2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire-constants.h>
26 #include <linux/kernel.h>
28 #include <linux/spinlock.h>
29 #include <linux/vmalloc.h>
31 #include "fw-topology.h"
32 #include "fw-transaction.h"
35 * Isochronous DMA context management
38 int fw_iso_buffer_init(struct fw_iso_buffer
*buffer
, struct fw_card
*card
,
39 int page_count
, enum dma_data_direction direction
)
44 buffer
->page_count
= page_count
;
45 buffer
->direction
= direction
;
47 buffer
->pages
= kmalloc(page_count
* sizeof(buffer
->pages
[0]),
49 if (buffer
->pages
== NULL
)
52 for (i
= 0; i
< buffer
->page_count
; i
++) {
53 buffer
->pages
[i
] = alloc_page(GFP_KERNEL
| GFP_DMA32
| __GFP_ZERO
);
54 if (buffer
->pages
[i
] == NULL
)
57 address
= dma_map_page(card
->device
, buffer
->pages
[i
],
58 0, PAGE_SIZE
, direction
);
59 if (dma_mapping_error(card
->device
, address
)) {
60 __free_page(buffer
->pages
[i
]);
63 set_page_private(buffer
->pages
[i
], address
);
69 for (j
= 0; j
< i
; j
++) {
70 address
= page_private(buffer
->pages
[j
]);
71 dma_unmap_page(card
->device
, address
,
72 PAGE_SIZE
, DMA_TO_DEVICE
);
73 __free_page(buffer
->pages
[j
]);
82 int fw_iso_buffer_map(struct fw_iso_buffer
*buffer
, struct vm_area_struct
*vma
)
87 uaddr
= vma
->vm_start
;
88 for (i
= 0; i
< buffer
->page_count
; i
++) {
89 err
= vm_insert_page(vma
, uaddr
, buffer
->pages
[i
]);
99 void fw_iso_buffer_destroy(struct fw_iso_buffer
*buffer
,
100 struct fw_card
*card
)
105 for (i
= 0; i
< buffer
->page_count
; i
++) {
106 address
= page_private(buffer
->pages
[i
]);
107 dma_unmap_page(card
->device
, address
,
108 PAGE_SIZE
, DMA_TO_DEVICE
);
109 __free_page(buffer
->pages
[i
]);
112 kfree(buffer
->pages
);
113 buffer
->pages
= NULL
;
116 struct fw_iso_context
*fw_iso_context_create(struct fw_card
*card
,
117 int type
, int channel
, int speed
, size_t header_size
,
118 fw_iso_callback_t callback
, void *callback_data
)
120 struct fw_iso_context
*ctx
;
122 ctx
= card
->driver
->allocate_iso_context(card
,
123 type
, channel
, header_size
);
129 ctx
->channel
= channel
;
131 ctx
->header_size
= header_size
;
132 ctx
->callback
= callback
;
133 ctx
->callback_data
= callback_data
;
138 void fw_iso_context_destroy(struct fw_iso_context
*ctx
)
140 struct fw_card
*card
= ctx
->card
;
142 card
->driver
->free_iso_context(ctx
);
145 int fw_iso_context_start(struct fw_iso_context
*ctx
,
146 int cycle
, int sync
, int tags
)
148 return ctx
->card
->driver
->start_iso(ctx
, cycle
, sync
, tags
);
151 int fw_iso_context_queue(struct fw_iso_context
*ctx
,
152 struct fw_iso_packet
*packet
,
153 struct fw_iso_buffer
*buffer
,
154 unsigned long payload
)
156 struct fw_card
*card
= ctx
->card
;
158 return card
->driver
->queue_iso(ctx
, packet
, buffer
, payload
);
161 int fw_iso_context_stop(struct fw_iso_context
*ctx
)
163 return ctx
->card
->driver
->stop_iso(ctx
);
167 * Isochronous bus resource management (channels, bandwidth), client side
170 static int manage_bandwidth(struct fw_card
*card
, int irm_id
, int generation
,
171 int bandwidth
, bool allocate
)
174 int try, new, old
= allocate
? BANDWIDTH_AVAILABLE_INITIAL
: 0;
177 * On a 1394a IRM with low contention, try < 1 is enough.
