hpet: unmap unused I/O space
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / char / hpet.c
blobf8e7d89ceb2c35b081509651b5796920114e9165
1 /*
2 * Intel & MS High Precision Event Timer Implementation.
4 * Copyright (C) 2003 Intel Corporation
5 * Venki Pallipadi
6 * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
7 * Bob Picco <robert.picco@hp.com>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
14 #include <linux/interrupt.h>
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/smp_lock.h>
18 #include <linux/types.h>
19 #include <linux/miscdevice.h>
20 #include <linux/major.h>
21 #include <linux/ioport.h>
22 #include <linux/fcntl.h>
23 #include <linux/init.h>
24 #include <linux/poll.h>
25 #include <linux/mm.h>
26 #include <linux/proc_fs.h>
27 #include <linux/spinlock.h>
28 #include <linux/sysctl.h>
29 #include <linux/wait.h>
30 #include <linux/bcd.h>
31 #include <linux/seq_file.h>
32 #include <linux/bitops.h>
33 #include <linux/clocksource.h>
34 #include <linux/slab.h>
36 #include <asm/current.h>
37 #include <asm/uaccess.h>
38 #include <asm/system.h>
39 #include <asm/io.h>
40 #include <asm/irq.h>
41 #include <asm/div64.h>
43 #include <linux/acpi.h>
44 #include <acpi/acpi_bus.h>
45 #include <linux/hpet.h>
48 * The High Precision Event Timer driver.
49 * This driver is closely modelled after the rtc.c driver.
50 * http://www.intel.com/hardwaredesign/hpetspec_1.pdf
52 #define HPET_USER_FREQ (64)
53 #define HPET_DRIFT (500)
55 #define HPET_RANGE_SIZE 1024 /* from HPET spec */
58 /* WARNING -- don't get confused. These macros are never used
59 * to write the (single) counter, and rarely to read it.
60 * They're badly named; to fix, someday.
62 #if BITS_PER_LONG == 64
63 #define write_counter(V, MC) writeq(V, MC)
64 #define read_counter(MC) readq(MC)
65 #else
66 #define write_counter(V, MC) writel(V, MC)
67 #define read_counter(MC) readl(MC)
68 #endif
70 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
72 /* This clocksource driver currently only works on ia64 */
73 #ifdef CONFIG_IA64
74 static void __iomem *hpet_mctr;
76 static cycle_t read_hpet(struct clocksource *cs)
78 return (cycle_t)read_counter((void __iomem *)hpet_mctr);
81 static struct clocksource clocksource_hpet = {
82 .name = "hpet",
83 .rating = 250,
84 .read = read_hpet,
85 .mask = CLOCKSOURCE_MASK(64),
86 .mult = 0, /* to be calculated */
87 .shift = 10,
88 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
90 static struct clocksource *hpet_clocksource;
91 #endif
93 /* A lock for concurrent access by app and isr hpet activity. */
94 static DEFINE_SPINLOCK(hpet_lock);
96 #define HPET_DEV_NAME (7)
98 struct hpet_dev {
99 struct hpets *hd_hpets;
100 struct hpet __iomem *hd_hpet;
101 struct hpet_timer __iomem *hd_timer;
102 unsigned long hd_ireqfreq;
103 unsigned long hd_irqdata;
104 wait_queue_head_t hd_waitqueue;
105 struct fasync_struct *hd_async_queue;
106 unsigned int hd_flags;
107 unsigned int hd_irq;
108 unsigned int hd_hdwirq;
109 char hd_name[HPET_DEV_NAME];
112 struct hpets {
113 struct hpets *hp_next;
114 struct hpet __iomem *hp_hpet;
115 unsigned long hp_hpet_phys;
116 struct clocksource *hp_clocksource;
117 unsigned long long hp_tick_freq;
118 unsigned long hp_delta;
119 unsigned int hp_ntimer;
120 unsigned int hp_which;
121 struct hpet_dev hp_dev[1];
124 static struct hpets *hpets;
126 #define HPET_OPEN 0x0001
127 #define HPET_IE 0x0002 /* interrupt enabled */
128 #define HPET_PERIODIC 0x0004
129 #define HPET_SHARED_IRQ 0x0008
132 #ifndef readq
133 static inline unsigned long long readq(void __iomem *addr)
135 return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
137 #endif
139 #ifndef writeq
140 static inline void writeq(unsigned long long v, void __iomem *addr)
142 writel(v & 0xffffffff, addr);
143 writel(v >> 32, addr + 4);
145 #endif
147 static irqreturn_t hpet_interrupt(int irq, void *data)
149 struct hpet_dev *devp;
150 unsigned long isr;
152 devp = data;
153 isr = 1 << (devp - devp->hd_hpets->hp_dev);
155 if ((devp->hd_flags & HPET_SHARED_IRQ) &&
156 !(isr & readl(&devp->hd_hpet->hpet_isr)))
157 return IRQ_NONE;
159 spin_lock(&hpet_lock);
160 devp->hd_irqdata++;
163 * For non-periodic timers, increment the accumulator.
