Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / 3c527.c
blobd9d056d207f318644c176f3d524fd6029994e7b7
1 /* 3c527.c: 3Com Etherlink/MC32 driver for Linux 2.4 and 2.6.
3 * (c) Copyright 1998 Red Hat Software Inc
4 * Written by Alan Cox.
5 * Further debugging by Carl Drougge.
6 * Initial SMP support by Felipe W Damasio <felipewd@terra.com.br>
7 * Heavily modified by Richard Procter <rnp@paradise.net.nz>
9 * Based on skeleton.c written 1993-94 by Donald Becker and ne2.c
10 * (for the MCA stuff) written by Wim Dumon.
12 * Thanks to 3Com for making this possible by providing me with the
13 * documentation.
15 * This software may be used and distributed according to the terms
16 * of the GNU General Public License, incorporated herein by reference.
20 #define DRV_NAME "3c527"
21 #define DRV_VERSION "0.7-SMP"
22 #define DRV_RELDATE "2003/09/21"
24 static const char *version =
25 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " Richard Procter <rnp@paradise.net.nz>\n";
27 /**
28 * DOC: Traps for the unwary
30 * The diagram (Figure 1-1) and the POS summary disagree with the
31 * "Interrupt Level" section in the manual.
33 * The manual contradicts itself when describing the minimum number
34 * buffers in the 'configure lists' command.
35 * My card accepts a buffer config of 4/4.
37 * Setting the SAV BP bit does not save bad packets, but
38 * only enables RX on-card stats collection.
40 * The documentation in places seems to miss things. In actual fact
41 * I've always eventually found everything is documented, it just
42 * requires careful study.
44 * DOC: Theory Of Operation
46 * The 3com 3c527 is a 32bit MCA bus mastering adapter with a large
47 * amount of on board intelligence that housekeeps a somewhat dumber
48 * Intel NIC. For performance we want to keep the transmit queue deep
49 * as the card can transmit packets while fetching others from main
50 * memory by bus master DMA. Transmission and reception are driven by
51 * circular buffer queues.
53 * The mailboxes can be used for controlling how the card traverses
54 * its buffer rings, but are used only for initial setup in this
55 * implementation. The exec mailbox allows a variety of commands to
56 * be executed. Each command must complete before the next is
57 * executed. Primarily we use the exec mailbox for controlling the
58 * multicast lists. We have to do a certain amount of interesting
59 * hoop jumping as the multicast list changes can occur in interrupt
60 * state when the card has an exec command pending. We defer such
61 * events until the command completion interrupt.
63 * A copy break scheme (taken from 3c59x.c) is employed whereby
64 * received frames exceeding a configurable length are passed
65 * directly to the higher networking layers without incuring a copy,
66 * in what amounts to a time/space trade-off.
68 * The card also keeps a large amount of statistical information
69 * on-board. In a perfect world, these could be used safely at no
70 * cost. However, lacking information to the contrary, processing
71 * them without races would involve so much extra complexity as to
72 * make it unworthwhile to do so. In the end, a hybrid SW/HW
73 * implementation was made necessary --- see mc32_update_stats().
75 * DOC: Notes
77 * It should be possible to use two or more cards, but at this stage
78 * only by loading two copies of the same module.
80 * The on-board 82586 NIC has trouble receiving multiple
81 * back-to-back frames and so is likely to drop packets from fast
82 * senders.
83 **/
85 #include <linux/module.h>
87 #include <linux/errno.h>
88 #include <linux/netdevice.h>
89 #include <linux/etherdevice.h>
90 #include <linux/if_ether.h>
91 #include <linux/init.h>
92 #include <linux/kernel.h>
93 #include <linux/types.h>
94 #include <linux/fcntl.h>
95 #include <linux/interrupt.h>
96 #include <linux/mca-legacy.h>
97 #include <linux/ioport.h>
98 #include <linux/in.h>
99 #include <linux/skbuff.h>
100 #include <linux/slab.h>
101 #include <linux/string.h>
102 #include <linux/wait.h>
103 #include <linux/ethtool.h>
104 #include <linux/completion.h>
105 #include <linux/bitops.h>
106 #include <linux/semaphore.h>
108 #include <asm/uaccess.h>
109 #include <asm/system.h>
110 #include <asm/io.h>
111 #include <asm/dma.h>
113 #include "3c527.h"
115 MODULE_LICENSE("GPL");
118 * The name of the card. Is used for messages and in the requests for
119 * io regions, irqs and dma channels
121 static const char* cardname = DRV_NAME;
123 /* use 0 for production, 1 for verification, >2 for debug */
124 #ifndef NET_DEBUG
125 #define NET_DEBUG 2
126 #endif
128 static unsigned int mc32_debug = NET_DEBUG;
130 /* The number of low I/O ports used by the ethercard. */
131 #define MC32_IO_EXTENT 8
133 /* As implemented, values must be a power-of-2 -- 4/8/16/32 */
134 #define TX_RING_LEN 32 /* Typically the card supports 37 */
135 #define RX_RING_LEN 8 /* " " " */
137 /* Copy break point, see above for details.
