2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/highmem.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/completion.h>
25 #include <linux/slab.h>
26 #include <linux/swap.h>
27 #include <linux/writeback.h>
28 #include <linux/task_io_accounting_ops.h>
29 #include <linux/fault-inject.h>
30 #include <linux/list_sort.h>
32 #define CREATE_TRACE_POINTS
33 #include <trace/events/block.h>
37 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
38 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
39 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
41 static int __make_request(struct request_queue
*q
, struct bio
*bio
);
44 * For the allocated request tables
46 static struct kmem_cache
*request_cachep
;
49 * For queue allocation
51 struct kmem_cache
*blk_requestq_cachep
;
54 * Controlling structure to kblockd
56 static struct workqueue_struct
*kblockd_workqueue
;
58 static void drive_stat_acct(struct request
*rq
, int new_io
)
60 struct hd_struct
*part
;
61 int rw
= rq_data_dir(rq
);
64 if (!blk_do_io_stat(rq
))
67 cpu
= part_stat_lock();
71 part_stat_inc(cpu
, part
, merges
[rw
]);
73 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
74 if (!hd_struct_try_get(part
)) {
76 * The partition is already being removed,
77 * the request will be accounted on the disk only
79 * We take a reference on disk->part0 although that
80 * partition will never be deleted, so we can treat
81 * it as any other partition.
83 part
= &rq
->rq_disk
->part0
;
86 part_round_stats(cpu
, part
);
87 part_inc_in_flight(part
, rw
);
94 void blk_queue_congestion_threshold(struct request_queue
*q
)
98 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
99 if (nr
> q
->nr_requests
)
101 q
->nr_congestion_on
= nr
;
103 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
106 q
->nr_congestion_off
= nr
;
110 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
113 * Locates the passed device's request queue and returns the address of its
116 * Will return NULL if the request queue cannot be located.
118 struct backing_dev_info
*blk_get_backing_dev_info(struct block_device
*bdev
)
120 struct backing_dev_info
*ret
= NULL
;
121 struct request_queue
*q
= bdev_get_queue(bdev
);
124 ret
= &q
->backing_dev_info
;
127 EXPORT_SYMBOL(blk_get_backing_dev_info
);
129 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
131 memset(rq
, 0, sizeof(*rq
));
133 INIT_LIST_HEAD(&rq
->queuelist
);
134 INIT_LIST_HEAD(&rq
->timeout_list
);
137 rq
->__sector
= (sector_t
) -1;
138 INIT_HLIST_NODE(&rq
->hash
);
139 RB_CLEAR_NODE(&rq
->rb_node
);
141 rq
->cmd_len
= BLK_MAX_CDB
;
144 rq
->start_time
= jiffies
;
145 set_start_time_ns(rq
);
148 EXPORT_SYMBOL(blk_rq_init
);
150 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
151 unsigned int nbytes
, int error
)
154 clear_bit(BIO_UPTODATE
, &bio
->bi_flags
);
155 else if (!test_bit(BIO_UPTODATE
, &bio
->bi_flags
))
158 if (unlikely(nbytes
> bio
->bi_size
)) {
159 printk(KERN_ERR
"%s: want %u bytes done, %u left\n",
160 __func__
, nbytes
, bio
->bi_size
);
161 nbytes
= bio
->bi_size
;
164 if (unlikely(rq
->cmd_flags
& REQ_QUIET
))
165 set_bit(BIO_QUIET
, &bio
->bi_flags
);
167 bio
->bi_size
-= nbytes
;
168 bio
->bi_sector
+= (nbytes
>> 9);
170 if (bio_integrity(bio
))
171 bio_integrity_advance(bio
, nbytes
);
173 /* don't actually finish bio if it's part of flush sequence */
174 if (bio
->bi_size
== 0 && !(rq
->cmd_flags
& REQ_FLUSH_SEQ
))
175 bio_endio(bio
, error
);
178 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
182 printk(KERN_INFO
"%s: dev %s: type=%x, flags=%x\n", msg
,
183 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?", rq
->cmd_type
,
186 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
187 (unsigned long long)blk_rq_pos(rq
),
188 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
189 printk(KERN_INFO
" bio %p, biotail %p, buffer %p, len %u\n",
190 rq
->bio
, rq
->biotail
, rq
->buffer
, blk_rq_bytes(rq
));
192 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
193 printk(KERN_INFO
" cdb: ");
194 for (bit
= 0; bit
< BLK_MAX_CDB
; bit
++)
195 printk("%02x ", rq
->cmd
[bit
]);
199 EXPORT_SYMBOL(blk_dump_rq_flags
);
201 static void blk_delay_work(struct work_struct
*work
)
203 struct request_queue
*q
;
205 q
= container_of(work
, struct request_queue
, delay_work
.work
);
206 spin_lock_irq(q
->queue_lock
);
208 spin_unlock_irq(q
->queue_lock
);
212 * blk_delay_queue - restart queueing after defined interval
213 * @q: The &struct request_queue in question
214 * @msecs: Delay in msecs
217 * Sometimes queueing needs to be postponed for a little while, to allow
218 * resources to come back. This function will make sure that queueing is
219 * restarted around the specified time.
221 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
223 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
224 msecs_to_jiffies(msecs
));
226 EXPORT_SYMBOL(blk_delay_queue
);
229 * blk_start_queue - restart a previously stopped queue
230 * @q: The &struct request_queue in question
233 * blk_start_queue() will clear the stop flag on the queue, and call
234 * the request_fn for the queue if it was in a stopped state when
235 * entered. Also see blk_stop_queue(). Queue lock must be held.
237 void blk_start_queue(struct request_queue
*q
)
239 WARN_ON(!irqs_disabled());
241 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
244 EXPORT_SYMBOL(blk_start_queue
);
247 * blk_stop_queue - stop a queue
248 * @q: The &struct request_queue in question
251 * The Linux block layer assumes that a block driver will consume all
252 * entries on the request queue when the request_fn strategy is called.
253 * Often this will not happen, because of hardware limitations (queue
254 * depth settings). If a device driver gets a 'queue full' response,
255 * or if it simply chooses not to queue more I/O at one point, it can
256 * call this function to prevent the request_fn from being called until
257 * the driver has signalled it's ready to go again. This happens by calling
258 * blk_start_queue() to restart queue operations. Queue lock must be held.
260 void blk_stop_queue(struct request_queue
*q
)
262 __cancel_delayed_work(&q
->delay_work
);
263 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
265 EXPORT_SYMBOL(blk_stop_queue
);
268 * blk_sync_queue - cancel any pending callbacks on a queue
272 * The block layer may perform asynchronous callback activity
273 * on a queue, such as calling the unplug function after a timeout.
274 * A block device may call blk_sync_queue to ensure that any
275 * such activity is cancelled, thus allowing it to release resources
276 * that the callbacks might use. The caller must already have made sure
277 * that its ->make_request_fn will not re-add plugging prior to calling
280 * This function does not cancel any asynchronous activity arising
281 * out of elevator or throttling code. That would require elevaotor_exit()
282 * and blk_throtl_exit() to be called with queue lock initialized.
285 void blk_sync_queue(struct request_queue
*q
)
287 del_timer_sync(&q
->timeout
);
288 cancel_delayed_work_sync(&q
->delay_work
);
290 EXPORT_SYMBOL(blk_sync_queue
);
293 * __blk_run_queue - run a single device queue
294 * @q: The queue to run
297 * See @blk_run_queue. This variant must be called with the queue lock
298 * held and interrupts disabled.