164 * This has the effect of treating non-periodic like periodic.
166 if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
167 unsigned long m, t;
169 t = devp->hd_ireqfreq;
170 m = read_counter(&devp->hd_timer->hpet_compare);
171 write_counter(t + m, &devp->hd_timer->hpet_compare);
174 if (devp->hd_flags & HPET_SHARED_IRQ)
175 writel(isr, &devp->hd_hpet->hpet_isr);
176 spin_unlock(&hpet_lock);
178 wake_up_interruptible(&devp->hd_waitqueue);
180 kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
182 return IRQ_HANDLED;
185 static void hpet_timer_set_irq(struct hpet_dev *devp)
187 unsigned long v;
188 int irq, gsi;
189 struct hpet_timer __iomem *timer;
191 spin_lock_irq(&hpet_lock);
192 if (devp->hd_hdwirq) {
193 spin_unlock_irq(&hpet_lock);
194 return;
197 timer = devp->hd_timer;
199 /* we prefer level triggered mode */
200 v = readl(&timer->hpet_config);
201 if (!(v & Tn_INT_TYPE_CNF_MASK)) {
202 v |= Tn_INT_TYPE_CNF_MASK;
203 writel(v, &timer->hpet_config);
205 spin_unlock_irq(&hpet_lock);
207 v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
208 Tn_INT_ROUTE_CAP_SHIFT;
211 * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
212 * legacy device. In IO APIC mode, we skip all the legacy IRQS.
214 if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
215 v &= ~0xf3df;
216 else
217 v &= ~0xffff;
219 for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
220 if (irq >= nr_irqs) {
221 irq = HPET_MAX_IRQ;
222 break;
225 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
226 ACPI_ACTIVE_LOW);
227 if (gsi > 0)
228 break;
230 /* FIXME: Setup interrupt source table */
233 if (irq < HPET_MAX_IRQ) {
234 spin_lock_irq(&hpet_lock);
235 v = readl(&timer->hpet_config);
236 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
237 writel(v, &timer->hpet_config);
238 devp->hd_hdwirq = gsi;
239 spin_unlock_irq(&hpet_lock);
241 return;
244 static int hpet_open(struct inode *inode, struct file *file)
246 struct hpet_dev *devp;
247 struct hpets *hpetp;
248 int i;
250 if (file->f_mode & FMODE_WRITE)
251 return -EINVAL;
253 lock_kernel();
254 spin_lock_irq(&hpet_lock);
256 for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
257 for (i = 0; i < hpetp->hp_ntimer; i++)
258 if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
259 continue;
260 else {
261 devp = &hpetp->hp_dev[i];
262 break;
265 if (!devp) {
266 spin_unlock_irq(&hpet_lock);
267 unlock_kernel();
268 return -EBUSY;
271 file->private_data = devp;
272 devp->hd_irqdata = 0;
273 devp->hd_flags |= HPET_OPEN;
274 spin_unlock_irq(&hpet_lock);
275 unlock_kernel();
277 hpet_timer_set_irq(devp);
279 return 0;
282 static ssize_t
283 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
285 DECLARE_WAITQUEUE(wait, current);
286 unsigned long data;
287 ssize_t retval;
288 struct hpet_dev *devp;
290 devp = file->private_data;
291 if (!devp->hd_ireqfreq)
292 return -EIO;
294 if (count < sizeof(unsigned long))
295 return -EINVAL;
297 add_wait_queue(&devp->hd_waitqueue, &wait);
299 for ( ; ; ) {
300 set_current_state(TASK_INTERRUPTIBLE);
302 spin_lock_irq(&hpet_lock);
303 data = devp->hd_irqdata;
304 devp->hd_irqdata = 0;
305 spin_unlock_irq(&hpet_lock);
307 if (data)
308 break;
309 else if (file->f_flags & O_NONBLOCK) {
310 retval = -EAGAIN;
311 goto out;
312 } else if (signal_pending(current)) {
313 retval = -ERESTARTSYS;
314 goto out;
316 schedule();
319 retval = put_user(data, (unsigned long __user *)buf);
320 if (!retval)
321 retval = sizeof(unsigned long);