138 * Setting to > 1512 effectively disables this feature. */
139 #define RX_COPYBREAK 200 /* Value from 3c59x.c */
141 /* Issue the 82586 workaround command - this is for "busy lans", but
142 * basically means for all lans now days - has a performance (latency)
143 * cost, but best set. */
144 static const int WORKAROUND_82586=1;
146 /* Pointers to buffers and their on-card records */
147 struct mc32_ring_desc
149 volatile struct skb_header *p;
150 struct sk_buff *skb;
153 /* Information that needs to be kept for each board. */
154 struct mc32_local
156 int slot;
158 u32 base;
159 volatile struct mc32_mailbox *rx_box;
160 volatile struct mc32_mailbox *tx_box;
161 volatile struct mc32_mailbox *exec_box;
162 volatile struct mc32_stats *stats; /* Start of on-card statistics */
163 u16 tx_chain; /* Transmit list start offset */
164 u16 rx_chain; /* Receive list start offset */
165 u16 tx_len; /* Transmit list count */
166 u16 rx_len; /* Receive list count */
168 u16 xceiver_desired_state; /* HALTED or RUNNING */
169 u16 cmd_nonblocking; /* Thread is uninterested in command result */
170 u16 mc_reload_wait; /* A multicast load request is pending */
171 u32 mc_list_valid; /* True when the mclist is set */
173 struct mc32_ring_desc tx_ring[TX_RING_LEN]; /* Host Transmit ring */
174 struct mc32_ring_desc rx_ring[RX_RING_LEN]; /* Host Receive ring */
176 atomic_t tx_count; /* buffers left */
177 atomic_t tx_ring_head; /* index to tx en-queue end */
178 u16 tx_ring_tail; /* index to tx de-queue end */
180 u16 rx_ring_tail; /* index to rx de-queue end */
182 struct semaphore cmd_mutex; /* Serialises issuing of execute commands */
183 struct completion execution_cmd; /* Card has completed an execute command */
184 struct completion xceiver_cmd; /* Card has completed a tx or rx command */
187 /* The station (ethernet) address prefix, used for a sanity check. */
188 #define SA_ADDR0 0x02
189 #define SA_ADDR1 0x60
190 #define SA_ADDR2 0xAC
192 struct mca_adapters_t {
193 unsigned int id;
194 char *name;
197 static const struct mca_adapters_t mc32_adapters[] = {
198 { 0x0041, "3COM EtherLink MC/32" },
199 { 0x8EF5, "IBM High Performance Lan Adapter" },
200 { 0x0000, NULL }
204 /* Macros for ring index manipulations */
205 static inline u16 next_rx(u16 rx) { return (rx+1)&(RX_RING_LEN-1); };
206 static inline u16 prev_rx(u16 rx) { return (rx-1)&(RX_RING_LEN-1); };
208 static inline u16 next_tx(u16 tx) { return (tx+1)&(TX_RING_LEN-1); };
211 /* Index to functions, as function prototypes. */
212 static int mc32_probe1(struct net_device *dev, int ioaddr);
213 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len);
214 static int mc32_open(struct net_device *dev);
215 static void mc32_timeout(struct net_device *dev);
216 static netdev_tx_t mc32_send_packet(struct sk_buff *skb,
217 struct net_device *dev);
218 static irqreturn_t mc32_interrupt(int irq, void *dev_id);
219 static int mc32_close(struct net_device *dev);
220 static struct net_device_stats *mc32_get_stats(struct net_device *dev);
221 static void mc32_set_multicast_list(struct net_device *dev);
222 static void mc32_reset_multicast_list(struct net_device *dev);
223 static const struct ethtool_ops netdev_ethtool_ops;
225 static void cleanup_card(struct net_device *dev)
227 struct mc32_local *lp = netdev_priv(dev);
228 unsigned slot = lp->slot;
229 mca_mark_as_unused(slot);
230 mca_set_adapter_name(slot, NULL);
231 free_irq(dev->irq, dev);
232 release_region(dev->base_addr, MC32_IO_EXTENT);
236 * mc32_probe - Search for supported boards
237 * @unit: interface number to use
239 * Because MCA bus is a real bus and we can scan for cards we could do a
240 * single scan for all boards here. Right now we use the passed in device
241 * structure and scan for only one board. This needs fixing for modules
242 * in particular.
245 struct net_device *__init mc32_probe(int unit)
247 struct net_device *dev = alloc_etherdev(sizeof(struct mc32_local));
248 static int current_mca_slot = -1;
249 int i;
250 int err;
252 if (!dev)
253 return ERR_PTR(-ENOMEM);
255 if (unit >= 0)
256 sprintf(dev->name, "eth%d", unit);
258 /* Do not check any supplied i/o locations.
259 POS registers usually don't fail :) */
261 /* MCA cards have POS registers.
262 Autodetecting MCA cards is extremely simple.
263 Just search for the card. */
265 for(i = 0; (mc32_adapters[i].name != NULL); i++) {
266 current_mca_slot =
267 mca_find_unused_adapter(mc32_adapters[i].id, 0);
269 if(current_mca_slot != MCA_NOTFOUND) {
270 if(!mc32_probe1(dev, current_mca_slot))
272 mca_set_adapter_name(current_mca_slot,
273 mc32_adapters[i].name);
274 mca_mark_as_used(current_mca_slot);
275 err = register_netdev(dev);
276 if (err) {
277 cleanup_card(dev);
278 free_netdev(dev);
279 dev = ERR_PTR(err);
281 return dev;
286 free_netdev(dev);
287 return ERR_PTR(-ENODEV);
290 static const struct net_device_ops netdev_ops = {
291 .ndo_open = mc32_open,
292 .ndo_stop = mc32_close,
293 .ndo_start_xmit = mc32_send_packet,
294 .ndo_get_stats = mc32_get_stats,
295 .ndo_set_multicast_list = mc32_set_multicast_list,
296 .ndo_tx_timeout = mc32_timeout,
297 .ndo_change_mtu = eth_change_mtu,
298 .ndo_set_mac_address = eth_mac_addr,
299 .ndo_validate_addr = eth_validate_addr,
303 * mc32_probe1 - Check a given slot for a board and test the card
304 * @dev: Device structure to fill in
305 * @slot: The MCA bus slot being used by this card
307 * Decode the slot data and configure the card structures. Having done this we
308 * can reset the card and configure it. The card does a full self test cycle
309 * in firmware so we have to wait for it to return and post us either a
310 * failure case or some addresses we use to find the board internals.