300 void __blk_run_queue(struct request_queue
*q
)
302 if (unlikely(blk_queue_stopped(q
)))
307 EXPORT_SYMBOL(__blk_run_queue
);
310 * blk_run_queue_async - run a single device queue in workqueue context
311 * @q: The queue to run
314 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
317 void blk_run_queue_async(struct request_queue
*q
)
319 if (likely(!blk_queue_stopped(q
))) {
320 __cancel_delayed_work(&q
->delay_work
);
321 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
324 EXPORT_SYMBOL(blk_run_queue_async
);
327 * blk_run_queue - run a single device queue
328 * @q: The queue to run
331 * Invoke request handling on this queue, if it has pending work to do.
332 * May be used to restart queueing when a request has completed.
334 void blk_run_queue(struct request_queue
*q
)
338 spin_lock_irqsave(q
->queue_lock
, flags
);
340 spin_unlock_irqrestore(q
->queue_lock
, flags
);
342 EXPORT_SYMBOL(blk_run_queue
);
344 void blk_put_queue(struct request_queue
*q
)
346 kobject_put(&q
->kobj
);
348 EXPORT_SYMBOL(blk_put_queue
);
351 * Note: If a driver supplied the queue lock, it should not zap that lock
352 * unexpectedly as some queue cleanup components like elevator_exit() and
353 * blk_throtl_exit() need queue lock.
355 void blk_cleanup_queue(struct request_queue
*q
)
358 * We know we have process context here, so we can be a little
359 * cautious and ensure that pending block actions on this device
360 * are done before moving on. Going into this function, we should
361 * not have processes doing IO to this device.
365 del_timer_sync(&q
->backing_dev_info
.laptop_mode_wb_timer
);
366 mutex_lock(&q
->sysfs_lock
);
367 queue_flag_set_unlocked(QUEUE_FLAG_DEAD
, q
);
368 mutex_unlock(&q
->sysfs_lock
);
371 elevator_exit(q
->elevator
);
377 EXPORT_SYMBOL(blk_cleanup_queue
);
379 static int blk_init_free_list(struct request_queue
*q
)
381 struct request_list
*rl
= &q
->rq
;
383 if (unlikely(rl
->rq_pool
))
386 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
387 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
389 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
390 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
392 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
, mempool_alloc_slab
,
393 mempool_free_slab
, request_cachep
, q
->node
);
401 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
403 return blk_alloc_queue_node(gfp_mask
, -1);
405 EXPORT_SYMBOL(blk_alloc_queue
);
407 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
409 struct request_queue
*q
;
412 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
413 gfp_mask
| __GFP_ZERO
, node_id
);
417 q
->backing_dev_info
.ra_pages
=
418 (VM_MAX_READAHEAD
* 1024) / PAGE_CACHE_SIZE
;
419 q
->backing_dev_info
.state
= 0;
420 q
->backing_dev_info
.capabilities
= BDI_CAP_MAP_COPY
;
421 q
->backing_dev_info
.name
= "block";
423 err
= bdi_init(&q
->backing_dev_info
);
425 kmem_cache_free(blk_requestq_cachep
, q
);
429 if (blk_throtl_init(q
)) {
430 kmem_cache_free(blk_requestq_cachep
, q
);
434 setup_timer(&q
->backing_dev_info
.laptop_mode_wb_timer
,
435 laptop_mode_timer_fn
, (unsigned long) q
);
436 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
437 INIT_LIST_HEAD(&q
->timeout_list
);
438 INIT_LIST_HEAD(&q
->flush_queue
[0]);
439 INIT_LIST_HEAD(&q
->flush_queue
[1]);
440 INIT_LIST_HEAD(&q
->flush_data_in_flight
);
441 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
443 kobject_init(&q
->kobj
, &blk_queue_ktype
);
445 mutex_init(&q
->sysfs_lock
);
446 spin_lock_init(&q
->__queue_lock
);
449 * By default initialize queue_lock to internal lock and driver can
450 * override it later if need be.
452 q
->queue_lock
= &q
->__queue_lock
;
456 EXPORT_SYMBOL(blk_alloc_queue_node
);
459 * blk_init_queue - prepare a request queue for use with a block device
460 * @rfn: The function to be called to process requests that have been
461 * placed on the queue.
462 * @lock: Request queue spin lock
465 * If a block device wishes to use the standard request handling procedures,
466 * which sorts requests and coalesces adjacent requests, then it must
467 * call blk_init_queue(). The function @rfn will be called when there
468 * are requests on the queue that need to be processed. If the device
469 * supports plugging, then @rfn may not be called immediately when requests
470 * are available on the queue, but may be called at some time later instead.
471 * Plugged queues are generally unplugged when a buffer belonging to one
472 * of the requests on the queue is needed, or due to memory pressure.
474 * @rfn is not required, or even expected, to remove all requests off the
475 * queue, but only as many as it can handle at a time. If it does leave
476 * requests on the queue, it is responsible for arranging that the requests
477 * get dealt with eventually.
479 * The queue spin lock must be held while manipulating the requests on the
480 * request queue; this lock will be taken also from interrupt context, so irq
481 * disabling is needed for it.
483 * Function returns a pointer to the initialized request queue, or %NULL if
487 * blk_init_queue() must be paired with a blk_cleanup_queue() call
488 * when the block device is deactivated (such as at module unload).
491 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
493 return blk_init_queue_node(rfn
, lock
, -1);
495 EXPORT_SYMBOL(blk_init_queue
);
497 struct request_queue
*
498 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
500 struct request_queue
*uninit_q
, *q
;
502 uninit_q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
506 q
= blk_init_allocated_queue_node(uninit_q
, rfn
, lock
, node_id
);
508 blk_cleanup_queue(uninit_q
);
512 EXPORT_SYMBOL(blk_init_queue_node
);
514 struct request_queue
*
515 blk_init_allocated_queue(struct request_queue
*q
, request_fn_proc
*rfn
,
518 return blk_init_allocated_queue_node(q
, rfn
, lock
, -1);
520 EXPORT_SYMBOL(blk_init_allocated_queue
);
522 struct request_queue
*
523 blk_init_allocated_queue_node(struct request_queue
*q
, request_fn_proc
*rfn
,
524 spinlock_t
*lock
, int node_id
)
530 if (blk_init_free_list(q
))
534 q
->prep_rq_fn
= NULL
;
535 q
->unprep_rq_fn
= NULL
;
536 q
->queue_flags
= QUEUE_FLAG_DEFAULT
;
538 /* Override internal queue lock with supplied lock pointer */
540 q
->queue_lock
= lock
;
543 * This also sets hw/phys segments, boundary and size
545 blk_queue_make_request(q
, __make_request
);
547 q
->sg_reserved_size
= INT_MAX
;
552 if (!elevator_init(q
, NULL
)) {
553 blk_queue_congestion_threshold(q
);
559 EXPORT_SYMBOL(blk_init_allocated_queue_node
);
561 int blk_get_queue(struct request_queue
*q
)
563 if (likely(!test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
))) {
564 kobject_get(&q
->kobj
);
570 EXPORT_SYMBOL(blk_get_queue
);
572 static inline void blk_free_request(struct request_queue
*q
, struct request
*rq
)
574 if (rq
->cmd_flags
& REQ_ELVPRIV
)
575 elv_put_request(q
, rq
);
576 mempool_free(rq
, q
->rq
.rq_pool
);
579 static struct request
*
580 blk_alloc_request(struct request_queue
*q
, int flags
, int priv
, gfp_t gfp_mask
)
582 struct request
*rq
= mempool_alloc(q
->rq
.rq_pool
, gfp_mask
);
589 rq
->cmd_flags
= flags
| REQ_ALLOCED
;
592 if (unlikely(elv_set_request(q
, rq
, gfp_mask
))) {
593 mempool_free(rq
, q
->rq
.rq_pool
);
596 rq
->cmd_flags
|= REQ_ELVPRIV
;
603 * ioc_batching returns true if the ioc is a valid batching request and
604 * should be given priority access to a request.
