2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
24 * This file implements garbage collection. The procedure for garbage collection
25 * is different depending on whether a LEB as an index LEB (contains index
26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28 * nodes to the journal, at which point the garbage-collected LEB is free to be
29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31 * to be reused. Garbage collection will cause the number of dirty index nodes
32 * to grow, however sufficient space is reserved for the index to ensure the
33 * commit will never run out of space.
35 * Notes about dead watermark. At current UBIFS implementation we assume that
36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39 * Garbage Collector has to synchronize the GC head's write buffer before
40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41 * actually reclaim even very small pieces of dirty space by garbage collecting
42 * enough dirty LEBs, but we do not bother doing this at this implementation.
44 * Notes about dark watermark. The results of GC work depends on how big are
45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47 * have to waste large pieces of free space at the end of LEB B, because nodes
48 * from LEB A would not fit. And the worst situation is when all nodes are of
49 * maximum size. So dark watermark is the amount of free + dirty space in LEB
50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might
51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53 * good, and GC takes extra care when moving them.
56 #include <linux/pagemap.h>
60 * GC may need to move more than one LEB to make progress. The below constants
61 * define "soft" and "hard" limits on the number of LEBs the garbage collector
64 #define SOFT_LEBS_LIMIT 4
65 #define HARD_LEBS_LIMIT 32
68 * switch_gc_head - switch the garbage collection journal head.
69 * @c: UBIFS file-system description object
70 * @buf: buffer to write
71 * @len: length of the buffer to write
72 * @lnum: LEB number written is returned here
73 * @offs: offset written is returned here
75 * This function switch the GC head to the next LEB which is reserved in
76 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
77 * and other negative error code in case of failures.
79 static int switch_gc_head(struct ubifs_info
*c
)
81 int err
, gc_lnum
= c
->gc_lnum
;
82 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
84 ubifs_assert(gc_lnum
!= -1);
85 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
86 wbuf
->lnum
, wbuf
->offs
+ wbuf
->used
, gc_lnum
,
87 c
->leb_size
- wbuf
->offs
- wbuf
->used
);
89 err
= ubifs_wbuf_sync_nolock(wbuf
);
94 * The GC write-buffer was synchronized, we may safely unmap
97 err
= ubifs_leb_unmap(c
, gc_lnum
);
101 err
= ubifs_add_bud_to_log(c
, GCHD
, gc_lnum
, 0);
106 err
= ubifs_wbuf_seek_nolock(wbuf
, gc_lnum
, 0, UBI_LONGTERM
);
111 * list_sort - sort a list.
112 * @priv: private data, passed to @cmp
113 * @head: the list to sort
114 * @cmp: the elements comparison function
116 * This function has been implemented by Mark J Roberts <mjr@znex.org>. It
117 * implements "merge sort" which has O(nlog(n)) complexity. The list is sorted
118 * in ascending order.
120 * The comparison function @cmp is supposed to return a negative value if @a is
121 * than @b, and a positive value if @a is greater than @b. If @a and @b are
122 * equivalent, then it does not matter what this function returns.
124 static void list_sort(void *priv
, struct list_head
*head
,
125 int (*cmp
)(void *priv
, struct list_head
*a
,
126 struct list_head
*b
))
128 struct list_head
*p
, *q
, *e
, *list
, *tail
, *oldhead
;
129 int insize
, nmerges
, psize
, qsize
, i
;
131 if (list_empty(head
))
146 for (i
= 0; i
< insize
; i
++) {
148 q
= q
->next
== oldhead
? NULL
: q
->next
;
154 while (psize
> 0 || (qsize
> 0 && q
)) {
161 } else if (!qsize
|| !q
) {
167 } else if (cmp(priv
, p
, q
) <= 0) {
200 head
->prev
= list
->prev
;
201 list
->prev
->next
= head
;
206 * data_nodes_cmp - compare 2 data nodes.
207 * @priv: UBIFS file-system description object
208 * @a: first data node
209 * @a: second data node
211 * This function compares data nodes @a and @b. Returns %1 if @a has greater
212 * inode or block number, and %-1 otherwise.