313 static int __init mc32_probe1(struct net_device *dev, int slot)
315 static unsigned version_printed;
316 int i, err;
317 u8 POS;
318 u32 base;
319 struct mc32_local *lp = netdev_priv(dev);
320 static const u16 mca_io_bases[] = {
321 0x7280,0x7290,
322 0x7680,0x7690,
323 0x7A80,0x7A90,
324 0x7E80,0x7E90
326 static const u32 mca_mem_bases[] = {
327 0x00C0000,
328 0x00C4000,
329 0x00C8000,
330 0x00CC000,
331 0x00D0000,
332 0x00D4000,
333 0x00D8000,
334 0x00DC000
336 static const char * const failures[] = {
337 "Processor instruction",
338 "Processor data bus",
339 "Processor data bus",
340 "Processor data bus",
341 "Adapter bus",
342 "ROM checksum",
343 "Base RAM",
344 "Extended RAM",
345 "82586 internal loopback",
346 "82586 initialisation failure",
347 "Adapter list configuration error"
350 /* Time to play MCA games */
352 if (mc32_debug && version_printed++ == 0)
353 pr_debug("%s", version);
355 pr_info("%s: %s found in slot %d: ", dev->name, cardname, slot);
357 POS = mca_read_stored_pos(slot, 2);
359 if(!(POS&1))
361 pr_cont("disabled.\n");
362 return -ENODEV;
365 /* Fill in the 'dev' fields. */
366 dev->base_addr = mca_io_bases[(POS>>1)&7];
367 dev->mem_start = mca_mem_bases[(POS>>4)&7];
369 POS = mca_read_stored_pos(slot, 4);
370 if(!(POS&1))
372 pr_cont("memory window disabled.\n");
373 return -ENODEV;
376 POS = mca_read_stored_pos(slot, 5);
378 i=(POS>>4)&3;
379 if(i==3)
381 pr_cont("invalid memory window.\n");
382 return -ENODEV;
385 i*=16384;
386 i+=16384;
388 dev->mem_end=dev->mem_start + i;
390 dev->irq = ((POS>>2)&3)+9;
392 if(!request_region(dev->base_addr, MC32_IO_EXTENT, cardname))
394 pr_cont("io 0x%3lX, which is busy.\n", dev->base_addr);
395 return -EBUSY;
398 pr_cont("io 0x%3lX irq %d mem 0x%lX (%dK)\n",
399 dev->base_addr, dev->irq, dev->mem_start, i/1024);
402 /* We ought to set the cache line size here.. */
406 * Go PROM browsing
409 /* Retrieve and print the ethernet address. */
410 for (i = 0; i < 6; i++)
412 mca_write_pos(slot, 6, i+12);
413 mca_write_pos(slot, 7, 0);
415 dev->dev_addr[i] = mca_read_pos(slot,3);
418 pr_info("%s: Address %pM ", dev->name, dev->dev_addr);
420 mca_write_pos(slot, 6, 0);
421 mca_write_pos(slot, 7, 0);
423 POS = mca_read_stored_pos(slot, 4);
425 if(POS&2)
426 pr_cont(": BNC port selected.\n");
427 else
428 pr_cont(": AUI port selected.\n");
430 POS=inb(dev->base_addr+HOST_CTRL);
431 POS|=HOST_CTRL_ATTN|HOST_CTRL_RESET;
432 POS&=~HOST_CTRL_INTE;
433 outb(POS, dev->base_addr+HOST_CTRL);
434 /* Reset adapter */
435 udelay(100);
436 /* Reset off */
437 POS&=~(HOST_CTRL_ATTN|HOST_CTRL_RESET);
438 outb(POS, dev->base_addr+HOST_CTRL);
440 udelay(300);
443 * Grab the IRQ
446 err = request_irq(dev->irq, mc32_interrupt, IRQF_SHARED, DRV_NAME, dev);
447 if (err) {
448 release_region(dev->base_addr, MC32_IO_EXTENT);
449 pr_err("%s: unable to get IRQ %d.\n", DRV_NAME, dev->irq);
450 goto err_exit_ports;
453 memset(lp, 0, sizeof(struct mc32_local));
454 lp->slot = slot;
456 i=0;
458 base = inb(dev->base_addr);
460 while(base == 0xFF)
462 i++;
463 if(i == 1000)
465 pr_err("%s: failed to boot adapter.\n", dev->name);
466 err = -ENODEV;
467 goto err_exit_irq;
469 udelay(1000);
470 if(inb(dev->base_addr+2)&(1<<5))
471 base = inb(dev->base_addr);
474 if(base>0)
476 if(base < 0x0C)
477 pr_err("%s: %s%s.\n", dev->name, failures[base-1],
478 base<0x0A?" test failure":"");
479 else
480 pr_err("%s: unknown failure %d.\n", dev->name, base);
481 err = -ENODEV;
482 goto err_exit_irq;
485 base=0;
486 for(i=0;i<4;i++)
488 int n=0;
490 while(!(inb(dev->base_addr+2)&(1<<5)))
492 n++;
493 udelay(50);
494 if(n>100)
496 pr_err("%s: mailbox read fail (%d).\n", dev->name, i);
497 err = -ENODEV;
498 goto err_exit_irq;
502 base|=(inb(dev->base_addr)<<(8*i));
505 lp->exec_box=isa_bus_to_virt(dev->mem_start+base);
507 base=lp->exec_box->data[1]<<16|lp->exec_box->data[0];
509 lp->base = dev->mem_start+base;
511 lp->rx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[2]);
512 lp->tx_box=isa_bus_to_virt(lp->base + lp->exec_box->data[3]);
514 lp->stats = isa_bus_to_virt(lp->base + lp->exec_box->data[5]);
517 * Descriptor chains (card relative)
520 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
521 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
522 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
523 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
525 sema_init(&lp->cmd_mutex, 0);
526 init_completion(&lp->execution_cmd);
527 init_completion(&lp->xceiver_cmd);
529 pr_info("%s: Firmware Rev %d. %d RX buffers, %d TX buffers. Base of 0x%08X.\n",
530 dev->name, lp->exec_box->data[12], lp->rx_len, lp->tx_len, lp->base);
532 dev->netdev_ops = &netdev_ops;
533 dev->watchdog_timeo = HZ*5; /* Board does all the work */
534 dev->ethtool_ops = &netdev_ethtool_ops;
536 return 0;
538 err_exit_irq:
539 free_irq(dev->irq, dev);
540 err_exit_ports:
541 release_region(dev->base_addr, MC32_IO_EXTENT);
542 return err;
547 * mc32_ready_poll - wait until we can feed it a command
548 * @dev: The device to wait for
550 * Wait until the card becomes ready to accept a command via the
551 * command register. This tells us nothing about the completion
552 * status of any pending commands and takes very little time at all.
555 static inline void mc32_ready_poll(struct net_device *dev)
557 int ioaddr = dev->base_addr;
558 while(!(inb(ioaddr+HOST_STATUS)&HOST_STATUS_CRR));
563 * mc32_command_nowait - send a command non blocking
564 * @dev: The 3c527 to issue the command to
565 * @cmd: The command word to write to the mailbox
566 * @data: A data block if the command expects one
567 * @len: Length of the data block
569 * Send a command from interrupt state. If there is a command
570 * currently being executed then we return an error of -1. It
571 * simply isn't viable to wait around as commands may be
572 * slow. This can theoretically be starved on SMP, but it's hard
573 * to see a realistic situation. We do not wait for the command
574 * to complete --- we rely on the interrupt handler to tidy up
575 * after us.