606 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
612 * Make sure the process is able to allocate at least 1 request
613 * even if the batch times out, otherwise we could theoretically
616 return ioc
->nr_batch_requests
== q
->nr_batching
||
617 (ioc
->nr_batch_requests
> 0
618 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
622 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
623 * will cause the process to be a "batcher" on all queues in the system. This
624 * is the behaviour we want though - once it gets a wakeup it should be given
627 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
629 if (!ioc
|| ioc_batching(q
, ioc
))
632 ioc
->nr_batch_requests
= q
->nr_batching
;
633 ioc
->last_waited
= jiffies
;
636 static void __freed_request(struct request_queue
*q
, int sync
)
638 struct request_list
*rl
= &q
->rq
;
640 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
641 blk_clear_queue_congested(q
, sync
);
643 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
644 if (waitqueue_active(&rl
->wait
[sync
]))
645 wake_up(&rl
->wait
[sync
]);
647 blk_clear_queue_full(q
, sync
);
652 * A request has just been released. Account for it, update the full and
653 * congestion status, wake up any waiters. Called under q->queue_lock.
655 static void freed_request(struct request_queue
*q
, int sync
, int priv
)
657 struct request_list
*rl
= &q
->rq
;
663 __freed_request(q
, sync
);
665 if (unlikely(rl
->starved
[sync
^ 1]))
666 __freed_request(q
, sync
^ 1);
670 * Determine if elevator data should be initialized when allocating the
671 * request associated with @bio.
673 static bool blk_rq_should_init_elevator(struct bio
*bio
)
679 * Flush requests do not use the elevator so skip initialization.
680 * This allows a request to share the flush and elevator data.
682 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
))
689 * Get a free request, queue_lock must be held.
690 * Returns NULL on failure, with queue_lock held.
691 * Returns !NULL on success, with queue_lock *not held*.
693 static struct request
*get_request(struct request_queue
*q
, int rw_flags
,
694 struct bio
*bio
, gfp_t gfp_mask
)
696 struct request
*rq
= NULL
;
697 struct request_list
*rl
= &q
->rq
;
698 struct io_context
*ioc
= NULL
;
699 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
700 int may_queue
, priv
= 0;
702 may_queue
= elv_may_queue(q
, rw_flags
);
703 if (may_queue
== ELV_MQUEUE_NO
)
706 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
707 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
708 ioc
= current_io_context(GFP_ATOMIC
, q
->node
);
710 * The queue will fill after this allocation, so set
711 * it as full, and mark this process as "batching".
712 * This process will be allowed to complete a batch of
713 * requests, others will be blocked.
715 if (!blk_queue_full(q
, is_sync
)) {
716 ioc_set_batching(q
, ioc
);
717 blk_set_queue_full(q
, is_sync
);
719 if (may_queue
!= ELV_MQUEUE_MUST
720 && !ioc_batching(q
, ioc
)) {
722 * The queue is full and the allocating
723 * process is not a "batcher", and not
724 * exempted by the IO scheduler
730 blk_set_queue_congested(q
, is_sync
);
734 * Only allow batching queuers to allocate up to 50% over the defined
735 * limit of requests, otherwise we could have thousands of requests
736 * allocated with any setting of ->nr_requests
738 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
741 rl
->count
[is_sync
]++;
742 rl
->starved
[is_sync
] = 0;
744 if (blk_rq_should_init_elevator(bio
)) {
745 priv
= !test_bit(QUEUE_FLAG_ELVSWITCH
, &q
->queue_flags
);
750 if (blk_queue_io_stat(q
))
751 rw_flags
|= REQ_IO_STAT
;
752 spin_unlock_irq(q
->queue_lock
);
754 rq
= blk_alloc_request(q
, rw_flags
, priv
, gfp_mask
);
757 * Allocation failed presumably due to memory. Undo anything
758 * we might have messed up.
760 * Allocating task should really be put onto the front of the
761 * wait queue, but this is pretty rare.
763 spin_lock_irq(q
->queue_lock
);
764 freed_request(q
, is_sync
, priv
);
767 * in the very unlikely event that allocation failed and no
768 * requests for this direction was pending, mark us starved
769 * so that freeing of a request in the other direction will
770 * notice us. another possible fix would be to split the
771 * rq mempool into READ and WRITE
774 if (unlikely(rl
->count
[is_sync
] == 0))
775 rl
->starved
[is_sync
] = 1;
781 * ioc may be NULL here, and ioc_batching will be false. That's
782 * OK, if the queue is under the request limit then requests need
783 * not count toward the nr_batch_requests limit. There will always
784 * be some limit enforced by BLK_BATCH_TIME.
786 if (ioc_batching(q
, ioc
))
787 ioc
->nr_batch_requests
--;
789 trace_block_getrq(q
, bio
, rw_flags
& 1);
795 * No available requests for this queue, wait for some requests to become
798 * Called with q->queue_lock held, and returns with it unlocked.
800 static struct request
*get_request_wait(struct request_queue
*q
, int rw_flags
,
803 const bool is_sync
= rw_is_sync(rw_flags
) != 0;
806 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
809 struct io_context
*ioc
;
810 struct request_list
*rl
= &q
->rq
;
812 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
813 TASK_UNINTERRUPTIBLE
);
815 trace_block_sleeprq(q
, bio
, rw_flags
& 1);
817 spin_unlock_irq(q
->queue_lock
);
821 * After sleeping, we become a "batching" process and
822 * will be able to allocate at least one request, and
823 * up to a big batch of them for a small period time.
824 * See ioc_batching, ioc_set_batching
826 ioc
= current_io_context(GFP_NOIO
, q
->node
);
827 ioc_set_batching(q
, ioc
);
829 spin_lock_irq(q
->queue_lock
);
830 finish_wait(&rl
->wait
[is_sync
], &wait
);
832 rq
= get_request(q
, rw_flags
, bio
, GFP_NOIO
);
838 struct request
*blk_get_request(struct request_queue
*q
, int rw
, gfp_t gfp_mask
)
842 BUG_ON(rw
!= READ
&& rw
!= WRITE
);
844 spin_lock_irq(q
->queue_lock
);
845 if (gfp_mask
& __GFP_WAIT
) {
846 rq
= get_request_wait(q
, rw
, NULL
);
848 rq
= get_request(q
, rw
, NULL
, gfp_mask
);
850 spin_unlock_irq(q
->queue_lock
);
852 /* q->queue_lock is unlocked at this point */
856 EXPORT_SYMBOL(blk_get_request
);
859 * blk_make_request - given a bio, allocate a corresponding struct request.
860 * @q: target request queue
861 * @bio: The bio describing the memory mappings that will be submitted for IO.
862 * It may be a chained-bio properly constructed by block/bio layer.