178 * On a 1394-1995 IRM, we need at least try < 2.
179 * Let's just do try < 5.
181 for (try = 0; try < 5; try++) {
182 new = allocate
? old
- bandwidth
: old
+ bandwidth
;
183 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL
)
186 data
[0] = cpu_to_be32(old
);
187 data
[1] = cpu_to_be32(new);
188 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
189 irm_id
, generation
, SCODE_100
,
190 CSR_REGISTER_BASE
+ CSR_BANDWIDTH_AVAILABLE
,
191 data
, sizeof(data
))) {
192 case RCODE_GENERATION
:
193 /* A generation change frees all bandwidth. */
194 return allocate
? -EAGAIN
: bandwidth
;
197 if (be32_to_cpup(data
) == old
)
200 old
= be32_to_cpup(data
);
208 static int manage_channel(struct fw_card
*card
, int irm_id
, int generation
,
209 u32 channels_mask
, u64 offset
, bool allocate
)
211 __be32 data
[2], c
, all
, old
;
214 old
= all
= allocate
? cpu_to_be32(~0) : 0;
216 for (i
= 0; i
< 32; i
++) {
217 if (!(channels_mask
& 1 << i
))
220 c
= cpu_to_be32(1 << (31 - i
));
221 if ((old
& c
) != (all
& c
))
226 switch (fw_run_transaction(card
, TCODE_LOCK_COMPARE_SWAP
,
227 irm_id
, generation
, SCODE_100
,
228 offset
, data
, sizeof(data
))) {
229 case RCODE_GENERATION
:
230 /* A generation change frees all channels. */
231 return allocate
? -EAGAIN
: i
;
239 /* Is the IRM 1394a-2000 compliant? */
240 if ((data
[0] & c
) == (data
[1] & c
))
243 /* 1394-1995 IRM, fall through to retry. */
253 static void deallocate_channel(struct fw_card
*card
, int irm_id
,
254 int generation
, int channel
)
259 mask
= channel
< 32 ? 1 << channel
: 1 << (channel
- 32);
260 offset
= channel
< 32 ? CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
:
261 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
;
263 manage_channel(card
, irm_id
, generation
, mask
, offset
, false);
267 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
269 * In parameters: card, generation, channels_mask, bandwidth, allocate
270 * Out parameters: channel, bandwidth
271 * This function blocks (sleeps) during communication with the IRM.
273 * Allocates or deallocates at most one channel out of channels_mask.
274 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
275 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
276 * channel 0 and LSB for channel 63.)
277 * Allocates or deallocates as many bandwidth allocation units as specified.
279 * Returns channel < 0 if no channel was allocated or deallocated.
280 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
282 * If generation is stale, deallocations succeed but allocations fail with
285 * If channel allocation fails, no bandwidth will be allocated either.
286 * If bandwidth allocation fails, no channel will be allocated either.
287 * But deallocations of channel and bandwidth are tried independently
288 * of each other's success.
290 void fw_iso_resource_manage(struct fw_card
*card
, int generation
,
291 u64 channels_mask
, int *channel
, int *bandwidth
,
294 u32 channels_hi
= channels_mask
; /* channels 31...0 */
295 u32 channels_lo
= channels_mask
>> 32; /* channels 63...32 */
296 int irm_id
, ret
, c
= -EINVAL
;
298 spin_lock_irq(&card
->lock
);
299 irm_id
= card
->irm_node
->node_id
;
300 spin_unlock_irq(&card
->lock
);
303 c
= manage_channel(card
, irm_id
, generation
, channels_hi
,
304 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_HI
, allocate
);
305 if (channels_lo
&& c
< 0) {
306 c
= manage_channel(card
, irm_id
, generation
, channels_lo
,
307 CSR_REGISTER_BASE
+ CSR_CHANNELS_AVAILABLE_LO
, allocate
);
313 if (allocate
&& channels_mask
!= 0 && c
< 0)
319 ret
= manage_bandwidth(card
, irm_id
, generation
, *bandwidth
, allocate
);
323 if (allocate
&& ret
< 0 && c
>= 0) {
324 deallocate_channel(card
, irm_id
, generation
, c
);