578 static int mc32_command_nowait(struct net_device *dev, u16 cmd, void *data, int len)
580 struct mc32_local *lp = netdev_priv(dev);
581 int ioaddr = dev->base_addr;
582 int ret = -1;
584 if (down_trylock(&lp->cmd_mutex) == 0)
586 lp->cmd_nonblocking=1;
587 lp->exec_box->mbox=0;
588 lp->exec_box->mbox=cmd;
589 memcpy((void *)lp->exec_box->data, data, len);
590 barrier(); /* the memcpy forgot the volatile so be sure */
592 /* Send the command */
593 mc32_ready_poll(dev);
594 outb(1<<6, ioaddr+HOST_CMD);
596 ret = 0;
598 /* Interrupt handler will signal mutex on completion */
601 return ret;
606 * mc32_command - send a command and sleep until completion
607 * @dev: The 3c527 card to issue the command to
608 * @cmd: The command word to write to the mailbox
609 * @data: A data block if the command expects one
610 * @len: Length of the data block
612 * Sends exec commands in a user context. This permits us to wait around
613 * for the replies and also to wait for the command buffer to complete
614 * from a previous command before we execute our command. After our
615 * command completes we will attempt any pending multicast reload
616 * we blocked off by hogging the exec buffer.
618 * You feed the card a command, you wait, it interrupts you get a
619 * reply. All well and good. The complication arises because you use
620 * commands for filter list changes which come in at bh level from things
621 * like IPV6 group stuff.
624 static int mc32_command(struct net_device *dev, u16 cmd, void *data, int len)
626 struct mc32_local *lp = netdev_priv(dev);
627 int ioaddr = dev->base_addr;
628 int ret = 0;
630 down(&lp->cmd_mutex);
633 * My Turn
636 lp->cmd_nonblocking=0;
637 lp->exec_box->mbox=0;
638 lp->exec_box->mbox=cmd;
639 memcpy((void *)lp->exec_box->data, data, len);
640 barrier(); /* the memcpy forgot the volatile so be sure */
642 mc32_ready_poll(dev);
643 outb(1<<6, ioaddr+HOST_CMD);
645 wait_for_completion(&lp->execution_cmd);
647 if(lp->exec_box->mbox&(1<<13))
648 ret = -1;
650 up(&lp->cmd_mutex);
653 * A multicast set got blocked - try it now
656 if(lp->mc_reload_wait)
658 mc32_reset_multicast_list(dev);
661 return ret;
666 * mc32_start_transceiver - tell board to restart tx/rx
667 * @dev: The 3c527 card to issue the command to
669 * This may be called from the interrupt state, where it is used
670 * to restart the rx ring if the card runs out of rx buffers.
672 * We must first check if it's ok to (re)start the transceiver. See
673 * mc32_close for details.
676 static void mc32_start_transceiver(struct net_device *dev) {
678 struct mc32_local *lp = netdev_priv(dev);
679 int ioaddr = dev->base_addr;
681 /* Ignore RX overflow on device closure */
682 if (lp->xceiver_desired_state==HALTED)
683 return;
685 /* Give the card the offset to the post-EOL-bit RX descriptor */
686 mc32_ready_poll(dev);
687 lp->rx_box->mbox=0;
688 lp->rx_box->data[0]=lp->rx_ring[prev_rx(lp->rx_ring_tail)].p->next;
689 outb(HOST_CMD_START_RX, ioaddr+HOST_CMD);
691 mc32_ready_poll(dev);
692 lp->tx_box->mbox=0;
693 outb(HOST_CMD_RESTRT_TX, ioaddr+HOST_CMD); /* card ignores this on RX restart */
695 /* We are not interrupted on start completion */
700 * mc32_halt_transceiver - tell board to stop tx/rx
701 * @dev: The 3c527 card to issue the command to
703 * We issue the commands to halt the card's transceiver. In fact,
704 * after some experimenting we now simply tell the card to
705 * suspend. When issuing aborts occasionally odd things happened.
707 * We then sleep until the card has notified us that both rx and
708 * tx have been suspended.
711 static void mc32_halt_transceiver(struct net_device *dev)
713 struct mc32_local *lp = netdev_priv(dev);
714 int ioaddr = dev->base_addr;
716 mc32_ready_poll(dev);
717 lp->rx_box->mbox=0;
718 outb(HOST_CMD_SUSPND_RX, ioaddr+HOST_CMD);
719 wait_for_completion(&lp->xceiver_cmd);
721 mc32_ready_poll(dev);
722 lp->tx_box->mbox=0;
723 outb(HOST_CMD_SUSPND_TX, ioaddr+HOST_CMD);
724 wait_for_completion(&lp->xceiver_cmd);
729 * mc32_load_rx_ring - load the ring of receive buffers
730 * @dev: 3c527 to build the ring for
732 * This initialises the on-card and driver datastructures to
733 * the point where mc32_start_transceiver() can be called.
735 * The card sets up the receive ring for us. We are required to use the
736 * ring it provides, although the size of the ring is configurable.
738 * We allocate an sk_buff for each ring entry in turn and
739 * initialise its house-keeping info. At the same time, we read
740 * each 'next' pointer in our rx_ring array. This reduces slow
741 * shared-memory reads and makes it easy to access predecessor
742 * descriptors.
744 * We then set the end-of-list bit for the last entry so that the
745 * card will know when it has run out of buffers.
748 static int mc32_load_rx_ring(struct net_device *dev)
750 struct mc32_local *lp = netdev_priv(dev);
751 int i;
752 u16 rx_base;
753 volatile struct skb_header *p;
755 rx_base=lp->rx_chain;
757 for(i=0; i<RX_RING_LEN; i++) {
758 lp->rx_ring[i].skb=alloc_skb(1532, GFP_KERNEL);
759 if (lp->rx_ring[i].skb==NULL) {
760 for (;i>=0;i--)
761 kfree_skb(lp->rx_ring[i].skb);
762 return -ENOBUFS;
764 skb_reserve(lp->rx_ring[i].skb, 18);
766 p=isa_bus_to_virt(lp->base+rx_base);
768 p->control=0;
769 p->data=isa_virt_to_bus(lp->rx_ring[i].skb->data);
770 p->status=0;
771 p->length=1532;
773 lp->rx_ring[i].p=p;
774 rx_base=p->next;
777 lp->rx_ring[i-1].p->control |= CONTROL_EOL;
779 lp->rx_ring_tail=0;
781 return 0;
786 * mc32_flush_rx_ring - free the ring of receive buffers
787 * @lp: Local data of 3c527 to flush the rx ring of
789 * Free the buffer for each ring slot. This may be called
790 * before mc32_load_rx_ring(), eg. on error in mc32_open().