863 * @gfp_mask: gfp flags to be used for memory allocation
865 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
866 * type commands. Where the struct request needs to be farther initialized by
867 * the caller. It is passed a &struct bio, which describes the memory info of
870 * The caller of blk_make_request must make sure that bi_io_vec
871 * are set to describe the memory buffers. That bio_data_dir() will return
872 * the needed direction of the request. (And all bio's in the passed bio-chain
873 * are properly set accordingly)
875 * If called under none-sleepable conditions, mapped bio buffers must not
876 * need bouncing, by calling the appropriate masked or flagged allocator,
877 * suitable for the target device. Otherwise the call to blk_queue_bounce will
880 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
881 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
882 * anything but the first bio in the chain. Otherwise you risk waiting for IO
883 * completion of a bio that hasn't been submitted yet, thus resulting in a
884 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
885 * of bio_alloc(), as that avoids the mempool deadlock.
886 * If possible a big IO should be split into smaller parts when allocation
887 * fails. Partial allocation should not be an error, or you risk a live-lock.
889 struct request
*blk_make_request(struct request_queue
*q
, struct bio
*bio
,
892 struct request
*rq
= blk_get_request(q
, bio_data_dir(bio
), gfp_mask
);
895 return ERR_PTR(-ENOMEM
);
898 struct bio
*bounce_bio
= bio
;
901 blk_queue_bounce(q
, &bounce_bio
);
902 ret
= blk_rq_append_bio(q
, rq
, bounce_bio
);
911 EXPORT_SYMBOL(blk_make_request
);
914 * blk_requeue_request - put a request back on queue
915 * @q: request queue where request should be inserted
916 * @rq: request to be inserted
919 * Drivers often keep queueing requests until the hardware cannot accept
920 * more, when that condition happens we need to put the request back
921 * on the queue. Must be called with queue lock held.
923 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
925 blk_delete_timer(rq
);
926 blk_clear_rq_complete(rq
);
927 trace_block_rq_requeue(q
, rq
);
929 if (blk_rq_tagged(rq
))
930 blk_queue_end_tag(q
, rq
);
932 BUG_ON(blk_queued_rq(rq
));
934 elv_requeue_request(q
, rq
);
936 EXPORT_SYMBOL(blk_requeue_request
);
938 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
941 drive_stat_acct(rq
, 1);
942 __elv_add_request(q
, rq
, where
);
946 * blk_insert_request - insert a special request into a request queue
947 * @q: request queue where request should be inserted
948 * @rq: request to be inserted
949 * @at_head: insert request at head or tail of queue
950 * @data: private data
953 * Many block devices need to execute commands asynchronously, so they don't
954 * block the whole kernel from preemption during request execution. This is
955 * accomplished normally by inserting aritficial requests tagged as
956 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
957 * be scheduled for actual execution by the request queue.
959 * We have the option of inserting the head or the tail of the queue.
960 * Typically we use the tail for new ioctls and so forth. We use the head
961 * of the queue for things like a QUEUE_FULL message from a device, or a
962 * host that is unable to accept a particular command.
964 void blk_insert_request(struct request_queue
*q
, struct request
*rq
,
965 int at_head
, void *data
)
967 int where
= at_head
? ELEVATOR_INSERT_FRONT
: ELEVATOR_INSERT_BACK
;
971 * tell I/O scheduler that this isn't a regular read/write (ie it
972 * must not attempt merges on this) and that it acts as a soft
975 rq
->cmd_type
= REQ_TYPE_SPECIAL
;
979 spin_lock_irqsave(q
->queue_lock
, flags
);
982 * If command is tagged, release the tag
984 if (blk_rq_tagged(rq
))
985 blk_queue_end_tag(q
, rq
);
987 add_acct_request(q
, rq
, where
);
989 spin_unlock_irqrestore(q
->queue_lock
, flags
);
991 EXPORT_SYMBOL(blk_insert_request
);
993 static void part_round_stats_single(int cpu
, struct hd_struct
*part
,
996 if (now
== part
->stamp
)
999 if (part_in_flight(part
)) {
1000 __part_stat_add(cpu
, part
, time_in_queue
,
1001 part_in_flight(part
) * (now
- part
->stamp
));
1002 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1008 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1009 * @cpu: cpu number for stats access
1010 * @part: target partition
1012 * The average IO queue length and utilisation statistics are maintained
1013 * by observing the current state of the queue length and the amount of
1014 * time it has been in this state for.
1016 * Normally, that accounting is done on IO completion, but that can result
1017 * in more than a second's worth of IO being accounted for within any one
1018 * second, leading to >100% utilisation. To deal with that, we call this
1019 * function to do a round-off before returning the results when reading
1020 * /proc/diskstats. This accounts immediately for all queue usage up to
1021 * the current jiffies and restarts the counters again.
1023 void part_round_stats(int cpu
, struct hd_struct
*part
)
1025 unsigned long now
= jiffies
;
1028 part_round_stats_single(cpu
, &part_to_disk(part
)->part0
, now
);
1029 part_round_stats_single(cpu
, part
, now
);
1031 EXPORT_SYMBOL_GPL(part_round_stats
);
1034 * queue lock must be held
1036 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1040 if (unlikely(--req
->ref_count
))
1043 elv_completed_request(q
, req
);
1045 /* this is a bio leak */
1046 WARN_ON(req
->bio
!= NULL
);
1049 * Request may not have originated from ll_rw_blk. if not,
1050 * it didn't come out of our reserved rq pools
1052 if (req
->cmd_flags
& REQ_ALLOCED
) {
1053 int is_sync
= rq_is_sync(req
) != 0;
1054 int priv
= req
->cmd_flags
& REQ_ELVPRIV
;
1056 BUG_ON(!list_empty(&req
->queuelist
));
1057 BUG_ON(!hlist_unhashed(&req
->hash
));
1059 blk_free_request(q
, req
);
1060 freed_request(q
, is_sync
, priv
);
1063 EXPORT_SYMBOL_GPL(__blk_put_request
);
1065 void blk_put_request(struct request
*req
)
1067 unsigned long flags
;
1068 struct request_queue
*q
= req
->q
;
1070 spin_lock_irqsave(q
->queue_lock
, flags
);
1071 __blk_put_request(q
, req
);
1072 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1074 EXPORT_SYMBOL(blk_put_request
);
1077 * blk_add_request_payload - add a payload to a request
1078 * @rq: request to update
1079 * @page: page backing the payload
1080 * @len: length of the payload.
1082 * This allows to later add a payload to an already submitted request by
1083 * a block driver. The driver needs to take care of freeing the payload
1086 * Note that this is a quite horrible hack and nothing but handling of
1087 * discard requests should ever use it.
1089 void blk_add_request_payload(struct request
*rq
, struct page
*page
,
1092 struct bio
*bio
= rq
->bio
;
1094 bio
->bi_io_vec
->bv_page
= page
;
1095 bio
->bi_io_vec
->bv_offset
= 0;
1096 bio
->bi_io_vec
->bv_len
= len
;
1100 bio
->bi_phys_segments
= 1;
1102 rq
->__data_len
= rq
->resid_len
= len
;
1103 rq
->nr_phys_segments
= 1;
1104 rq
->buffer
= bio_data(bio
);
1106 EXPORT_SYMBOL_GPL(blk_add_request_payload
);
1108 static bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1111 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1113 if (!ll_back_merge_fn(q
, req
, bio
))
1116 trace_block_bio_backmerge(q
, bio
);
1118 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1119 blk_rq_set_mixed_merge(req
);
1121 req
->biotail
->bi_next
= bio
;
1123 req
->__data_len
+= bio
->bi_size
;
1124 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1126 drive_stat_acct(req
, 0);
1127 elv_bio_merged(q
, req
, bio
);
1131 static bool bio_attempt_front_merge(struct request_queue
*q
,
1132 struct request
*req
, struct bio
*bio
)
1134 const int ff
= bio
->bi_rw
& REQ_FAILFAST_MASK
;
1136 if (!ll_front_merge_fn(q
, req
, bio
))
1139 trace_block_bio_frontmerge(q
, bio
);
1141 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1142 blk_rq_set_mixed_merge(req
);
1144 bio
->bi_next
= req
->bio
;
1148 * may not be valid. if the low level driver said
1149 * it didn't need a bounce buffer then it better
1150 * not touch req->buffer either...
