->kobj
, ko
, "block"))
2064 /* failure here is OK */;
2065 rdev
->sysfs_state
= sysfs_get_dirent_safe(rdev
->kobj
.sd
, "state");
2067 list_add_rcu(&rdev
->same_set
, &mddev
->disks
);
2068 bd_link_disk_holder(rdev
->bdev
, mddev
->gendisk
);
2070 /* May as well allow recovery to be retried once */
2071 mddev
->recovery_disabled
++;
2076 printk(KERN_WARNING
"md: failed to register dev-%s for %s\n",
2081 static void md_delayed_delete(struct work_struct
*ws
)
2083 struct md_rdev
*rdev
= container_of(ws
, struct md_rdev
, del_work
);
2084 kobject_del(&rdev
->kobj
);
2085 kobject_put(&rdev
->kobj
);
2088 static void unbind_rdev_from_array(struct md_rdev
* rdev
)
2090 char b
[BDEVNAME_SIZE
];
2095 bd_unlink_disk_holder(rdev
->bdev
, rdev
->mddev
->gendisk
);
2096 list_del_rcu(&rdev
->same_set
);
2097 printk(KERN_INFO
"md: unbind<%s>\n", bdevname(rdev
->bdev
,b
));
2099 sysfs_remove_link(&rdev
->kobj
, "block");
2100 sysfs_put(rdev
->sysfs_state
);
2101 rdev
->sysfs_state
= NULL
;
2102 kfree(rdev
->badblocks
.page
);
2103 rdev
->badblocks
.count
= 0;
2104 rdev
->badblocks
.page
= NULL
;
2105 /* We need to delay this, otherwise we can deadlock when
2106 * writing to 'remove' to "dev/state". We also need
2107 * to delay it due to rcu usage.
2110 INIT_WORK(&rdev
->del_work
, md_delayed_delete
);
2111 kobject_get(&rdev
->kobj
);
2112 queue_work(md_misc_wq
, &rdev
->del_work
);
2116 * prevent the device from being mounted, repartitioned or
2117 * otherwise reused by a RAID array (or any other kernel
2118 * subsystem), by bd_claiming the device.
2120 static int lock_rdev(struct md_rdev
*rdev
, dev_t dev
, int shared
)
2123 struct block_device
*bdev
;
2124 char b
[BDEVNAME_SIZE
];
2126 bdev
= blkdev_get_by_dev(dev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
,
2127 shared
? (struct md_rdev
*)lock_rdev
: rdev
);
2129 printk(KERN_ERR
"md: could not open %s.\n",
2130 __bdevname(dev
, b
));
2131 return PTR_ERR(bdev
);
2137 static void unlock_rdev(struct md_rdev
*rdev
)
2139 struct block_device
*bdev
= rdev
->bdev
;
2143 blkdev_put(bdev
, FMODE_READ
|FMODE_WRITE
|FMODE_EXCL
);
2146 void md_autodetect_dev(dev_t dev
);
2148 static void export_rdev(struct md_rdev
* rdev
)
2150 char b
[BDEVNAME_SIZE
];
2151 printk(KERN_INFO
"md: export_rdev(%s)\n",
2152 bdevname(rdev
->bdev
,b
));
2157 if (test_bit(AutoDetected
, &rdev
->flags
))
2158 md_autodetect_dev(rdev
->bdev
->bd_dev
);
2161 kobject_put(&rdev
->kobj
);
2164 static void kick_rdev_from_array(struct md_rdev
* rdev
)
2166 unbind_rdev_from_array(rdev
);
2170 static void export_array(struct mddev
*mddev
)
2172 struct md_rdev
*rdev
, *tmp
;
2174 rdev_for_each(rdev
, tmp
, mddev
) {
2179 kick_rdev_from_array(rdev
);
2181 if (!list_empty(&mddev
->disks
))
2183 mddev
->raid_disks
= 0;
2184 mddev
->major_version
= 0;
2187 static void print_desc(mdp_disk_t
*desc
)
2189 printk(" DISK<N:%d,(%d,%d),R:%d,S:%d>\n", desc
->number
,
2190 desc
->major
,desc
->minor
,desc
->raid_disk
,desc
->state
);
2193 static void print_sb_90(mdp_super_t
*sb
)
2198 "md: SB: (V:%d.%d.%d) ID:<%08x.%08x.%08x.%08x> CT:%08x\n",
2199 sb
->major_version
, sb
->minor_version
, sb
->patch_version
,
2200 sb
->set_uuid0
, sb
->set_uuid1
, sb
->set_uuid2
, sb
->set_uuid3
,
2202 printk(KERN_INFO
"md: L%d S%08d ND:%d RD:%d md%d LO:%d CS:%d\n",
2203 sb
->level
, sb
->size
, sb
->nr_disks
, sb
->raid_disks
,
2204 sb
->md_minor
, sb
->layout
, sb
->chunk_size
);
2205 printk(KERN_INFO
"md: UT:%08x ST:%d AD:%d WD:%d"
2206 " FD:%d SD:%d CSUM:%08x E:%08lx\n",
2207 sb
->utime
, sb
->state
, sb
->active_disks
, sb
->working_disks
,
2208 sb
->failed_disks
, sb
->spare_disks
,
2209 sb
->sb_csum
, (unsigned long)sb
->events_lo
);
2212 for (i
= 0; i
< MD_SB_DISKS
; i
++) {
2215 desc
= sb
->disks
+ i
;
2216 if (desc
->number
|| desc
->major
|| desc
->minor
||
2217 desc
->raid_disk
|| (desc
->state
&& (desc
->state
!= 4))) {
2218 printk(" D %2d: ", i
);
2222 printk(KERN_INFO
"md: THIS: ");
2223 print_desc(&sb
->this_disk
);
2226 static void print_sb_1(struct mdp_superblock_1
*sb
)
2230 uuid
= sb
->set_uuid
;
2232 "md: SB: (V:%u) (F:0x%08x) Array-ID:<%pU>\n"
2233 "md: Name: \"%s\" CT:%llu\n",
2234 le32_to_cpu(sb
->major_version
),
2235 le32_to_cpu(sb
->feature_map
),
2238 (unsigned long long)le64_to_cpu(sb
->ctime
)
2239 & MD_SUPERBLOCK_1_TIME_SEC_MASK
);
2241 uuid
= sb
->device_uuid
;
2243 "md: L%u SZ%llu RD:%u LO:%u CS:%u DO:%llu DS:%llu SO:%llu"
2245 "md: Dev:%08x UUID: %pU\n"
2246 "md: (F:0x%08x) UT:%llu Events:%llu ResyncOffset:%llu CSUM:0x%08x\n"
2247 "md: (MaxDev:%u) \n",
2248 le32_to_cpu(sb
->level
),
2249 (unsigned long long)le64_to_cpu(sb
->size
),
2250 le32_to_cpu(sb
->raid_disks
),
2251 le32_to_cpu(sb
->layout
),
2252 le32_to_cpu(sb
->chunksize
),
2253 (unsigned long long)le64_to_cpu(sb
->data_offset
),
2254 (unsigned long long)le64_to_cpu(sb
->data_size
),
2255 (unsigned long long)le64_to_cpu(sb
->super_offset
),
2256 (unsigned long long)le64_to_cpu(sb
->recovery_offset
),
2257 le32_to_cpu(sb
->dev_number
),
2260 (unsigned long long)le64_to_cpu(sb
->utime
) & MD_SUPERBLOCK_1_TIME_SEC_MASK
,
2261 (unsigned long long)le64_to_cpu(sb
->events
),
2262 (unsigned long long)le64_to_cpu(sb
->resync_offset
),
2263 le32_to_cpu(sb
->sb_csum
),
2264 le32_to_cpu(sb
->max_dev
)
2268 static void print_rdev(struct md_rdev
*rdev
, int major_version
)
2270 char b
[BDEVNAME_SIZE
];
2271 printk(KERN_INFO
"md: rdev %s, Sect:%08llu F:%d S:%d DN:%u\n",
2272 bdevname(rdev
->bdev
, b
), (unsigned long long)rdev
->sectors
,
2273 test_bit(Faulty
, &rdev
->flags
), test_bit(In_sync
, &rdev
->flags
),
2275 if (rdev
->sb_loaded
) {
2276 printk(KERN_INFO
"md: rdev superblock (MJ:%d):\n", major_version
);
2277 switch (major_version
) {
2279 print_sb_90(page_address(rdev
->sb_page
));
2282 print_sb_1(page_address(rdev
->sb_page
));
2286 printk(KERN_INFO
"md: no rdev superblock!\n");
2289 static void md_print_devices(void)
2291 struct list_head
*tmp
;
2292 struct md_rdev
*rdev
;
2293 struct mddev
*mddev
;
2294 char b
[BDEVNAME_SIZE
];
2297 printk("md: **********************************\n");
2298 printk("md: * <COMPLETE RAID STATE PRINTOUT> *\n");
2299 printk("md: **********************************\n");
2300 for_each_mddev(mddev
, tmp
) {
2303 bitmap_print_sb(mddev
->bitmap
);
2305 printk("%s: ", mdname(mddev
));
2306 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
2307 printk("<%s>", bdevname(rdev
->bdev
,b
));
2310 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
2311 print_rdev(rdev
, mddev
->major_version
);
2313 printk("md: **********************************\n");
2318 static void sync_sbs(struct mddev
* mddev
, int nospares
)
2320 /* Update each superblock (in-memory image), but
2321 * if we are allowed to, skip spares which already
2322 * have the right event counter, or have one earlier
2323 * (which would mean they aren't being marked as dirty
2324 * with the rest of the array)
2326 struct md_rdev
*rdev
;
2327 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2328 if (rdev
->sb_events
== mddev
->events
||
2330 rdev
->raid_disk
< 0 &&
2331 rdev
->sb_events
+1 == mddev
->events
)) {
2332 /* Don't update this superblock */
2333 rdev
->sb_loaded
= 2;
2335 sync_super(mddev
, rdev
);
2336 rdev
->sb_loaded
= 1;
2341 static void md_update_sb(struct mddev
* mddev
, int force_change
)
2343 struct md_rdev
*rdev
;
2346 int any_badblocks_changed
= 0;
2349 /* First make sure individual recovery_offsets are correct */
2350 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2351 if (rdev
->raid_disk
>= 0 &&
2352 mddev
->delta_disks
>= 0 &&
2353 !test_bit(In_sync
, &rdev
->flags
) &&
2354 mddev
->curr_resync_completed
> rdev
->recovery_offset
)
2355 rdev
->recovery_offset
= mddev
->curr_resync_completed
;
2358 if (!mddev
->persistent
) {
2359 clear_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
2360 clear_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
2361 if (!mddev
->external
) {
2362 clear_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2363 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2364 if (rdev
->badblocks
.changed
) {
2365 md_ack_all_badblocks(&rdev
->badblocks
);
2366 md_error(mddev
, rdev
);
2368 clear_bit(Blocked
, &rdev
->flags
);
2369 clear_bit(BlockedBadBlocks
, &rdev
->flags
);
2370 wake_up(&rdev
->blocked_wait
);
2373 wake_up(&mddev
->sb_wait
);
2377 spin_lock_irq(&mddev
->write_lock
);
2379 mddev
->utime
= get_seconds();
2381 if (test_and_clear_bit(MD_CHANGE_DEVS
, &mddev
->flags
))
2383 if (test_and_clear_bit(MD_CHANGE_CLEAN
, &mddev
->flags
))
2384 /* just a clean<-> dirty transition, possibly leave spares alone,
2385 * though if events isn't the right even/odd, we will have to do
2391 if (mddev
->degraded
)
2392 /* If the array is degraded, then skipping spares is both
2393 * dangerous and fairly pointless.
2394 * Dangerous because a device that was removed from the array
2395 * might have a event_count that still looks up-to-date,
2396 * so it can be re-added without a resync.
2397 * Pointless because if there are any spares to skip,
2398 * then a recovery will happen and soon that array won't
2399 * be degraded any more and the spare can go back to sleep then.
2403 sync_req
= mddev
->in_sync
;
2405 /* If this is just a dirty<->clean transition, and the array is clean
2406 * and 'events' is odd, we can roll back to the previous clean state */
2408 && (mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
)
2409 && mddev
->can_decrease_events
2410 && mddev
->events
!= 1) {
2412 mddev
->can_decrease_events
= 0;
2414 /* otherwise we have to go forward and ... */
2416 mddev
->can_decrease_events
= nospares
;
2419 if (!mddev
->events
) {
2421 * oops, this 64-bit counter should never wrap.
2422 * Either we are in around ~1 trillion A.C., assuming
2423 * 1 reboot per second, or we have a bug:
2429 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2430 if (rdev
->badblocks
.changed
)
2431 any_badblocks_changed
++;
2432 if (test_bit(Faulty
, &rdev
->flags
))
2433 set_bit(FaultRecorded
, &rdev
->flags
);
2436 sync_sbs(mddev
, nospares
);
2437 spin_unlock_irq(&mddev
->write_lock
);
2439 pr_debug("md: updating %s RAID superblock on device (in sync %d)\n",
2440 mdname(mddev
), mddev
->in_sync
);
2442 bitmap_update_sb(mddev
->bitmap
);
2443 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2444 char b
[BDEVNAME_SIZE
];
2446 if (rdev
->sb_loaded
!= 1)
2447 continue; /* no noise on spare devices */
2449 if (!test_bit(Faulty
, &rdev
->flags
) &&
2450 rdev
->saved_raid_disk
== -1) {
2451 md_super_write(mddev
,rdev
,
2452 rdev
->sb_start
, rdev
->sb_size
,
2454 pr_debug("md: (write) %s's sb offset: %llu\n",
2455 bdevname(rdev
->bdev
, b
),
2456 (unsigned long long)rdev
->sb_start
);
2457 rdev
->sb_events
= mddev
->events
;
2458 if (rdev
->badblocks
.size
) {
2459 md_super_write(mddev
, rdev
,
2460 rdev
->badblocks
.sector
,
2461 rdev
->badblocks
.size
<< 9,
2463 rdev
->badblocks
.size
= 0;
2466 } else if (test_bit(Faulty
, &rdev
->flags
))
2467 pr_debug("md: %s (skipping faulty)\n",
2468 bdevname(rdev
->bdev
, b
));
2470 pr_debug("(skipping incremental s/r ");
2472 if (mddev
->level
== LEVEL_MULTIPATH
)
2473 /* only need to write one superblock... */
2476 md_super_wait(mddev
);
2477 /* if there was a failure, MD_CHANGE_DEVS was set, and we re-write super */
2479 spin_lock_irq(&mddev
->write_lock
);
2480 if (mddev
->in_sync
!= sync_req
||
2481 test_bit(MD_CHANGE_DEVS
, &mddev
->flags
)) {
2482 /* have to write it out again */
2483 spin_unlock_irq(&mddev
->write_lock
);
2486 clear_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
2487 spin_unlock_irq(&mddev
->write_lock
);
2488 wake_up(&mddev
->sb_wait
);
2489 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
2490 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
2492 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
2493 if (test_and_clear_bit(FaultRecorded
, &rdev
->flags
))
2494 clear_bit(Blocked
, &rdev
->flags
);
2496 if (any_badblocks_changed
)
2497 md_ack_all_badblocks(&rdev
->badblocks
);
2498 clear_bit(BlockedBadBlocks
, &rdev
->flags
);
2499 wake_up(&rdev
->blocked_wait
);
2503 /* words written to sysfs files may, or may not, be \n terminated.
2504 * We want to accept with case. For this we use cmd_match.
2506 static int cmd_match(const char *cmd
, const char *str
)
2508 /* See if cmd, written into a sysfs file, matches
2509 * str. They must either be the same, or cmd can
2510 * have a trailing newline
2512 while (*cmd
&& *str
&& *cmd
== *str
) {
2523 struct rdev_sysfs_entry
{
2524 struct attribute attr
;
2525 ssize_t (*show
)(struct md_rdev
*, char *);
2526 ssize_t (*store
)(struct md_rdev
*, const char *, size_t);
2530 state_show(struct md_rdev
*rdev
, char *page
)
2535 if (test_bit(Faulty
, &rdev
->flags
) ||
2536 rdev
->badblocks
.unacked_exist
) {
2537 len
+= sprintf(page
+len
, "%sfaulty",sep
);
2540 if (test_bit(In_sync
, &rdev
->flags
)) {
2541 len
+= sprintf(page
+len
, "%sin_sync",sep
);
2544 if (test_bit(WriteMostly
, &rdev
->flags
)) {
2545 len
+= sprintf(page
+len
, "%swrite_mostly",sep
);
2548 if (test_bit(Blocked
, &rdev
->flags
) ||
2549 (rdev
->badblocks
.unacked_exist
2550 && !test_bit(Faulty
, &rdev
->flags
))) {
2551 len
+= sprintf(page
+len
, "%sblocked", sep
);
2554 if (!test_bit(Faulty
, &rdev
->flags
) &&
2555 !test_bit(In_sync
, &rdev
->flags
)) {
2556 len
+= sprintf(page
+len
, "%sspare", sep
);
2559 if (test_bit(WriteErrorSeen
, &rdev
->flags
)) {
2560 len
+= sprintf(page
+len
, "%swrite_error", sep
);
2563 return len
+sprintf(page
+len
, "\n");
2567 state_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2570 * faulty - simulates an error
2571 * remove - disconnects the device
2572 * writemostly - sets write_mostly
2573 * -writemostly - clears write_mostly
2574 * blocked - sets the Blocked flags
2575 * -blocked - clears the Blocked and possibly simulates an error
2576 * insync - sets Insync providing device isn't active
2577 * write_error - sets WriteErrorSeen
2578 * -write_error - clears WriteErrorSeen
2581 if (cmd_match(buf
, "faulty") && rdev
->mddev
->pers
) {
2582 md_error(rdev
->mddev
, rdev
);
2583 if (test_bit(Faulty
, &rdev
->flags
))
2587 } else if (cmd_match(buf
, "remove")) {
2588 if (rdev
->raid_disk
>= 0)
2591 struct mddev
*mddev
= rdev
->mddev
;
2592 kick_rdev_from_array(rdev
);
2594 md_update_sb(mddev
, 1);
2595 md_new_event(mddev
);
2598 } else if (cmd_match(buf
, "writemostly")) {
2599 set_bit(WriteMostly
, &rdev
->flags
);
2601 } else if (cmd_match(buf
, "-writemostly")) {
2602 clear_bit(WriteMostly
, &rdev
->flags
);
2604 } else if (cmd_match(buf
, "blocked")) {
2605 set_bit(Blocked
, &rdev
->flags
);
2607 } else if (cmd_match(buf
, "-blocked")) {
2608 if (!test_bit(Faulty
, &rdev
->flags
) &&
2609 rdev
->badblocks
.unacked_exist
) {
2610 /* metadata handler doesn't understand badblocks,
2611 * so we need to fail the device
2613 md_error(rdev
->mddev
, rdev
);
2615 clear_bit(Blocked
, &rdev
->flags
);
2616 clear_bit(BlockedBadBlocks
, &rdev
->flags
);
2617 wake_up(&rdev
->blocked_wait
);
2618 set_bit(MD_RECOVERY_NEEDED
, &rdev
->mddev
->recovery
);
2619 md_wakeup_thread(rdev
->mddev
->thread
);
2622 } else if (cmd_match(buf
, "insync") && rdev
->raid_disk
== -1) {
2623 set_bit(In_sync
, &rdev
->flags
);
2625 } else if (cmd_match(buf
, "write_error")) {
2626 set_bit(WriteErrorSeen
, &rdev
->flags
);
2628 } else if (cmd_match(buf
, "-write_error")) {
2629 clear_bit(WriteErrorSeen
, &rdev
->flags
);
2633 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
2634 return err
? err
: len
;
2636 static struct rdev_sysfs_entry rdev_state
=
2637 __ATTR(state
, S_IRUGO
|S_IWUSR
, state_show
, state_store
);
2640 errors_show(struct md_rdev
*rdev
, char *page
)
2642 return sprintf(page
, "%d\n", atomic_read(&rdev
->corrected_errors
));
2646 errors_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2649 unsigned long n
= simple_strtoul(buf
, &e
, 10);
2650 if (*buf
&& (*e
== 0 || *e
== '\n')) {
2651 atomic_set(&rdev
->corrected_errors
, n
);
2656 static struct rdev_sysfs_entry rdev_errors
=
2657 __ATTR(errors
, S_IRUGO
|S_IWUSR
, errors_show
, errors_store
);
2660 slot_show(struct md_rdev
*rdev
, char *page
)
2662 if (rdev
->raid_disk
< 0)
2663 return sprintf(page
, "none\n");
2665 return sprintf(page
, "%d\n", rdev
->raid_disk
);
2669 slot_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2673 int slot
= simple_strtoul(buf
, &e
, 10);
2674 if (strncmp(buf
, "none", 4)==0)
2676 else if (e
==buf
|| (*e
&& *e
!= '\n'))
2678 if (rdev
->mddev
->pers
&& slot
== -1) {
2679 /* Setting 'slot' on an active array requires also
2680 * updating the 'rd%d' link, and communicating
2681 * with the personality with ->hot_*_disk.
2682 * For now we only support removing
2683 * failed/spare devices. This normally happens automatically,
2684 * but not when the metadata is externally managed.
2686 if (rdev
->raid_disk
== -1)
2688 /* personality does all needed checks */
2689 if (rdev
->mddev
->pers
->hot_remove_disk
== NULL
)
2691 err
= rdev
->mddev
->pers
->
2692 hot_remove_disk(rdev
->mddev
, rdev
->raid_disk
);
2695 sysfs_unlink_rdev(rdev
->mddev
, rdev
);
2696 rdev
->raid_disk
= -1;
2697 set_bit(MD_RECOVERY_NEEDED
, &rdev
->mddev
->recovery
);
2698 md_wakeup_thread(rdev
->mddev
->thread
);
2699 } else if (rdev
->mddev
->pers
) {
2700 struct md_rdev
*rdev2
;
2701 /* Activating a spare .. or possibly reactivating
2702 * if we ever get bitmaps working here.