791 * Requires rx skb pointers to point to a valid skb, or NULL.
794 static void mc32_flush_rx_ring(struct net_device *dev)
796 struct mc32_local *lp = netdev_priv(dev);
797 int i;
799 for(i=0; i < RX_RING_LEN; i++)
801 if (lp->rx_ring[i].skb) {
802 dev_kfree_skb(lp->rx_ring[i].skb);
803 lp->rx_ring[i].skb = NULL;
805 lp->rx_ring[i].p=NULL;
811 * mc32_load_tx_ring - load transmit ring
812 * @dev: The 3c527 card to issue the command to
814 * This sets up the host transmit data-structures.
816 * First, we obtain from the card it's current position in the tx
817 * ring, so that we will know where to begin transmitting
818 * packets.
820 * Then, we read the 'next' pointers from the on-card tx ring into
821 * our tx_ring array to reduce slow shared-mem reads. Finally, we
822 * intitalise the tx house keeping variables.
826 static void mc32_load_tx_ring(struct net_device *dev)
828 struct mc32_local *lp = netdev_priv(dev);
829 volatile struct skb_header *p;
830 int i;
831 u16 tx_base;
833 tx_base=lp->tx_box->data[0];
835 for(i=0 ; i<TX_RING_LEN ; i++)
837 p=isa_bus_to_virt(lp->base+tx_base);
838 lp->tx_ring[i].p=p;
839 lp->tx_ring[i].skb=NULL;
841 tx_base=p->next;
844 /* -1 so that tx_ring_head cannot "lap" tx_ring_tail */
845 /* see mc32_tx_ring */
847 atomic_set(&lp->tx_count, TX_RING_LEN-1);
848 atomic_set(&lp->tx_ring_head, 0);
849 lp->tx_ring_tail=0;
854 * mc32_flush_tx_ring - free transmit ring
855 * @lp: Local data of 3c527 to flush the tx ring of
857 * If the ring is non-empty, zip over the it, freeing any
858 * allocated skb_buffs. The tx ring house-keeping variables are
859 * then reset. Requires rx skb pointers to point to a valid skb,
860 * or NULL.
863 static void mc32_flush_tx_ring(struct net_device *dev)
865 struct mc32_local *lp = netdev_priv(dev);
866 int i;
868 for (i=0; i < TX_RING_LEN; i++)
870 if (lp->tx_ring[i].skb)
872 dev_kfree_skb(lp->tx_ring[i].skb);
873 lp->tx_ring[i].skb = NULL;
877 atomic_set(&lp->tx_count, 0);
878 atomic_set(&lp->tx_ring_head, 0);
879 lp->tx_ring_tail=0;
884 * mc32_open - handle 'up' of card
885 * @dev: device to open
887 * The user is trying to bring the card into ready state. This requires
888 * a brief dialogue with the card. Firstly we enable interrupts and then
889 * 'indications'. Without these enabled the card doesn't bother telling
890 * us what it has done. This had me puzzled for a week.
892 * We configure the number of card descriptors, then load the network
893 * address and multicast filters. Turn on the workaround mode. This
894 * works around a bug in the 82586 - it asks the firmware to do
895 * so. It has a performance (latency) hit but is needed on busy
896 * [read most] lans. We load the ring with buffers then we kick it
897 * all off.
900 static int mc32_open(struct net_device *dev)
902 int ioaddr = dev->base_addr;
903 struct mc32_local *lp = netdev_priv(dev);
904 u8 one=1;
905 u8 regs;
906 u16 descnumbuffs[2] = {TX_RING_LEN, RX_RING_LEN};
909 * Interrupts enabled
912 regs=inb(ioaddr+HOST_CTRL);
913 regs|=HOST_CTRL_INTE;
914 outb(regs, ioaddr+HOST_CTRL);
917 * Allow ourselves to issue commands
920 up(&lp->cmd_mutex);
924 * Send the indications on command
927 mc32_command(dev, 4, &one, 2);
930 * Poke it to make sure it's really dead.
933 mc32_halt_transceiver(dev);
934 mc32_flush_tx_ring(dev);
937 * Ask card to set up on-card descriptors to our spec
940 if(mc32_command(dev, 8, descnumbuffs, 4)) {
941 pr_info("%s: %s rejected our buffer configuration!\n",
942 dev->name, cardname);
943 mc32_close(dev);
944 return -ENOBUFS;
947 /* Report new configuration */
948 mc32_command(dev, 6, NULL, 0);
950 lp->tx_chain = lp->exec_box->data[8]; /* Transmit list start offset */
951 lp->rx_chain = lp->exec_box->data[10]; /* Receive list start offset */
952 lp->tx_len = lp->exec_box->data[9]; /* Transmit list count */
953 lp->rx_len = lp->exec_box->data[11]; /* Receive list count */
955 /* Set Network Address */
956 mc32_command(dev, 1, dev->dev_addr, 6);
958 /* Set the filters */
959 mc32_set_multicast_list(dev);
961 if (WORKAROUND_82586) {
962 u16 zero_word=0;
963 mc32_command(dev, 0x0D, &zero_word, 2); /* 82586 bug workaround on */
966 mc32_load_tx_ring(dev);
968 if(mc32_load_rx_ring(dev))
970 mc32_close(dev);
971 return -ENOBUFS;
974 lp->xceiver_desired_state = RUNNING;
976 /* And finally, set the ball rolling... */
977 mc32_start_transceiver(dev);
979 netif_start_queue(dev);
981 return 0;
986 * mc32_timeout - handle a timeout from the network layer
987 * @dev: 3c527 that timed out
989 * Handle a timeout on transmit from the 3c527. This normally means
990 * bad things as the hardware handles cable timeouts and mess for
991 * us.
995 static void mc32_timeout(struct net_device *dev)
997 pr_warning("%s: transmit timed out?\n", dev->name);
998 /* Try to restart the adaptor. */
999 netif_wake_queue(dev);
1004 * mc32_send_packet - queue a frame for transmit
1005 * @skb: buffer to transmit
1006 * @dev: 3c527 to send it out of
1008 * Transmit a buffer. This normally means throwing the buffer onto
1009 * the transmit queue as the queue is quite large. If the queue is
1010 * full then we set tx_busy and return. Once the interrupt handler
1011 * gets messages telling it to reclaim transmit queue entries, we will
1012 * clear tx_busy and the kernel will start calling this again.