322 out:
323 __set_current_state(TASK_RUNNING);
324 remove_wait_queue(&devp->hd_waitqueue, &wait);
326 return retval;
329 static unsigned int hpet_poll(struct file *file, poll_table * wait)
331 unsigned long v;
332 struct hpet_dev *devp;
334 devp = file->private_data;
336 if (!devp->hd_ireqfreq)
337 return 0;
339 poll_wait(file, &devp->hd_waitqueue, wait);
341 spin_lock_irq(&hpet_lock);
342 v = devp->hd_irqdata;
343 spin_unlock_irq(&hpet_lock);
345 if (v != 0)
346 return POLLIN | POLLRDNORM;
348 return 0;
351 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
353 #ifdef CONFIG_HPET_MMAP
354 struct hpet_dev *devp;
355 unsigned long addr;
357 if (((vma->vm_end - vma->vm_start) != PAGE_SIZE) || vma->vm_pgoff)
358 return -EINVAL;
360 devp = file->private_data;
361 addr = devp->hd_hpets->hp_hpet_phys;
363 if (addr & (PAGE_SIZE - 1))
364 return -ENOSYS;
366 vma->vm_flags |= VM_IO;
367 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
369 if (io_remap_pfn_range(vma, vma->vm_start, addr >> PAGE_SHIFT,
370 PAGE_SIZE, vma->vm_page_prot)) {
371 printk(KERN_ERR "%s: io_remap_pfn_range failed\n",
372 __func__);
373 return -EAGAIN;
376 return 0;
377 #else
378 return -ENOSYS;
379 #endif
382 static int hpet_fasync(int fd, struct file *file, int on)
384 struct hpet_dev *devp;
386 devp = file->private_data;
388 if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
389 return 0;
390 else
391 return -EIO;
394 static int hpet_release(struct inode *inode, struct file *file)
396 struct hpet_dev *devp;
397 struct hpet_timer __iomem *timer;
398 int irq = 0;
400 devp = file->private_data;
401 timer = devp->hd_timer;
403 spin_lock_irq(&hpet_lock);
405 writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
406 &timer->hpet_config);
408 irq = devp->hd_irq;
409 devp->hd_irq = 0;
411 devp->hd_ireqfreq = 0;
413 if (devp->hd_flags & HPET_PERIODIC
414 && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
415 unsigned long v;
417 v = readq(&timer->hpet_config);
418 v ^= Tn_TYPE_CNF_MASK;
419 writeq(v, &timer->hpet_config);
422 devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
423 spin_unlock_irq(&hpet_lock);
425 if (irq)
426 free_irq(irq, devp);
428 file->private_data = NULL;
429 return 0;
432 static int hpet_ioctl_common(struct hpet_dev *, int, unsigned long, int);
434 static long hpet_ioctl(struct file *file, unsigned int cmd,
435 unsigned long arg)
437 struct hpet_dev *devp;
438 int ret;
440 devp = file->private_data;
441 lock_kernel();
442 ret = hpet_ioctl_common(devp, cmd, arg, 0);
443 unlock_kernel();
445 return ret;
448 static int hpet_ioctl_ieon(struct hpet_dev *devp)
450 struct hpet_timer __iomem *timer;
451 struct hpet __iomem *hpet;
452 struct hpets *hpetp;
453 int irq;
454 unsigned long g, v, t, m;
455 unsigned long flags, isr;
457 timer = devp->hd_timer;
458 hpet = devp->hd_hpet;
459 hpetp = devp->hd_hpets;
461 if (!devp->hd_ireqfreq)
462 return -EIO;
464 spin_lock_irq(&hpet_lock);
466 if (devp->hd_flags & HPET_IE) {
467 spin_unlock_irq(&hpet_lock);
468 return -EBUSY;
471 devp->hd_flags |= HPET_IE;
473 if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
474 devp->hd_flags |= HPET_SHARED_IRQ;
475 spin_unlock_irq(&hpet_lock);
477 irq = devp->hd_hdwirq;
479 if (irq) {
480 unsigned long irq_flags;
482 if (devp->hd_flags & HPET_SHARED_IRQ) {
484 * To prevent the interrupt handler from seeing an
485 * unwanted interrupt status bit, program the timer
486 * so that it will not fire in the near future ...