2705 if (rdev
->raid_disk
!= -1)
2708 if (test_bit(MD_RECOVERY_RUNNING
, &rdev
->mddev
->recovery
))
2711 if (rdev
->mddev
->pers
->hot_add_disk
== NULL
)
2714 list_for_each_entry(rdev2
, &rdev
->mddev
->disks
, same_set
)
2715 if (rdev2
->raid_disk
== slot
)
2718 if (slot
>= rdev
->mddev
->raid_disks
&&
2719 slot
>= rdev
->mddev
->raid_disks
+ rdev
->mddev
->delta_disks
)
2722 rdev
->raid_disk
= slot
;
2723 if (test_bit(In_sync
, &rdev
->flags
))
2724 rdev
->saved_raid_disk
= slot
;
2726 rdev
->saved_raid_disk
= -1;
2727 clear_bit(In_sync
, &rdev
->flags
);
2728 err
= rdev
->mddev
->pers
->
2729 hot_add_disk(rdev
->mddev
, rdev
);
2731 rdev
->raid_disk
= -1;
2734 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
2735 if (sysfs_link_rdev(rdev
->mddev
, rdev
))
2736 /* failure here is OK */;
2737 /* don't wakeup anyone, leave that to userspace. */
2739 if (slot
>= rdev
->mddev
->raid_disks
&&
2740 slot
>= rdev
->mddev
->raid_disks
+ rdev
->mddev
->delta_disks
)
2742 rdev
->raid_disk
= slot
;
2743 /* assume it is working */
2744 clear_bit(Faulty
, &rdev
->flags
);
2745 clear_bit(WriteMostly
, &rdev
->flags
);
2746 set_bit(In_sync
, &rdev
->flags
);
2747 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
2753 static struct rdev_sysfs_entry rdev_slot
=
2754 __ATTR(slot
, S_IRUGO
|S_IWUSR
, slot_show
, slot_store
);
2757 offset_show(struct md_rdev
*rdev
, char *page
)
2759 return sprintf(page
, "%llu\n", (unsigned long long)rdev
->data_offset
);
2763 offset_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2766 unsigned long long offset
= simple_strtoull(buf
, &e
, 10);
2767 if (e
==buf
|| (*e
&& *e
!= '\n'))
2769 if (rdev
->mddev
->pers
&& rdev
->raid_disk
>= 0)
2771 if (rdev
->sectors
&& rdev
->mddev
->external
)
2772 /* Must set offset before size, so overlap checks
2775 rdev
->data_offset
= offset
;
2779 static struct rdev_sysfs_entry rdev_offset
=
2780 __ATTR(offset
, S_IRUGO
|S_IWUSR
, offset_show
, offset_store
);
2783 rdev_size_show(struct md_rdev
*rdev
, char *page
)
2785 return sprintf(page
, "%llu\n", (unsigned long long)rdev
->sectors
/ 2);
2788 static int overlaps(sector_t s1
, sector_t l1
, sector_t s2
, sector_t l2
)
2790 /* check if two start/length pairs overlap */
2798 static int strict_blocks_to_sectors(const char *buf
, sector_t
*sectors
)
2800 unsigned long long blocks
;
2803 if (strict_strtoull(buf
, 10, &blocks
) < 0)
2806 if (blocks
& 1ULL << (8 * sizeof(blocks
) - 1))
2807 return -EINVAL
; /* sector conversion overflow */
2810 if (new != blocks
* 2)
2811 return -EINVAL
; /* unsigned long long to sector_t overflow */
2818 rdev_size_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2820 struct mddev
*my_mddev
= rdev
->mddev
;
2821 sector_t oldsectors
= rdev
->sectors
;
2824 if (strict_blocks_to_sectors(buf
, §ors
) < 0)
2826 if (my_mddev
->pers
&& rdev
->raid_disk
>= 0) {
2827 if (my_mddev
->persistent
) {
2828 sectors
= super_types
[my_mddev
->major_version
].
2829 rdev_size_change(rdev
, sectors
);
2832 } else if (!sectors
)
2833 sectors
= (i_size_read(rdev
->bdev
->bd_inode
) >> 9) -
2836 if (sectors
< my_mddev
->dev_sectors
)
2837 return -EINVAL
; /* component must fit device */
2839 rdev
->sectors
= sectors
;
2840 if (sectors
> oldsectors
&& my_mddev
->external
) {
2841 /* need to check that all other rdevs with the same ->bdev
2842 * do not overlap. We need to unlock the mddev to avoid
2843 * a deadlock. We have already changed rdev->sectors, and if
2844 * we have to change it back, we will have the lock again.
2846 struct mddev
*mddev
;
2848 struct list_head
*tmp
;
2850 mddev_unlock(my_mddev
);
2851 for_each_mddev(mddev
, tmp
) {
2852 struct md_rdev
*rdev2
;
2855 list_for_each_entry(rdev2
, &mddev
->disks
, same_set
)
2856 if (rdev
->bdev
== rdev2
->bdev
&&
2858 overlaps(rdev
->data_offset
, rdev
->sectors
,
2864 mddev_unlock(mddev
);
2870 mddev_lock(my_mddev
);
2872 /* Someone else could have slipped in a size
2873 * change here, but doing so is just silly.
2874 * We put oldsectors back because we *know* it is
2875 * safe, and trust userspace not to race with
2878 rdev
->sectors
= oldsectors
;
2885 static struct rdev_sysfs_entry rdev_size
=
2886 __ATTR(size
, S_IRUGO
|S_IWUSR
, rdev_size_show
, rdev_size_store
);
2889 static ssize_t
recovery_start_show(struct md_rdev
*rdev
, char *page
)
2891 unsigned long long recovery_start
= rdev
->recovery_offset
;
2893 if (test_bit(In_sync
, &rdev
->flags
) ||
2894 recovery_start
== MaxSector
)
2895 return sprintf(page
, "none\n");
2897 return sprintf(page
, "%llu\n", recovery_start
);
2900 static ssize_t
recovery_start_store(struct md_rdev
*rdev
, const char *buf
, size_t len
)
2902 unsigned long long recovery_start
;
2904 if (cmd_match(buf
, "none"))
2905 recovery_start
= MaxSector
;
2906 else if (strict_strtoull(buf
, 10, &recovery_start
))
2909 if (rdev
->mddev
->pers
&&
2910 rdev
->raid_disk
>= 0)
2913 rdev
->recovery_offset
= recovery_start
;
2914 if (recovery_start
== MaxSector
)
2915 set_bit(In_sync
, &rdev
->flags
);
2917 clear_bit(In_sync
, &rdev
->flags
);
2921 static struct rdev_sysfs_entry rdev_recovery_start
=
2922 __ATTR(recovery_start
, S_IRUGO
|S_IWUSR
, recovery_start_show
, recovery_start_store
);
2926 badblocks_show(struct badblocks
*bb
, char *page
, int unack
);
2928 badblocks_store(struct badblocks
*bb
, const char *page
, size_t len
, int unack
);
2930 static ssize_t
bb_show(struct md_rdev
*rdev
, char *page
)
2932 return badblocks_show(&rdev
->badblocks
, page
, 0);
2934 static ssize_t
bb_store(struct md_rdev
*rdev
, const char *page
, size_t len
)
2936 int rv
= badblocks_store(&rdev
->badblocks
, page
, len
, 0);
2937 /* Maybe that ack was all we needed */
2938 if (test_and_clear_bit(BlockedBadBlocks
, &rdev
->flags
))
2939 wake_up(&rdev
->blocked_wait
);
2942 static struct rdev_sysfs_entry rdev_bad_blocks
=
2943 __ATTR(bad_blocks
, S_IRUGO
|S_IWUSR
, bb_show
, bb_store
);
2946 static ssize_t
ubb_show(struct md_rdev
*rdev
, char *page
)
2948 return badblocks_show(&rdev
->badblocks
, page
, 1);
2950 static ssize_t
ubb_store(struct md_rdev
*rdev
, const char *page
, size_t len
)
2952 return badblocks_store(&rdev
->badblocks
, page
, len
, 1);
2954 static struct rdev_sysfs_entry rdev_unack_bad_blocks
=
2955 __ATTR(unacknowledged_bad_blocks
, S_IRUGO
|S_IWUSR
, ubb_show
, ubb_store
);
2957 static struct attribute
*rdev_default_attrs
[] = {
2963 &rdev_recovery_start
.attr
,
2964 &rdev_bad_blocks
.attr
,
2965 &rdev_unack_bad_blocks
.attr
,
2969 rdev_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
2971 struct rdev_sysfs_entry
*entry
= container_of(attr
, struct rdev_sysfs_entry
, attr
);
2972 struct md_rdev
*rdev
= container_of(kobj
, struct md_rdev
, kobj
);
2973 struct mddev
*mddev
= rdev
->mddev
;
2979 rv
= mddev
? mddev_lock(mddev
) : -EBUSY
;
2981 if (rdev
->mddev
== NULL
)
2984 rv
= entry
->show(rdev
, page
);
2985 mddev_unlock(mddev
);
2991 rdev_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
2992 const char *page
, size_t length
)
2994 struct rdev_sysfs_entry
*entry
= container_of(attr
, struct rdev_sysfs_entry
, attr
);
2995 struct md_rdev
*rdev
= container_of(kobj
, struct md_rdev
, kobj
);
2997 struct mddev
*mddev
= rdev
->mddev
;
3001 if (!capable(CAP_SYS_ADMIN
))
3003 rv
= mddev
? mddev_lock(mddev
): -EBUSY
;
3005 if (rdev
->mddev
== NULL
)
3008 rv
= entry
->store(rdev
, page
, length
);
3009 mddev_unlock(mddev
);
3014 static void rdev_free(struct kobject
*ko
)
3016 struct md_rdev
*rdev
= container_of(ko
, struct md_rdev
, kobj
);
3019 static const struct sysfs_ops rdev_sysfs_ops
= {
3020 .show
= rdev_attr_show
,
3021 .store
= rdev_attr_store
,
3023 static struct kobj_type rdev_ktype
= {
3024 .release
= rdev_free
,
3025 .sysfs_ops
= &rdev_sysfs_ops
,
3026 .default_attrs
= rdev_default_attrs
,
3029 int md_rdev_init(struct md_rdev
*rdev
)
3032 rdev
->saved_raid_disk
= -1;
3033 rdev
->raid_disk
= -1;
3035 rdev
->data_offset
= 0;
3036 rdev
->sb_events
= 0;
3037 rdev
->last_read_error
.tv_sec
= 0;
3038 rdev
->last_read_error
.tv_nsec
= 0;
3039 rdev
->sb_loaded
= 0;
3040 rdev
->bb_page
= NULL
;
3041 atomic_set(&rdev
->nr_pending
, 0);
3042 atomic_set(&rdev
->read_errors
, 0);
3043 atomic_set(&rdev
->corrected_errors
, 0);
3045 INIT_LIST_HEAD(&rdev
->same_set
);
3046 init_waitqueue_head(&rdev
->blocked_wait
);
3048 /* Add space to store bad block list.
3049 * This reserves the space even on arrays where it cannot
3050 * be used - I wonder if that matters
3052 rdev
->badblocks
.count
= 0;
3053 rdev
->badblocks
.shift
= 0;
3054 rdev
->badblocks
.page
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3055 seqlock_init(&rdev
->badblocks
.lock
);
3056 if (rdev
->badblocks
.page
== NULL
)
3061 EXPORT_SYMBOL_GPL(md_rdev_init
);
3063 * Import a device. If 'super_format' >= 0, then sanity check the superblock
3065 * mark the device faulty if:
3067 * - the device is nonexistent (zero size)
3068 * - the device has no valid superblock
3070 * a faulty rdev _never_ has rdev->sb set.
3072 static struct md_rdev
*md_import_device(dev_t newdev
, int super_format
, int super_minor
)
3074 char b
[BDEVNAME_SIZE
];
3076 struct md_rdev
*rdev
;
3079 rdev
= kzalloc(sizeof(*rdev
), GFP_KERNEL
);
3081 printk(KERN_ERR
"md: could not alloc mem for new device!\n");
3082 return ERR_PTR(-ENOMEM
);
3085 err
= md_rdev_init(rdev
);
3088 err
= alloc_disk_sb(rdev
);
3092 err
= lock_rdev(rdev
, newdev
, super_format
== -2);
3096 kobject_init(&rdev
->kobj
, &rdev_ktype
);
3098 size
= i_size_read(rdev
->bdev
->bd_inode
) >> BLOCK_SIZE_BITS
;
3101 "md: %s has zero or unknown size, marking faulty!\n",
3102 bdevname(rdev
->bdev
,b
));
3107 if (super_format
>= 0) {
3108 err
= super_types
[super_format
].
3109 load_super(rdev
, NULL
, super_minor
);
3110 if (err
== -EINVAL
) {
3112 "md: %s does not have a valid v%d.%d "
3113 "superblock, not importing!\n",
3114 bdevname(rdev
->bdev
,b
),
3115 super_format
, super_minor
);
3120 "md: could not read %s's sb, not importing!\n",
3121 bdevname(rdev
->bdev
,b
));
3125 if (super_format
== -1)
3126 /* hot-add for 0.90, or non-persistent: so no badblocks */
3127 rdev
->badblocks
.shift
= -1;
3135 kfree(rdev
->badblocks
.page
);
3137 return ERR_PTR(err
);
3141 * Check a full RAID array for plausibility
3145 static void analyze_sbs(struct mddev
* mddev
)
3148 struct md_rdev
*rdev
, *freshest
, *tmp
;
3149 char b
[BDEVNAME_SIZE
];
3152 rdev_for_each(rdev
, tmp
, mddev
)
3153 switch (super_types
[mddev
->major_version
].
3154 load_super(rdev
, freshest
, mddev
->minor_version
)) {
3162 "md: fatal superblock inconsistency in %s"
3163 " -- removing from array\n",
3164 bdevname(rdev
->bdev
,b
));
3165 kick_rdev_from_array(rdev
);
3169 super_types
[mddev
->major_version
].
3170 validate_super(mddev
, freshest
);
3173 rdev_for_each(rdev
, tmp
, mddev
) {
3174 if (mddev
->max_disks
&&
3175 (rdev
->desc_nr
>= mddev
->max_disks
||
3176 i
> mddev
->max_disks
)) {
3178 "md: %s: %s: only %d devices permitted\n",
3179 mdname(mddev
), bdevname(rdev
->bdev
, b
),
3181 kick_rdev_from_array(rdev
);
3184 if (rdev
!= freshest
)
3185 if (super_types
[mddev
->major_version
].
3186 validate_super(mddev
, rdev
)) {
3187 printk(KERN_WARNING
"md: kicking non-fresh %s"
3189 bdevname(rdev
->bdev
,b
));
3190 kick_rdev_from_array(rdev
);
3193 if (mddev
->level
== LEVEL_MULTIPATH
) {
3194 rdev
->desc_nr
= i
++;
3195 rdev
->raid_disk
= rdev
->desc_nr
;
3196 set_bit(In_sync
, &rdev
->flags
);
3197 } else if (rdev
->raid_disk
>= (mddev
->raid_disks
- min(0, mddev
->delta_disks
))) {
3198 rdev
->raid_disk
= -1;
3199 clear_bit(In_sync
, &rdev
->flags
);
3204 /* Read a fixed-point number.
3205 * Numbers in sysfs attributes should be in "standard" units where
3206 * possible, so time should be in seconds.
3207 * However we internally use a a much smaller unit such as
3208 * milliseconds or jiffies.
3209 * This function takes a decimal number with a possible fractional
3210 * component, and produces an integer which is the result of
3211 * multiplying that number by 10^'scale'.
3212 * all without any floating-point arithmetic.
3214 int strict_strtoul_scaled(const char *cp
, unsigned long *res
, int scale
)
3216 unsigned long result
= 0;
3218 while (isdigit(*cp
) || (*cp
== '.' && decimals
< 0)) {
3221 else if (decimals
< scale
) {
3224 result
= result
* 10 + value
;
3236 while (decimals
< scale
) {
3245 static void md_safemode_timeout(unsigned long data
);
3248 safe_delay_show(struct mddev
*mddev
, char *page
)
3250 int msec
= (mddev
->safemode_delay
*1000)/HZ
;
3251 return sprintf(page
, "%d.%03d\n", msec
/1000, msec
%1000);
3254 safe_delay_store(struct mddev
*mddev
, const char *cbuf
, size_t len
)
3258 if (strict_strtoul_scaled(cbuf
, &msec
, 3) < 0)
3261 mddev
->safemode_delay
= 0;
3263 unsigned long old_delay
= mddev
->safemode_delay
;
3264 mddev
->safemode_delay
= (msec
*HZ
)/1000;
3265 if (mddev
->safemode_delay
== 0)
3266 mddev
->safemode_delay
= 1;
3267 if (mddev
->safemode_delay
< old_delay
)
3268 md_safemode_timeout((unsigned long)mddev
);
3272 static struct md_sysfs_entry md_safe_delay
=
3273 __ATTR(safe_mode_delay
, S_IRUGO
|S_IWUSR
,safe_delay_show
, safe_delay_store
);
3276 level_show(struct mddev
*mddev
, char *page
)
3278 struct md_personality
*p
= mddev
->pers
;
3280 return sprintf(page
, "%s\n", p
->name
);
3281 else if (mddev
->clevel
[0])
3282 return sprintf(page
, "%s\n", mddev
->clevel
);
3283 else if (mddev
->level
!= LEVEL_NONE
)
3284 return sprintf(page
, "%d\n", mddev
->level
);
3290 level_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3294 struct md_personality
*pers
;
3297 struct md_rdev
*rdev
;
3299 if (mddev
->pers
== NULL
) {
3302 if (len
>= sizeof(mddev
->clevel
))
3304 strncpy(mddev
->clevel
, buf
, len
);
3305 if (mddev
->clevel
[len
-1] == '\n')
3307 mddev
->clevel
[len
] = 0;
3308 mddev
->level
= LEVEL_NONE
;
3312 /* request to change the personality. Need to ensure:
3313 * - array is not engaged in resync/recovery/reshape
3314 * - old personality can be suspended
3315 * - new personality will access other array.
3318 if (mddev
->sync_thread
||
3319 mddev
->reshape_position
!= MaxSector
||
3320 mddev
->sysfs_active
)
3323 if (!mddev
->pers
->quiesce
) {
3324 printk(KERN_WARNING
"md: %s: %s does not support online personality change\n",
3325 mdname(mddev
), mddev
->pers
->name
);
3329 /* Now find the new personality */
3330 if (len
== 0 || len
>= sizeof(clevel
))
3332 strncpy(clevel
, buf
, len
);
3333 if (clevel
[len
-1] == '\n')
3336 if (strict_strtol(clevel
, 10, &level
))
3339 if (request_module("md-%s", clevel
) != 0)
3340 request_module("md-level-%s", clevel
);
3341 spin_lock(&pers_lock
);
3342 pers
= find_pers(level
, clevel
);
3343 if (!pers
|| !try_module_get(pers
->owner
)) {
3344 spin_unlock(&pers_lock
);
3345 printk(KERN_WARNING
"md: personality %s not loaded\n", clevel
);
3348 spin_unlock(&pers_lock
);
3350 if (pers
== mddev
->pers
) {
3351 /* Nothing to do! */
3352 module_put(pers
->owner
);
3355 if (!pers
->takeover
) {
3356 module_put(pers
->owner
);
3357 printk(KERN_WARNING
"md: %s: %s does not support personality takeover\n",
3358 mdname(mddev
), clevel
);
3362 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
3363 rdev
->new_raid_disk
= rdev
->raid_disk
;
3365 /* ->takeover must set new_* and/or delta_disks
3366 * if it succeeds, and may set them when it fails.
3368 priv
= pers
->takeover(mddev
);
3370 mddev
->new_level
= mddev
->level
;
3371 mddev
->new_layout
= mddev
->layout
;
3372 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3373 mddev
->raid_disks
-= mddev
->delta_disks
;
3374 mddev
->delta_disks
= 0;
3375 module_put(pers
->owner
);
3376 printk(KERN_WARNING
"md: %s: %s would not accept array\n",
3377 mdname(mddev
), clevel
);
3378 return PTR_ERR(priv
);
3381 /* Looks like we have a winner */
3382 mddev_suspend(mddev
);
3383 mddev
->pers
->stop(mddev
);
3385 if (mddev
->pers
->sync_request
== NULL
&&
3386 pers
->sync_request
!= NULL
) {
3387 /* need to add the md_redundancy_group */
3388 if (sysfs_create_group(&mddev
->kobj
, &md_redundancy_group
))
3390 "md: cannot register extra attributes for %s\n",
3392 mddev
->sysfs_action
= sysfs_get_dirent(mddev
->kobj
.sd
, NULL
, "sync_action");
3394 if (mddev
->pers
->sync_request
!= NULL
&&
3395 pers
->sync_request
== NULL
) {
3396 /* need to remove the md_redundancy_group */
3397 if (mddev
->to_remove
== NULL
)
3398 mddev
->to_remove
= &md_redundancy_group
;
3401 if (mddev
->pers
->sync_request
== NULL
&&
3403 /* We are converting from a no-redundancy array
3404 * to a redundancy array and metadata is managed
3405 * externally so we need to be sure that writes
3406 * won't block due to a need to transition
3408 * until external management is started.