1014 * We do not disable interrupts or acquire any locks; this can
1015 * run concurrently with mc32_tx_ring(), and the function itself
1016 * is serialised at a higher layer. However, similarly for the
1017 * card itself, we must ensure that we update tx_ring_head only
1018 * after we've established a valid packet on the tx ring (and
1019 * before we let the card "see" it, to prevent it racing with the
1020 * irq handler).
1024 static netdev_tx_t mc32_send_packet(struct sk_buff *skb,
1025 struct net_device *dev)
1027 struct mc32_local *lp = netdev_priv(dev);
1028 u32 head = atomic_read(&lp->tx_ring_head);
1030 volatile struct skb_header *p, *np;
1032 netif_stop_queue(dev);
1034 if(atomic_read(&lp->tx_count)==0) {
1035 return NETDEV_TX_BUSY;
1038 if (skb_padto(skb, ETH_ZLEN)) {
1039 netif_wake_queue(dev);
1040 return NETDEV_TX_OK;
1043 atomic_dec(&lp->tx_count);
1045 /* P is the last sending/sent buffer as a pointer */
1046 p=lp->tx_ring[head].p;
1048 head = next_tx(head);
1050 /* NP is the buffer we will be loading */
1051 np=lp->tx_ring[head].p;
1053 /* We will need this to flush the buffer out */
1054 lp->tx_ring[head].skb=skb;
1056 np->length = unlikely(skb->len < ETH_ZLEN) ? ETH_ZLEN : skb->len;
1057 np->data = isa_virt_to_bus(skb->data);
1058 np->status = 0;
1059 np->control = CONTROL_EOP | CONTROL_EOL;
1060 wmb();
1063 * The new frame has been setup; we can now
1064 * let the interrupt handler and card "see" it
1067 atomic_set(&lp->tx_ring_head, head);
1068 p->control &= ~CONTROL_EOL;
1070 netif_wake_queue(dev);
1071 return NETDEV_TX_OK;
1076 * mc32_update_stats - pull off the on board statistics
1077 * @dev: 3c527 to service
1080 * Query and reset the on-card stats. There's the small possibility
1081 * of a race here, which would result in an underestimation of
1082 * actual errors. As such, we'd prefer to keep all our stats
1083 * collection in software. As a rule, we do. However it can't be
1084 * used for rx errors and collisions as, by default, the card discards
1085 * bad rx packets.
1087 * Setting the SAV BP in the rx filter command supposedly
1088 * stops this behaviour. However, testing shows that it only seems to
1089 * enable the collation of on-card rx statistics --- the driver
1090 * never sees an RX descriptor with an error status set.
1094 static void mc32_update_stats(struct net_device *dev)
1096 struct mc32_local *lp = netdev_priv(dev);
1097 volatile struct mc32_stats *st = lp->stats;
1099 u32 rx_errors=0;
1101 rx_errors+=dev->stats.rx_crc_errors +=st->rx_crc_errors;
1102 st->rx_crc_errors=0;
1103 rx_errors+=dev->stats.rx_fifo_errors +=st->rx_overrun_errors;
1104 st->rx_overrun_errors=0;
1105 rx_errors+=dev->stats.rx_frame_errors +=st->rx_alignment_errors;
1106 st->rx_alignment_errors=0;
1107 rx_errors+=dev->stats.rx_length_errors+=st->rx_tooshort_errors;
1108 st->rx_tooshort_errors=0;
1109 rx_errors+=dev->stats.rx_missed_errors+=st->rx_outofresource_errors;
1110 st->rx_outofresource_errors=0;
1111 dev->stats.rx_errors=rx_errors;
1113 /* Number of packets which saw one collision */
1114 dev->stats.collisions+=st->dataC[10];
1115 st->dataC[10]=0;
1117 /* Number of packets which saw 2--15 collisions */
1118 dev->stats.collisions+=st->dataC[11];
1119 st->dataC[11]=0;
1124 * mc32_rx_ring - process the receive ring
1125 * @dev: 3c527 that needs its receive ring processing
1128 * We have received one or more indications from the card that a
1129 * receive has completed. The buffer ring thus contains dirty
1130 * entries. We walk the ring by iterating over the circular rx_ring
1131 * array, starting at the next dirty buffer (which happens to be the
1132 * one we finished up at last time around).
1134 * For each completed packet, we will either copy it and pass it up
1135 * the stack or, if the packet is near MTU sized, we allocate
1136 * another buffer and flip the old one up the stack.
1138 * We must succeed in keeping a buffer on the ring. If necessary we
1139 * will toss a received packet rather than lose a ring entry. Once
1140 * the first uncompleted descriptor is found, we move the
1141 * End-Of-List bit to include the buffers just processed.
1145 static void mc32_rx_ring(struct net_device *dev)
1147 struct mc32_local *lp = netdev_priv(dev);
1148 volatile struct skb_header *p;
1149 u16 rx_ring_tail;
1150 u16 rx_old_tail;
1151 int x=0;
1153 rx_old_tail = rx_ring_tail = lp->rx_ring_tail;
1157 p=lp->rx_ring[rx_ring_tail].p;
1159 if(!(p->status & (1<<7))) { /* Not COMPLETED */
1160 break;
1162 if(p->status & (1<<6)) /* COMPLETED_OK */
1165 u16 length=p->length;
1166 struct sk_buff *skb;
1167 struct sk_buff *newskb;
1169 /* Try to save time by avoiding a copy on big frames */
1171 if ((length > RX_COPYBREAK) &&
1172 ((newskb=dev_alloc_skb(1532)) != NULL))
1174 skb=lp->rx_ring[rx_ring_tail].skb;
1175 skb_put(skb, length);
1177 skb_reserve(newskb,18);
1178 lp->rx_ring[rx_ring_tail].skb=newskb;
1179 p->data=isa_virt_to_bus(newskb->data);
1181 else
1183 skb=dev_alloc_skb(length+2);
1185 if(skb==NULL) {
1186 dev->stats.rx_dropped++;
1187 goto dropped;
1190 skb_reserve(skb,2);
1191 memcpy(skb_put(skb, length),
1192 lp->rx_ring[rx_ring_tail].skb->data, length);
1195 skb->protocol=eth_type_trans(skb,dev);
1196 dev->stats.rx_packets++;
1197 dev->stats.rx_bytes += length;
1198 netif_rx(skb);
1201 dropped:
1202 p->length = 1532;
1203 p->status = 0;
1205 rx_ring_tail=next_rx(rx_ring_tail);
1207 while(x++<48);
1209 /* If there was actually a frame to be processed, place the EOL bit */
1210 /* at the descriptor prior to the one to be filled next */
1212 if (rx_ring_tail != rx_old_tail)
1214 lp->rx_ring[prev_rx(rx_ring_tail)].p->control |= CONTROL_EOL;
1215 lp->rx_ring[prev_rx(rx_old_tail)].p->control &= ~CONTROL_EOL;
1217 lp->rx_ring_tail=rx_ring_tail;
1223 * mc32_tx_ring - process completed transmits
1224 * @dev: 3c527 that needs its transmit ring processing
1227 * This operates in a similar fashion to mc32_rx_ring. We iterate
1228 * over the transmit ring. For each descriptor which has been
1229 * processed by the card, we free its associated buffer and note
1230 * any errors. This continues until the transmit ring is emptied
1231 * or we reach a descriptor that hasn't yet been processed by the
1232 * card.