214 int data_nodes_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
217 struct ubifs_info
*c
= priv
;
218 struct ubifs_scan_node
*sa
, *sb
;
221 sa
= list_entry(a
, struct ubifs_scan_node
, list
);
222 sb
= list_entry(b
, struct ubifs_scan_node
, list
);
223 ubifs_assert(key_type(c
, &sa
->key
) == UBIFS_DATA_KEY
);
224 ubifs_assert(key_type(c
, &sb
->key
) == UBIFS_DATA_KEY
);
226 inuma
= key_inum(c
, &sa
->key
);
227 inumb
= key_inum(c
, &sb
->key
);
229 if (inuma
== inumb
) {
230 unsigned int blka
= key_block(c
, &sa
->key
);
231 unsigned int blkb
= key_block(c
, &sb
->key
);
235 } else if (inuma
<= inumb
)
242 * nondata_nodes_cmp - compare 2 non-data nodes.
243 * @priv: UBIFS file-system description object
247 * This function compares nodes @a and @b. It makes sure that inode nodes go
248 * first and sorted by length in descending order. Directory entry nodes go
249 * after inode nodes and are sorted in ascending hash valuer order.
251 int nondata_nodes_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
255 struct ubifs_info
*c
= priv
;
256 struct ubifs_scan_node
*sa
, *sb
;
259 sa
= list_entry(a
, struct ubifs_scan_node
, list
);
260 sb
= list_entry(b
, struct ubifs_scan_node
, list
);
261 typea
= key_type(c
, &sa
->key
);
262 typeb
= key_type(c
, &sb
->key
);
263 ubifs_assert(typea
!= UBIFS_DATA_KEY
&& typeb
!= UBIFS_DATA_KEY
);
265 /* Inodes go before directory entries */
266 if (typea
== UBIFS_INO_KEY
) {
267 if (typeb
== UBIFS_INO_KEY
)
268 return sb
->len
- sa
->len
;
271 if (typeb
== UBIFS_INO_KEY
)
274 ubifs_assert(typea
== UBIFS_DENT_KEY
&& typeb
== UBIFS_DENT_KEY
);
275 inuma
= key_inum(c
, &sa
->key
);
276 inumb
= key_inum(c
, &sb
->key
);
278 if (inuma
== inumb
) {
279 uint32_t hasha
= key_hash(c
, &sa
->key
);
280 uint32_t hashb
= key_hash(c
, &sb
->key
);
284 } else if (inuma
<= inumb
)
291 * sort_nodes - sort nodes for GC.
292 * @c: UBIFS file-system description object
293 * @sleb: describes nodes to sort and contains the result on exit
294 * @nondata: contains non-data nodes on exit
295 * @min: minimum node size is returned here
297 * This function sorts the list of inodes to garbage collect. First of all, it
298 * kills obsolete nodes and separates data and non-data nodes to the
299 * @sleb->nodes and @nondata lists correspondingly.
301 * Data nodes are then sorted in block number order - this is important for
302 * bulk-read; data nodes with lower inode number go before data nodes with
303 * higher inode number, and data nodes with lower block number go before data
304 * nodes with higher block number;
306 * Non-data nodes are sorted as follows.
307 * o First go inode nodes - they are sorted in descending length order.
308 * o Then go directory entry nodes - they are sorted in hash order, which
309 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent
310 * inode number go before direntry nodes with higher parent inode number,
311 * and direntry nodes with lower name hash values go before direntry nodes
312 * with higher name hash values.
314 * This function returns zero in case of success and a negative error code in
317 static int sort_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
318 struct list_head
*nondata
, int *min
)
320 struct ubifs_scan_node
*snod
, *tmp
;
324 /* Separate data nodes and non-data nodes */
325 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
328 ubifs_assert(snod
->type
!= UBIFS_IDX_NODE
);
329 ubifs_assert(snod
->type
!= UBIFS_REF_NODE
);
330 ubifs_assert(snod
->type
!= UBIFS_CS_NODE
);
332 err
= ubifs_tnc_has_node(c
, &snod
->key
, 0, sleb
->lnum
,
338 /* The node is obsolete, remove it from the list */
339 list_del(&snod
->list
);
344 if (snod
->len
< *min
)
347 if (key_type(c
, &snod
->key
) != UBIFS_DATA_KEY
)
348 list_move_tail(&snod
->list
, nondata
);
351 /* Sort data and non-data nodes */
352 list_sort(c
, &sleb
->nodes
, &data_nodes_cmp
);
353 list_sort(c
, nondata
, &nondata_nodes_cmp
);
358 * move_node - move a node.