3411 mddev
->safemode_delay
= 0;
3412 mddev
->safemode
= 0;
3415 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
3416 if (rdev
->raid_disk
< 0)
3418 if (rdev
->new_raid_disk
>= mddev
->raid_disks
)
3419 rdev
->new_raid_disk
= -1;
3420 if (rdev
->new_raid_disk
== rdev
->raid_disk
)
3422 sysfs_unlink_rdev(mddev
, rdev
);
3424 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
3425 if (rdev
->raid_disk
< 0)
3427 if (rdev
->new_raid_disk
== rdev
->raid_disk
)
3429 rdev
->raid_disk
= rdev
->new_raid_disk
;
3430 if (rdev
->raid_disk
< 0)
3431 clear_bit(In_sync
, &rdev
->flags
);
3433 if (sysfs_link_rdev(mddev
, rdev
))
3434 printk(KERN_WARNING
"md: cannot register rd%d"
3435 " for %s after level change\n",
3436 rdev
->raid_disk
, mdname(mddev
));
3440 module_put(mddev
->pers
->owner
);
3442 mddev
->private = priv
;
3443 strlcpy(mddev
->clevel
, pers
->name
, sizeof(mddev
->clevel
));
3444 mddev
->level
= mddev
->new_level
;
3445 mddev
->layout
= mddev
->new_layout
;
3446 mddev
->chunk_sectors
= mddev
->new_chunk_sectors
;
3447 mddev
->delta_disks
= 0;
3448 mddev
->degraded
= 0;
3449 if (mddev
->pers
->sync_request
== NULL
) {
3450 /* this is now an array without redundancy, so
3451 * it must always be in_sync
3454 del_timer_sync(&mddev
->safemode_timer
);
3457 mddev_resume(mddev
);
3458 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
3459 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
3460 md_wakeup_thread(mddev
->thread
);
3461 sysfs_notify(&mddev
->kobj
, NULL
, "level");
3462 md_new_event(mddev
);
3466 static struct md_sysfs_entry md_level
=
3467 __ATTR(level
, S_IRUGO
|S_IWUSR
, level_show
, level_store
);
3471 layout_show(struct mddev
*mddev
, char *page
)
3473 /* just a number, not meaningful for all levels */
3474 if (mddev
->reshape_position
!= MaxSector
&&
3475 mddev
->layout
!= mddev
->new_layout
)
3476 return sprintf(page
, "%d (%d)\n",
3477 mddev
->new_layout
, mddev
->layout
);
3478 return sprintf(page
, "%d\n", mddev
->layout
);
3482 layout_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3485 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3487 if (!*buf
|| (*e
&& *e
!= '\n'))
3492 if (mddev
->pers
->check_reshape
== NULL
)
3494 mddev
->new_layout
= n
;
3495 err
= mddev
->pers
->check_reshape(mddev
);
3497 mddev
->new_layout
= mddev
->layout
;
3501 mddev
->new_layout
= n
;
3502 if (mddev
->reshape_position
== MaxSector
)
3507 static struct md_sysfs_entry md_layout
=
3508 __ATTR(layout
, S_IRUGO
|S_IWUSR
, layout_show
, layout_store
);
3512 raid_disks_show(struct mddev
*mddev
, char *page
)
3514 if (mddev
->raid_disks
== 0)
3516 if (mddev
->reshape_position
!= MaxSector
&&
3517 mddev
->delta_disks
!= 0)
3518 return sprintf(page
, "%d (%d)\n", mddev
->raid_disks
,
3519 mddev
->raid_disks
- mddev
->delta_disks
);
3520 return sprintf(page
, "%d\n", mddev
->raid_disks
);
3523 static int update_raid_disks(struct mddev
*mddev
, int raid_disks
);
3526 raid_disks_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3530 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3532 if (!*buf
|| (*e
&& *e
!= '\n'))
3536 rv
= update_raid_disks(mddev
, n
);
3537 else if (mddev
->reshape_position
!= MaxSector
) {
3538 int olddisks
= mddev
->raid_disks
- mddev
->delta_disks
;
3539 mddev
->delta_disks
= n
- olddisks
;
3540 mddev
->raid_disks
= n
;
3542 mddev
->raid_disks
= n
;
3543 return rv
? rv
: len
;
3545 static struct md_sysfs_entry md_raid_disks
=
3546 __ATTR(raid_disks
, S_IRUGO
|S_IWUSR
, raid_disks_show
, raid_disks_store
);
3549 chunk_size_show(struct mddev
*mddev
, char *page
)
3551 if (mddev
->reshape_position
!= MaxSector
&&
3552 mddev
->chunk_sectors
!= mddev
->new_chunk_sectors
)
3553 return sprintf(page
, "%d (%d)\n",
3554 mddev
->new_chunk_sectors
<< 9,
3555 mddev
->chunk_sectors
<< 9);
3556 return sprintf(page
, "%d\n", mddev
->chunk_sectors
<< 9);
3560 chunk_size_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3563 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3565 if (!*buf
|| (*e
&& *e
!= '\n'))
3570 if (mddev
->pers
->check_reshape
== NULL
)
3572 mddev
->new_chunk_sectors
= n
>> 9;
3573 err
= mddev
->pers
->check_reshape(mddev
);
3575 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
3579 mddev
->new_chunk_sectors
= n
>> 9;
3580 if (mddev
->reshape_position
== MaxSector
)
3581 mddev
->chunk_sectors
= n
>> 9;
3585 static struct md_sysfs_entry md_chunk_size
=
3586 __ATTR(chunk_size
, S_IRUGO
|S_IWUSR
, chunk_size_show
, chunk_size_store
);
3589 resync_start_show(struct mddev
*mddev
, char *page
)
3591 if (mddev
->recovery_cp
== MaxSector
)
3592 return sprintf(page
, "none\n");
3593 return sprintf(page
, "%llu\n", (unsigned long long)mddev
->recovery_cp
);
3597 resync_start_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3600 unsigned long long n
= simple_strtoull(buf
, &e
, 10);
3602 if (mddev
->pers
&& !test_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
))
3604 if (cmd_match(buf
, "none"))
3606 else if (!*buf
|| (*e
&& *e
!= '\n'))
3609 mddev
->recovery_cp
= n
;
3612 static struct md_sysfs_entry md_resync_start
=
3613 __ATTR(resync_start
, S_IRUGO
|S_IWUSR
, resync_start_show
, resync_start_store
);
3616 * The array state can be:
3619 * No devices, no size, no level
3620 * Equivalent to STOP_ARRAY ioctl
3622 * May have some settings, but array is not active
3623 * all IO results in error
3624 * When written, doesn't tear down array, but just stops it
3625 * suspended (not supported yet)
3626 * All IO requests will block. The array can be reconfigured.
3627 * Writing this, if accepted, will block until array is quiescent
3629 * no resync can happen. no superblocks get written.
3630 * write requests fail
3632 * like readonly, but behaves like 'clean' on a write request.
3634 * clean - no pending writes, but otherwise active.
3635 * When written to inactive array, starts without resync
3636 * If a write request arrives then
3637 * if metadata is known, mark 'dirty' and switch to 'active'.
3638 * if not known, block and switch to write-pending
3639 * If written to an active array that has pending writes, then fails.
3641 * fully active: IO and resync can be happening.
3642 * When written to inactive array, starts with resync
3645 * clean, but writes are blocked waiting for 'active' to be written.
3648 * like active, but no writes have been seen for a while (100msec).
3651 enum array_state
{ clear
, inactive
, suspended
, readonly
, read_auto
, clean
, active
,
3652 write_pending
, active_idle
, bad_word
};
3653 static char *array_states
[] = {
3654 "clear", "inactive", "suspended", "readonly", "read-auto", "clean", "active",
3655 "write-pending", "active-idle", NULL
};
3657 static int match_word(const char *word
, char **list
)
3660 for (n
=0; list
[n
]; n
++)
3661 if (cmd_match(word
, list
[n
]))
3667 array_state_show(struct mddev
*mddev
, char *page
)
3669 enum array_state st
= inactive
;
3682 else if (test_bit(MD_CHANGE_PENDING
, &mddev
->flags
))
3684 else if (mddev
->safemode
)
3690 if (list_empty(&mddev
->disks
) &&
3691 mddev
->raid_disks
== 0 &&
3692 mddev
->dev_sectors
== 0)
3697 return sprintf(page
, "%s\n", array_states
[st
]);
3700 static int do_md_stop(struct mddev
* mddev
, int ro
, int is_open
);
3701 static int md_set_readonly(struct mddev
* mddev
, int is_open
);
3702 static int do_md_run(struct mddev
* mddev
);
3703 static int restart_array(struct mddev
*mddev
);
3706 array_state_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3709 enum array_state st
= match_word(buf
, array_states
);
3714 /* stopping an active array */
3715 if (atomic_read(&mddev
->openers
) > 0)
3717 err
= do_md_stop(mddev
, 0, 0);
3720 /* stopping an active array */
3722 if (atomic_read(&mddev
->openers
) > 0)
3724 err
= do_md_stop(mddev
, 2, 0);
3726 err
= 0; /* already inactive */
3729 break; /* not supported yet */
3732 err
= md_set_readonly(mddev
, 0);
3735 set_disk_ro(mddev
->gendisk
, 1);
3736 err
= do_md_run(mddev
);
3742 err
= md_set_readonly(mddev
, 0);
3743 else if (mddev
->ro
== 1)
3744 err
= restart_array(mddev
);
3747 set_disk_ro(mddev
->gendisk
, 0);
3751 err
= do_md_run(mddev
);
3756 restart_array(mddev
);
3757 spin_lock_irq(&mddev
->write_lock
);
3758 if (atomic_read(&mddev
->writes_pending
) == 0) {
3759 if (mddev
->in_sync
== 0) {
3761 if (mddev
->safemode
== 1)
3762 mddev
->safemode
= 0;
3763 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
3768 spin_unlock_irq(&mddev
->write_lock
);
3774 restart_array(mddev
);
3775 clear_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
3776 wake_up(&mddev
->sb_wait
);
3780 set_disk_ro(mddev
->gendisk
, 0);
3781 err
= do_md_run(mddev
);
3786 /* these cannot be set */
3792 if (mddev
->hold_active
== UNTIL_IOCTL
)
3793 mddev
->hold_active
= 0;
3794 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
3798 static struct md_sysfs_entry md_array_state
=
3799 __ATTR(array_state
, S_IRUGO
|S_IWUSR
, array_state_show
, array_state_store
);
3802 max_corrected_read_errors_show(struct mddev
*mddev
, char *page
) {
3803 return sprintf(page
, "%d\n",
3804 atomic_read(&mddev
->max_corr_read_errors
));
3808 max_corrected_read_errors_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3811 unsigned long n
= simple_strtoul(buf
, &e
, 10);
3813 if (*buf
&& (*e
== 0 || *e
== '\n')) {
3814 atomic_set(&mddev
->max_corr_read_errors
, n
);
3820 static struct md_sysfs_entry max_corr_read_errors
=
3821 __ATTR(max_read_errors
, S_IRUGO
|S_IWUSR
, max_corrected_read_errors_show
,
3822 max_corrected_read_errors_store
);
3825 null_show(struct mddev
*mddev
, char *page
)
3831 new_dev_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3833 /* buf must be %d:%d\n? giving major and minor numbers */
3834 /* The new device is added to the array.
3835 * If the array has a persistent superblock, we read the
3836 * superblock to initialise info and check validity.
3837 * Otherwise, only checking done is that in bind_rdev_to_array,
3838 * which mainly checks size.
3841 int major
= simple_strtoul(buf
, &e
, 10);
3844 struct md_rdev
*rdev
;
3847 if (!*buf
|| *e
!= ':' || !e
[1] || e
[1] == '\n')
3849 minor
= simple_strtoul(e
+1, &e
, 10);
3850 if (*e
&& *e
!= '\n')
3852 dev
= MKDEV(major
, minor
);
3853 if (major
!= MAJOR(dev
) ||
3854 minor
!= MINOR(dev
))
3858 if (mddev
->persistent
) {
3859 rdev
= md_import_device(dev
, mddev
->major_version
,
3860 mddev
->minor_version
);
3861 if (!IS_ERR(rdev
) && !list_empty(&mddev
->disks
)) {
3862 struct md_rdev
*rdev0
3863 = list_entry(mddev
->disks
.next
,
3864 struct md_rdev
, same_set
);
3865 err
= super_types
[mddev
->major_version
]
3866 .load_super(rdev
, rdev0
, mddev
->minor_version
);
3870 } else if (mddev
->external
)
3871 rdev
= md_import_device(dev
, -2, -1);
3873 rdev
= md_import_device(dev
, -1, -1);
3876 return PTR_ERR(rdev
);
3877 err
= bind_rdev_to_array(rdev
, mddev
);
3881 return err
? err
: len
;
3884 static struct md_sysfs_entry md_new_device
=
3885 __ATTR(new_dev
, S_IWUSR
, null_show
, new_dev_store
);
3888 bitmap_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3891 unsigned long chunk
, end_chunk
;
3895 /* buf should be <chunk> <chunk> ... or <chunk>-<chunk> ... (range) */
3897 chunk
= end_chunk
= simple_strtoul(buf
, &end
, 0);
3898 if (buf
== end
) break;
3899 if (*end
== '-') { /* range */
3901 end_chunk
= simple_strtoul(buf
, &end
, 0);
3902 if (buf
== end
) break;
3904 if (*end
&& !isspace(*end
)) break;
3905 bitmap_dirty_bits(mddev
->bitmap
, chunk
, end_chunk
);
3906 buf
= skip_spaces(end
);
3908 bitmap_unplug(mddev
->bitmap
); /* flush the bits to disk */
3913 static struct md_sysfs_entry md_bitmap
=
3914 __ATTR(bitmap_set_bits
, S_IWUSR
, null_show
, bitmap_store
);
3917 size_show(struct mddev
*mddev
, char *page
)
3919 return sprintf(page
, "%llu\n",
3920 (unsigned long long)mddev
->dev_sectors
/ 2);
3923 static int update_size(struct mddev
*mddev
, sector_t num_sectors
);
3926 size_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3928 /* If array is inactive, we can reduce the component size, but
3929 * not increase it (except from 0).
3930 * If array is active, we can try an on-line resize
3933 int err
= strict_blocks_to_sectors(buf
, §ors
);
3938 err
= update_size(mddev
, sectors
);
3939 md_update_sb(mddev
, 1);
3941 if (mddev
->dev_sectors
== 0 ||
3942 mddev
->dev_sectors
> sectors
)
3943 mddev
->dev_sectors
= sectors
;
3947 return err
? err
: len
;
3950 static struct md_sysfs_entry md_size
=
3951 __ATTR(component_size
, S_IRUGO
|S_IWUSR
, size_show
, size_store
);
3956 * 'none' for arrays with no metadata (good luck...)
3957 * 'external' for arrays with externally managed metadata,
3958 * or N.M for internally known formats
3961 metadata_show(struct mddev
*mddev
, char *page
)
3963 if (mddev
->persistent
)
3964 return sprintf(page
, "%d.%d\n",
3965 mddev
->major_version
, mddev
->minor_version
);
3966 else if (mddev
->external
)
3967 return sprintf(page
, "external:%s\n", mddev
->metadata_type
);
3969 return sprintf(page
, "none\n");
3973 metadata_store(struct mddev
*mddev
, const char *buf
, size_t len
)
3977 /* Changing the details of 'external' metadata is
3978 * always permitted. Otherwise there must be
3979 * no devices attached to the array.
3981 if (mddev
->external
&& strncmp(buf
, "external:", 9) == 0)
3983 else if (!list_empty(&mddev
->disks
))
3986 if (cmd_match(buf
, "none")) {
3987 mddev
->persistent
= 0;
3988 mddev
->external
= 0;
3989 mddev
->major_version
= 0;
3990 mddev
->minor_version
= 90;
3993 if (strncmp(buf
, "external:", 9) == 0) {
3994 size_t namelen
= len
-9;
3995 if (namelen
>= sizeof(mddev
->metadata_type
))
3996 namelen
= sizeof(mddev
->metadata_type
)-1;
3997 strncpy(mddev
->metadata_type
, buf
+9, namelen
);
3998 mddev
->metadata_type
[namelen
] = 0;
3999 if (namelen
&& mddev
->metadata_type
[namelen
-1] == '\n')
4000 mddev
->metadata_type
[--namelen
] = 0;
4001 mddev
->persistent
= 0;
4002 mddev
->external
= 1;
4003 mddev
->major_version
= 0;
4004 mddev
->minor_version
= 90;
4007 major
= simple_strtoul(buf
, &e
, 10);
4008 if (e
==buf
|| *e
!= '.')
4011 minor
= simple_strtoul(buf
, &e
, 10);
4012 if (e
==buf
|| (*e
&& *e
!= '\n') )
4014 if (major
>= ARRAY_SIZE(super_types
) || super_types
[major
].name
== NULL
)
4016 mddev
->major_version
= major
;
4017 mddev
->minor_version
= minor
;
4018 mddev
->persistent
= 1;
4019 mddev
->external
= 0;
4023 static struct md_sysfs_entry md_metadata
=
4024 __ATTR(metadata_version
, S_IRUGO
|S_IWUSR
, metadata_show
, metadata_store
);
4027 action_show(struct mddev
*mddev
, char *page
)
4029 char *type
= "idle";
4030 if (test_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
))
4032 else if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) ||
4033 (!mddev
->ro
&& test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
))) {
4034 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
4036 else if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
4037 if (!test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
4039 else if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
4043 } else if (test_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
))
4046 return sprintf(page
, "%s\n", type
);
4049 static void reap_sync_thread(struct mddev
*mddev
);
4052 action_store(struct mddev
*mddev
, const char *page
, size_t len
)
4054 if (!mddev
->pers
|| !mddev
->pers
->sync_request
)
4057 if (cmd_match(page
, "frozen"))
4058 set_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
4060 clear_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
4062 if (cmd_match(page
, "idle") || cmd_match(page
, "frozen")) {
4063 if (mddev
->sync_thread
) {
4064 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
4065 reap_sync_thread(mddev
);
4067 } else if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) ||
4068 test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
))
4070 else if (cmd_match(page
, "resync"))
4071 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4072 else if (cmd_match(page
, "recover")) {
4073 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
4074 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4075 } else if (cmd_match(page
, "reshape")) {
4077 if (mddev
->pers
->start_reshape
== NULL
)
4079 err
= mddev
->pers
->start_reshape(mddev
);
4082 sysfs_notify(&mddev
->kobj
, NULL
, "degraded");
4084 if (cmd_match(page
, "check"))
4085 set_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
4086 else if (!cmd_match(page
, "repair"))
4088 set_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
4089 set_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
4091 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4092 md_wakeup_thread(mddev
->thread
);
4093 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
4098 mismatch_cnt_show(struct mddev
*mddev
, char *page
)
4100 return sprintf(page
, "%llu\n",
4101 (unsigned long long) mddev
->resync_mismatches
);
4104 static struct md_sysfs_entry md_scan_mode
=
4105 __ATTR(sync_action
, S_IRUGO
|S_IWUSR
, action_show
, action_store
);
4108 static struct md_sysfs_entry md_mismatches
= __ATTR_RO(mismatch_cnt
);
4111 sync_min_show(struct mddev
*mddev
, char *page
)
4113 return sprintf(page
, "%d (%s)\n", speed_min(mddev
),
4114 mddev
->sync_speed_min
? "local": "system");
4118 sync_min_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4122 if (strncmp(buf
, "system", 6)==0) {
4123 mddev
->sync_speed_min
= 0;
4126 min
= simple_strtoul(buf
, &e
, 10);
4127 if (buf
== e
|| (*e
&& *e
!= '\n') || min
<= 0)
4129 mddev
->sync_speed_min
= min
;
4133 static struct md_sysfs_entry md_sync_min
=
4134 __ATTR(sync_speed_min
, S_IRUGO
|S_IWUSR
, sync_min_show
, sync_min_store
);
4137 sync_max_show(struct mddev
*mddev
, char *page
)
4139 return sprintf(page
, "%d (%s)\n", speed_max(mddev
),
4140 mddev
->sync_speed_max
? "local": "system");
4144 sync_max_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4148 if (strncmp(buf
, "system", 6)==0) {
4149 mddev
->sync_speed_max
= 0;
4152 max
= simple_strtoul(buf
, &e
, 10);
4153 if (buf
== e
|| (*e
&& *e
!= '\n') || max
<= 0)
4155 mddev
->sync_speed_max
= max
;
4159 static struct md_sysfs_entry md_sync_max
=
4160 __ATTR(sync_speed_max
, S_IRUGO
|S_IWUSR
, sync_max_show
, sync_max_store
);
4163 degraded_show(struct mddev
*mddev
, char *page
)
4165 return sprintf(page
, "%d\n", mddev
->degraded
);
4167 static struct md_sysfs_entry md_degraded
= __ATTR_RO(degraded
);
4170 sync_force_parallel_show(struct mddev
*mddev
, char *page
)
4172 return sprintf(page
, "%d\n", mddev
->parallel_resync
);
4176 sync_force_parallel_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4180 if (strict_strtol(buf
, 10, &n
))
4183 if (n
!= 0 && n
!= 1)
4186 mddev
->parallel_resync
= n
;
4188 if (mddev
->sync_thread
)
4189 wake_up(&resync_wait
);
4194 /* force parallel resync, even with shared block devices */
4195 static struct md_sysfs_entry md_sync_force_parallel
=
4196 __ATTR(sync_force_parallel
, S_IRUGO
|S_IWUSR
,
4197 sync_force_parallel_show
, sync_force_parallel_store
);
4200 sync_speed_show(struct mddev
*mddev
, char *page
)
4202 unsigned long resync
, dt
, db
;
4203 if (mddev
->curr_resync
== 0)
4204 return sprintf(page
, "none\n");
4205 resync
= mddev
->curr_mark_cnt
- atomic_read(&mddev
->recovery_active
);
4206 dt
= (jiffies
- mddev
->resync_mark
) / HZ
;
4208 db
= resync
- mddev
->resync_mark_cnt
;
4209 return sprintf(page
, "%lu\n", db
/dt
/2); /* K/sec */
4212 static struct md_sysfs_entry md_sync_speed
= __ATTR_RO(sync_speed
);
4215 sync_completed_show(struct mddev
*mddev
, char *page
)
4217 unsigned long long max_sectors
, resync
;
4219 if (!test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4220 return sprintf(page
, "none\n");
4222 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
4223 max_sectors
= mddev
->resync_max_sectors
;
4225 max_sectors
= mddev
->dev_sectors
;
4227 resync
= mddev
->curr_resync_completed
;
4228 return sprintf(page
, "%llu / %llu\n", resync
, max_sectors
);
4231 static struct md_sysfs_entry md_sync_completed
= __ATTR_RO(sync_completed
);
4234 min_sync_show(struct mddev
*mddev
, char *page
)
4236 return sprintf(page
, "%llu\n",
4237 (unsigned long long)mddev
->resync_min
);
4240 min_sync_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4242 unsigned long long min
;
4243 if (strict_strtoull(buf
, 10, &min
))
4245 if (min
> mddev
->resync_max
)
4247 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4250 /* Must be a multiple of chunk_size */
4251 if (mddev
->chunk_sectors
) {
4252 sector_t temp
= min
;
4253 if (sector_div(temp
, mddev
->chunk_sectors
))
4256 mddev
->resync_min
= min
;
4261 static struct md_sysfs_entry md_min_sync
=
4262 __ATTR(sync_min
, S_IRUGO
|S_IWUSR
, min_sync_show
, min_sync_store
);
4265 max_sync_show(struct mddev
*mddev
, char *page
)
4267 if (mddev
->resync_max
== MaxSector
)
4268 return sprintf(page
, "max\n");
4270 return sprintf(page
, "%llu\n",
4271 (unsigned long long)mddev
->resync_max
);
4274 max_sync_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4276 if (strncmp(buf
, "max", 3) == 0)
4277 mddev
->resync_max
= MaxSector
;
4279 unsigned long long max
;
4280 if (strict_strtoull(buf
, 10, &max
))
4282 if (max
< mddev
->resync_min
)
4284 if (max
< mddev
->resync_max
&&
4286 test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
))
4289 /* Must be a multiple of chunk_size */
4290 if (mddev
->chunk_sectors
) {
4291 sector_t temp
= max
;
4292 if (sector_div(temp
, mddev
->chunk_sectors
))
4295 mddev
->resync_max
= max
;
4297 wake_up(&mddev
->recovery_wait
);
4301 static struct md_sysfs_entry md_max_sync
=
4302 __ATTR(sync_max
, S_IRUGO
|S_IWUSR
, max_sync_show
, max_sync_store
);
4305 suspend_lo_show(struct mddev
*mddev
, char *page
)
4307 return sprintf(page
, "%llu\n", (unsigned long long)mddev
->suspend_lo
);
4311 suspend_lo_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4314 unsigned long long new = simple_strtoull(buf
, &e
, 10);
4315 unsigned long long old
= mddev
->suspend_lo
;
4317 if (mddev
->pers
== NULL
||
4318 mddev
->pers
->quiesce
== NULL
)
4320 if (buf
== e
|| (*e
&& *e
!= '\n'))
4323 mddev
->suspend_lo
= new;
4325 /* Shrinking suspended region */
4326 mddev
->pers
->quiesce(mddev
, 2);
4328 /* Expanding suspended region - need to wait */
4329 mddev
->pers
->quiesce(mddev
, 1);
4330 mddev
->pers
->quiesce(mddev
, 0);
4334 static struct md_sysfs_entry md_suspend_lo
=
4335 __ATTR(suspend_lo
, S_IRUGO
|S_IWUSR
, suspend_lo_show
, suspend_lo_store
);
4339 suspend_hi_show(struct mddev
*mddev
, char *page
)
4341 return sprintf(page
, "%llu\n", (unsigned long long)mddev
->suspend_hi
);
4345 suspend_hi_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4348 unsigned long long new = simple_strtoull(buf
, &e
, 10);
4349 unsigned long long old
= mddev
->suspend_hi
;
4351 if (mddev
->pers
== NULL
||
4352 mddev
->pers
->quiesce
== NULL
)
4354 if (buf
== e
|| (*e
&& *e
!= '\n'))
4357 mddev
->suspend_hi
= new;
4359 /* Shrinking suspended region */
4360 mddev
->pers
->quiesce(mddev
, 2);
4362 /* Expanding suspended region - need to wait */
4363 mddev
->pers
->quiesce(mddev
, 1);
4364 mddev
->pers
->quiesce(mddev
, 0);
4368 static struct md_sysfs_entry md_suspend_hi
=
4369 __ATTR(suspend_hi
, S_IRUGO
|S_IWUSR
, suspend_hi_show
, suspend_hi_store
);
4372 reshape_position_show(struct mddev
*mddev
, char *page
)
4374 if (mddev
->reshape_position
!= MaxSector
)
4375 return sprintf(page
, "%llu\n",
4376 (unsigned long long)mddev
->reshape_position
);
4377 strcpy(page
, "none\n");
4382 reshape_position_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4385 unsigned long long new = simple_strtoull(buf
, &e
, 10);
4388 if (buf
== e
|| (*e
&& *e
!= '\n'))
4390 mddev
->reshape_position
= new;
4391 mddev
->delta_disks
= 0;
4392 mddev
->new_level
= mddev
->level
;
4393 mddev
->new_layout
= mddev
->layout
;
4394 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
4398 static struct md_sysfs_entry md_reshape_position
=
4399 __ATTR(reshape_position
, S_IRUGO
|S_IWUSR
, reshape_position_show
,
4400 reshape_position_store
);
4403 array_size_show(struct mddev
*mddev
, char *page
)
4405 if (mddev
->external_size
)
4406 return sprintf(page
, "%llu\n",
4407 (unsigned long long)mddev
->array_sectors
/2);
4409 return sprintf(page
, "default\n");
4413 array_size_store(struct mddev
*mddev
, const char *buf
, size_t len
)
4417 if (strncmp(buf
, "default", 7) == 0) {
4419 sectors
= mddev
->pers
->size(mddev
, 0, 0);
4421 sectors
= mddev
->array_sectors
;
4423 mddev
->external_size
= 0;
4425 if (strict_blocks_to_sectors(buf
, §ors
) < 0)
4427 if (mddev
->pers
&& mddev
->pers
->size(mddev
, 0, 0) < sectors
)
4430 mddev
->external_size
= 1;
4433 mddev
->array_sectors
= sectors
;
4435 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4436 revalidate_disk(mddev
->gendisk
);
4441 static struct md_sysfs_entry md_array_size
=
4442 __ATTR(array_size
, S_IRUGO
|S_IWUSR
, array_size_show
,
4445 static struct attribute
*md_default_attrs
[] = {
4448 &md_raid_disks
.attr
,
4449 &md_chunk_size
.attr
,
4451 &md_resync_start
.attr
,
4453 &md_new_device
.attr
,
4454 &md_safe_delay
.attr
,
4455 &md_array_state
.attr
,
4456 &md_reshape_position
.attr
,
4457 &md_array_size
.attr
,
4458 &max_corr_read_errors
.attr
,
4462 static struct attribute
*md_redundancy_attrs
[] = {
4464 &md_mismatches
.attr
,
4467 &md_sync_speed
.attr
,
4468 &md_sync_force_parallel
.attr
,
4469 &md_sync_completed
.attr
,
4472 &md_suspend_lo
.attr
,
4473 &md_suspend_hi
.attr
,
4478 static struct attribute_group md_redundancy_group
= {
4480 .attrs
= md_redundancy_attrs
,
4485 md_attr_show(struct kobject
*kobj
, struct attribute
*attr
, char *page
)
4487 struct md_sysfs_entry
*entry
= container_of(attr
, struct md_sysfs_entry
, attr
);
4488 struct mddev
*mddev
= container_of(kobj
, struct mddev
, kobj
);
4493 spin_lock(&all_mddevs_lock
);
4494 if (list_empty(&mddev
->all_mddevs
)) {
4495 spin_unlock(&all_mddevs_lock
);
4499 spin_unlock(&all_mddevs_lock
);
4501 rv
= mddev_lock(mddev
);
4503 rv
= entry
->show(mddev
, page
);
4504 mddev_unlock(mddev
);
4511 md_attr_store(struct kobject
*kobj
, struct attribute
*attr
,
4512 const char *page
, size_t length
)
4514 struct md_sysfs_entry
*entry
= container_of(attr
, struct md_sysfs_entry
, attr
);
4515 struct mddev
*mddev
= container_of(kobj
, struct mddev
, kobj
);
4520 if (!capable(CAP_SYS_ADMIN
))
4522 spin_lock(&all_mddevs_lock
);
4523 if (list_empty(&mddev
->all_mddevs
)) {
4524 spin_unlock(&all_mddevs_lock
);
4528 spin_unlock(&all_mddevs_lock
);
4529 rv
= mddev_lock(mddev
);
4531 rv
= entry
->store(mddev
, page
, length
);
4532 mddev_unlock(mddev
);
4538 static void md_free(struct kobject
*ko
)
4540 struct mddev
*mddev
= container_of(ko
, struct mddev
, kobj
);
4542 if (mddev
->sysfs_state
)
4543 sysfs_put(mddev
->sysfs_state
);
4545 if (mddev
->gendisk
) {
4546 del_gendisk(mddev
->gendisk
);
4547 put_disk(mddev
->gendisk
);
4550 blk_cleanup_queue(mddev
->queue
);
4555 static const struct sysfs_ops md_sysfs_ops
= {
4556 .show
= md_attr_show
,
4557 .store
= md_attr_store
,
4559 static struct kobj_type md_ktype
= {
4561 .sysfs_ops
= &md_sysfs_ops
,
4562 .default_attrs
= md_default_attrs
,
4567 static void mddev_delayed_delete(struct work_struct
*ws
)
4569 struct mddev
*mddev
= container_of(ws
, struct mddev
, del_work
);
4571 sysfs_remove_group(&mddev
->kobj
, &md_bitmap_group
);
4572 kobject_del(&mddev
->kobj
);
4573 kobject_put(&mddev
->kobj
);
4576 static int md_alloc(dev_t dev
, char *name
)
4578 static DEFINE_MUTEX(disks_mutex
);
4579 struct mddev
*mddev
= mddev_find(dev
);
4580 struct gendisk
*disk
;
4589 partitioned
= (MAJOR(mddev
->unit
) != MD_MAJOR
);
4590 shift
= partitioned
? MdpMinorShift
: 0;
4591 unit
= MINOR(mddev
->unit
) >> shift
;
4593 /* wait for any previous instance of this device to be
4594 * completely removed (mddev_delayed_delete).