488 writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
489 &timer->hpet_config);
490 write_counter(read_counter(&hpet->hpet_mc),
491 &timer->hpet_compare);
492 /* ... and clear any left-over status. */
493 isr = 1 << (devp - devp->hd_hpets->hp_dev);
494 writel(isr, &hpet->hpet_isr);
497 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
498 irq_flags = devp->hd_flags & HPET_SHARED_IRQ
499 ? IRQF_SHARED : IRQF_DISABLED;
500 if (request_irq(irq, hpet_interrupt, irq_flags,
501 devp->hd_name, (void *)devp)) {
502 printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
503 irq = 0;
507 if (irq == 0) {
508 spin_lock_irq(&hpet_lock);
509 devp->hd_flags ^= HPET_IE;
510 spin_unlock_irq(&hpet_lock);
511 return -EIO;
514 devp->hd_irq = irq;
515 t = devp->hd_ireqfreq;
516 v = readq(&timer->hpet_config);
518 /* 64-bit comparators are not yet supported through the ioctls,
519 * so force this into 32-bit mode if it supports both modes
521 g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
523 if (devp->hd_flags & HPET_PERIODIC) {
524 g |= Tn_TYPE_CNF_MASK;
525 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
526 writeq(v, &timer->hpet_config);
527 local_irq_save(flags);
530 * NOTE: First we modify the hidden accumulator
531 * register supported by periodic-capable comparators.
532 * We never want to modify the (single) counter; that
533 * would affect all the comparators. The value written
534 * is the counter value when the first interrupt is due.
536 m = read_counter(&hpet->hpet_mc);
537 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
539 * Then we modify the comparator, indicating the period
540 * for subsequent interrupt.
542 write_counter(t, &timer->hpet_compare);
543 } else {
544 local_irq_save(flags);
545 m = read_counter(&hpet->hpet_mc);
546 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
549 if (devp->hd_flags & HPET_SHARED_IRQ) {
550 isr = 1 << (devp - devp->hd_hpets->hp_dev);
551 writel(isr, &hpet->hpet_isr);
553 writeq(g, &timer->hpet_config);
554 local_irq_restore(flags);
556 return 0;
559 /* converts Hz to number of timer ticks */
560 static inline unsigned long hpet_time_div(struct hpets *hpets,
561 unsigned long dis)
563 unsigned long long m;
565 m = hpets->hp_tick_freq + (dis >> 1);
566 do_div(m, dis);
567 return (unsigned long)m;
570 static int
571 hpet_ioctl_common(struct hpet_dev *devp, int cmd, unsigned long arg, int kernel)
573 struct hpet_timer __iomem *timer;
574 struct hpet __iomem *hpet;
575 struct hpets *hpetp;
576 int err;
577 unsigned long v;
579 switch (cmd) {
580 case HPET_IE_OFF:
581 case HPET_INFO:
582 case HPET_EPI:
583 case HPET_DPI:
584 case HPET_IRQFREQ:
585 timer = devp->hd_timer;
586 hpet = devp->hd_hpet;
587 hpetp = devp->hd_hpets;
588 break;
589 case HPET_IE_ON:
590 return hpet_ioctl_ieon(devp);
591 default:
592 return -EINVAL;
595 err = 0;
597 switch (cmd) {
598 case HPET_IE_OFF:
599 if ((devp->hd_flags & HPET_IE) == 0)
600 break;
601 v = readq(&timer->hpet_config);
602 v &= ~Tn_INT_ENB_CNF_MASK;
603 writeq(v, &timer->hpet_config);
604 if (devp->hd_irq) {
605 free_irq(devp->hd_irq, devp);
606 devp->hd_irq = 0;
608 devp->hd_flags ^= HPET_IE;
609 break;
610 case HPET_INFO:
612 struct hpet_info info;
614 if (devp->hd_ireqfreq)
615 info.hi_ireqfreq =
616 hpet_time_div(hpetp, devp->hd_ireqfreq);
617 else