359 * @c: UBIFS file-system description object
360 * @sleb: describes the LEB to move nodes from
361 * @snod: the mode to move
362 * @wbuf: write-buffer to move node to
364 * This function moves node @snod to @wbuf, changes TNC correspondingly, and
365 * destroys @snod. Returns zero in case of success and a negative error code in
368 static int move_node(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
,
369 struct ubifs_scan_node
*snod
, struct ubifs_wbuf
*wbuf
)
371 int err
, new_lnum
= wbuf
->lnum
, new_offs
= wbuf
->offs
+ wbuf
->used
;
374 err
= ubifs_wbuf_write_nolock(wbuf
, snod
->node
, snod
->len
);
378 err
= ubifs_tnc_replace(c
, &snod
->key
, sleb
->lnum
,
379 snod
->offs
, new_lnum
, new_offs
,
381 list_del(&snod
->list
);
387 * move_nodes - move nodes.
388 * @c: UBIFS file-system description object
389 * @sleb: describes the LEB to move nodes from
391 * This function moves valid nodes from data LEB described by @sleb to the GC
392 * journal head. This function returns zero in case of success, %-EAGAIN if
393 * commit is required, and other negative error codes in case of other
396 static int move_nodes(struct ubifs_info
*c
, struct ubifs_scan_leb
*sleb
)
400 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
402 if (wbuf
->lnum
== -1) {
404 * The GC journal head is not set, because it is the first GC
405 * invocation since mount.
407 err
= switch_gc_head(c
);
412 err
= sort_nodes(c
, sleb
, &nondata
, &min
);
416 /* Write nodes to their new location. Use the first-fit strategy */
419 struct ubifs_scan_node
*snod
, *tmp
;
421 /* Move data nodes */
422 list_for_each_entry_safe(snod
, tmp
, &sleb
->nodes
, list
) {
423 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
424 if (snod
->len
> avail
)
426 * Do not skip data nodes in order to optimize
431 err
= move_node(c
, sleb
, snod
, wbuf
);
436 /* Move non-data nodes */
437 list_for_each_entry_safe(snod
, tmp
, &nondata
, list
) {
438 avail
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
442 if (snod
->len
> avail
) {
444 * Keep going only if this is an inode with
445 * some data. Otherwise stop and switch the GC
446 * head. IOW, we assume that data-less inode
447 * nodes and direntry nodes are roughly of the
450 if (key_type(c
, &snod
->key
) == UBIFS_DENT_KEY
||
451 snod
->len
== UBIFS_INO_NODE_SZ
)
456 err
= move_node(c
, sleb
, snod
, wbuf
);
461 if (list_empty(&sleb
->nodes
) && list_empty(&nondata
))
465 * Waste the rest of the space in the LEB and switch to the
468 err
= switch_gc_head(c
);
476 list_splice_tail(&nondata
, &sleb
->nodes
);
481 * gc_sync_wbufs - sync write-buffers for GC.
482 * @c: UBIFS file-system description object
484 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
485 * be in a write-buffer instead. That is, a node could be written to a
486 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
487 * erased before the write-buffer is sync'd and then there is an unclean
488 * unmount, then an existing node is lost. To avoid this, we sync all
491 * This function returns %0 on success or a negative error code on failure.
493 static int gc_sync_wbufs(struct ubifs_info
*c
)
497 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
500 err
= ubifs_wbuf_sync(&c
->jheads
[i
].wbuf
);
508 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
509 * @c: UBIFS file-system description object
510 * @lp: describes the LEB to garbage collect
512 * This function garbage-collects an LEB and returns one of the @LEB_FREED,
513 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
514 * required, and other negative error codes in case of failures.
516 int ubifs_garbage_collect_leb(struct ubifs_info
*c
, struct ubifs_lprops
*lp
)
518 struct ubifs_scan_leb
*sleb
;
519 struct ubifs_scan_node
*snod
;
520 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
521 int err
= 0, lnum
= lp
->lnum
;
523 ubifs_assert(c
->gc_lnum
!= -1 || wbuf
->offs
+ wbuf
->used
== 0 ||
525 ubifs_assert(c
->gc_lnum
!= lnum
);
526 ubifs_assert(wbuf
->lnum
!= lnum
);
529 * We scan the entire LEB even though we only really need to scan up to
530 * (c->leb_size - lp->free).