4596 flush_workqueue(md_misc_wq
);
4598 mutex_lock(&disks_mutex
);
4604 /* Need to ensure that 'name' is not a duplicate.
4606 struct mddev
*mddev2
;
4607 spin_lock(&all_mddevs_lock
);
4609 list_for_each_entry(mddev2
, &all_mddevs
, all_mddevs
)
4610 if (mddev2
->gendisk
&&
4611 strcmp(mddev2
->gendisk
->disk_name
, name
) == 0) {
4612 spin_unlock(&all_mddevs_lock
);
4615 spin_unlock(&all_mddevs_lock
);
4619 mddev
->queue
= blk_alloc_queue(GFP_KERNEL
);
4622 mddev
->queue
->queuedata
= mddev
;
4624 blk_queue_make_request(mddev
->queue
, md_make_request
);
4626 disk
= alloc_disk(1 << shift
);
4628 blk_cleanup_queue(mddev
->queue
);
4629 mddev
->queue
= NULL
;
4632 disk
->major
= MAJOR(mddev
->unit
);
4633 disk
->first_minor
= unit
<< shift
;
4635 strcpy(disk
->disk_name
, name
);
4636 else if (partitioned
)
4637 sprintf(disk
->disk_name
, "md_d%d", unit
);
4639 sprintf(disk
->disk_name
, "md%d", unit
);
4640 disk
->fops
= &md_fops
;
4641 disk
->private_data
= mddev
;
4642 disk
->queue
= mddev
->queue
;
4643 blk_queue_flush(mddev
->queue
, REQ_FLUSH
| REQ_FUA
);
4644 /* Allow extended partitions. This makes the
4645 * 'mdp' device redundant, but we can't really
4648 disk
->flags
|= GENHD_FL_EXT_DEVT
;
4649 mddev
->gendisk
= disk
;
4650 /* As soon as we call add_disk(), another thread could get
4651 * through to md_open, so make sure it doesn't get too far
4653 mutex_lock(&mddev
->open_mutex
);
4656 error
= kobject_init_and_add(&mddev
->kobj
, &md_ktype
,
4657 &disk_to_dev(disk
)->kobj
, "%s", "md");
4659 /* This isn't possible, but as kobject_init_and_add is marked
4660 * __must_check, we must do something with the result
4662 printk(KERN_WARNING
"md: cannot register %s/md - name in use\n",
4666 if (mddev
->kobj
.sd
&&
4667 sysfs_create_group(&mddev
->kobj
, &md_bitmap_group
))
4668 printk(KERN_DEBUG
"pointless warning\n");
4669 mutex_unlock(&mddev
->open_mutex
);
4671 mutex_unlock(&disks_mutex
);
4672 if (!error
&& mddev
->kobj
.sd
) {
4673 kobject_uevent(&mddev
->kobj
, KOBJ_ADD
);
4674 mddev
->sysfs_state
= sysfs_get_dirent_safe(mddev
->kobj
.sd
, "array_state");
4680 static struct kobject
*md_probe(dev_t dev
, int *part
, void *data
)
4682 md_alloc(dev
, NULL
);
4686 static int add_named_array(const char *val
, struct kernel_param
*kp
)
4688 /* val must be "md_*" where * is not all digits.
4689 * We allocate an array with a large free minor number, and
4690 * set the name to val. val must not already be an active name.
4692 int len
= strlen(val
);
4693 char buf
[DISK_NAME_LEN
];
4695 while (len
&& val
[len
-1] == '\n')
4697 if (len
>= DISK_NAME_LEN
)
4699 strlcpy(buf
, val
, len
+1);
4700 if (strncmp(buf
, "md_", 3) != 0)
4702 return md_alloc(0, buf
);
4705 static void md_safemode_timeout(unsigned long data
)
4707 struct mddev
*mddev
= (struct mddev
*) data
;
4709 if (!atomic_read(&mddev
->writes_pending
)) {
4710 mddev
->safemode
= 1;
4711 if (mddev
->external
)
4712 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
4714 md_wakeup_thread(mddev
->thread
);
4717 static int start_dirty_degraded
;
4719 int md_run(struct mddev
*mddev
)
4722 struct md_rdev
*rdev
;
4723 struct md_personality
*pers
;
4725 if (list_empty(&mddev
->disks
))
4726 /* cannot run an array with no devices.. */
4731 /* Cannot run until previous stop completes properly */
4732 if (mddev
->sysfs_active
)
4736 * Analyze all RAID superblock(s)
4738 if (!mddev
->raid_disks
) {
4739 if (!mddev
->persistent
)
4744 if (mddev
->level
!= LEVEL_NONE
)
4745 request_module("md-level-%d", mddev
->level
);
4746 else if (mddev
->clevel
[0])
4747 request_module("md-%s", mddev
->clevel
);
4750 * Drop all container device buffers, from now on
4751 * the only valid external interface is through the md
4754 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
4755 if (test_bit(Faulty
, &rdev
->flags
))
4757 sync_blockdev(rdev
->bdev
);
4758 invalidate_bdev(rdev
->bdev
);
4760 /* perform some consistency tests on the device.
4761 * We don't want the data to overlap the metadata,
4762 * Internal Bitmap issues have been handled elsewhere.
4764 if (rdev
->meta_bdev
) {
4765 /* Nothing to check */;
4766 } else if (rdev
->data_offset
< rdev
->sb_start
) {
4767 if (mddev
->dev_sectors
&&
4768 rdev
->data_offset
+ mddev
->dev_sectors
4770 printk("md: %s: data overlaps metadata\n",
4775 if (rdev
->sb_start
+ rdev
->sb_size
/512
4776 > rdev
->data_offset
) {
4777 printk("md: %s: metadata overlaps data\n",
4782 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
4785 if (mddev
->bio_set
== NULL
)
4786 mddev
->bio_set
= bioset_create(BIO_POOL_SIZE
,
4787 sizeof(struct mddev
*));
4789 spin_lock(&pers_lock
);
4790 pers
= find_pers(mddev
->level
, mddev
->clevel
);
4791 if (!pers
|| !try_module_get(pers
->owner
)) {
4792 spin_unlock(&pers_lock
);
4793 if (mddev
->level
!= LEVEL_NONE
)
4794 printk(KERN_WARNING
"md: personality for level %d is not loaded!\n",
4797 printk(KERN_WARNING
"md: personality for level %s is not loaded!\n",
4802 spin_unlock(&pers_lock
);
4803 if (mddev
->level
!= pers
->level
) {
4804 mddev
->level
= pers
->level
;
4805 mddev
->new_level
= pers
->level
;
4807 strlcpy(mddev
->clevel
, pers
->name
, sizeof(mddev
->clevel
));
4809 if (mddev
->reshape_position
!= MaxSector
&&
4810 pers
->start_reshape
== NULL
) {
4811 /* This personality cannot handle reshaping... */
4813 module_put(pers
->owner
);
4817 if (pers
->sync_request
) {
4818 /* Warn if this is a potentially silly
4821 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
4822 struct md_rdev
*rdev2
;
4825 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4826 list_for_each_entry(rdev2
, &mddev
->disks
, same_set
) {
4828 rdev
->bdev
->bd_contains
==
4829 rdev2
->bdev
->bd_contains
) {
4831 "%s: WARNING: %s appears to be"
4832 " on the same physical disk as"
4835 bdevname(rdev
->bdev
,b
),
4836 bdevname(rdev2
->bdev
,b2
));
4843 "True protection against single-disk"
4844 " failure might be compromised.\n");
4847 mddev
->recovery
= 0;
4848 /* may be over-ridden by personality */
4849 mddev
->resync_max_sectors
= mddev
->dev_sectors
;
4851 mddev
->ok_start_degraded
= start_dirty_degraded
;
4853 if (start_readonly
&& mddev
->ro
== 0)
4854 mddev
->ro
= 2; /* read-only, but switch on first write */
4856 err
= mddev
->pers
->run(mddev
);
4858 printk(KERN_ERR
"md: pers->run() failed ...\n");
4859 else if (mddev
->pers
->size(mddev
, 0, 0) < mddev
->array_sectors
) {
4860 WARN_ONCE(!mddev
->external_size
, "%s: default size too small,"
4861 " but 'external_size' not in effect?\n", __func__
);
4863 "md: invalid array_size %llu > default size %llu\n",
4864 (unsigned long long)mddev
->array_sectors
/ 2,
4865 (unsigned long long)mddev
->pers
->size(mddev
, 0, 0) / 2);
4867 mddev
->pers
->stop(mddev
);
4869 if (err
== 0 && mddev
->pers
->sync_request
) {
4870 err
= bitmap_create(mddev
);
4872 printk(KERN_ERR
"%s: failed to create bitmap (%d)\n",
4873 mdname(mddev
), err
);
4874 mddev
->pers
->stop(mddev
);
4878 module_put(mddev
->pers
->owner
);
4880 bitmap_destroy(mddev
);
4883 if (mddev
->pers
->sync_request
) {
4884 if (mddev
->kobj
.sd
&&
4885 sysfs_create_group(&mddev
->kobj
, &md_redundancy_group
))
4887 "md: cannot register extra attributes for %s\n",
4889 mddev
->sysfs_action
= sysfs_get_dirent_safe(mddev
->kobj
.sd
, "sync_action");
4890 } else if (mddev
->ro
== 2) /* auto-readonly not meaningful */
4893 atomic_set(&mddev
->writes_pending
,0);
4894 atomic_set(&mddev
->max_corr_read_errors
,
4895 MD_DEFAULT_MAX_CORRECTED_READ_ERRORS
);
4896 mddev
->safemode
= 0;
4897 mddev
->safemode_timer
.function
= md_safemode_timeout
;
4898 mddev
->safemode_timer
.data
= (unsigned long) mddev
;
4899 mddev
->safemode_delay
= (200 * HZ
)/1000 +1; /* 200 msec delay */
4903 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
4904 if (rdev
->raid_disk
>= 0)
4905 if (sysfs_link_rdev(mddev
, rdev
))
4906 /* failure here is OK */;
4908 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4911 md_update_sb(mddev
, 0);
4913 md_new_event(mddev
);
4914 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
4915 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
4916 sysfs_notify(&mddev
->kobj
, NULL
, "degraded");
4919 EXPORT_SYMBOL_GPL(md_run
);
4921 static int do_md_run(struct mddev
*mddev
)
4925 err
= md_run(mddev
);
4928 err
= bitmap_load(mddev
);
4930 bitmap_destroy(mddev
);
4934 md_wakeup_thread(mddev
->thread
);
4935 md_wakeup_thread(mddev
->sync_thread
); /* possibly kick off a reshape */
4937 set_capacity(mddev
->gendisk
, mddev
->array_sectors
);
4938 revalidate_disk(mddev
->gendisk
);
4940 kobject_uevent(&disk_to_dev(mddev
->gendisk
)->kobj
, KOBJ_CHANGE
);
4945 static int restart_array(struct mddev
*mddev
)
4947 struct gendisk
*disk
= mddev
->gendisk
;
4949 /* Complain if it has no devices */
4950 if (list_empty(&mddev
->disks
))
4956 mddev
->safemode
= 0;
4958 set_disk_ro(disk
, 0);
4959 printk(KERN_INFO
"md: %s switched to read-write mode.\n",
4961 /* Kick recovery or resync if necessary */
4962 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
4963 md_wakeup_thread(mddev
->thread
);
4964 md_wakeup_thread(mddev
->sync_thread
);
4965 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
4969 /* similar to deny_write_access, but accounts for our holding a reference
4970 * to the file ourselves */
4971 static int deny_bitmap_write_access(struct file
* file
)
4973 struct inode
*inode
= file
->f_mapping
->host
;
4975 spin_lock(&inode
->i_lock
);
4976 if (atomic_read(&inode
->i_writecount
) > 1) {
4977 spin_unlock(&inode
->i_lock
);
4980 atomic_set(&inode
->i_writecount
, -1);
4981 spin_unlock(&inode
->i_lock
);
4986 void restore_bitmap_write_access(struct file
*file
)
4988 struct inode
*inode
= file
->f_mapping
->host
;
4990 spin_lock(&inode
->i_lock
);
4991 atomic_set(&inode
->i_writecount
, 1);
4992 spin_unlock(&inode
->i_lock
);
4995 static void md_clean(struct mddev
*mddev
)
4997 mddev
->array_sectors
= 0;
4998 mddev
->external_size
= 0;
4999 mddev
->dev_sectors
= 0;
5000 mddev
->raid_disks
= 0;
5001 mddev
->recovery_cp
= 0;
5002 mddev
->resync_min
= 0;
5003 mddev
->resync_max
= MaxSector
;
5004 mddev
->reshape_position
= MaxSector
;
5005 mddev
->external
= 0;
5006 mddev
->persistent
= 0;
5007 mddev
->level
= LEVEL_NONE
;
5008 mddev
->clevel
[0] = 0;
5011 mddev
->metadata_type
[0] = 0;
5012 mddev
->chunk_sectors
= 0;
5013 mddev
->ctime
= mddev
->utime
= 0;
5015 mddev
->max_disks
= 0;
5017 mddev
->can_decrease_events
= 0;
5018 mddev
->delta_disks
= 0;
5019 mddev
->new_level
= LEVEL_NONE
;
5020 mddev
->new_layout
= 0;
5021 mddev
->new_chunk_sectors
= 0;
5022 mddev
->curr_resync
= 0;
5023 mddev
->resync_mismatches
= 0;
5024 mddev
->suspend_lo
= mddev
->suspend_hi
= 0;
5025 mddev
->sync_speed_min
= mddev
->sync_speed_max
= 0;
5026 mddev
->recovery
= 0;
5029 mddev
->degraded
= 0;
5030 mddev
->safemode
= 0;
5031 mddev
->bitmap_info
.offset
= 0;
5032 mddev
->bitmap_info
.default_offset
= 0;
5033 mddev
->bitmap_info
.chunksize
= 0;
5034 mddev
->bitmap_info
.daemon_sleep
= 0;
5035 mddev
->bitmap_info
.max_write_behind
= 0;
5038 static void __md_stop_writes(struct mddev
*mddev
)
5040 if (mddev
->sync_thread
) {
5041 set_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
5042 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
5043 reap_sync_thread(mddev
);
5046 del_timer_sync(&mddev
->safemode_timer
);
5048 bitmap_flush(mddev
);
5049 md_super_wait(mddev
);
5051 if (!mddev
->in_sync
|| mddev
->flags
) {
5052 /* mark array as shutdown cleanly */
5054 md_update_sb(mddev
, 1);
5058 void md_stop_writes(struct mddev
*mddev
)
5061 __md_stop_writes(mddev
);
5062 mddev_unlock(mddev
);
5064 EXPORT_SYMBOL_GPL(md_stop_writes
);
5066 void md_stop(struct mddev
*mddev
)
5069 mddev
->pers
->stop(mddev
);
5070 if (mddev
->pers
->sync_request
&& mddev
->to_remove
== NULL
)
5071 mddev
->to_remove
= &md_redundancy_group
;
5072 module_put(mddev
->pers
->owner
);
5074 clear_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
5076 EXPORT_SYMBOL_GPL(md_stop
);
5078 static int md_set_readonly(struct mddev
*mddev
, int is_open
)
5081 mutex_lock(&mddev
->open_mutex
);
5082 if (atomic_read(&mddev
->openers
) > is_open
) {
5083 printk("md: %s still in use.\n",mdname(mddev
));
5088 __md_stop_writes(mddev
);
5094 set_disk_ro(mddev
->gendisk
, 1);
5095 clear_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
);
5096 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5100 mutex_unlock(&mddev
->open_mutex
);
5105 * 0 - completely stop and dis-assemble array
5106 * 2 - stop but do not disassemble array
5108 static int do_md_stop(struct mddev
* mddev
, int mode
, int is_open
)
5110 struct gendisk
*disk
= mddev
->gendisk
;
5111 struct md_rdev
*rdev
;
5113 mutex_lock(&mddev
->open_mutex
);
5114 if (atomic_read(&mddev
->openers
) > is_open
||
5115 mddev
->sysfs_active
) {
5116 printk("md: %s still in use.\n",mdname(mddev
));
5117 mutex_unlock(&mddev
->open_mutex
);
5123 set_disk_ro(disk
, 0);
5125 __md_stop_writes(mddev
);
5127 mddev
->queue
->merge_bvec_fn
= NULL
;
5128 mddev
->queue
->backing_dev_info
.congested_fn
= NULL
;
5130 /* tell userspace to handle 'inactive' */
5131 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5133 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
5134 if (rdev
->raid_disk
>= 0)
5135 sysfs_unlink_rdev(mddev
, rdev
);
5137 set_capacity(disk
, 0);
5138 mutex_unlock(&mddev
->open_mutex
);
5140 revalidate_disk(disk
);
5145 mutex_unlock(&mddev
->open_mutex
);
5147 * Free resources if final stop
5150 printk(KERN_INFO
"md: %s stopped.\n", mdname(mddev
));
5152 bitmap_destroy(mddev
);
5153 if (mddev
->bitmap_info
.file
) {
5154 restore_bitmap_write_access(mddev
->bitmap_info
.file
);
5155 fput(mddev
->bitmap_info
.file
);
5156 mddev
->bitmap_info
.file
= NULL
;
5158 mddev
->bitmap_info
.offset
= 0;
5160 export_array(mddev
);
5163 kobject_uevent(&disk_to_dev(mddev
->gendisk
)->kobj
, KOBJ_CHANGE
);
5164 if (mddev
->hold_active
== UNTIL_STOP
)
5165 mddev
->hold_active
= 0;
5167 blk_integrity_unregister(disk
);
5168 md_new_event(mddev
);
5169 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
5174 static void autorun_array(struct mddev
*mddev
)
5176 struct md_rdev
*rdev
;
5179 if (list_empty(&mddev
->disks
))
5182 printk(KERN_INFO
"md: running: ");
5184 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
5185 char b
[BDEVNAME_SIZE
];
5186 printk("<%s>", bdevname(rdev
->bdev
,b
));
5190 err
= do_md_run(mddev
);
5192 printk(KERN_WARNING
"md: do_md_run() returned %d\n", err
);
5193 do_md_stop(mddev
, 0, 0);
5198 * lets try to run arrays based on all disks that have arrived
5199 * until now. (those are in pending_raid_disks)
5201 * the method: pick the first pending disk, collect all disks with
5202 * the same UUID, remove all from the pending list and put them into
5203 * the 'same_array' list. Then order this list based on superblock
5204 * update time (freshest comes first), kick out 'old' disks and
5205 * compare superblocks. If everything's fine then run it.