1152 req
->buffer
= bio_data(bio
);
1153 req
->__sector
= bio
->bi_sector
;
1154 req
->__data_len
+= bio
->bi_size
;
1155 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1157 drive_stat_acct(req
, 0);
1158 elv_bio_merged(q
, req
, bio
);
1163 * Attempts to merge with the plugged list in the current process. Returns
1164 * true if merge was successful, otherwise false.
1166 static bool attempt_plug_merge(struct task_struct
*tsk
, struct request_queue
*q
,
1169 struct blk_plug
*plug
;
1177 list_for_each_entry_reverse(rq
, &plug
->list
, queuelist
) {
1183 el_ret
= elv_try_merge(rq
, bio
);
1184 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1185 ret
= bio_attempt_back_merge(q
, rq
, bio
);
1188 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1189 ret
= bio_attempt_front_merge(q
, rq
, bio
);
1198 void init_request_from_bio(struct request
*req
, struct bio
*bio
)
1200 req
->cpu
= bio
->bi_comp_cpu
;
1201 req
->cmd_type
= REQ_TYPE_FS
;
1203 req
->cmd_flags
|= bio
->bi_rw
& REQ_COMMON_MASK
;
1204 if (bio
->bi_rw
& REQ_RAHEAD
)
1205 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1208 req
->__sector
= bio
->bi_sector
;
1209 req
->ioprio
= bio_prio(bio
);
1210 blk_rq_bio_prep(req
->q
, req
, bio
);
1213 static int __make_request(struct request_queue
*q
, struct bio
*bio
)
1215 const bool sync
= !!(bio
->bi_rw
& REQ_SYNC
);
1216 struct blk_plug
*plug
;
1217 int el_ret
, rw_flags
, where
= ELEVATOR_INSERT_SORT
;
1218 struct request
*req
;
1221 * low level driver can indicate that it wants pages above a
1222 * certain limit bounced to low memory (ie for highmem, or even
1223 * ISA dma in theory)
1225 blk_queue_bounce(q
, &bio
);
1227 if (bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) {
1228 spin_lock_irq(q
->queue_lock
);
1229 where
= ELEVATOR_INSERT_FLUSH
;
1234 * Check if we can merge with the plugged list before grabbing
1237 if (attempt_plug_merge(current
, q
, bio
))
1240 spin_lock_irq(q
->queue_lock
);
1242 el_ret
= elv_merge(q
, &req
, bio
);
1243 if (el_ret
== ELEVATOR_BACK_MERGE
) {
1244 if (bio_attempt_back_merge(q
, req
, bio
)) {
1245 if (!attempt_back_merge(q
, req
))
1246 elv_merged_request(q
, req
, el_ret
);
1249 } else if (el_ret
== ELEVATOR_FRONT_MERGE
) {
1250 if (bio_attempt_front_merge(q
, req
, bio
)) {
1251 if (!attempt_front_merge(q
, req
))
1252 elv_merged_request(q
, req
, el_ret
);
1259 * This sync check and mask will be re-done in init_request_from_bio(),
1260 * but we need to set it earlier to expose the sync flag to the
1261 * rq allocator and io schedulers.
1263 rw_flags
= bio_data_dir(bio
);
1265 rw_flags
|= REQ_SYNC
;
1268 * Grab a free request. This is might sleep but can not fail.
1269 * Returns with the queue unlocked.
1271 req
= get_request_wait(q
, rw_flags
, bio
);
1274 * After dropping the lock and possibly sleeping here, our request
1275 * may now be mergeable after it had proven unmergeable (above).
1276 * We don't worry about that case for efficiency. It won't happen
1277 * often, and the elevators are able to handle it.
1279 init_request_from_bio(req
, bio
);
1281 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
) ||
1282 bio_flagged(bio
, BIO_CPU_AFFINE
))
1283 req
->cpu
= smp_processor_id();
1285 plug
= current
->plug
;
1288 * If this is the first request added after a plug, fire
1289 * of a plug trace. If others have been added before, check
1290 * if we have multiple devices in this plug. If so, make a
1291 * note to sort the list before dispatch.
1293 if (list_empty(&plug
->list
))
1294 trace_block_plug(q
);
1295 else if (!plug
->should_sort
) {
1296 struct request
*__rq
;
1298 __rq
= list_entry_rq(plug
->list
.prev
);
1300 plug
->should_sort
= 1;
1302 list_add_tail(&req
->queuelist
, &plug
->list
);
1304 drive_stat_acct(req
, 1);
1305 if (plug
->count
>= BLK_MAX_REQUEST_COUNT
)
1306 blk_flush_plug_list(plug
, false);
1308 spin_lock_irq(q
->queue_lock
);
1309 add_acct_request(q
, req
, where
);
1312 spin_unlock_irq(q
->queue_lock
);
1319 * If bio->bi_dev is a partition, remap the location
1321 static inline void blk_partition_remap(struct bio
*bio
)
1323 struct block_device
*bdev
= bio
->bi_bdev
;
1325 if (bio_sectors(bio
) && bdev
!= bdev
->bd_contains
) {
1326 struct hd_struct
*p
= bdev
->bd_part
;
1328 bio
->bi_sector
+= p
->start_sect
;
1329 bio
->bi_bdev
= bdev
->bd_contains
;
1331 trace_block_bio_remap(bdev_get_queue(bio
->bi_bdev
), bio
,
1333 bio
->bi_sector
- p
->start_sect
);
1337 static void handle_bad_sector(struct bio
*bio
)
1339 char b
[BDEVNAME_SIZE
];
1341 printk(KERN_INFO
"attempt to access beyond end of device\n");
1342 printk(KERN_INFO
"%s: rw=%ld, want=%Lu, limit=%Lu\n",
1343 bdevname(bio
->bi_bdev
, b
),
1345 (unsigned long long)bio
->bi_sector
+ bio_sectors(bio
),
1346 (long long)(i_size_read(bio
->bi_bdev
->bd_inode
) >> 9));
1348 set_bit(BIO_EOF
, &bio
->bi_flags
);
1351 #ifdef CONFIG_FAIL_MAKE_REQUEST
1353 static DECLARE_FAULT_ATTR(fail_make_request
);
1355 static int __init
setup_fail_make_request(char *str
)
1357 return setup_fault_attr(&fail_make_request
, str
);
1359 __setup("fail_make_request=", setup_fail_make_request
);
1361 static int should_fail_request(struct bio
*bio
)
1363 struct hd_struct
*part
= bio
->bi_bdev
->bd_part
;
1365 if (part_to_disk(part
)->part0
.make_it_fail
|| part
->make_it_fail
)
1366 return should_fail(&fail_make_request
, bio
->bi_size
);
1371 static int __init
fail_make_request_debugfs(void)
1373 return init_fault_attr_dentries(&fail_make_request
,
1374 "fail_make_request");
1377 late_initcall(fail_make_request_debugfs
);
1379 #else /* CONFIG_FAIL_MAKE_REQUEST */
1381 static inline int should_fail_request(struct bio
*bio
)
1386 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1389 * Check whether this bio extends beyond the end of the device.