532 sleb
= ubifs_scan(c
, lnum
, 0, c
->sbuf
, 0);
534 return PTR_ERR(sleb
);
536 ubifs_assert(!list_empty(&sleb
->nodes
));
537 snod
= list_entry(sleb
->nodes
.next
, struct ubifs_scan_node
, list
);
539 if (snod
->type
== UBIFS_IDX_NODE
) {
540 struct ubifs_gced_idx_leb
*idx_gc
;
542 dbg_gc("indexing LEB %d (free %d, dirty %d)",
543 lnum
, lp
->free
, lp
->dirty
);
544 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
545 struct ubifs_idx_node
*idx
= snod
->node
;
546 int level
= le16_to_cpu(idx
->level
);
548 ubifs_assert(snod
->type
== UBIFS_IDX_NODE
);
549 key_read(c
, ubifs_idx_key(c
, idx
), &snod
->key
);
550 err
= ubifs_dirty_idx_node(c
, &snod
->key
, level
, lnum
,
556 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
564 list_add(&idx_gc
->list
, &c
->idx_gc
);
567 * Don't release the LEB until after the next commit, because
568 * it may contain data which is needed for recovery. So
569 * although we freed this LEB, it will become usable only after
572 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0,
578 dbg_gc("data LEB %d (free %d, dirty %d)",
579 lnum
, lp
->free
, lp
->dirty
);
581 err
= move_nodes(c
, sleb
);
585 err
= gc_sync_wbufs(c
);
589 err
= ubifs_change_one_lp(c
, lnum
, c
->leb_size
, 0, 0, 0, 0);
593 /* Allow for races with TNC */
599 if (c
->gc_lnum
== -1) {
603 err
= ubifs_wbuf_sync_nolock(wbuf
);
607 err
= ubifs_leb_unmap(c
, lnum
);
616 ubifs_scan_destroy(sleb
);
620 /* We may have moved at least some nodes so allow for races with TNC */
629 * ubifs_garbage_collect - UBIFS garbage collector.
630 * @c: UBIFS file-system description object
631 * @anyway: do GC even if there are free LEBs
633 * This function does out-of-place garbage collection. The return codes are:
634 * o positive LEB number if the LEB has been freed and may be used;
635 * o %-EAGAIN if the caller has to run commit;
636 * o %-ENOSPC if GC failed to make any progress;
637 * o other negative error codes in case of other errors.
639 * Garbage collector writes data to the journal when GC'ing data LEBs, and just
640 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
641 * commit may be required. But commit cannot be run from inside GC, because the
642 * caller might be holding the commit lock, so %-EAGAIN is returned instead;
643 * And this error code means that the caller has to run commit, and re-run GC
644 * if there is still no free space.
646 * There are many reasons why this function may return %-EAGAIN:
647 * o the log is full and there is no space to write an LEB reference for
649 * o the journal is too large and exceeds size limitations;
650 * o GC moved indexing LEBs, but they can be used only after the commit;
651 * o the shrinker fails to find clean znodes to free and requests the commit;
654 * Note, if the file-system is close to be full, this function may return
655 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
656 * the function. E.g., this happens if the limits on the journal size are too
657 * tough and GC writes too much to the journal before an LEB is freed. This
658 * might also mean that the journal is too large, and the TNC becomes to big,
659 * so that the shrinker is constantly called, finds not clean znodes to free,
660 * and requests commit. Well, this may also happen if the journal is all right,
661 * but another kernel process consumes too much memory. Anyway, infinite
662 * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
664 int ubifs_garbage_collect(struct ubifs_info
*c
, int anyway
)
666 int i
, err
, ret
, min_space
= c
->dead_wm
;
667 struct ubifs_lprops lp
;
668 struct ubifs_wbuf
*wbuf
= &c
->jheads
[GCHD
].wbuf
;
670 ubifs_assert_cmt_locked(c
);
672 if (ubifs_gc_should_commit(c
))
675 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
682 /* We expect the write-buffer to be empty on entry */
683 ubifs_assert(!wbuf
->used
);
686 int space_before
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
691 /* Give the commit an opportunity to run */
692 if (ubifs_gc_should_commit(c
)) {
697 if (i
> SOFT_LEBS_LIMIT
&& !list_empty(&c
->idx_gc
)) {
699 * We've done enough iterations. Indexing LEBs were
700 * moved and will be available after the commit.