1236 static void mc32_tx_ring(struct net_device *dev)
1238 struct mc32_local *lp = netdev_priv(dev);
1239 volatile struct skb_header *np;
1242 * We rely on head==tail to mean 'queue empty'.
1243 * This is why lp->tx_count=TX_RING_LEN-1: in order to prevent
1244 * tx_ring_head wrapping to tail and confusing a 'queue empty'
1245 * condition with 'queue full'
1248 while (lp->tx_ring_tail != atomic_read(&lp->tx_ring_head))
1250 u16 t;
1252 t=next_tx(lp->tx_ring_tail);
1253 np=lp->tx_ring[t].p;
1255 if(!(np->status & (1<<7)))
1257 /* Not COMPLETED */
1258 break;
1260 dev->stats.tx_packets++;
1261 if(!(np->status & (1<<6))) /* Not COMPLETED_OK */
1263 dev->stats.tx_errors++;
1265 switch(np->status&0x0F)
1267 case 1:
1268 dev->stats.tx_aborted_errors++;
1269 break; /* Max collisions */
1270 case 2:
1271 dev->stats.tx_fifo_errors++;
1272 break;
1273 case 3:
1274 dev->stats.tx_carrier_errors++;
1275 break;
1276 case 4:
1277 dev->stats.tx_window_errors++;
1278 break; /* CTS Lost */
1279 case 5:
1280 dev->stats.tx_aborted_errors++;
1281 break; /* Transmit timeout */
1284 /* Packets are sent in order - this is
1285 basically a FIFO queue of buffers matching
1286 the card ring */
1287 dev->stats.tx_bytes+=lp->tx_ring[t].skb->len;
1288 dev_kfree_skb_irq(lp->tx_ring[t].skb);
1289 lp->tx_ring[t].skb=NULL;
1290 atomic_inc(&lp->tx_count);
1291 netif_wake_queue(dev);
1293 lp->tx_ring_tail=t;
1300 * mc32_interrupt - handle an interrupt from a 3c527
1301 * @irq: Interrupt number
1302 * @dev_id: 3c527 that requires servicing
1303 * @regs: Registers (unused)
1306 * An interrupt is raised whenever the 3c527 writes to the command
1307 * register. This register contains the message it wishes to send us
1308 * packed into a single byte field. We keep reading status entries
1309 * until we have processed all the control items, but simply count
1310 * transmit and receive reports. When all reports are in we empty the
1311 * transceiver rings as appropriate. This saves the overhead of
1312 * multiple command requests.
1314 * Because MCA is level-triggered, we shouldn't miss indications.
1315 * Therefore, we needn't ask the card to suspend interrupts within
1316 * this handler. The card receives an implicit acknowledgment of the
1317 * current interrupt when we read the command register.
1321 static irqreturn_t mc32_interrupt(int irq, void *dev_id)
1323 struct net_device *dev = dev_id;
1324 struct mc32_local *lp;
1325 int ioaddr, status, boguscount = 0;
1326 int rx_event = 0;
1327 int tx_event = 0;
1329 ioaddr = dev->base_addr;
1330 lp = netdev_priv(dev);
1332 /* See whats cooking */
1334 while((inb(ioaddr+HOST_STATUS)&HOST_STATUS_CWR) && boguscount++<2000)
1336 status=inb(ioaddr+HOST_CMD);
1338 pr_debug("Status TX%d RX%d EX%d OV%d BC%d\n",
1339 (status&7), (status>>3)&7, (status>>6)&1,
1340 (status>>7)&1, boguscount);
1342 switch(status&7)
1344 case 0:
1345 break;
1346 case 6: /* TX fail */
1347 case 2: /* TX ok */
1348 tx_event = 1;
1349 break;
1350 case 3: /* Halt */
1351 case 4: /* Abort */
1352 complete(&lp->xceiver_cmd);
1353 break;
1354 default:
1355 pr_notice("%s: strange tx ack %d\n", dev->name, status&7);
1357 status>>=3;
1358 switch(status&7)
1360 case 0:
1361 break;
1362 case 2: /* RX */
1363 rx_event=1;
1364 break;
1365 case 3: /* Halt */
1366 case 4: /* Abort */
1367 complete(&lp->xceiver_cmd);
1368 break;
1369 case 6:
1370 /* Out of RX buffers stat */
1371 /* Must restart rx */
1372 dev->stats.rx_dropped++;
1373 mc32_rx_ring(dev);
1374 mc32_start_transceiver(dev);
1375 break;
1376 default:
1377 pr_notice("%s: strange rx ack %d\n",
1378 dev->name, status&7);
1380 status>>=3;
1381 if(status&1)
1384 * No thread is waiting: we need to tidy
1385 * up ourself.
1388 if (lp->cmd_nonblocking) {
1389 up(&lp->cmd_mutex);
1390 if (lp->mc_reload_wait)
1391 mc32_reset_multicast_list(dev);
1393 else complete(&lp->execution_cmd);
1395 if(status&2)
1398 * We get interrupted once per
1399 * counter that is about to overflow.
1402 mc32_update_stats(dev);
1408 * Process the transmit and receive rings
1411 if(tx_event)
1412 mc32_tx_ring(dev);
1414 if(rx_event)
1415 mc32_rx_ring(dev);
1417 return IRQ_HANDLED;
1422 * mc32_close - user configuring the 3c527 down
1423 * @dev: 3c527 card to shut down
1425 * The 3c527 is a bus mastering device. We must be careful how we
1426 * shut it down. It may also be running shared interrupt so we have
1427 * to be sure to silence it properly
1429 * We indicate that the card is closing to the rest of the
1430 * driver. Otherwise, it is possible that the card may run out
1431 * of receive buffers and restart the transceiver while we're
1432 * trying to close it.