5207 * If "unit" is allocated, then bump its reference count
5209 static void autorun_devices(int part
)
5211 struct md_rdev
*rdev0
, *rdev
, *tmp
;
5212 struct mddev
*mddev
;
5213 char b
[BDEVNAME_SIZE
];
5215 printk(KERN_INFO
"md: autorun ...\n");
5216 while (!list_empty(&pending_raid_disks
)) {
5219 LIST_HEAD(candidates
);
5220 rdev0
= list_entry(pending_raid_disks
.next
,
5221 struct md_rdev
, same_set
);
5223 printk(KERN_INFO
"md: considering %s ...\n",
5224 bdevname(rdev0
->bdev
,b
));
5225 INIT_LIST_HEAD(&candidates
);
5226 rdev_for_each_list(rdev
, tmp
, &pending_raid_disks
)
5227 if (super_90_load(rdev
, rdev0
, 0) >= 0) {
5228 printk(KERN_INFO
"md: adding %s ...\n",
5229 bdevname(rdev
->bdev
,b
));
5230 list_move(&rdev
->same_set
, &candidates
);
5233 * now we have a set of devices, with all of them having
5234 * mostly sane superblocks. It's time to allocate the
5238 dev
= MKDEV(mdp_major
,
5239 rdev0
->preferred_minor
<< MdpMinorShift
);
5240 unit
= MINOR(dev
) >> MdpMinorShift
;
5242 dev
= MKDEV(MD_MAJOR
, rdev0
->preferred_minor
);
5245 if (rdev0
->preferred_minor
!= unit
) {
5246 printk(KERN_INFO
"md: unit number in %s is bad: %d\n",
5247 bdevname(rdev0
->bdev
, b
), rdev0
->preferred_minor
);
5251 md_probe(dev
, NULL
, NULL
);
5252 mddev
= mddev_find(dev
);
5253 if (!mddev
|| !mddev
->gendisk
) {
5257 "md: cannot allocate memory for md drive.\n");
5260 if (mddev_lock(mddev
))
5261 printk(KERN_WARNING
"md: %s locked, cannot run\n",
5263 else if (mddev
->raid_disks
|| mddev
->major_version
5264 || !list_empty(&mddev
->disks
)) {
5266 "md: %s already running, cannot run %s\n",
5267 mdname(mddev
), bdevname(rdev0
->bdev
,b
));
5268 mddev_unlock(mddev
);
5270 printk(KERN_INFO
"md: created %s\n", mdname(mddev
));
5271 mddev
->persistent
= 1;
5272 rdev_for_each_list(rdev
, tmp
, &candidates
) {
5273 list_del_init(&rdev
->same_set
);
5274 if (bind_rdev_to_array(rdev
, mddev
))
5277 autorun_array(mddev
);
5278 mddev_unlock(mddev
);
5280 /* on success, candidates will be empty, on error
5283 rdev_for_each_list(rdev
, tmp
, &candidates
) {
5284 list_del_init(&rdev
->same_set
);
5289 printk(KERN_INFO
"md: ... autorun DONE.\n");
5291 #endif /* !MODULE */
5293 static int get_version(void __user
* arg
)
5297 ver
.major
= MD_MAJOR_VERSION
;
5298 ver
.minor
= MD_MINOR_VERSION
;
5299 ver
.patchlevel
= MD_PATCHLEVEL_VERSION
;
5301 if (copy_to_user(arg
, &ver
, sizeof(ver
)))
5307 static int get_array_info(struct mddev
* mddev
, void __user
* arg
)
5309 mdu_array_info_t info
;
5310 int nr
,working
,insync
,failed
,spare
;
5311 struct md_rdev
*rdev
;
5313 nr
=working
=insync
=failed
=spare
=0;
5314 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
5316 if (test_bit(Faulty
, &rdev
->flags
))
5320 if (test_bit(In_sync
, &rdev
->flags
))
5327 info
.major_version
= mddev
->major_version
;
5328 info
.minor_version
= mddev
->minor_version
;
5329 info
.patch_version
= MD_PATCHLEVEL_VERSION
;
5330 info
.ctime
= mddev
->ctime
;
5331 info
.level
= mddev
->level
;
5332 info
.size
= mddev
->dev_sectors
/ 2;
5333 if (info
.size
!= mddev
->dev_sectors
/ 2) /* overflow */
5336 info
.raid_disks
= mddev
->raid_disks
;
5337 info
.md_minor
= mddev
->md_minor
;
5338 info
.not_persistent
= !mddev
->persistent
;
5340 info
.utime
= mddev
->utime
;
5343 info
.state
= (1<<MD_SB_CLEAN
);
5344 if (mddev
->bitmap
&& mddev
->bitmap_info
.offset
)
5345 info
.state
= (1<<MD_SB_BITMAP_PRESENT
);
5346 info
.active_disks
= insync
;
5347 info
.working_disks
= working
;
5348 info
.failed_disks
= failed
;
5349 info
.spare_disks
= spare
;
5351 info
.layout
= mddev
->layout
;
5352 info
.chunk_size
= mddev
->chunk_sectors
<< 9;
5354 if (copy_to_user(arg
, &info
, sizeof(info
)))
5360 static int get_bitmap_file(struct mddev
* mddev
, void __user
* arg
)
5362 mdu_bitmap_file_t
*file
= NULL
; /* too big for stack allocation */
5363 char *ptr
, *buf
= NULL
;
5366 if (md_allow_write(mddev
))
5367 file
= kmalloc(sizeof(*file
), GFP_NOIO
);
5369 file
= kmalloc(sizeof(*file
), GFP_KERNEL
);
5374 /* bitmap disabled, zero the first byte and copy out */
5375 if (!mddev
->bitmap
|| !mddev
->bitmap
->file
) {
5376 file
->pathname
[0] = '\0';
5380 buf
= kmalloc(sizeof(file
->pathname
), GFP_KERNEL
);
5384 ptr
= d_path(&mddev
->bitmap
->file
->f_path
, buf
, sizeof(file
->pathname
));
5388 strcpy(file
->pathname
, ptr
);
5392 if (copy_to_user(arg
, file
, sizeof(*file
)))
5400 static int get_disk_info(struct mddev
* mddev
, void __user
* arg
)
5402 mdu_disk_info_t info
;
5403 struct md_rdev
*rdev
;
5405 if (copy_from_user(&info
, arg
, sizeof(info
)))
5408 rdev
= find_rdev_nr(mddev
, info
.number
);
5410 info
.major
= MAJOR(rdev
->bdev
->bd_dev
);
5411 info
.minor
= MINOR(rdev
->bdev
->bd_dev
);
5412 info
.raid_disk
= rdev
->raid_disk
;
5414 if (test_bit(Faulty
, &rdev
->flags
))
5415 info
.state
|= (1<<MD_DISK_FAULTY
);
5416 else if (test_bit(In_sync
, &rdev
->flags
)) {
5417 info
.state
|= (1<<MD_DISK_ACTIVE
);
5418 info
.state
|= (1<<MD_DISK_SYNC
);
5420 if (test_bit(WriteMostly
, &rdev
->flags
))
5421 info
.state
|= (1<<MD_DISK_WRITEMOSTLY
);
5423 info
.major
= info
.minor
= 0;
5424 info
.raid_disk
= -1;
5425 info
.state
= (1<<MD_DISK_REMOVED
);
5428 if (copy_to_user(arg
, &info
, sizeof(info
)))
5434 static int add_new_disk(struct mddev
* mddev
, mdu_disk_info_t
*info
)
5436 char b
[BDEVNAME_SIZE
], b2
[BDEVNAME_SIZE
];
5437 struct md_rdev
*rdev
;
5438 dev_t dev
= MKDEV(info
->major
,info
->minor
);
5440 if (info
->major
!= MAJOR(dev
) || info
->minor
!= MINOR(dev
))
5443 if (!mddev
->raid_disks
) {
5445 /* expecting a device which has a superblock */
5446 rdev
= md_import_device(dev
, mddev
->major_version
, mddev
->minor_version
);
5449 "md: md_import_device returned %ld\n",
5451 return PTR_ERR(rdev
);
5453 if (!list_empty(&mddev
->disks
)) {
5454 struct md_rdev
*rdev0
5455 = list_entry(mddev
->disks
.next
,
5456 struct md_rdev
, same_set
);
5457 err
= super_types
[mddev
->major_version
]
5458 .load_super(rdev
, rdev0
, mddev
->minor_version
);
5461 "md: %s has different UUID to %s\n",
5462 bdevname(rdev
->bdev
,b
),
5463 bdevname(rdev0
->bdev
,b2
));
5468 err
= bind_rdev_to_array(rdev
, mddev
);
5475 * add_new_disk can be used once the array is assembled
5476 * to add "hot spares". They must already have a superblock
5481 if (!mddev
->pers
->hot_add_disk
) {
5483 "%s: personality does not support diskops!\n",
5487 if (mddev
->persistent
)
5488 rdev
= md_import_device(dev
, mddev
->major_version
,
5489 mddev
->minor_version
);
5491 rdev
= md_import_device(dev
, -1, -1);
5494 "md: md_import_device returned %ld\n",
5496 return PTR_ERR(rdev
);
5498 /* set saved_raid_disk if appropriate */
5499 if (!mddev
->persistent
) {
5500 if (info
->state
& (1<<MD_DISK_SYNC
) &&
5501 info
->raid_disk
< mddev
->raid_disks
) {
5502 rdev
->raid_disk
= info
->raid_disk
;
5503 set_bit(In_sync
, &rdev
->flags
);
5505 rdev
->raid_disk
= -1;
5507 super_types
[mddev
->major_version
].
5508 validate_super(mddev
, rdev
);
5509 if ((info
->state
& (1<<MD_DISK_SYNC
)) &&
5510 (!test_bit(In_sync
, &rdev
->flags
) ||
5511 rdev
->raid_disk
!= info
->raid_disk
)) {
5512 /* This was a hot-add request, but events doesn't
5513 * match, so reject it.
5519 if (test_bit(In_sync
, &rdev
->flags
))
5520 rdev
->saved_raid_disk
= rdev
->raid_disk
;
5522 rdev
->saved_raid_disk
= -1;
5524 clear_bit(In_sync
, &rdev
->flags
); /* just to be sure */
5525 if (info
->state
& (1<<MD_DISK_WRITEMOSTLY
))
5526 set_bit(WriteMostly
, &rdev
->flags
);
5528 clear_bit(WriteMostly
, &rdev
->flags
);
5530 rdev
->raid_disk
= -1;
5531 err
= bind_rdev_to_array(rdev
, mddev
);
5532 if (!err
&& !mddev
->pers
->hot_remove_disk
) {
5533 /* If there is hot_add_disk but no hot_remove_disk
5534 * then added disks for geometry changes,
5535 * and should be added immediately.
5537 super_types
[mddev
->major_version
].
5538 validate_super(mddev
, rdev
);
5539 err
= mddev
->pers
->hot_add_disk(mddev
, rdev
);
5541 unbind_rdev_from_array(rdev
);
5546 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
5548 md_update_sb(mddev
, 1);
5549 if (mddev
->degraded
)
5550 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
5551 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5553 md_new_event(mddev
);
5554 md_wakeup_thread(mddev
->thread
);
5558 /* otherwise, add_new_disk is only allowed
5559 * for major_version==0 superblocks
5561 if (mddev
->major_version
!= 0) {
5562 printk(KERN_WARNING
"%s: ADD_NEW_DISK not supported\n",
5567 if (!(info
->state
& (1<<MD_DISK_FAULTY
))) {
5569 rdev
= md_import_device(dev
, -1, 0);
5572 "md: error, md_import_device() returned %ld\n",
5574 return PTR_ERR(rdev
);
5576 rdev
->desc_nr
= info
->number
;
5577 if (info
->raid_disk
< mddev
->raid_disks
)
5578 rdev
->raid_disk
= info
->raid_disk
;
5580 rdev
->raid_disk
= -1;
5582 if (rdev
->raid_disk
< mddev
->raid_disks
)
5583 if (info
->state
& (1<<MD_DISK_SYNC
))
5584 set_bit(In_sync
, &rdev
->flags
);
5586 if (info
->state
& (1<<MD_DISK_WRITEMOSTLY
))
5587 set_bit(WriteMostly
, &rdev
->flags
);
5589 if (!mddev
->persistent
) {
5590 printk(KERN_INFO
"md: nonpersistent superblock ...\n");
5591 rdev
->sb_start
= i_size_read(rdev
->bdev
->bd_inode
) / 512;
5593 rdev
->sb_start
= calc_dev_sboffset(rdev
);
5594 rdev
->sectors
= rdev
->sb_start
;
5596 err
= bind_rdev_to_array(rdev
, mddev
);
5606 static int hot_remove_disk(struct mddev
* mddev
, dev_t dev
)
5608 char b
[BDEVNAME_SIZE
];
5609 struct md_rdev
*rdev
;
5611 rdev
= find_rdev(mddev
, dev
);
5615 if (rdev
->raid_disk
>= 0)
5618 kick_rdev_from_array(rdev
);
5619 md_update_sb(mddev
, 1);
5620 md_new_event(mddev
);
5624 printk(KERN_WARNING
"md: cannot remove active disk %s from %s ...\n",
5625 bdevname(rdev
->bdev
,b
), mdname(mddev
));
5629 static int hot_add_disk(struct mddev
* mddev
, dev_t dev
)
5631 char b
[BDEVNAME_SIZE
];
5633 struct md_rdev
*rdev
;
5638 if (mddev
->major_version
!= 0) {
5639 printk(KERN_WARNING
"%s: HOT_ADD may only be used with"
5640 " version-0 superblocks.\n",
5644 if (!mddev
->pers
->hot_add_disk
) {
5646 "%s: personality does not support diskops!\n",
5651 rdev
= md_import_device(dev
, -1, 0);
5654 "md: error, md_import_device() returned %ld\n",
5659 if (mddev
->persistent
)
5660 rdev
->sb_start
= calc_dev_sboffset(rdev
);
5662 rdev
->sb_start
= i_size_read(rdev
->bdev
->bd_inode
) / 512;
5664 rdev
->sectors
= rdev
->sb_start
;
5666 if (test_bit(Faulty
, &rdev
->flags
)) {
5668 "md: can not hot-add faulty %s disk to %s!\n",
5669 bdevname(rdev
->bdev
,b
), mdname(mddev
));
5673 clear_bit(In_sync
, &rdev
->flags
);
5675 rdev
->saved_raid_disk
= -1;
5676 err
= bind_rdev_to_array(rdev
, mddev
);
5681 * The rest should better be atomic, we can have disk failures
5682 * noticed in interrupt contexts ...
5685 rdev
->raid_disk
= -1;
5687 md_update_sb(mddev
, 1);
5690 * Kick recovery, maybe this spare has to be added to the
5691 * array immediately.
5693 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
5694 md_wakeup_thread(mddev
->thread
);
5695 md_new_event(mddev
);
5703 static int set_bitmap_file(struct mddev
*mddev
, int fd
)
5708 if (!mddev
->pers
->quiesce
)
5710 if (mddev
->recovery
|| mddev
->sync_thread
)
5712 /* we should be able to change the bitmap.. */
5718 return -EEXIST
; /* cannot add when bitmap is present */
5719 mddev
->bitmap_info
.file
= fget(fd
);
5721 if (mddev
->bitmap_info
.file
== NULL
) {
5722 printk(KERN_ERR
"%s: error: failed to get bitmap file\n",
5727 err
= deny_bitmap_write_access(mddev
->bitmap_info
.file
);
5729 printk(KERN_ERR
"%s: error: bitmap file is already in use\n",
5731 fput(mddev
->bitmap_info
.file
);
5732 mddev
->bitmap_info
.file
= NULL
;
5735 mddev
->bitmap_info
.offset
= 0; /* file overrides offset */
5736 } else if (mddev
->bitmap
== NULL
)
5737 return -ENOENT
; /* cannot remove what isn't there */
5740 mddev
->pers
->quiesce(mddev
, 1);
5742 err
= bitmap_create(mddev
);
5744 err
= bitmap_load(mddev
);
5746 if (fd
< 0 || err
) {
5747 bitmap_destroy(mddev
);
5748 fd
= -1; /* make sure to put the file */
5750 mddev
->pers
->quiesce(mddev
, 0);
5753 if (mddev
->bitmap_info
.file
) {
5754 restore_bitmap_write_access(mddev
->bitmap_info
.file
);
5755 fput(mddev
->bitmap_info
.file
);
5757 mddev
->bitmap_info
.file
= NULL
;
5764 * set_array_info is used two different ways
5765 * The original usage is when creating a new array.
5766 * In this usage, raid_disks is > 0 and it together with
5767 * level, size, not_persistent,layout,chunksize determine the
5768 * shape of the array.
5769 * This will always create an array with a type-0.90.0 superblock.
5770 * The newer usage is when assembling an array.
5771 * In this case raid_disks will be 0, and the major_version field is
5772 * use to determine which style super-blocks are to be found on the devices.
5773 * The minor and patch _version numbers are also kept incase the
5774 * super_block handler wishes to interpret them.
5776 static int set_array_info(struct mddev
* mddev
, mdu_array_info_t
*info
)
5779 if (info
->raid_disks
== 0) {
5780 /* just setting version number for superblock loading */
5781 if (info
->major_version
< 0 ||
5782 info
->major_version
>= ARRAY_SIZE(super_types
) ||
5783 super_types
[info
->major_version
].name
== NULL
) {
5784 /* maybe try to auto-load a module? */
5786 "md: superblock version %d not known\n",
5787 info
->major_version
);
5790 mddev
->major_version
= info
->major_version
;
5791 mddev
->minor_version
= info
->minor_version
;
5792 mddev
->patch_version
= info
->patch_version
;
5793 mddev
->persistent
= !info
->not_persistent
;
5794 /* ensure mddev_put doesn't delete this now that there
5795 * is some minimal configuration.
5797 mddev
->ctime
= get_seconds();
5800 mddev
->major_version
= MD_MAJOR_VERSION
;
5801 mddev
->minor_version
= MD_MINOR_VERSION
;
5802 mddev
->patch_version
= MD_PATCHLEVEL_VERSION
;
5803 mddev
->ctime
= get_seconds();
5805 mddev
->level
= info
->level
;
5806 mddev
->clevel
[0] = 0;
5807 mddev
->dev_sectors
= 2 * (sector_t
)info
->size
;
5808 mddev
->raid_disks
= info
->raid_disks
;
5809 /* don't set md_minor, it is determined by which /dev/md* was
5812 if (info
->state
& (1<<MD_SB_CLEAN
))
5813 mddev
->recovery_cp
= MaxSector
;
5815 mddev
->recovery_cp
= 0;
5816 mddev
->persistent
= ! info
->not_persistent
;
5817 mddev
->external
= 0;
5819 mddev
->layout
= info
->layout
;
5820 mddev
->chunk_sectors
= info
->chunk_size
>> 9;
5822 mddev
->max_disks
= MD_SB_DISKS
;
5824 if (mddev
->persistent
)
5826 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
5828 mddev
->bitmap_info
.default_offset
= MD_SB_BYTES
>> 9;
5829 mddev
->bitmap_info
.offset
= 0;
5831 mddev
->reshape_position
= MaxSector
;
5834 * Generate a 128 bit UUID
5836 get_random_bytes(mddev
->uuid
, 16);
5838 mddev
->new_level
= mddev
->level
;
5839 mddev
->new_chunk_sectors
= mddev
->chunk_sectors
;
5840 mddev
->new_layout
= mddev
->layout
;
5841 mddev
->delta_disks
= 0;
5846 void md_set_array_sectors(struct mddev
*mddev
, sector_t array_sectors
)
5848 WARN(!mddev_is_locked(mddev
), "%s: unlocked mddev!\n", __func__
);
5850 if (mddev
->external_size
)
5853 mddev
->array_sectors
= array_sectors
;
5855 EXPORT_SYMBOL(md_set_array_sectors
);
5857 static int update_size(struct mddev
*mddev
, sector_t num_sectors
)
5859 struct md_rdev
*rdev
;
5861 int fit
= (num_sectors
== 0);
5863 if (mddev
->pers
->resize
== NULL
)
5865 /* The "num_sectors" is the number of sectors of each device that
5866 * is used. This can only make sense for arrays with redundancy.
5867 * linear and raid0 always use whatever space is available. We can only
5868 * consider changing this number if no resync or reconstruction is
5869 * happening, and if the new size is acceptable. It must fit before the
5870 * sb_start or, if that is <data_offset, it must fit before the size
5871 * of each device. If num_sectors is zero, we find the largest size
5874 if (mddev
->sync_thread
)
5877 /* Sorry, cannot grow a bitmap yet, just remove it,
5881 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
5882 sector_t avail
= rdev
->sectors
;
5884 if (fit
&& (num_sectors
== 0 || num_sectors
> avail
))
5885 num_sectors
= avail
;
5886 if (avail
< num_sectors
)
5889 rv
= mddev
->pers
->resize(mddev
, num_sectors
);
5891 revalidate_disk(mddev
->gendisk
);
5895 static int update_raid_disks(struct mddev
*mddev
, int raid_disks
)
5898 /* change the number of raid disks */
5899 if (mddev
->pers
->check_reshape
== NULL
)
5901 if (raid_disks
<= 0 ||
5902 (mddev
->max_disks
&& raid_disks
>= mddev
->max_disks
))
5904 if (mddev
->sync_thread
|| mddev
->reshape_position
!= MaxSector
)
5906 mddev
->delta_disks
= raid_disks
- mddev
->raid_disks
;
5908 rv
= mddev
->pers
->check_reshape(mddev
);
5910 mddev
->delta_disks
= 0;
5916 * update_array_info is used to change the configuration of an
5918 * The version, ctime,level,size,raid_disks,not_persistent, layout,chunk_size
5919 * fields in the info are checked against the array.