702 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
703 ubifs_commit_required(c
);
708 if (i
> HARD_LEBS_LIMIT
) {
710 * We've moved too many LEBs and have not made
713 dbg_gc("hard limit, -ENOSPC");
719 * Empty and freeable LEBs can turn up while we waited for
720 * the wbuf lock, or while we have been running GC. In that
721 * case, we should just return one of those instead of
722 * continuing to GC dirty LEBs. Hence we request
723 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
725 ret
= ubifs_find_dirty_leb(c
, &lp
, min_space
, anyway
? 0 : 1);
728 dbg_gc("no more dirty LEBs");
732 dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
733 "(min. space %d)", lp
.lnum
, lp
.free
, lp
.dirty
,
734 lp
.free
+ lp
.dirty
, min_space
);
736 if (lp
.free
+ lp
.dirty
== c
->leb_size
) {
737 /* An empty LEB was returned */
738 dbg_gc("LEB %d is free, return it", lp
.lnum
);
740 * ubifs_find_dirty_leb() doesn't return freeable index
743 ubifs_assert(!(lp
.flags
& LPROPS_INDEX
));
744 if (lp
.free
!= c
->leb_size
) {
746 * Write buffers must be sync'd before
747 * unmapping freeable LEBs, because one of them
748 * may contain data which obsoletes something
751 ret
= gc_sync_wbufs(c
);
754 ret
= ubifs_change_one_lp(c
, lp
.lnum
,
755 c
->leb_size
, 0, 0, 0,
760 ret
= ubifs_leb_unmap(c
, lp
.lnum
);
767 space_before
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
768 if (wbuf
->lnum
== -1)
771 ret
= ubifs_garbage_collect_leb(c
, &lp
);
773 if (ret
== -EAGAIN
|| ret
== -ENOSPC
) {
775 * These codes are not errors, so we have to
776 * return the LEB to lprops. But if the
777 * 'ubifs_return_leb()' function fails, its
778 * failure code is propagated to the caller
779 * instead of the original '-EAGAIN' or
782 err
= ubifs_return_leb(c
, lp
.lnum
);
790 if (ret
== LEB_FREED
) {
791 /* An LEB has been freed and is ready for use */
792 dbg_gc("LEB %d freed, return", lp
.lnum
);
797 if (ret
== LEB_FREED_IDX
) {
799 * This was an indexing LEB and it cannot be
800 * immediately used. And instead of requesting the
801 * commit straight away, we try to garbage collect some
804 dbg_gc("indexing LEB %d freed, continue", lp
.lnum
);
808 ubifs_assert(ret
== LEB_RETAINED
);
809 space_after
= c
->leb_size
- wbuf
->offs
- wbuf
->used
;
810 dbg_gc("LEB %d retained, freed %d bytes", lp
.lnum
,
811 space_after
- space_before
);
813 if (space_after
> space_before
) {
814 /* GC makes progress, keep working */
816 if (min_space
< c
->dead_wm
)
817 min_space
= c
->dead_wm
;
821 dbg_gc("did not make progress");
824 * GC moved an LEB bud have not done any progress. This means
825 * that the previous GC head LEB contained too few free space
826 * and the LEB which was GC'ed contained only large nodes which
827 * did not fit that space.
829 * We can do 2 things:
830 * 1. pick another LEB in a hope it'll contain a small node
831 * which will fit the space we have at the end of current GC
832 * head LEB, but there is no guarantee, so we try this out
833 * unless we have already been working for too long;
834 * 2. request an LEB with more dirty space, which will force
835 * 'ubifs_find_dirty_leb()' to start scanning the lprops
836 * table, instead of just picking one from the heap
837 * (previously it already picked the dirtiest LEB).
839 if (i
< SOFT_LEBS_LIMIT
) {
845 if (min_space
> c
->dark_wm
)
846 min_space
= c
->dark_wm
;
847 dbg_gc("set min. space to %d", min_space
);
850 if (ret
== -ENOSPC
&& !list_empty(&c
->idx_gc
)) {
851 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
852 ubifs_commit_required(c
);
856 err
= ubifs_wbuf_sync_nolock(wbuf
);
858 err
= ubifs_leb_unmap(c
, c
->gc_lnum
);
864 mutex_unlock(&wbuf
->io_mutex
);
868 ubifs_assert(ret
< 0);
869 ubifs_assert(ret
!= -ENOSPC
&& ret
!= -EAGAIN
);
870 ubifs_ro_mode(c
, ret
);
871 ubifs_wbuf_sync_nolock(wbuf
);
872 mutex_unlock(&wbuf
->io_mutex
);
873 ubifs_return_leb(c
, lp
.lnum
);
878 * ubifs_gc_start_commit - garbage collection at start of commit.