618 info.hi_ireqfreq = 0;
619 info.hi_flags =
620 readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
621 info.hi_hpet = hpetp->hp_which;
622 info.hi_timer = devp - hpetp->hp_dev;
623 if (kernel)
624 memcpy((void *)arg, &info, sizeof(info));
625 else
626 if (copy_to_user((void __user *)arg, &info,
627 sizeof(info)))
628 err = -EFAULT;
629 break;
631 case HPET_EPI:
632 v = readq(&timer->hpet_config);
633 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
634 err = -ENXIO;
635 break;
637 devp->hd_flags |= HPET_PERIODIC;
638 break;
639 case HPET_DPI:
640 v = readq(&timer->hpet_config);
641 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
642 err = -ENXIO;
643 break;
645 if (devp->hd_flags & HPET_PERIODIC &&
646 readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
647 v = readq(&timer->hpet_config);
648 v ^= Tn_TYPE_CNF_MASK;
649 writeq(v, &timer->hpet_config);
651 devp->hd_flags &= ~HPET_PERIODIC;
652 break;
653 case HPET_IRQFREQ:
654 if (!kernel && (arg > hpet_max_freq) &&
655 !capable(CAP_SYS_RESOURCE)) {
656 err = -EACCES;
657 break;
660 if (!arg) {
661 err = -EINVAL;
662 break;
665 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
668 return err;
671 static const struct file_operations hpet_fops = {
672 .owner = THIS_MODULE,
673 .llseek = no_llseek,
674 .read = hpet_read,
675 .poll = hpet_poll,
676 .unlocked_ioctl = hpet_ioctl,
677 .open = hpet_open,
678 .release = hpet_release,
679 .fasync = hpet_fasync,
680 .mmap = hpet_mmap,
683 static int hpet_is_known(struct hpet_data *hdp)
685 struct hpets *hpetp;
687 for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
688 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
689 return 1;
691 return 0;
694 static ctl_table hpet_table[] = {
696 .procname = "max-user-freq",
697 .data = &hpet_max_freq,
698 .maxlen = sizeof(int),
699 .mode = 0644,
700 .proc_handler = proc_dointvec,
705 static ctl_table hpet_root[] = {
707 .procname = "hpet",
708 .maxlen = 0,
709 .mode = 0555,
710 .child = hpet_table,
715 static ctl_table dev_root[] = {
717 .procname = "dev",
718 .maxlen = 0,
719 .mode = 0555,
720 .child = hpet_root,
725 static struct ctl_table_header *sysctl_header;
728 * Adjustment for when arming the timer with
729 * initial conditions. That is, main counter
730 * ticks expired before interrupts are enabled.
732 #define TICK_CALIBRATE (1000UL)
734 static unsigned long __hpet_calibrate(struct hpets *hpetp)
736 struct hpet_timer __iomem *timer = NULL;
737 unsigned long t, m, count, i, flags, start;
738 struct hpet_dev *devp;
739 int j;
740 struct hpet __iomem *hpet;
742 for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
743 if ((devp->hd_flags & HPET_OPEN) == 0) {
744 timer = devp->hd_timer;
745 break;
748 if (!timer)
749 return 0;
751 hpet = hpetp->hp_hpet;
752 t = read_counter(&timer->hpet_compare);
754 i = 0;
755 count = hpet_time_div(hpetp, TICK_CALIBRATE);
757 local_irq_save(flags);
759 start = read_counter(&hpet->hpet_mc);
761 do {
762 m = read_counter(&hpet->hpet_mc);
763 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
764 } while (i++, (m - start) < count);
766 local_irq_restore(flags);
768 return (m - start) / i;
771 static unsigned long hpet_calibrate(struct hpets *hpetp)
773 unsigned long ret = -1;
774 unsigned long tmp;
777 * Try to calibrate until return value becomes stable small value.