5920 * Any differences that cannot be handled will cause an error.
5921 * Normally, only one change can be managed at a time.
5923 static int update_array_info(struct mddev
*mddev
, mdu_array_info_t
*info
)
5929 /* calculate expected state,ignoring low bits */
5930 if (mddev
->bitmap
&& mddev
->bitmap_info
.offset
)
5931 state
|= (1 << MD_SB_BITMAP_PRESENT
);
5933 if (mddev
->major_version
!= info
->major_version
||
5934 mddev
->minor_version
!= info
->minor_version
||
5935 /* mddev->patch_version != info->patch_version || */
5936 mddev
->ctime
!= info
->ctime
||
5937 mddev
->level
!= info
->level
||
5938 /* mddev->layout != info->layout || */
5939 !mddev
->persistent
!= info
->not_persistent
||
5940 mddev
->chunk_sectors
!= info
->chunk_size
>> 9 ||
5941 /* ignore bottom 8 bits of state, and allow SB_BITMAP_PRESENT to change */
5942 ((state
^info
->state
) & 0xfffffe00)
5945 /* Check there is only one change */
5946 if (info
->size
>= 0 && mddev
->dev_sectors
/ 2 != info
->size
)
5948 if (mddev
->raid_disks
!= info
->raid_disks
)
5950 if (mddev
->layout
!= info
->layout
)
5952 if ((state
^ info
->state
) & (1<<MD_SB_BITMAP_PRESENT
))
5959 if (mddev
->layout
!= info
->layout
) {
5961 * we don't need to do anything at the md level, the
5962 * personality will take care of it all.
5964 if (mddev
->pers
->check_reshape
== NULL
)
5967 mddev
->new_layout
= info
->layout
;
5968 rv
= mddev
->pers
->check_reshape(mddev
);
5970 mddev
->new_layout
= mddev
->layout
;
5974 if (info
->size
>= 0 && mddev
->dev_sectors
/ 2 != info
->size
)
5975 rv
= update_size(mddev
, (sector_t
)info
->size
* 2);
5977 if (mddev
->raid_disks
!= info
->raid_disks
)
5978 rv
= update_raid_disks(mddev
, info
->raid_disks
);
5980 if ((state
^ info
->state
) & (1<<MD_SB_BITMAP_PRESENT
)) {
5981 if (mddev
->pers
->quiesce
== NULL
)
5983 if (mddev
->recovery
|| mddev
->sync_thread
)
5985 if (info
->state
& (1<<MD_SB_BITMAP_PRESENT
)) {
5986 /* add the bitmap */
5989 if (mddev
->bitmap_info
.default_offset
== 0)
5991 mddev
->bitmap_info
.offset
=
5992 mddev
->bitmap_info
.default_offset
;
5993 mddev
->pers
->quiesce(mddev
, 1);
5994 rv
= bitmap_create(mddev
);
5996 rv
= bitmap_load(mddev
);
5998 bitmap_destroy(mddev
);
5999 mddev
->pers
->quiesce(mddev
, 0);
6001 /* remove the bitmap */
6004 if (mddev
->bitmap
->file
)
6006 mddev
->pers
->quiesce(mddev
, 1);
6007 bitmap_destroy(mddev
);
6008 mddev
->pers
->quiesce(mddev
, 0);
6009 mddev
->bitmap_info
.offset
= 0;
6012 md_update_sb(mddev
, 1);
6016 static int set_disk_faulty(struct mddev
*mddev
, dev_t dev
)
6018 struct md_rdev
*rdev
;
6020 if (mddev
->pers
== NULL
)
6023 rdev
= find_rdev(mddev
, dev
);
6027 md_error(mddev
, rdev
);
6028 if (!test_bit(Faulty
, &rdev
->flags
))
6034 * We have a problem here : there is no easy way to give a CHS
6035 * virtual geometry. We currently pretend that we have a 2 heads
6036 * 4 sectors (with a BIG number of cylinders...). This drives
6037 * dosfs just mad... ;-)
6039 static int md_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
6041 struct mddev
*mddev
= bdev
->bd_disk
->private_data
;
6045 geo
->cylinders
= mddev
->array_sectors
/ 8;
6049 static int md_ioctl(struct block_device
*bdev
, fmode_t mode
,
6050 unsigned int cmd
, unsigned long arg
)
6053 void __user
*argp
= (void __user
*)arg
;
6054 struct mddev
*mddev
= NULL
;
6057 if (!capable(CAP_SYS_ADMIN
))
6061 * Commands dealing with the RAID driver but not any
6067 err
= get_version(argp
);
6070 case PRINT_RAID_DEBUG
:
6078 autostart_arrays(arg
);
6085 * Commands creating/starting a new array:
6088 mddev
= bdev
->bd_disk
->private_data
;
6095 err
= mddev_lock(mddev
);
6098 "md: ioctl lock interrupted, reason %d, cmd %d\n",
6105 case SET_ARRAY_INFO
:
6107 mdu_array_info_t info
;
6109 memset(&info
, 0, sizeof(info
));
6110 else if (copy_from_user(&info
, argp
, sizeof(info
))) {
6115 err
= update_array_info(mddev
, &info
);
6117 printk(KERN_WARNING
"md: couldn't update"
6118 " array info. %d\n", err
);
6123 if (!list_empty(&mddev
->disks
)) {
6125 "md: array %s already has disks!\n",
6130 if (mddev
->raid_disks
) {
6132 "md: array %s already initialised!\n",
6137 err
= set_array_info(mddev
, &info
);
6139 printk(KERN_WARNING
"md: couldn't set"
6140 " array info. %d\n", err
);
6150 * Commands querying/configuring an existing array:
6152 /* if we are not initialised yet, only ADD_NEW_DISK, STOP_ARRAY,
6153 * RUN_ARRAY, and GET_ and SET_BITMAP_FILE are allowed */
6154 if ((!mddev
->raid_disks
&& !mddev
->external
)
6155 && cmd
!= ADD_NEW_DISK
&& cmd
!= STOP_ARRAY
6156 && cmd
!= RUN_ARRAY
&& cmd
!= SET_BITMAP_FILE
6157 && cmd
!= GET_BITMAP_FILE
) {
6163 * Commands even a read-only array can execute:
6167 case GET_ARRAY_INFO
:
6168 err
= get_array_info(mddev
, argp
);
6171 case GET_BITMAP_FILE
:
6172 err
= get_bitmap_file(mddev
, argp
);
6176 err
= get_disk_info(mddev
, argp
);
6179 case RESTART_ARRAY_RW
:
6180 err
= restart_array(mddev
);
6184 err
= do_md_stop(mddev
, 0, 1);
6188 err
= md_set_readonly(mddev
, 1);
6192 if (get_user(ro
, (int __user
*)(arg
))) {
6198 /* if the bdev is going readonly the value of mddev->ro
6199 * does not matter, no writes are coming
6204 /* are we are already prepared for writes? */
6208 /* transitioning to readauto need only happen for
6209 * arrays that call md_write_start
6212 err
= restart_array(mddev
);
6215 set_disk_ro(mddev
->gendisk
, 0);
6222 * The remaining ioctls are changing the state of the
6223 * superblock, so we do not allow them on read-only arrays.
6224 * However non-MD ioctls (e.g. get-size) will still come through
6225 * here and hit the 'default' below, so only disallow
6226 * 'md' ioctls, and switch to rw mode if started auto-readonly.
6228 if (_IOC_TYPE(cmd
) == MD_MAJOR
&& mddev
->ro
&& mddev
->pers
) {
6229 if (mddev
->ro
== 2) {
6231 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
6232 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6233 md_wakeup_thread(mddev
->thread
);
6244 mdu_disk_info_t info
;
6245 if (copy_from_user(&info
, argp
, sizeof(info
)))
6248 err
= add_new_disk(mddev
, &info
);
6252 case HOT_REMOVE_DISK
:
6253 err
= hot_remove_disk(mddev
, new_decode_dev(arg
));
6257 err
= hot_add_disk(mddev
, new_decode_dev(arg
));
6260 case SET_DISK_FAULTY
:
6261 err
= set_disk_faulty(mddev
, new_decode_dev(arg
));
6265 err
= do_md_run(mddev
);
6268 case SET_BITMAP_FILE
:
6269 err
= set_bitmap_file(mddev
, (int)arg
);
6279 if (mddev
->hold_active
== UNTIL_IOCTL
&&
6281 mddev
->hold_active
= 0;
6282 mddev_unlock(mddev
);
6291 #ifdef CONFIG_COMPAT
6292 static int md_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
6293 unsigned int cmd
, unsigned long arg
)
6296 case HOT_REMOVE_DISK
:
6298 case SET_DISK_FAULTY
:
6299 case SET_BITMAP_FILE
:
6300 /* These take in integer arg, do not convert */
6303 arg
= (unsigned long)compat_ptr(arg
);
6307 return md_ioctl(bdev
, mode
, cmd
, arg
);
6309 #endif /* CONFIG_COMPAT */
6311 static int md_open(struct block_device
*bdev
, fmode_t mode
)
6314 * Succeed if we can lock the mddev, which confirms that
6315 * it isn't being stopped right now.
6317 struct mddev
*mddev
= mddev_find(bdev
->bd_dev
);
6320 if (mddev
->gendisk
!= bdev
->bd_disk
) {
6321 /* we are racing with mddev_put which is discarding this
6325 /* Wait until bdev->bd_disk is definitely gone */
6326 flush_workqueue(md_misc_wq
);
6327 /* Then retry the open from the top */
6328 return -ERESTARTSYS
;
6330 BUG_ON(mddev
!= bdev
->bd_disk
->private_data
);
6332 if ((err
= mutex_lock_interruptible(&mddev
->open_mutex
)))
6336 atomic_inc(&mddev
->openers
);
6337 mutex_unlock(&mddev
->open_mutex
);
6339 check_disk_change(bdev
);
6344 static int md_release(struct gendisk
*disk
, fmode_t mode
)
6346 struct mddev
*mddev
= disk
->private_data
;
6349 atomic_dec(&mddev
->openers
);
6355 static int md_media_changed(struct gendisk
*disk
)
6357 struct mddev
*mddev
= disk
->private_data
;
6359 return mddev
->changed
;
6362 static int md_revalidate(struct gendisk
*disk
)
6364 struct mddev
*mddev
= disk
->private_data
;
6369 static const struct block_device_operations md_fops
=
6371 .owner
= THIS_MODULE
,
6373 .release
= md_release
,
6375 #ifdef CONFIG_COMPAT
6376 .compat_ioctl
= md_compat_ioctl
,
6378 .getgeo
= md_getgeo
,
6379 .media_changed
= md_media_changed
,
6380 .revalidate_disk
= md_revalidate
,
6383 static int md_thread(void * arg
)
6385 struct md_thread
*thread
= arg
;
6388 * md_thread is a 'system-thread', it's priority should be very
6389 * high. We avoid resource deadlocks individually in each
6390 * raid personality. (RAID5 does preallocation) We also use RR and
6391 * the very same RT priority as kswapd, thus we will never get
6392 * into a priority inversion deadlock.
6394 * we definitely have to have equal or higher priority than
6395 * bdflush, otherwise bdflush will deadlock if there are too
6396 * many dirty RAID5 blocks.
6399 allow_signal(SIGKILL
);
6400 while (!kthread_should_stop()) {
6402 /* We need to wait INTERRUPTIBLE so that
6403 * we don't add to the load-average.
6404 * That means we need to be sure no signals are
6407 if (signal_pending(current
))
6408 flush_signals(current
);
6410 wait_event_interruptible_timeout
6412 test_bit(THREAD_WAKEUP
, &thread
->flags
)
6413 || kthread_should_stop(),
6416 clear_bit(THREAD_WAKEUP
, &thread
->flags
);
6417 if (!kthread_should_stop())
6418 thread
->run(thread
->mddev
);
6424 void md_wakeup_thread(struct md_thread
*thread
)
6427 pr_debug("md: waking up MD thread %s.\n", thread
->tsk
->comm
);
6428 set_bit(THREAD_WAKEUP
, &thread
->flags
);
6429 wake_up(&thread
->wqueue
);
6433 struct md_thread
*md_register_thread(void (*run
) (struct mddev
*), struct mddev
*mddev
,
6436 struct md_thread
*thread
;
6438 thread
= kzalloc(sizeof(struct md_thread
), GFP_KERNEL
);
6442 init_waitqueue_head(&thread
->wqueue
);
6445 thread
->mddev
= mddev
;
6446 thread
->timeout
= MAX_SCHEDULE_TIMEOUT
;
6447 thread
->tsk
= kthread_run(md_thread
, thread
,
6449 mdname(thread
->mddev
),
6450 name
?: mddev
->pers
->name
);
6451 if (IS_ERR(thread
->tsk
)) {
6458 void md_unregister_thread(struct md_thread
**threadp
)
6460 struct md_thread
*thread
= *threadp
;
6463 pr_debug("interrupting MD-thread pid %d\n", task_pid_nr(thread
->tsk
));
6464 /* Locking ensures that mddev_unlock does not wake_up a
6465 * non-existent thread
6467 spin_lock(&pers_lock
);
6469 spin_unlock(&pers_lock
);
6471 kthread_stop(thread
->tsk
);
6475 void md_error(struct mddev
*mddev
, struct md_rdev
*rdev
)
6482 if (!rdev
|| test_bit(Faulty
, &rdev
->flags
))
6485 if (!mddev
->pers
|| !mddev
->pers
->error_handler
)
6487 mddev
->pers
->error_handler(mddev
,rdev
);
6488 if (mddev
->degraded
)
6489 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
6490 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
6491 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
6492 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6493 md_wakeup_thread(mddev
->thread
);
6494 if (mddev
->event_work
.func
)
6495 queue_work(md_misc_wq
, &mddev
->event_work
);
6496 md_new_event_inintr(mddev
);
6499 /* seq_file implementation /proc/mdstat */
6501 static void status_unused(struct seq_file
*seq
)
6504 struct md_rdev
*rdev
;
6506 seq_printf(seq
, "unused devices: ");
6508 list_for_each_entry(rdev
, &pending_raid_disks
, same_set
) {
6509 char b
[BDEVNAME_SIZE
];
6511 seq_printf(seq
, "%s ",
6512 bdevname(rdev
->bdev
,b
));
6515 seq_printf(seq
, "<none>");
6517 seq_printf(seq
, "\n");
6521 static void status_resync(struct seq_file
*seq
, struct mddev
* mddev
)
6523 sector_t max_sectors
, resync
, res
;
6524 unsigned long dt
, db
;
6527 unsigned int per_milli
;
6529 resync
= mddev
->curr_resync
- atomic_read(&mddev
->recovery_active
);
6531 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
6532 max_sectors
= mddev
->resync_max_sectors
;
6534 max_sectors
= mddev
->dev_sectors
;
6537 * Should not happen.
6543 /* Pick 'scale' such that (resync>>scale)*1000 will fit
6544 * in a sector_t, and (max_sectors>>scale) will fit in a
6545 * u32, as those are the requirements for sector_div.
6546 * Thus 'scale' must be at least 10
6549 if (sizeof(sector_t
) > sizeof(unsigned long)) {
6550 while ( max_sectors
/2 > (1ULL<<(scale
+32)))
6553 res
= (resync
>>scale
)*1000;
6554 sector_div(res
, (u32
)((max_sectors
>>scale
)+1));
6558 int i
, x
= per_milli
/50, y
= 20-x
;
6559 seq_printf(seq
, "[");
6560 for (i
= 0; i
< x
; i
++)
6561 seq_printf(seq
, "=");
6562 seq_printf(seq
, ">");
6563 for (i
= 0; i
< y
; i
++)
6564 seq_printf(seq
, ".");
6565 seq_printf(seq
, "] ");
6567 seq_printf(seq
, " %s =%3u.%u%% (%llu/%llu)",
6568 (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
)?
6570 (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
)?
6572 (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
) ?
6573 "resync" : "recovery"))),
6574 per_milli
/10, per_milli
% 10,
6575 (unsigned long long) resync
/2,
6576 (unsigned long long) max_sectors
/2);
6579 * dt: time from mark until now
6580 * db: blocks written from mark until now
6581 * rt: remaining time
6583 * rt is a sector_t, so could be 32bit or 64bit.
6584 * So we divide before multiply in case it is 32bit and close
6586 * We scale the divisor (db) by 32 to avoid losing precision
6587 * near the end of resync when the number of remaining sectors
6589 * We then divide rt by 32 after multiplying by db to compensate.
6590 * The '+1' avoids division by zero if db is very small.
6592 dt
= ((jiffies
- mddev
->resync_mark
) / HZ
);
6594 db
= (mddev
->curr_mark_cnt
- atomic_read(&mddev
->recovery_active
))
6595 - mddev
->resync_mark_cnt
;
6597 rt
= max_sectors
- resync
; /* number of remaining sectors */
6598 sector_div(rt
, db
/32+1);
6602 seq_printf(seq
, " finish=%lu.%lumin", (unsigned long)rt
/ 60,
6603 ((unsigned long)rt
% 60)/6);
6605 seq_printf(seq
, " speed=%ldK/sec", db
/2/dt
);
6608 static void *md_seq_start(struct seq_file
*seq
, loff_t
*pos
)
6610 struct list_head
*tmp
;
6612 struct mddev
*mddev
;
6620 spin_lock(&all_mddevs_lock
);
6621 list_for_each(tmp
,&all_mddevs
)
6623 mddev
= list_entry(tmp
, struct mddev
, all_mddevs
);
6625 spin_unlock(&all_mddevs_lock
);
6628 spin_unlock(&all_mddevs_lock
);
6630 return (void*)2;/* tail */
6634 static void *md_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
6636 struct list_head
*tmp
;
6637 struct mddev
*next_mddev
, *mddev
= v
;
6643 spin_lock(&all_mddevs_lock
);
6645 tmp
= all_mddevs
.next
;
6647 tmp
= mddev
->all_mddevs
.next
;
6648 if (tmp
!= &all_mddevs
)
6649 next_mddev
= mddev_get(list_entry(tmp
,struct mddev
,all_mddevs
));
6651 next_mddev
= (void*)2;
6654 spin_unlock(&all_mddevs_lock
);
6662 static void md_seq_stop(struct seq_file
*seq
, void *v
)
6664 struct mddev
*mddev
= v
;
6666 if (mddev
&& v
!= (void*)1 && v
!= (void*)2)
6670 static int md_seq_show(struct seq_file
*seq
, void *v
)
6672 struct mddev
*mddev
= v
;
6674 struct md_rdev
*rdev
;
6675 struct bitmap
*bitmap
;
6677 if (v
== (void*)1) {
6678 struct md_personality
*pers
;
6679 seq_printf(seq
, "Personalities : ");
6680 spin_lock(&pers_lock
);
6681 list_for_each_entry(pers
, &pers_list
, list
)
6682 seq_printf(seq
, "[%s] ", pers
->name
);
6684 spin_unlock(&pers_lock
);
6685 seq_printf(seq
, "\n");
6686 seq
->poll_event
= atomic_read(&md_event_count
);
6689 if (v
== (void*)2) {
6694 if (mddev_lock(mddev
) < 0)
6697 if (mddev
->pers
|| mddev
->raid_disks
|| !list_empty(&mddev
->disks
)) {
6698 seq_printf(seq
, "%s : %sactive", mdname(mddev
),
6699 mddev
->pers
? "" : "in");
6702 seq_printf(seq
, " (read-only)");
6704 seq_printf(seq
, " (auto-read-only)");
6705 seq_printf(seq
, " %s", mddev
->pers
->name
);
6709 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
6710 char b
[BDEVNAME_SIZE
];
6711 seq_printf(seq
, " %s[%d]",
6712 bdevname(rdev
->bdev
,b
), rdev
->desc_nr
);
6713 if (test_bit(WriteMostly
, &rdev
->flags
))
6714 seq_printf(seq
, "(W)");
6715 if (test_bit(Faulty
, &rdev
->flags
)) {
6716 seq_printf(seq
, "(F)");
6718 } else if (rdev
->raid_disk
< 0)
6719 seq_printf(seq
, "(S)"); /* spare */
6720 sectors
+= rdev
->sectors
;
6723 if (!list_empty(&mddev
->disks
)) {
6725 seq_printf(seq
, "\n %llu blocks",
6726 (unsigned long long)
6727 mddev
->array_sectors
/ 2);
6729 seq_printf(seq
, "\n %llu blocks",
6730 (unsigned long long)sectors
/ 2);
6732 if (mddev
->persistent
) {
6733 if (mddev
->major_version
!= 0 ||
6734 mddev
->minor_version
!= 90) {
6735 seq_printf(seq
," super %d.%d",
6736 mddev
->major_version
,
6737 mddev
->minor_version
);
6739 } else if (mddev
->external
)
6740 seq_printf(seq
, " super external:%s",
6741 mddev
->metadata_type
);
6743 seq_printf(seq
, " super non-persistent");
6746 mddev
->pers
->status(seq
, mddev
);
6747 seq_printf(seq
, "\n ");
6748 if (mddev
->pers
->sync_request
) {
6749 if (mddev
->curr_resync
> 2) {
6750 status_resync(seq
, mddev
);
6751 seq_printf(seq
, "\n ");
6752 } else if (mddev
->curr_resync
== 1 || mddev
->curr_resync
== 2)
6753 seq_printf(seq
, "\tresync=DELAYED\n ");
6754 else if (mddev
->recovery_cp
< MaxSector
)
6755 seq_printf(seq
, "\tresync=PENDING\n ");
6758 seq_printf(seq
, "\n ");
6760 if ((bitmap
= mddev
->bitmap
)) {
6761 unsigned long chunk_kb
;
6762 unsigned long flags
;
6763 spin_lock_irqsave(&bitmap
->lock
, flags
);
6764 chunk_kb
= mddev
->bitmap_info
.chunksize
>> 10;
6765 seq_printf(seq
, "bitmap: %lu/%lu pages [%luKB], "
6767 bitmap
->pages
- bitmap
->missing_pages
,
6769 (bitmap
->pages
- bitmap
->missing_pages
)
6770 << (PAGE_SHIFT
- 10),
6771 chunk_kb
? chunk_kb
: mddev
->bitmap_info
.chunksize
,
6772 chunk_kb
? "KB" : "B");
6774 seq_printf(seq
, ", file: ");
6775 seq_path(seq
, &bitmap
->file
->f_path
, " \t\n");
6778 seq_printf(seq
, "\n");
6779 spin_unlock_irqrestore(&bitmap
->lock
, flags
);
6782 seq_printf(seq
, "\n");
6784 mddev_unlock(mddev
);
6789 static const struct seq_operations md_seq_ops
= {
6790 .start
= md_seq_start
,
6791 .next
= md_seq_next
,
6792 .stop
= md_seq_stop
,
6793 .show
= md_seq_show
,
6796 static int md_seq_open(struct inode
*inode
, struct file
*file
)
6798 struct seq_file
*seq
;
6801 error
= seq_open(file
, &md_seq_ops
);
6805 seq
= file
->private_data
;
6806 seq
->poll_event
= atomic_read(&md_event_count
);
6810 static unsigned int mdstat_poll(struct file
*filp
, poll_table
*wait
)
6812 struct seq_file
*seq
= filp
->private_data
;
6815 poll_wait(filp
, &md_event_waiters
, wait
);
6817 /* always allow read */
6818 mask
= POLLIN
| POLLRDNORM
;
6820 if (seq
->poll_event
!= atomic_read(&md_event_count
))
6821 mask
|= POLLERR
| POLLPRI
;
6825 static const struct file_operations md_seq_fops
= {
6826 .owner
= THIS_MODULE
,
6827 .open
= md_seq_open
,
6829 .llseek
= seq_lseek
,
6830 .release
= seq_release_private
,
6831 .poll
= mdstat_poll
,
6834 int register_md_personality(struct md_personality
*p
)
6836 spin_lock(&pers_lock
);
6837 list_add_tail(&p
->list
, &pers_list
);
6838 printk(KERN_INFO
"md: %s personality registered for level %d\n", p
->name
, p
->level
);
6839 spin_unlock(&pers_lock
);
6843 int unregister_md_personality(struct md_personality
*p
)
6845 printk(KERN_INFO
"md: %s personality unregistered\n", p
->name
);
6846 spin_lock(&pers_lock
);
6847 list_del_init(&p
->list
);
6848 spin_unlock(&pers_lock
);
6852 static int is_mddev_idle(struct mddev
*mddev
, int init
)
6854 struct md_rdev
* rdev
;
6860 rdev_for_each_rcu(rdev
, mddev
) {
6861 struct gendisk
*disk
= rdev
->bdev
->bd_contains
->bd_disk
;
6862 curr_events
= (int)part_stat_read(&disk
->part0
, sectors
[0]) +
6863 (int)part_stat_read(&disk
->part0
, sectors
[1]) -
6864 atomic_read(&disk
->sync_io
);
6865 /* sync IO will cause sync_io to increase before the disk_stats
6866 * as sync_io is counted when a request starts, and
6867 * disk_stats is counted when it completes.