879 * @c: UBIFS file-system description object
881 * If a LEB has only dirty and free space, then we may safely unmap it and make
882 * it free. Note, we cannot do this with indexing LEBs because dirty space may
883 * correspond index nodes that are required for recovery. In that case, the
884 * LEB cannot be unmapped until after the next commit.
886 * This function returns %0 upon success and a negative error code upon failure.
888 int ubifs_gc_start_commit(struct ubifs_info
*c
)
890 struct ubifs_gced_idx_leb
*idx_gc
;
891 const struct ubifs_lprops
*lp
;
897 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
898 * wbufs are sync'd before this, which is done in 'do_commit()'.
901 lp
= ubifs_fast_find_freeable(c
);
908 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
909 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
910 err
= ubifs_leb_unmap(c
, lp
->lnum
);
913 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, lp
->flags
, 0);
918 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
919 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
922 /* Mark GC'd index LEBs OK to unmap after this commit finishes */
923 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
926 /* Record index freeable LEBs for unmapping after commit */
928 lp
= ubifs_fast_find_frdi_idx(c
);
935 idx_gc
= kmalloc(sizeof(struct ubifs_gced_idx_leb
), GFP_NOFS
);
940 ubifs_assert(!(lp
->flags
& LPROPS_TAKEN
));
941 ubifs_assert(lp
->flags
& LPROPS_INDEX
);
942 /* Don't release the LEB until after the next commit */
943 flags
= (lp
->flags
| LPROPS_TAKEN
) ^ LPROPS_INDEX
;
944 lp
= ubifs_change_lp(c
, lp
, c
->leb_size
, 0, flags
, 1);
950 ubifs_assert(lp
->flags
& LPROPS_TAKEN
);
951 ubifs_assert(!(lp
->flags
& LPROPS_INDEX
));
952 idx_gc
->lnum
= lp
->lnum
;
954 list_add(&idx_gc
->list
, &c
->idx_gc
);
957 ubifs_release_lprops(c
);
962 * ubifs_gc_end_commit - garbage collection at end of commit.
963 * @c: UBIFS file-system description object
965 * This function completes out-of-place garbage collection of index LEBs.
967 int ubifs_gc_end_commit(struct ubifs_info
*c
)
969 struct ubifs_gced_idx_leb
*idx_gc
, *tmp
;
970 struct ubifs_wbuf
*wbuf
;
973 wbuf
= &c
->jheads
[GCHD
].wbuf
;
974 mutex_lock_nested(&wbuf
->io_mutex
, wbuf
->jhead
);
975 list_for_each_entry_safe(idx_gc
, tmp
, &c
->idx_gc
, list
)
977 dbg_gc("LEB %d", idx_gc
->lnum
);
978 err
= ubifs_leb_unmap(c
, idx_gc
->lnum
);
981 err
= ubifs_change_one_lp(c
, idx_gc
->lnum
, LPROPS_NC
,
982 LPROPS_NC
, 0, LPROPS_TAKEN
, -1);
985 list_del(&idx_gc
->list
);
989 mutex_unlock(&wbuf
->io_mutex
);
994 * ubifs_destroy_idx_gc - destroy idx_gc list.
995 * @c: UBIFS file-system description object
997 * This function destroys the @c->idx_gc list. It is called when unmounting
998 * so locks are not needed. Returns zero in case of success and a negative
999 * error code in case of failure.
1001 void ubifs_destroy_idx_gc(struct ubifs_info
*c
)
1003 while (!list_empty(&c
->idx_gc
)) {
1004 struct ubifs_gced_idx_leb
*idx_gc
;
1006 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
,
1009 list_del(&idx_gc
->list
);
1015 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
1016 * @c: UBIFS file-system description object
1018 * Called during start commit so locks are not needed.
1020 int ubifs_get_idx_gc_leb(struct ubifs_info
*c
)
1022 struct ubifs_gced_idx_leb
*idx_gc
;
1025 if (list_empty(&c
->idx_gc
))
1027 idx_gc
= list_entry(c
->idx_gc
.next
, struct ubifs_gced_idx_leb
, list
);
1028 lnum
= idx_gc
->lnum
;
1029 /* c->idx_gc_cnt is updated by the caller when lprops are updated */
1030 list_del(&idx_gc
->list
);