1391 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
1398 /* Test device or partition size, when known. */
1399 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
1401 sector_t sector
= bio
->bi_sector
;
1403 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
1405 * This may well happen - the kernel calls bread()
1406 * without checking the size of the device, e.g., when
1407 * mounting a device.
1409 handle_bad_sector(bio
);
1418 * generic_make_request - hand a buffer to its device driver for I/O
1419 * @bio: The bio describing the location in memory and on the device.
1421 * generic_make_request() is used to make I/O requests of block
1422 * devices. It is passed a &struct bio, which describes the I/O that needs
1425 * generic_make_request() does not return any status. The
1426 * success/failure status of the request, along with notification of
1427 * completion, is delivered asynchronously through the bio->bi_end_io
1428 * function described (one day) else where.
1430 * The caller of generic_make_request must make sure that bi_io_vec
1431 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1432 * set to describe the device address, and the
1433 * bi_end_io and optionally bi_private are set to describe how
1434 * completion notification should be signaled.
1436 * generic_make_request and the drivers it calls may use bi_next if this
1437 * bio happens to be merged with someone else, and may change bi_dev and
1438 * bi_sector for remaps as it sees fit. So the values of these fields
1439 * should NOT be depended on after the call to generic_make_request.
1441 static inline void __generic_make_request(struct bio
*bio
)
1443 struct request_queue
*q
;
1444 sector_t old_sector
;
1445 int ret
, nr_sectors
= bio_sectors(bio
);
1451 if (bio_check_eod(bio
, nr_sectors
))
1455 * Resolve the mapping until finished. (drivers are
1456 * still free to implement/resolve their own stacking
1457 * by explicitly returning 0)
1459 * NOTE: we don't repeat the blk_size check for each new device.
1460 * Stacking drivers are expected to know what they are doing.
1465 char b
[BDEVNAME_SIZE
];
1467 q
= bdev_get_queue(bio
->bi_bdev
);
1470 "generic_make_request: Trying to access "
1471 "nonexistent block-device %s (%Lu)\n",
1472 bdevname(bio
->bi_bdev
, b
),
1473 (long long) bio
->bi_sector
);
1477 if (unlikely(!(bio
->bi_rw
& REQ_DISCARD
) &&
1478 nr_sectors
> queue_max_hw_sectors(q
))) {
1479 printk(KERN_ERR
"bio too big device %s (%u > %u)\n",
1480 bdevname(bio
->bi_bdev
, b
),
1482 queue_max_hw_sectors(q
));
1486 if (unlikely(test_bit(QUEUE_FLAG_DEAD
, &q
->queue_flags
)))
1489 if (should_fail_request(bio
))
1493 * If this device has partitions, remap block n
1494 * of partition p to block n+start(p) of the disk.
1496 blk_partition_remap(bio
);
1498 if (bio_integrity_enabled(bio
) && bio_integrity_prep(bio
))
1501 if (old_sector
!= -1)
1502 trace_block_bio_remap(q
, bio
, old_dev
, old_sector
);
1504 old_sector
= bio
->bi_sector
;
1505 old_dev
= bio
->bi_bdev
->bd_dev
;
1507 if (bio_check_eod(bio
, nr_sectors
))
1511 * Filter flush bio's early so that make_request based
1512 * drivers without flush support don't have to worry
1515 if ((bio
->bi_rw
& (REQ_FLUSH
| REQ_FUA
)) && !q
->flush_flags
) {
1516 bio
->bi_rw
&= ~(REQ_FLUSH
| REQ_FUA
);
1523 if ((bio
->bi_rw
& REQ_DISCARD
) &&
1524 (!blk_queue_discard(q
) ||
1525 ((bio
->bi_rw
& REQ_SECURE
) &&
1526 !blk_queue_secdiscard(q
)))) {
1531 if (blk_throtl_bio(q
, &bio
))
1535 * If bio = NULL, bio has been throttled and will be submitted
1541 trace_block_bio_queue(q
, bio
);
1543 ret
= q
->make_request_fn(q
, bio
);
1549 bio_endio(bio
, err
);
1553 * We only want one ->make_request_fn to be active at a time,
1554 * else stack usage with stacked devices could be a problem.
1555 * So use current->bio_list to keep a list of requests
1556 * submited by a make_request_fn function.
1557 * current->bio_list is also used as a flag to say if
1558 * generic_make_request is currently active in this task or not.
1559 * If it is NULL, then no make_request is active. If it is non-NULL,
1560 * then a make_request is active, and new requests should be added
1563 void generic_make_request(struct bio
*bio
)
1565 struct bio_list bio_list_on_stack
;
1567 if (current
->bio_list
) {
1568 /* make_request is active */
1569 bio_list_add(current
->bio_list
, bio
);
1572 /* following loop may be a bit non-obvious, and so deserves some
1574 * Before entering the loop, bio->bi_next is NULL (as all callers
1575 * ensure that) so we have a list with a single bio.
1576 * We pretend that we have just taken it off a longer list, so
1577 * we assign bio_list to a pointer to the bio_list_on_stack,
1578 * thus initialising the bio_list of new bios to be
1579 * added. __generic_make_request may indeed add some more bios
1580 * through a recursive call to generic_make_request. If it
1581 * did, we find a non-NULL value in bio_list and re-enter the loop
1582 * from the top. In this case we really did just take the bio
1583 * of the top of the list (no pretending) and so remove it from
1584 * bio_list, and call into __generic_make_request again.
1586 * The loop was structured like this to make only one call to
1587 * __generic_make_request (which is important as it is large and
1588 * inlined) and to keep the structure simple.
1590 BUG_ON(bio
->bi_next
);
1591 bio_list_init(&bio_list_on_stack
);
1592 current
->bio_list
= &bio_list_on_stack
;
1594 __generic_make_request(bio
);
1595 bio
= bio_list_pop(current
->bio_list
);
1597 current
->bio_list
= NULL
; /* deactivate */
1599 EXPORT_SYMBOL(generic_make_request
);
1602 * submit_bio - submit a bio to the block device layer for I/O
1603 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1604 * @bio: The &struct bio which describes the I/O
1606 * submit_bio() is very similar in purpose to generic_make_request(), and
1607 * uses that function to do most of the work. Both are fairly rough
1608 * interfaces; @bio must be presetup and ready for I/O.
1611 void submit_bio(int rw
, struct bio
*bio
)
1613 int count
= bio_sectors(bio
);
1618 * If it's a regular read/write or a barrier with data attached,
1619 * go through the normal accounting stuff before submission.
1621 if (bio_has_data(bio
) && !(rw
& REQ_DISCARD
)) {
1623 count_vm_events(PGPGOUT
, count
);
1625 task_io_account_read(bio
->bi_size
);
1626 count_vm_events(PGPGIN
, count
);
1629 if (unlikely(block_dump
)) {
1630 char b
[BDEVNAME_SIZE
];
1631 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
1632 current
->comm
, task_pid_nr(current
),
1633 (rw
& WRITE
) ? "WRITE" : "READ",
1634 (unsigned long long)bio
->bi_sector
,
1635 bdevname(bio
->bi_bdev
, b
),
1640 generic_make_request(bio
);
1642 EXPORT_SYMBOL(submit_bio
);
1645 * blk_rq_check_limits - Helper function to check a request for the queue limit
1647 * @rq: the request being checked
1650 * @rq may have been made based on weaker limitations of upper-level queues
1651 * in request stacking drivers, and it may violate the limitation of @q.