6868 * So resync activity will cause curr_events to be smaller than
6869 * when there was no such activity.
6870 * non-sync IO will cause disk_stat to increase without
6871 * increasing sync_io so curr_events will (eventually)
6872 * be larger than it was before. Once it becomes
6873 * substantially larger, the test below will cause
6874 * the array to appear non-idle, and resync will slow
6876 * If there is a lot of outstanding resync activity when
6877 * we set last_event to curr_events, then all that activity
6878 * completing might cause the array to appear non-idle
6879 * and resync will be slowed down even though there might
6880 * not have been non-resync activity. This will only
6881 * happen once though. 'last_events' will soon reflect
6882 * the state where there is little or no outstanding
6883 * resync requests, and further resync activity will
6884 * always make curr_events less than last_events.
6887 if (init
|| curr_events
- rdev
->last_events
> 64) {
6888 rdev
->last_events
= curr_events
;
6896 void md_done_sync(struct mddev
*mddev
, int blocks
, int ok
)
6898 /* another "blocks" (512byte) blocks have been synced */
6899 atomic_sub(blocks
, &mddev
->recovery_active
);
6900 wake_up(&mddev
->recovery_wait
);
6902 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
6903 md_wakeup_thread(mddev
->thread
);
6904 // stop recovery, signal do_sync ....
6909 /* md_write_start(mddev, bi)
6910 * If we need to update some array metadata (e.g. 'active' flag
6911 * in superblock) before writing, schedule a superblock update
6912 * and wait for it to complete.
6914 void md_write_start(struct mddev
*mddev
, struct bio
*bi
)
6917 if (bio_data_dir(bi
) != WRITE
)
6920 BUG_ON(mddev
->ro
== 1);
6921 if (mddev
->ro
== 2) {
6922 /* need to switch to read/write */
6924 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
6925 md_wakeup_thread(mddev
->thread
);
6926 md_wakeup_thread(mddev
->sync_thread
);
6929 atomic_inc(&mddev
->writes_pending
);
6930 if (mddev
->safemode
== 1)
6931 mddev
->safemode
= 0;
6932 if (mddev
->in_sync
) {
6933 spin_lock_irq(&mddev
->write_lock
);
6934 if (mddev
->in_sync
) {
6936 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
6937 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
6938 md_wakeup_thread(mddev
->thread
);
6941 spin_unlock_irq(&mddev
->write_lock
);
6944 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
6945 wait_event(mddev
->sb_wait
,
6946 !test_bit(MD_CHANGE_PENDING
, &mddev
->flags
));
6949 void md_write_end(struct mddev
*mddev
)
6951 if (atomic_dec_and_test(&mddev
->writes_pending
)) {
6952 if (mddev
->safemode
== 2)
6953 md_wakeup_thread(mddev
->thread
);
6954 else if (mddev
->safemode_delay
)
6955 mod_timer(&mddev
->safemode_timer
, jiffies
+ mddev
->safemode_delay
);
6959 /* md_allow_write(mddev)
6960 * Calling this ensures that the array is marked 'active' so that writes
6961 * may proceed without blocking. It is important to call this before
6962 * attempting a GFP_KERNEL allocation while holding the mddev lock.
6963 * Must be called with mddev_lock held.
6965 * In the ->external case MD_CHANGE_CLEAN can not be cleared until mddev->lock
6966 * is dropped, so return -EAGAIN after notifying userspace.
6968 int md_allow_write(struct mddev
*mddev
)
6974 if (!mddev
->pers
->sync_request
)
6977 spin_lock_irq(&mddev
->write_lock
);
6978 if (mddev
->in_sync
) {
6980 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
6981 set_bit(MD_CHANGE_PENDING
, &mddev
->flags
);
6982 if (mddev
->safemode_delay
&&
6983 mddev
->safemode
== 0)
6984 mddev
->safemode
= 1;
6985 spin_unlock_irq(&mddev
->write_lock
);
6986 md_update_sb(mddev
, 0);
6987 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
6989 spin_unlock_irq(&mddev
->write_lock
);
6991 if (test_bit(MD_CHANGE_PENDING
, &mddev
->flags
))
6996 EXPORT_SYMBOL_GPL(md_allow_write
);
6998 #define SYNC_MARKS 10
6999 #define SYNC_MARK_STEP (3*HZ)
7000 void md_do_sync(struct mddev
*mddev
)
7002 struct mddev
*mddev2
;
7003 unsigned int currspeed
= 0,
7005 sector_t max_sectors
,j
, io_sectors
;
7006 unsigned long mark
[SYNC_MARKS
];
7007 sector_t mark_cnt
[SYNC_MARKS
];
7009 struct list_head
*tmp
;
7010 sector_t last_check
;
7012 struct md_rdev
*rdev
;
7015 /* just incase thread restarts... */
7016 if (test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
))
7018 if (mddev
->ro
) /* never try to sync a read-only array */
7021 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
7022 if (test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
))
7023 desc
= "data-check";
7024 else if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7025 desc
= "requested-resync";
7028 } else if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
7033 /* we overload curr_resync somewhat here.
7034 * 0 == not engaged in resync at all
7035 * 2 == checking that there is no conflict with another sync
7036 * 1 == like 2, but have yielded to allow conflicting resync to
7038 * other == active in resync - this many blocks
7040 * Before starting a resync we must have set curr_resync to
7041 * 2, and then checked that every "conflicting" array has curr_resync
7042 * less than ours. When we find one that is the same or higher
7043 * we wait on resync_wait. To avoid deadlock, we reduce curr_resync
7044 * to 1 if we choose to yield (based arbitrarily on address of mddev structure).
7045 * This will mean we have to start checking from the beginning again.
7050 mddev
->curr_resync
= 2;
7053 if (kthread_should_stop())
7054 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7056 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
7058 for_each_mddev(mddev2
, tmp
) {
7059 if (mddev2
== mddev
)
7061 if (!mddev
->parallel_resync
7062 && mddev2
->curr_resync
7063 && match_mddev_units(mddev
, mddev2
)) {
7065 if (mddev
< mddev2
&& mddev
->curr_resync
== 2) {
7066 /* arbitrarily yield */
7067 mddev
->curr_resync
= 1;
7068 wake_up(&resync_wait
);
7070 if (mddev
> mddev2
&& mddev
->curr_resync
== 1)
7071 /* no need to wait here, we can wait the next
7072 * time 'round when curr_resync == 2
7075 /* We need to wait 'interruptible' so as not to
7076 * contribute to the load average, and not to
7077 * be caught by 'softlockup'
7079 prepare_to_wait(&resync_wait
, &wq
, TASK_INTERRUPTIBLE
);
7080 if (!kthread_should_stop() &&
7081 mddev2
->curr_resync
>= mddev
->curr_resync
) {
7082 printk(KERN_INFO
"md: delaying %s of %s"
7083 " until %s has finished (they"
7084 " share one or more physical units)\n",
7085 desc
, mdname(mddev
), mdname(mddev2
));
7087 if (signal_pending(current
))
7088 flush_signals(current
);
7090 finish_wait(&resync_wait
, &wq
);
7093 finish_wait(&resync_wait
, &wq
);
7096 } while (mddev
->curr_resync
< 2);
7099 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
7100 /* resync follows the size requested by the personality,
7101 * which defaults to physical size, but can be virtual size
7103 max_sectors
= mddev
->resync_max_sectors
;
7104 mddev
->resync_mismatches
= 0;
7105 /* we don't use the checkpoint if there's a bitmap */
7106 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7107 j
= mddev
->resync_min
;
7108 else if (!mddev
->bitmap
)
7109 j
= mddev
->recovery_cp
;
7111 } else if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
))
7112 max_sectors
= mddev
->dev_sectors
;
7114 /* recovery follows the physical size of devices */
7115 max_sectors
= mddev
->dev_sectors
;
7118 list_for_each_entry_rcu(rdev
, &mddev
->disks
, same_set
)
7119 if (rdev
->raid_disk
>= 0 &&
7120 !test_bit(Faulty
, &rdev
->flags
) &&
7121 !test_bit(In_sync
, &rdev
->flags
) &&
7122 rdev
->recovery_offset
< j
)
7123 j
= rdev
->recovery_offset
;
7127 printk(KERN_INFO
"md: %s of RAID array %s\n", desc
, mdname(mddev
));
7128 printk(KERN_INFO
"md: minimum _guaranteed_ speed:"
7129 " %d KB/sec/disk.\n", speed_min(mddev
));
7130 printk(KERN_INFO
"md: using maximum available idle IO bandwidth "
7131 "(but not more than %d KB/sec) for %s.\n",
7132 speed_max(mddev
), desc
);
7134 is_mddev_idle(mddev
, 1); /* this initializes IO event counters */
7137 for (m
= 0; m
< SYNC_MARKS
; m
++) {
7139 mark_cnt
[m
] = io_sectors
;
7142 mddev
->resync_mark
= mark
[last_mark
];
7143 mddev
->resync_mark_cnt
= mark_cnt
[last_mark
];
7146 * Tune reconstruction:
7148 window
= 32*(PAGE_SIZE
/512);
7149 printk(KERN_INFO
"md: using %dk window, over a total of %lluk.\n",
7150 window
/2, (unsigned long long)max_sectors
/2);
7152 atomic_set(&mddev
->recovery_active
, 0);
7157 "md: resuming %s of %s from checkpoint.\n",
7158 desc
, mdname(mddev
));
7159 mddev
->curr_resync
= j
;
7161 mddev
->curr_resync_completed
= j
;
7163 while (j
< max_sectors
) {
7168 if (!test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
7169 ((mddev
->curr_resync
> mddev
->curr_resync_completed
&&
7170 (mddev
->curr_resync
- mddev
->curr_resync_completed
)
7171 > (max_sectors
>> 4)) ||
7172 (j
- mddev
->curr_resync_completed
)*2
7173 >= mddev
->resync_max
- mddev
->curr_resync_completed
7175 /* time to update curr_resync_completed */
7176 wait_event(mddev
->recovery_wait
,
7177 atomic_read(&mddev
->recovery_active
) == 0);
7178 mddev
->curr_resync_completed
= j
;
7179 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
7180 sysfs_notify(&mddev
->kobj
, NULL
, "sync_completed");
7183 while (j
>= mddev
->resync_max
&& !kthread_should_stop()) {
7184 /* As this condition is controlled by user-space,
7185 * we can block indefinitely, so use '_interruptible'
7186 * to avoid triggering warnings.
7188 flush_signals(current
); /* just in case */
7189 wait_event_interruptible(mddev
->recovery_wait
,
7190 mddev
->resync_max
> j
7191 || kthread_should_stop());
7194 if (kthread_should_stop())
7197 sectors
= mddev
->pers
->sync_request(mddev
, j
, &skipped
,
7198 currspeed
< speed_min(mddev
));
7200 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7204 if (!skipped
) { /* actual IO requested */
7205 io_sectors
+= sectors
;
7206 atomic_add(sectors
, &mddev
->recovery_active
);
7209 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
7213 if (j
>1) mddev
->curr_resync
= j
;
7214 mddev
->curr_mark_cnt
= io_sectors
;
7215 if (last_check
== 0)
7216 /* this is the earliest that rebuild will be
7217 * visible in /proc/mdstat
7219 md_new_event(mddev
);
7221 if (last_check
+ window
> io_sectors
|| j
== max_sectors
)
7224 last_check
= io_sectors
;
7226 if (time_after_eq(jiffies
, mark
[last_mark
] + SYNC_MARK_STEP
)) {
7228 int next
= (last_mark
+1) % SYNC_MARKS
;
7230 mddev
->resync_mark
= mark
[next
];
7231 mddev
->resync_mark_cnt
= mark_cnt
[next
];
7232 mark
[next
] = jiffies
;
7233 mark_cnt
[next
] = io_sectors
- atomic_read(&mddev
->recovery_active
);
7238 if (kthread_should_stop())
7243 * this loop exits only if either when we are slower than
7244 * the 'hard' speed limit, or the system was IO-idle for
7246 * the system might be non-idle CPU-wise, but we only care
7247 * about not overloading the IO subsystem. (things like an
7248 * e2fsck being done on the RAID array should execute fast)
7252 currspeed
= ((unsigned long)(io_sectors
-mddev
->resync_mark_cnt
))/2
7253 /((jiffies
-mddev
->resync_mark
)/HZ
+1) +1;
7255 if (currspeed
> speed_min(mddev
)) {
7256 if ((currspeed
> speed_max(mddev
)) ||
7257 !is_mddev_idle(mddev
, 0)) {
7263 printk(KERN_INFO
"md: %s: %s done.\n",mdname(mddev
), desc
);
7265 * this also signals 'finished resyncing' to md_stop
7268 wait_event(mddev
->recovery_wait
, !atomic_read(&mddev
->recovery_active
));
7270 /* tell personality that we are finished */
7271 mddev
->pers
->sync_request(mddev
, max_sectors
, &skipped
, 1);
7273 if (!test_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
) &&
7274 mddev
->curr_resync
> 2) {
7275 if (test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
)) {
7276 if (test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7277 if (mddev
->curr_resync
>= mddev
->recovery_cp
) {
7279 "md: checkpointing %s of %s.\n",
7280 desc
, mdname(mddev
));
7281 mddev
->recovery_cp
= mddev
->curr_resync
;
7284 mddev
->recovery_cp
= MaxSector
;
7286 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
))
7287 mddev
->curr_resync
= MaxSector
;
7289 list_for_each_entry_rcu(rdev
, &mddev
->disks
, same_set
)
7290 if (rdev
->raid_disk
>= 0 &&
7291 mddev
->delta_disks
>= 0 &&
7292 !test_bit(Faulty
, &rdev
->flags
) &&
7293 !test_bit(In_sync
, &rdev
->flags
) &&
7294 rdev
->recovery_offset
< mddev
->curr_resync
)
7295 rdev
->recovery_offset
= mddev
->curr_resync
;
7299 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7302 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
)) {
7303 /* We completed so min/max setting can be forgotten if used. */
7304 if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7305 mddev
->resync_min
= 0;
7306 mddev
->resync_max
= MaxSector
;
7307 } else if (test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
))
7308 mddev
->resync_min
= mddev
->curr_resync_completed
;
7309 mddev
->curr_resync
= 0;
7310 wake_up(&resync_wait
);
7311 set_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7312 md_wakeup_thread(mddev
->thread
);
7317 * got a signal, exit.
7320 "md: md_do_sync() got signal ... exiting\n");
7321 set_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7325 EXPORT_SYMBOL_GPL(md_do_sync
);
7327 static int remove_and_add_spares(struct mddev
*mddev
)
7329 struct md_rdev
*rdev
;
7332 mddev
->curr_resync_completed
= 0;
7334 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
7335 if (rdev
->raid_disk
>= 0 &&
7336 !test_bit(Blocked
, &rdev
->flags
) &&
7337 (test_bit(Faulty
, &rdev
->flags
) ||
7338 ! test_bit(In_sync
, &rdev
->flags
)) &&
7339 atomic_read(&rdev
->nr_pending
)==0) {
7340 if (mddev
->pers
->hot_remove_disk(
7341 mddev
, rdev
->raid_disk
)==0) {
7342 sysfs_unlink_rdev(mddev
, rdev
);
7343 rdev
->raid_disk
= -1;
7347 if (mddev
->degraded
) {
7348 list_for_each_entry(rdev
, &mddev
->disks
, same_set
) {
7349 if (rdev
->raid_disk
>= 0 &&
7350 !test_bit(In_sync
, &rdev
->flags
) &&
7351 !test_bit(Faulty
, &rdev
->flags
))
7353 if (rdev
->raid_disk
< 0
7354 && !test_bit(Faulty
, &rdev
->flags
)) {
7355 rdev
->recovery_offset
= 0;
7357 hot_add_disk(mddev
, rdev
) == 0) {
7358 if (sysfs_link_rdev(mddev
, rdev
))
7359 /* failure here is OK */;
7361 md_new_event(mddev
);
7362 set_bit(MD_CHANGE_DEVS
, &mddev
->flags
);
7370 static void reap_sync_thread(struct mddev
*mddev
)
7372 struct md_rdev
*rdev
;
7374 /* resync has finished, collect result */
7375 md_unregister_thread(&mddev
->sync_thread
);
7376 if (!test_bit(MD_RECOVERY_INTR
, &mddev
->recovery
) &&
7377 !test_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
)) {
7379 /* activate any spares */
7380 if (mddev
->pers
->spare_active(mddev
))
7381 sysfs_notify(&mddev
->kobj
, NULL
,
7384 if (test_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
) &&
7385 mddev
->pers
->finish_reshape
)
7386 mddev
->pers
->finish_reshape(mddev
);
7388 /* If array is no-longer degraded, then any saved_raid_disk
7389 * information must be scrapped. Also if any device is now
7390 * In_sync we must scrape the saved_raid_disk for that device
7391 * do the superblock for an incrementally recovered device
7394 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
7395 if (!mddev
->degraded
||
7396 test_bit(In_sync
, &rdev
->flags
))
7397 rdev
->saved_raid_disk
= -1;
7399 md_update_sb(mddev
, 1);
7400 clear_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7401 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7402 clear_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7403 clear_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
7404 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7405 /* flag recovery needed just to double check */
7406 set_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7407 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
7408 md_new_event(mddev
);
7409 if (mddev
->event_work
.func
)
7410 queue_work(md_misc_wq
, &mddev
->event_work
);
7414 * This routine is regularly called by all per-raid-array threads to
7415 * deal with generic issues like resync and super-block update.
7416 * Raid personalities that don't have a thread (linear/raid0) do not
7417 * need this as they never do any recovery or update the superblock.
7419 * It does not do any resync itself, but rather "forks" off other threads
7420 * to do that as needed.
7421 * When it is determined that resync is needed, we set MD_RECOVERY_RUNNING in
7422 * "->recovery" and create a thread at ->sync_thread.
7423 * When the thread finishes it sets MD_RECOVERY_DONE
7424 * and wakeups up this thread which will reap the thread and finish up.
7425 * This thread also removes any faulty devices (with nr_pending == 0).
7427 * The overall approach is:
7428 * 1/ if the superblock needs updating, update it.
7429 * 2/ If a recovery thread is running, don't do anything else.
7430 * 3/ If recovery has finished, clean up, possibly marking spares active.
7431 * 4/ If there are any faulty devices, remove them.
7432 * 5/ If array is degraded, try to add spares devices
7433 * 6/ If array has spares or is not in-sync, start a resync thread.
7435 void md_check_recovery(struct mddev
*mddev
)
7437 if (mddev
->suspended
)
7441 bitmap_daemon_work(mddev
);
7443 if (signal_pending(current
)) {
7444 if (mddev
->pers
->sync_request
&& !mddev
->external
) {
7445 printk(KERN_INFO
"md: %s in immediate safe mode\n",
7447 mddev
->safemode
= 2;
7449 flush_signals(current
);
7452 if (mddev
->ro
&& !test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
))
7455 (mddev
->flags
& ~ (1<<MD_CHANGE_PENDING
)) ||
7456 test_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
) ||
7457 test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
) ||
7458 (mddev
->external
== 0 && mddev
->safemode
== 1) ||
7459 (mddev
->safemode
== 2 && ! atomic_read(&mddev
->writes_pending
)
7460 && !mddev
->in_sync
&& mddev
->recovery_cp
== MaxSector
)
7464 if (mddev_trylock(mddev
)) {
7468 /* Only thing we do on a ro array is remove
7471 struct md_rdev
*rdev
;
7472 list_for_each_entry(rdev
, &mddev
->disks
, same_set
)
7473 if (rdev
->raid_disk
>= 0 &&
7474 !test_bit(Blocked
, &rdev
->flags
) &&
7475 test_bit(Faulty
, &rdev
->flags
) &&
7476 atomic_read(&rdev
->nr_pending
)==0) {
7477 if (mddev
->pers
->hot_remove_disk(
7478 mddev
, rdev
->raid_disk
)==0) {
7479 sysfs_unlink_rdev(mddev
, rdev
);
7480 rdev
->raid_disk
= -1;
7483 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7487 if (!mddev
->external
) {
7489 spin_lock_irq(&mddev
->write_lock
);
7490 if (mddev
->safemode
&&
7491 !atomic_read(&mddev
->writes_pending
) &&
7493 mddev
->recovery_cp
== MaxSector
) {
7496 set_bit(MD_CHANGE_CLEAN
, &mddev
->flags
);
7498 if (mddev
->safemode
== 1)
7499 mddev
->safemode
= 0;
7500 spin_unlock_irq(&mddev
->write_lock
);
7502 sysfs_notify_dirent_safe(mddev
->sysfs_state
);
7506 md_update_sb(mddev
, 0);
7508 if (test_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
) &&
7509 !test_bit(MD_RECOVERY_DONE
, &mddev
->recovery
)) {
7510 /* resync/recovery still happening */
7511 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7514 if (mddev
->sync_thread
) {
7515 reap_sync_thread(mddev
);
7518 /* Set RUNNING before clearing NEEDED to avoid
7519 * any transients in the value of "sync_action".
7521 set_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7522 clear_bit(MD_RECOVERY_NEEDED
, &mddev
->recovery
);
7523 /* Clear some bits that don't mean anything, but
7526 clear_bit(MD_RECOVERY_INTR
, &mddev
->recovery
);
7527 clear_bit(MD_RECOVERY_DONE
, &mddev
->recovery
);
7529 if (test_bit(MD_RECOVERY_FROZEN
, &mddev
->recovery
))
7531 /* no recovery is running.