778 * If SMI interruption occurs in calibration loop, the return value
779 * will be big. This avoids its impact.
781 for ( ; ; ) {
782 tmp = __hpet_calibrate(hpetp);
783 if (ret <= tmp)
784 break;
785 ret = tmp;
788 return ret;
791 int hpet_alloc(struct hpet_data *hdp)
793 u64 cap, mcfg;
794 struct hpet_dev *devp;
795 u32 i, ntimer;
796 struct hpets *hpetp;
797 size_t siz;
798 struct hpet __iomem *hpet;
799 static struct hpets *last = NULL;
800 unsigned long period;
801 unsigned long long temp;
802 u32 remainder;
805 * hpet_alloc can be called by platform dependent code.
806 * If platform dependent code has allocated the hpet that
807 * ACPI has also reported, then we catch it here.
809 if (hpet_is_known(hdp)) {
810 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
811 __func__);
812 return 0;
815 siz = sizeof(struct hpets) + ((hdp->hd_nirqs - 1) *
816 sizeof(struct hpet_dev));
818 hpetp = kzalloc(siz, GFP_KERNEL);
820 if (!hpetp)
821 return -ENOMEM;
823 hpetp->hp_which = hpet_nhpet++;
824 hpetp->hp_hpet = hdp->hd_address;
825 hpetp->hp_hpet_phys = hdp->hd_phys_address;
827 hpetp->hp_ntimer = hdp->hd_nirqs;
829 for (i = 0; i < hdp->hd_nirqs; i++)
830 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
832 hpet = hpetp->hp_hpet;
834 cap = readq(&hpet->hpet_cap);
836 ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
838 if (hpetp->hp_ntimer != ntimer) {
839 printk(KERN_WARNING "hpet: number irqs doesn't agree"
840 " with number of timers\n");
841 kfree(hpetp);
842 return -ENODEV;
845 if (last)
846 last->hp_next = hpetp;
847 else
848 hpets = hpetp;
850 last = hpetp;
852 period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
853 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
854 temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
855 temp += period >> 1; /* round */
856 do_div(temp, period);
857 hpetp->hp_tick_freq = temp; /* ticks per second */
859 printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
860 hpetp->hp_which, hdp->hd_phys_address,
861 hpetp->hp_ntimer > 1 ? "s" : "");
862 for (i = 0; i < hpetp->hp_ntimer; i++)
863 printk("%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
864 printk("\n");
866 temp = hpetp->hp_tick_freq;
867 remainder = do_div(temp, 1000000);
868 printk(KERN_INFO
869 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
870 hpetp->hp_which, hpetp->hp_ntimer,
871 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
872 (unsigned) temp, remainder);
874 mcfg = readq(&hpet->hpet_config);
875 if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
876 write_counter(0L, &hpet->hpet_mc);
877 mcfg |= HPET_ENABLE_CNF_MASK;
878 writeq(mcfg, &hpet->hpet_config);
881 for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
882 struct hpet_timer __iomem *timer;
884 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
886 devp->hd_hpets = hpetp;
887 devp->hd_hpet = hpet;
888 devp->hd_timer = timer;
891 * If the timer was reserved by platform code,
892 * then make timer unavailable for opens.