1652 * Since the block layer and the underlying device driver trust @rq
1653 * after it is inserted to @q, it should be checked against @q before
1654 * the insertion using this generic function.
1656 * This function should also be useful for request stacking drivers
1657 * in some cases below, so export this function.
1658 * Request stacking drivers like request-based dm may change the queue
1659 * limits while requests are in the queue (e.g. dm's table swapping).
1660 * Such request stacking drivers should check those requests agaist
1661 * the new queue limits again when they dispatch those requests,
1662 * although such checkings are also done against the old queue limits
1663 * when submitting requests.
1665 int blk_rq_check_limits(struct request_queue
*q
, struct request
*rq
)
1667 if (rq
->cmd_flags
& REQ_DISCARD
)
1670 if (blk_rq_sectors(rq
) > queue_max_sectors(q
) ||
1671 blk_rq_bytes(rq
) > queue_max_hw_sectors(q
) << 9) {
1672 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
1677 * queue's settings related to segment counting like q->bounce_pfn
1678 * may differ from that of other stacking queues.
1679 * Recalculate it to check the request correctly on this queue's
1682 blk_recalc_rq_segments(rq
);
1683 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
1684 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
1690 EXPORT_SYMBOL_GPL(blk_rq_check_limits
);
1693 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1694 * @q: the queue to submit the request
1695 * @rq: the request being queued
1697 int blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
1699 unsigned long flags
;
1701 if (blk_rq_check_limits(q
, rq
))
1704 #ifdef CONFIG_FAIL_MAKE_REQUEST
1705 if (rq
->rq_disk
&& rq
->rq_disk
->part0
.make_it_fail
&&
1706 should_fail(&fail_make_request
, blk_rq_bytes(rq
)))
1710 spin_lock_irqsave(q
->queue_lock
, flags
);
1713 * Submitting request must be dequeued before calling this function
1714 * because it will be linked to another request_queue
1716 BUG_ON(blk_queued_rq(rq
));
1718 add_acct_request(q
, rq
, ELEVATOR_INSERT_BACK
);
1719 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1723 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
1726 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1727 * @rq: request to examine
1730 * A request could be merge of IOs which require different failure
1731 * handling. This function determines the number of bytes which
1732 * can be failed from the beginning of the request without
1733 * crossing into area which need to be retried further.
1736 * The number of bytes to fail.
1739 * queue_lock must be held.
1741 unsigned int blk_rq_err_bytes(const struct request
*rq
)
1743 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
1744 unsigned int bytes
= 0;
1747 if (!(rq
->cmd_flags
& REQ_MIXED_MERGE
))
1748 return blk_rq_bytes(rq
);
1751 * Currently the only 'mixing' which can happen is between
1752 * different fastfail types. We can safely fail portions
1753 * which have all the failfast bits that the first one has -
1754 * the ones which are at least as eager to fail as the first
1757 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
1758 if ((bio
->bi_rw
& ff
) != ff
)
1760 bytes
+= bio
->bi_size
;
1763 /* this could lead to infinite loop */
1764 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
1767 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
1769 static void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
1771 if (blk_do_io_stat(req
)) {
1772 const int rw
= rq_data_dir(req
);
1773 struct hd_struct
*part
;
1776 cpu
= part_stat_lock();
1778 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
1783 static void blk_account_io_done(struct request
*req
)
1786 * Account IO completion. flush_rq isn't accounted as a
1787 * normal IO on queueing nor completion. Accounting the
1788 * containing request is enough.
1790 if (blk_do_io_stat(req
) && !(req
->cmd_flags
& REQ_FLUSH_SEQ
)) {
1791 unsigned long duration
= jiffies
- req
->start_time
;
1792 const int rw
= rq_data_dir(req
);
1793 struct hd_struct
*part
;
1796 cpu
= part_stat_lock();
1799 part_stat_inc(cpu
, part
, ios
[rw
]);
1800 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
1801 part_round_stats(cpu
, part
);
1802 part_dec_in_flight(part
, rw
);
1804 hd_struct_put(part
);
1810 * blk_peek_request - peek at the top of a request queue
1811 * @q: request queue to peek at
1814 * Return the request at the top of @q. The returned request
1815 * should be started using blk_start_request() before LLD starts
1819 * Pointer to the request at the top of @q if available. Null
1823 * queue_lock must be held.
1825 struct request
*blk_peek_request(struct request_queue
*q
)
1830 while ((rq
= __elv_next_request(q
)) != NULL
) {
1831 if (!(rq
->cmd_flags
& REQ_STARTED
)) {
1833 * This is the first time the device driver
1834 * sees this request (possibly after
1835 * requeueing). Notify IO scheduler.
1837 if (rq
->cmd_flags
& REQ_SORTED
)
1838 elv_activate_rq(q
, rq
);
1841 * just mark as started even if we don't start
1842 * it, a request that has been delayed should
1843 * not be passed by new incoming requests
1845 rq
->cmd_flags
|= REQ_STARTED
;
1846 trace_block_rq_issue(q
, rq
);
1849 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
1850 q
->end_sector
= rq_end_sector(rq
);
1851 q
->boundary_rq
= NULL
;
1854 if (rq
->cmd_flags
& REQ_DONTPREP
)
1857 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
1859 * make sure space for the drain appears we
1860 * know we can do this because max_hw_segments
1861 * has been adjusted to be one fewer than the
1864 rq
->nr_phys_segments
++;
1870 ret
= q
->prep_rq_fn(q
, rq
);
1871 if (ret
== BLKPREP_OK
) {
1873 } else if (ret
== BLKPREP_DEFER
) {
1875 * the request may have been (partially) prepped.
1876 * we need to keep this request in the front to
1877 * avoid resource deadlock. REQ_STARTED will
1878 * prevent other fs requests from passing this one.
1880 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
1881 !(rq
->cmd_flags
& REQ_DONTPREP
)) {
1883 * remove the space for the drain we added
1884 * so that we don't add it again
1886 --rq
->nr_phys_segments
;
1891 } else if (ret
== BLKPREP_KILL
) {
1892 rq
->cmd_flags
|= REQ_QUIET
;
1894 * Mark this request as started so we don't trigger
1895 * any debug logic in the end I/O path.
1897 blk_start_request(rq
);
1898 __blk_end_request_all(rq
, -EIO
);
1900 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
1907 EXPORT_SYMBOL(blk_peek_request
);
1909 void blk_dequeue_request(struct request
*rq
)
1911 struct request_queue
*q
= rq
->q
;
1913 BUG_ON(list_empty(&rq
->queuelist
));
1914 BUG_ON(ELV_ON_HASH(rq
));
1916 list_del_init(&rq
->queuelist
);
1919 * the time frame between a request being removed from the lists
1920 * and to it is freed is accounted as io that is in progress at
1923 if (blk_account_rq(rq
)) {
1924 q
->in_flight
[rq_is_sync(rq
)]++;
1925 set_io_start_time_ns(rq
);
1930 * blk_start_request - start request processing on the driver
1931 * @req: request to dequeue
1934 * Dequeue @req and start timeout timer on it. This hands off the
1935 * request to the driver.
1937 * Block internal functions which don't want to start timer should
1938 * call blk_dequeue_request().
1941 * queue_lock must be held.
1943 void blk_start_request(struct request
*req
)
1945 blk_dequeue_request(req
);
1948 * We are now handing the request to the hardware, initialize
1949 * resid_len to full count and add the timeout handler.