7532 * remove any failed drives, then
7533 * add spares if possible.
7534 * Spare are also removed and re-added, to allow
7535 * the personality to fail the re-add.
7538 if (mddev
->reshape_position
!= MaxSector
) {
7539 if (mddev
->pers
->check_reshape
== NULL
||
7540 mddev
->pers
->check_reshape(mddev
) != 0)
7541 /* Cannot proceed */
7543 set_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7544 clear_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
7545 } else if ((spares
= remove_and_add_spares(mddev
))) {
7546 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7547 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7548 clear_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
7549 set_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
7550 } else if (mddev
->recovery_cp
< MaxSector
) {
7551 set_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7552 clear_bit(MD_RECOVERY_RECOVER
, &mddev
->recovery
);
7553 } else if (!test_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
))
7554 /* nothing to be done ... */
7557 if (mddev
->pers
->sync_request
) {
7558 if (spares
&& mddev
->bitmap
&& ! mddev
->bitmap
->file
) {
7559 /* We are adding a device or devices to an array
7560 * which has the bitmap stored on all devices.
7561 * So make sure all bitmap pages get written
7563 bitmap_write_all(mddev
->bitmap
);
7565 mddev
->sync_thread
= md_register_thread(md_do_sync
,
7568 if (!mddev
->sync_thread
) {
7569 printk(KERN_ERR
"%s: could not start resync"
7572 /* leave the spares where they are, it shouldn't hurt */
7573 clear_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7574 clear_bit(MD_RECOVERY_SYNC
, &mddev
->recovery
);
7575 clear_bit(MD_RECOVERY_RESHAPE
, &mddev
->recovery
);
7576 clear_bit(MD_RECOVERY_REQUESTED
, &mddev
->recovery
);
7577 clear_bit(MD_RECOVERY_CHECK
, &mddev
->recovery
);
7579 md_wakeup_thread(mddev
->sync_thread
);
7580 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
7581 md_new_event(mddev
);
7584 if (!mddev
->sync_thread
) {
7585 clear_bit(MD_RECOVERY_RUNNING
, &mddev
->recovery
);
7586 if (test_and_clear_bit(MD_RECOVERY_RECOVER
,
7588 if (mddev
->sysfs_action
)
7589 sysfs_notify_dirent_safe(mddev
->sysfs_action
);
7591 mddev_unlock(mddev
);
7595 void md_wait_for_blocked_rdev(struct md_rdev
*rdev
, struct mddev
*mddev
)
7597 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
7598 wait_event_timeout(rdev
->blocked_wait
,
7599 !test_bit(Blocked
, &rdev
->flags
) &&
7600 !test_bit(BlockedBadBlocks
, &rdev
->flags
),
7601 msecs_to_jiffies(5000));
7602 rdev_dec_pending(rdev
, mddev
);
7604 EXPORT_SYMBOL(md_wait_for_blocked_rdev
);
7607 /* Bad block management.
7608 * We can record which blocks on each device are 'bad' and so just
7609 * fail those blocks, or that stripe, rather than the whole device.
7610 * Entries in the bad-block table are 64bits wide. This comprises:
7611 * Length of bad-range, in sectors: 0-511 for lengths 1-512
7612 * Start of bad-range, sector offset, 54 bits (allows 8 exbibytes)
7613 * A 'shift' can be set so that larger blocks are tracked and
7614 * consequently larger devices can be covered.
7615 * 'Acknowledged' flag - 1 bit. - the most significant bit.
7617 * Locking of the bad-block table uses a seqlock so md_is_badblock
7618 * might need to retry if it is very unlucky.
7619 * We will sometimes want to check for bad blocks in a bi_end_io function,
7620 * so we use the write_seqlock_irq variant.
7622 * When looking for a bad block we specify a range and want to
7623 * know if any block in the range is bad. So we binary-search
7624 * to the last range that starts at-or-before the given endpoint,
7625 * (or "before the sector after the target range")
7626 * then see if it ends after the given start.
7628 * 0 if there are no known bad blocks in the range
7629 * 1 if there are known bad block which are all acknowledged
7630 * -1 if there are bad blocks which have not yet been acknowledged in metadata.
7631 * plus the start/length of the first bad section we overlap.
7633 int md_is_badblock(struct badblocks
*bb
, sector_t s
, int sectors
,
7634 sector_t
*first_bad
, int *bad_sectors
)
7640 sector_t target
= s
+ sectors
;
7643 if (bb
->shift
> 0) {
7644 /* round the start down, and the end up */
7646 target
+= (1<<bb
->shift
) - 1;
7647 target
>>= bb
->shift
;
7648 sectors
= target
- s
;
7650 /* 'target' is now the first block after the bad range */
7653 seq
= read_seqbegin(&bb
->lock
);
7657 /* Binary search between lo and hi for 'target'
7658 * i.e. for the last range that starts before 'target'
7660 /* INVARIANT: ranges before 'lo' and at-or-after 'hi'
7661 * are known not to be the last range before target.
7662 * VARIANT: hi-lo is the number of possible
7663 * ranges, and decreases until it reaches 1
7665 while (hi
- lo
> 1) {
7666 int mid
= (lo
+ hi
) / 2;
7667 sector_t a
= BB_OFFSET(p
[mid
]);
7669 /* This could still be the one, earlier ranges
7673 /* This and later ranges are definitely out. */
7676 /* 'lo' might be the last that started before target, but 'hi' isn't */
7678 /* need to check all range that end after 's' to see if
7679 * any are unacknowledged.
7682 BB_OFFSET(p
[lo
]) + BB_LEN(p
[lo
]) > s
) {
7683 if (BB_OFFSET(p
[lo
]) < target
) {
7684 /* starts before the end, and finishes after
7685 * the start, so they must overlap
7687 if (rv
!= -1 && BB_ACK(p
[lo
]))
7691 *first_bad
= BB_OFFSET(p
[lo
]);
7692 *bad_sectors
= BB_LEN(p
[lo
]);
7698 if (read_seqretry(&bb
->lock
, seq
))
7703 EXPORT_SYMBOL_GPL(md_is_badblock
);
7706 * Add a range of bad blocks to the table.
7707 * This might extend the table, or might contract it
7708 * if two adjacent ranges can be merged.
7709 * We binary-search to find the 'insertion' point, then
7710 * decide how best to handle it.
7712 static int md_set_badblocks(struct badblocks
*bb
, sector_t s
, int sectors
,
7720 /* badblocks are disabled */
7724 /* round the start down, and the end up */
7725 sector_t next
= s
+ sectors
;
7727 next
+= (1<<bb
->shift
) - 1;
7732 write_seqlock_irq(&bb
->lock
);
7737 /* Find the last range that starts at-or-before 's' */
7738 while (hi
- lo
> 1) {
7739 int mid
= (lo
+ hi
) / 2;
7740 sector_t a
= BB_OFFSET(p
[mid
]);
7746 if (hi
> lo
&& BB_OFFSET(p
[lo
]) > s
)
7750 /* we found a range that might merge with the start
7753 sector_t a
= BB_OFFSET(p
[lo
]);
7754 sector_t e
= a
+ BB_LEN(p
[lo
]);
7755 int ack
= BB_ACK(p
[lo
]);
7757 /* Yes, we can merge with a previous range */
7758 if (s
== a
&& s
+ sectors
>= e
)
7759 /* new range covers old */
7762 ack
= ack
&& acknowledged
;
7764 if (e
< s
+ sectors
)
7766 if (e
- a
<= BB_MAX_LEN
) {
7767 p
[lo
] = BB_MAKE(a
, e
-a
, ack
);
7770 /* does not all fit in one range,
7771 * make p[lo] maximal
7773 if (BB_LEN(p
[lo
]) != BB_MAX_LEN
)
7774 p
[lo
] = BB_MAKE(a
, BB_MAX_LEN
, ack
);
7780 if (sectors
&& hi
< bb
->count
) {
7781 /* 'hi' points to the first range that starts after 's'.
7782 * Maybe we can merge with the start of that range */
7783 sector_t a
= BB_OFFSET(p
[hi
]);
7784 sector_t e
= a
+ BB_LEN(p
[hi
]);
7785 int ack
= BB_ACK(p
[hi
]);
7786 if (a
<= s
+ sectors
) {
7787 /* merging is possible */
7788 if (e
<= s
+ sectors
) {
7793 ack
= ack
&& acknowledged
;
7796 if (e
- a
<= BB_MAX_LEN
) {
7797 p
[hi
] = BB_MAKE(a
, e
-a
, ack
);
7800 p
[hi
] = BB_MAKE(a
, BB_MAX_LEN
, ack
);
7808 if (sectors
== 0 && hi
< bb
->count
) {
7809 /* we might be able to combine lo and hi */
7810 /* Note: 's' is at the end of 'lo' */
7811 sector_t a
= BB_OFFSET(p
[hi
]);
7812 int lolen
= BB_LEN(p
[lo
]);
7813 int hilen
= BB_LEN(p
[hi
]);
7814 int newlen
= lolen
+ hilen
- (s
- a
);
7815 if (s
>= a
&& newlen
< BB_MAX_LEN
) {
7816 /* yes, we can combine them */
7817 int ack
= BB_ACK(p
[lo
]) && BB_ACK(p
[hi
]);
7818 p
[lo
] = BB_MAKE(BB_OFFSET(p
[lo
]), newlen
, ack
);
7819 memmove(p
+ hi
, p
+ hi
+ 1,
7820 (bb
->count
- hi
- 1) * 8);
7825 /* didn't merge (it all).
7826 * Need to add a range just before 'hi' */
7827 if (bb
->count
>= MD_MAX_BADBLOCKS
) {
7828 /* No room for more */
7832 int this_sectors
= sectors
;
7833 memmove(p
+ hi
+ 1, p
+ hi
,
7834 (bb
->count
- hi
) * 8);
7837 if (this_sectors
> BB_MAX_LEN
)
7838 this_sectors
= BB_MAX_LEN
;
7839 p
[hi
] = BB_MAKE(s
, this_sectors
, acknowledged
);
7840 sectors
-= this_sectors
;
7847 bb
->unacked_exist
= 1;
7848 write_sequnlock_irq(&bb
->lock
);
7853 int rdev_set_badblocks(struct md_rdev
*rdev
, sector_t s
, int sectors
,
7856 int rv
= md_set_badblocks(&rdev
->badblocks
,
7857 s
+ rdev
->data_offset
, sectors
, acknowledged
);
7859 /* Make sure they get written out promptly */
7860 sysfs_notify_dirent_safe(rdev
->sysfs_state
);
7861 set_bit(MD_CHANGE_CLEAN
, &rdev
->mddev
->flags
);
7862 md_wakeup_thread(rdev
->mddev
->thread
);
7866 EXPORT_SYMBOL_GPL(rdev_set_badblocks
);
7869 * Remove a range of bad blocks from the table.
7870 * This may involve extending the table if we spilt a region,
7871 * but it must not fail. So if the table becomes full, we just
7872 * drop the remove request.
7874 static int md_clear_badblocks(struct badblocks
*bb
, sector_t s
, int sectors
)
7878 sector_t target
= s
+ sectors
;
7881 if (bb
->shift
> 0) {
7882 /* When clearing we round the start up and the end down.
7883 * This should not matter as the shift should align with
7884 * the block size and no rounding should ever be needed.
7885 * However it is better the think a block is bad when it
7886 * isn't than to think a block is not bad when it is.
7888 s
+= (1<<bb
->shift
) - 1;
7890 target
>>= bb
->shift
;
7891 sectors
= target
- s
;
7894 write_seqlock_irq(&bb
->lock
);
7899 /* Find the last range that starts before 'target' */
7900 while (hi
- lo
> 1) {
7901 int mid
= (lo
+ hi
) / 2;
7902 sector_t a
= BB_OFFSET(p
[mid
]);
7909 /* p[lo] is the last range that could overlap the
7910 * current range. Earlier ranges could also overlap,
7911 * but only this one can overlap the end of the range.
7913 if (BB_OFFSET(p
[lo
]) + BB_LEN(p
[lo
]) > target
) {
7914 /* Partial overlap, leave the tail of this range */
7915 int ack
= BB_ACK(p
[lo
]);
7916 sector_t a
= BB_OFFSET(p
[lo
]);
7917 sector_t end
= a
+ BB_LEN(p
[lo
]);
7920 /* we need to split this range */
7921 if (bb
->count
>= MD_MAX_BADBLOCKS
) {
7925 memmove(p
+lo
+1, p
+lo
, (bb
->count
- lo
) * 8);
7927 p
[lo
] = BB_MAKE(a
, s
-a
, ack
);
7930 p
[lo
] = BB_MAKE(target
, end
- target
, ack
);
7931 /* there is no longer an overlap */
7936 BB_OFFSET(p
[lo
]) + BB_LEN(p
[lo
]) > s
) {
7937 /* This range does overlap */
7938 if (BB_OFFSET(p
[lo
]) < s
) {
7939 /* Keep the early parts of this range. */
7940 int ack
= BB_ACK(p
[lo
]);
7941 sector_t start
= BB_OFFSET(p
[lo
]);
7942 p
[lo
] = BB_MAKE(start
, s
- start
, ack
);
7943 /* now low doesn't overlap, so.. */
7948 /* 'lo' is strictly before, 'hi' is strictly after,
7949 * anything between needs to be discarded
7952 memmove(p
+lo
+1, p
+hi
, (bb
->count
- hi
) * 8);
7953 bb
->count
-= (hi
- lo
- 1);
7959 write_sequnlock_irq(&bb
->lock
);
7963 int rdev_clear_badblocks(struct md_rdev
*rdev
, sector_t s
, int sectors
)
7965 return md_clear_badblocks(&rdev
->badblocks
,
7966 s
+ rdev
->data_offset
,
7969 EXPORT_SYMBOL_GPL(rdev_clear_badblocks
);
7972 * Acknowledge all bad blocks in a list.
7973 * This only succeeds if ->changed is clear. It is used by
7974 * in-kernel metadata updates
7976 void md_ack_all_badblocks(struct badblocks
*bb
)
7978 if (bb
->page
== NULL
|| bb
->changed
)
7979 /* no point even trying */
7981 write_seqlock_irq(&bb
->lock
);
7983 if (bb
->changed
== 0) {
7986 for (i
= 0; i
< bb
->count
; i
++) {
7987 if (!BB_ACK(p
[i
])) {
7988 sector_t start
= BB_OFFSET(p
[i
]);
7989 int len
= BB_LEN(p
[i
]);
7990 p
[i
] = BB_MAKE(start
, len
, 1);
7993 bb
->unacked_exist
= 0;
7995 write_sequnlock_irq(&bb
->lock
);
7997 EXPORT_SYMBOL_GPL(md_ack_all_badblocks
);
7999 /* sysfs access to bad-blocks list.
8000 * We present two files.
8001 * 'bad-blocks' lists sector numbers and lengths of ranges that
8002 * are recorded as bad. The list is truncated to fit within
8003 * the one-page limit of sysfs.
8004 * Writing "sector length" to this file adds an acknowledged
8006 * 'unacknowledged-bad-blocks' lists bad blocks that have not yet
8007 * been acknowledged. Writing to this file adds bad blocks
8008 * without acknowledging them. This is largely for testing.
8012 badblocks_show(struct badblocks
*bb
, char *page
, int unack
)
8023 seq
= read_seqbegin(&bb
->lock
);
8028 while (len
< PAGE_SIZE
&& i
< bb
->count
) {
8029 sector_t s
= BB_OFFSET(p
[i
]);
8030 unsigned int length
= BB_LEN(p
[i
]);
8031 int ack
= BB_ACK(p
[i
]);
8037 len
+= snprintf(page
+len
, PAGE_SIZE
-len
, "%llu %u\n",
8038 (unsigned long long)s
<< bb
->shift
,
8039 length
<< bb
->shift
);
8041 if (unack
&& len
== 0)
8042 bb
->unacked_exist
= 0;
8044 if (read_seqretry(&bb
->lock
, seq
))
8053 badblocks_store(struct badblocks
*bb
, const char *page
, size_t len
, int unack
)
8055 unsigned long long sector
;
8059 /* Allow clearing via sysfs *only* for testing/debugging.
8060 * Normally only a successful write may clear a badblock
8063 if (page
[0] == '-') {
8067 #endif /* DO_DEBUG */
8069 switch (sscanf(page
, "%llu %d%c", §or
, &length
, &newline
)) {
8071 if (newline
!= '\n')
8083 md_clear_badblocks(bb
, sector
, length
);
8086 #endif /* DO_DEBUG */
8087 if (md_set_badblocks(bb
, sector
, length
, !unack
))
8093 static int md_notify_reboot(struct notifier_block
*this,
8094 unsigned long code
, void *x
)
8096 struct list_head
*tmp
;
8097 struct mddev
*mddev
;
8100 if ((code
== SYS_DOWN
) || (code
== SYS_HALT
) || (code
== SYS_POWER_OFF
)) {
8102 printk(KERN_INFO
"md: stopping all md devices.\n");
8104 for_each_mddev(mddev
, tmp
) {
8105 if (mddev_trylock(mddev
)) {
8106 /* Force a switch to readonly even array
8107 * appears to still be in use. Hence
8110 md_set_readonly(mddev
, 100);
8111 mddev_unlock(mddev
);
8116 * certain more exotic SCSI devices are known to be
8117 * volatile wrt too early system reboots. While the
8118 * right place to handle this issue is the given
8119 * driver, we do want to have a safe RAID driver ...
8127 static struct notifier_block md_notifier
= {
8128 .notifier_call
= md_notify_reboot
,
8130 .priority
= INT_MAX
, /* before any real devices */
8133 static void md_geninit(void)
8135 pr_debug("md: sizeof(mdp_super_t) = %d\n", (int)sizeof(mdp_super_t
));
8137 proc_create("mdstat", S_IRUGO
, NULL
, &md_seq_fops
);
8140 static int __init
md_init(void)
8144 md_wq
= alloc_workqueue("md", WQ_MEM_RECLAIM
, 0);
8148 md_misc_wq
= alloc_workqueue("md_misc", 0, 0);
8152 if ((ret
= register_blkdev(MD_MAJOR
, "md")) < 0)
8155 if ((ret
= register_blkdev(0, "mdp")) < 0)
8159 blk_register_region(MKDEV(MD_MAJOR
, 0), 1UL<<MINORBITS
, THIS_MODULE
,
8160 md_probe
, NULL
, NULL
);
8161 blk_register_region(MKDEV(mdp_major
, 0), 1UL<<MINORBITS
, THIS_MODULE
,
8162 md_probe
, NULL
, NULL
);
8164 register_reboot_notifier(&md_notifier
);
8165 raid_table_header
= register_sysctl_table(raid_root_table
);
8171 unregister_blkdev(MD_MAJOR
, "md");
8173 destroy_workqueue(md_misc_wq
);
8175 destroy_workqueue(md_wq
);
8183 * Searches all registered partitions for autorun RAID arrays
8187 static LIST_HEAD(all_detected_devices
);
8188 struct detected_devices_node
{
8189 struct list_head list
;
8193 void md_autodetect_dev(dev_t dev
)
8195 struct detected_devices_node
*node_detected_dev
;
8197 node_detected_dev
= kzalloc(sizeof(*node_detected_dev
), GFP_KERNEL
);
8198 if (node_detected_dev
) {
8199 node_detected_dev
->dev
= dev
;
8200 list_add_tail(&node_detected_dev
->list
, &all_detected_devices
);
8202 printk(KERN_CRIT
"md: md_autodetect_dev: kzalloc failed"
8203 ", skipping dev(%d,%d)\n", MAJOR(dev
), MINOR(dev
));
8208 static void autostart_arrays(int part
)
8210 struct md_rdev
*rdev
;
8211 struct detected_devices_node
*node_detected_dev
;
8213 int i_scanned
, i_passed
;
8218 printk(KERN_INFO
"md: Autodetecting RAID arrays.\n");
8220 while (!list_empty(&all_detected_devices
) && i_scanned
< INT_MAX
) {
8222 node_detected_dev
= list_entry(all_detected_devices
.next
,
8223 struct detected_devices_node
, list
);
8224 list_del(&node_detected_dev
->list
);
8225 dev
= node_detected_dev
->dev
;
8226 kfree(node_detected_dev
);
8227 rdev
= md_import_device(dev
,0, 90);
8231 if (test_bit(Faulty
, &rdev
->flags
)) {
8235 set_bit(AutoDetected
, &rdev
->flags
);
8236 list_add(&rdev
->same_set
, &pending_raid_disks
);
8240 printk(KERN_INFO
"md: Scanned %d and added %d devices.\n",
8241 i_scanned
, i_passed
);
8243 autorun_devices(part
);
8246 #endif /* !MODULE */
8248 static __exit
void md_exit(void)
8250 struct mddev
*mddev
;
8251 struct list_head
*tmp
;
8253 blk_unregister_region(MKDEV(MD_MAJOR
,0), 1U << MINORBITS
);
8254 blk_unregister_region(MKDEV(mdp_major
,0), 1U << MINORBITS
);
8256 unregister_blkdev(MD_MAJOR
,"md");
8257 unregister_blkdev(mdp_major
, "mdp");
8258 unregister_reboot_notifier(&md_notifier
);
8259 unregister_sysctl_table(raid_table_header
);
8260 remove_proc_entry("mdstat", NULL
);
8261 for_each_mddev(mddev
, tmp
) {
8262 export_array(mddev
);
8263 mddev
->hold_active
= 0;
8265 destroy_workqueue(md_misc_wq
);
8266 destroy_workqueue(md_wq
);
8269 subsys_initcall(md_init
);
8270 module_exit(md_exit
)
8272 static int get_ro(char *buffer
, struct kernel_param
*kp
)
8274 return sprintf(buffer
, "%d", start_readonly
);
8276 static int set_ro(const char *val
, struct kernel_param
*kp
)
8279 int num
= simple_strtoul(val
, &e
, 10);
8280 if (*val
&& (*e
== '\0' || *e
== '\n')) {
8281 start_readonly
= num
;
8287 module_param_call(start_ro
, set_ro
, get_ro
, NULL
, S_IRUSR
|S_IWUSR
);
8288 module_param(start_dirty_degraded
, int, S_IRUGO
|S_IWUSR
);
8290 module_param_call(new_array
, add_named_array
, NULL
, NULL
, S_IWUSR
);
8292 EXPORT_SYMBOL(register_md_personality
);
8293 EXPORT_SYMBOL(unregister_md_personality
);
8294 EXPORT_SYMBOL(md_error
);
8295 EXPORT_SYMBOL(md_done_sync
);
8296 EXPORT_SYMBOL(md_write_start
);
8297 EXPORT_SYMBOL(md_write_end
);
8298 EXPORT_SYMBOL(md_register_thread
);
8299 EXPORT_SYMBOL(md_unregister_thread
);
8300 EXPORT_SYMBOL(md_wakeup_thread
);
8301 EXPORT_SYMBOL(md_check_recovery
);
8302 MODULE_LICENSE("GPL");
8303 MODULE_DESCRIPTION("MD RAID framework");
8305 MODULE_ALIAS_BLOCKDEV_MAJOR(MD_MAJOR
);