894 if (hdp->hd_state & (1 << i)) {
895 devp->hd_flags = HPET_OPEN;
896 continue;
899 init_waitqueue_head(&devp->hd_waitqueue);
902 hpetp->hp_delta = hpet_calibrate(hpetp);
904 /* This clocksource driver currently only works on ia64 */
905 #ifdef CONFIG_IA64
906 if (!hpet_clocksource) {
907 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
908 CLKSRC_FSYS_MMIO_SET(clocksource_hpet.fsys_mmio, hpet_mctr);
909 clocksource_hpet.mult = clocksource_hz2mult(hpetp->hp_tick_freq,
910 clocksource_hpet.shift);
911 clocksource_register(&clocksource_hpet);
912 hpetp->hp_clocksource = &clocksource_hpet;
913 hpet_clocksource = &clocksource_hpet;
915 #endif
917 return 0;
920 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
922 struct hpet_data *hdp;
923 acpi_status status;
924 struct acpi_resource_address64 addr;
926 hdp = data;
928 status = acpi_resource_to_address64(res, &addr);
930 if (ACPI_SUCCESS(status)) {
931 hdp->hd_phys_address = addr.minimum;
932 hdp->hd_address = ioremap(addr.minimum, addr.address_length);
934 if (hpet_is_known(hdp)) {
935 iounmap(hdp->hd_address);
936 return AE_ALREADY_EXISTS;
938 } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
939 struct acpi_resource_fixed_memory32 *fixmem32;
941 fixmem32 = &res->data.fixed_memory32;
942 if (!fixmem32)
943 return AE_NO_MEMORY;
945 hdp->hd_phys_address = fixmem32->address;
946 hdp->hd_address = ioremap(fixmem32->address,
947 HPET_RANGE_SIZE);
949 if (hpet_is_known(hdp)) {
950 iounmap(hdp->hd_address);
951 return AE_ALREADY_EXISTS;
953 } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
954 struct acpi_resource_extended_irq *irqp;
955 int i, irq;
957 irqp = &res->data.extended_irq;
959 for (i = 0; i < irqp->interrupt_count; i++) {
960 irq = acpi_register_gsi(NULL, irqp->interrupts[i],
961 irqp->triggering, irqp->polarity);
962 if (irq < 0)
963 return AE_ERROR;
965 hdp->hd_irq[hdp->hd_nirqs] = irq;
966 hdp->hd_nirqs++;
970 return AE_OK;
973 static int hpet_acpi_add(struct acpi_device *device)
975 acpi_status result;
976 struct hpet_data data;
978 memset(&data, 0, sizeof(data));
980 result =
981 acpi_walk_resources(device->handle, METHOD_NAME__CRS,
982 hpet_resources, &data);
984 if (ACPI_FAILURE(result))
985 return -ENODEV;
987 if (!data.hd_address || !data.hd_nirqs) {
988 if (data.hd_address)
989 iounmap(data.hd_address);
990 printk("%s: no address or irqs in _CRS\n", __func__);
991 return -ENODEV;
994 return hpet_alloc(&data);
997 static int hpet_acpi_remove(struct acpi_device *device, int type)
999 /* XXX need to unregister clocksource, dealloc mem, etc */
1000 return -EINVAL;
1003 static const struct acpi_device_id hpet_device_ids[] = {
1004 {"PNP0103", 0},
1005 {"", 0},
1007 MODULE_DEVICE_TABLE(acpi, hpet_device_ids);
1009 static struct acpi_driver hpet_acpi_driver = {
1010 .name = "hpet",
1011 .ids = hpet_device_ids,
1012 .ops = {
1013 .add = hpet_acpi_add,
1014 .remove = hpet_acpi_remove,
1018 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1020 static int __init hpet_init(void)
1022 int result;
1024 result = misc_register(&hpet_misc);
1025 if (result < 0)
1026 return -ENODEV;
1028 sysctl_header = register_sysctl_table(dev_root);
1030 result = acpi_bus_register_driver(&hpet_acpi_driver);
1031 if (result < 0) {
1032 if (sysctl_header)
1033 unregister_sysctl_table(sysctl_header);
1034 misc_deregister(&hpet_misc);
1035 return result;
1038 return 0;
1041 static void __exit hpet_exit(void)
1043 acpi_bus_unregister_driver(&hpet_acpi_driver);
1045 if (sysctl_header)
1046 unregister_sysctl_table(sysctl_header);
1047 misc_deregister(&hpet_misc);
1049 return;
1052 module_init(hpet_init);
1053 module_exit(hpet_exit);
1054 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1055 MODULE_LICENSE("GPL");