1434 * We abort any receive and transmits going on and then wait until
1435 * any pending exec commands have completed in other code threads.
1436 * In theory we can't get here while that is true, in practice I am
1437 * paranoid
1439 * We turn off the interrupt enable for the board to be sure it can't
1440 * intefere with other devices.
1443 static int mc32_close(struct net_device *dev)
1445 struct mc32_local *lp = netdev_priv(dev);
1446 int ioaddr = dev->base_addr;
1448 u8 regs;
1449 u16 one=1;
1451 lp->xceiver_desired_state = HALTED;
1452 netif_stop_queue(dev);
1455 * Send the indications on command (handy debug check)
1458 mc32_command(dev, 4, &one, 2);
1460 /* Shut down the transceiver */
1462 mc32_halt_transceiver(dev);
1464 /* Ensure we issue no more commands beyond this point */
1466 down(&lp->cmd_mutex);
1468 /* Ok the card is now stopping */
1470 regs=inb(ioaddr+HOST_CTRL);
1471 regs&=~HOST_CTRL_INTE;
1472 outb(regs, ioaddr+HOST_CTRL);
1474 mc32_flush_rx_ring(dev);
1475 mc32_flush_tx_ring(dev);
1477 mc32_update_stats(dev);
1479 return 0;
1484 * mc32_get_stats - hand back stats to network layer
1485 * @dev: The 3c527 card to handle
1487 * We've collected all the stats we can in software already. Now
1488 * it's time to update those kept on-card and return the lot.
1492 static struct net_device_stats *mc32_get_stats(struct net_device *dev)
1494 mc32_update_stats(dev);
1495 return &dev->stats;
1500 * do_mc32_set_multicast_list - attempt to update multicasts
1501 * @dev: 3c527 device to load the list on
1502 * @retry: indicates this is not the first call.
1505 * Actually set or clear the multicast filter for this adaptor. The
1506 * locking issues are handled by this routine. We have to track
1507 * state as it may take multiple calls to get the command sequence
1508 * completed. We just keep trying to schedule the loads until we
1509 * manage to process them all.
1511 * num_addrs == -1 Promiscuous mode, receive all packets
1513 * num_addrs == 0 Normal mode, clear multicast list
1515 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1516 * and do best-effort filtering.
1518 * See mc32_update_stats() regards setting the SAV BP bit.
1522 static void do_mc32_set_multicast_list(struct net_device *dev, int retry)
1524 struct mc32_local *lp = netdev_priv(dev);
1525 u16 filt = (1<<2); /* Save Bad Packets, for stats purposes */
1527 if ((dev->flags&IFF_PROMISC) ||
1528 (dev->flags&IFF_ALLMULTI) ||
1529 netdev_mc_count(dev) > 10)
1530 /* Enable promiscuous mode */
1531 filt |= 1;
1532 else if (!netdev_mc_empty(dev))
1534 unsigned char block[62];
1535 unsigned char *bp;
1536 struct netdev_hw_addr *ha;
1538 if(retry==0)
1539 lp->mc_list_valid = 0;
1540 if(!lp->mc_list_valid)
1542 block[1]=0;
1543 block[0]=netdev_mc_count(dev);
1544 bp=block+2;
1546 netdev_for_each_mc_addr(ha, dev) {
1547 memcpy(bp, ha->addr, 6);
1548 bp+=6;
1550 if(mc32_command_nowait(dev, 2, block,
1551 2+6*netdev_mc_count(dev))==-1)
1553 lp->mc_reload_wait = 1;
1554 return;
1556 lp->mc_list_valid=1;
1560 if(mc32_command_nowait(dev, 0, &filt, 2)==-1)
1562 lp->mc_reload_wait = 1;
1564 else {
1565 lp->mc_reload_wait = 0;
1571 * mc32_set_multicast_list - queue multicast list update
1572 * @dev: The 3c527 to use
1574 * Commence loading the multicast list. This is called when the kernel
1575 * changes the lists. It will override any pending list we are trying to
1576 * load.
1579 static void mc32_set_multicast_list(struct net_device *dev)
1581 do_mc32_set_multicast_list(dev,0);
1586 * mc32_reset_multicast_list - reset multicast list
1587 * @dev: The 3c527 to use
1589 * Attempt the next step in loading the multicast lists. If this attempt
1590 * fails to complete then it will be scheduled and this function called
1591 * again later from elsewhere.
1594 static void mc32_reset_multicast_list(struct net_device *dev)
1596 do_mc32_set_multicast_list(dev,1);
1599 static void netdev_get_drvinfo(struct net_device *dev,
1600 struct ethtool_drvinfo *info)
1602 strcpy(info->driver, DRV_NAME);
1603 strcpy(info->version, DRV_VERSION);
1604 sprintf(info->bus_info, "MCA 0x%lx", dev->base_addr);
1607 static u32 netdev_get_msglevel(struct net_device *dev)
1609 return mc32_debug;
1612 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1614 mc32_debug = level;
1617 static const struct ethtool_ops netdev_ethtool_ops = {
1618 .get_drvinfo = netdev_get_drvinfo,
1619 .get_msglevel = netdev_get_msglevel,
1620 .set_msglevel = netdev_set_msglevel,
1623 #ifdef MODULE
1625 static struct net_device *this_device;
1628 * init_module - entry point
1630 * Probe and locate a 3c527 card. This really should probe and locate
1631 * all the 3c527 cards in the machine not just one of them. Yes you can
1632 * insmod multiple modules for now but it's a hack.
1635 int __init init_module(void)
1637 this_device = mc32_probe(-1);
1638 if (IS_ERR(this_device))
1639 return PTR_ERR(this_device);
1640 return 0;
1644 * cleanup_module - free resources for an unload
1646 * Unloading time. We release the MCA bus resources and the interrupt
1647 * at which point everything is ready to unload. The card must be stopped
1648 * at this point or we would not have been called. When we unload we
1649 * leave the card stopped but not totally shut down. When the card is
1650 * initialized it must be rebooted or the rings reloaded before any
1651 * transmit operations are allowed to start scribbling into memory.
1654 void __exit cleanup_module(void)
1656 unregister_netdev(this_device);
1657 cleanup_card(this_device);
1658 free_netdev(this_device);
1661 #endif /* MODULE */