1951 req
->resid_len
= blk_rq_bytes(req
);
1952 if (unlikely(blk_bidi_rq(req
)))
1953 req
->next_rq
->resid_len
= blk_rq_bytes(req
->next_rq
);
1957 EXPORT_SYMBOL(blk_start_request
);
1960 * blk_fetch_request - fetch a request from a request queue
1961 * @q: request queue to fetch a request from
1964 * Return the request at the top of @q. The request is started on
1965 * return and LLD can start processing it immediately.
1968 * Pointer to the request at the top of @q if available. Null
1972 * queue_lock must be held.
1974 struct request
*blk_fetch_request(struct request_queue
*q
)
1978 rq
= blk_peek_request(q
);
1980 blk_start_request(rq
);
1983 EXPORT_SYMBOL(blk_fetch_request
);
1986 * blk_update_request - Special helper function for request stacking drivers
1987 * @req: the request being processed
1988 * @error: %0 for success, < %0 for error
1989 * @nr_bytes: number of bytes to complete @req
1992 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1993 * the request structure even if @req doesn't have leftover.
1994 * If @req has leftover, sets it up for the next range of segments.
1996 * This special helper function is only for request stacking drivers
1997 * (e.g. request-based dm) so that they can handle partial completion.
1998 * Actual device drivers should use blk_end_request instead.
2000 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2001 * %false return from this function.
2004 * %false - this request doesn't have any more data
2005 * %true - this request has more data
2007 bool blk_update_request(struct request
*req
, int error
, unsigned int nr_bytes
)
2009 int total_bytes
, bio_nbytes
, next_idx
= 0;
2015 trace_block_rq_complete(req
->q
, req
);
2018 * For fs requests, rq is just carrier of independent bio's
2019 * and each partial completion should be handled separately.
2020 * Reset per-request error on each partial completion.
2022 * TODO: tj: This is too subtle. It would be better to let
2023 * low level drivers do what they see fit.
2025 if (req
->cmd_type
== REQ_TYPE_FS
)
2028 if (error
&& req
->cmd_type
== REQ_TYPE_FS
&&
2029 !(req
->cmd_flags
& REQ_QUIET
)) {
2034 error_type
= "recoverable transport";
2037 error_type
= "critical target";
2040 error_type
= "critical nexus";
2047 printk(KERN_ERR
"end_request: %s error, dev %s, sector %llu\n",
2048 error_type
, req
->rq_disk
? req
->rq_disk
->disk_name
: "?",
2049 (unsigned long long)blk_rq_pos(req
));
2052 blk_account_io_completion(req
, nr_bytes
);
2054 total_bytes
= bio_nbytes
= 0;
2055 while ((bio
= req
->bio
) != NULL
) {
2058 if (nr_bytes
>= bio
->bi_size
) {
2059 req
->bio
= bio
->bi_next
;
2060 nbytes
= bio
->bi_size
;
2061 req_bio_endio(req
, bio
, nbytes
, error
);
2065 int idx
= bio
->bi_idx
+ next_idx
;
2067 if (unlikely(idx
>= bio
->bi_vcnt
)) {
2068 blk_dump_rq_flags(req
, "__end_that");
2069 printk(KERN_ERR
"%s: bio idx %d >= vcnt %d\n",
2070 __func__
, idx
, bio
->bi_vcnt
);
2074 nbytes
= bio_iovec_idx(bio
, idx
)->bv_len
;
2075 BIO_BUG_ON(nbytes
> bio
->bi_size
);
2078 * not a complete bvec done
2080 if (unlikely(nbytes
> nr_bytes
)) {
2081 bio_nbytes
+= nr_bytes
;
2082 total_bytes
+= nr_bytes
;
2087 * advance to the next vector
2090 bio_nbytes
+= nbytes
;
2093 total_bytes
+= nbytes
;
2099 * end more in this run, or just return 'not-done'
2101 if (unlikely(nr_bytes
<= 0))
2111 * Reset counters so that the request stacking driver
2112 * can find how many bytes remain in the request
2115 req
->__data_len
= 0;
2120 * if the request wasn't completed, update state
2123 req_bio_endio(req
, bio
, bio_nbytes
, error
);
2124 bio
->bi_idx
+= next_idx
;
2125 bio_iovec(bio
)->bv_offset
+= nr_bytes
;
2126 bio_iovec(bio
)->bv_len
-= nr_bytes
;
2129 req
->__data_len
-= total_bytes
;
2130 req
->buffer
= bio_data(req
->bio
);
2132 /* update sector only for requests with clear definition of sector */
2133 if (req
->cmd_type
== REQ_TYPE_FS
|| (req
->cmd_flags
& REQ_DISCARD
))
2134 req
->__sector
+= total_bytes
>> 9;
2136 /* mixed attributes always follow the first bio */
2137 if (req
->cmd_flags
& REQ_MIXED_MERGE
) {
2138 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2139 req
->cmd_flags
|= req
->bio
->bi_rw
& REQ_FAILFAST_MASK
;
2143 * If total number of sectors is less than the first segment
2144 * size, something has gone terribly wrong.
2146 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2147 blk_dump_rq_flags(req
, "request botched");
2148 req
->__data_len
= blk_rq_cur_bytes(req
);
2151 /* recalculate the number of segments */
2152 blk_recalc_rq_segments(req
);
2156 EXPORT_SYMBOL_GPL(blk_update_request
);
2158 static bool blk_update_bidi_request(struct request
*rq
, int error
,
2159 unsigned int nr_bytes
,
2160 unsigned int bidi_bytes
)
2162 if (blk_update_request(rq
, error
, nr_bytes
))
2165 /* Bidi request must be completed as a whole */
2166 if (unlikely(blk_bidi_rq(rq
)) &&
2167 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2170 if (blk_queue_add_random(rq
->q
))
2171 add_disk_randomness(rq
->rq_disk
);
2177 * blk_unprep_request - unprepare a request
2180 * This function makes a request ready for complete resubmission (or
2181 * completion). It happens only after all error handling is complete,
2182 * so represents the appropriate moment to deallocate any resources
2183 * that were allocated to the request in the prep_rq_fn. The queue
2184 * lock is held when calling this.
2186 void blk_unprep_request(struct request
*req
)
2188 struct request_queue
*q
= req
->q
;
2190 req
->cmd_flags
&= ~REQ_DONTPREP
;
2191 if (q
->unprep_rq_fn
)
2192 q
->unprep_rq_fn(q
, req
);
2194 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2197 * queue lock must be held
2199 static void blk_finish_request(struct request
*req
, int error
)
2201 if (blk_rq_tagged(req
))
2202 blk_queue_end_tag(req
->q
, req
);
2204 BUG_ON(blk_queued_rq(req
));
2206 if (unlikely(laptop_mode
) && req
->cmd_type
== REQ_TYPE_FS
)
2207 laptop_io_completion(&req
->q
->backing_dev_info
);
2209 blk_delete_timer(req
);
2211 if (req
->cmd_flags
& REQ_DONTPREP
)
2212 blk_unprep_request(req
);
2215 blk_account_io_done(req
);
2218 req
->end_io(req
, error
);
2220 if (blk_bidi_rq(req
))
2221 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2223 __blk_put_request(req
->q
, req
);
2228 * blk_end_bidi_request - Complete a bidi request
2229 * @rq: the request to complete
2230 * @error: %0 for success, < %0 for error
2231 * @nr_bytes: number of bytes to complete @rq
2232 * @bidi_bytes: number of bytes to complete @rq->next_rq
2235 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2236 * Drivers that supports bidi can safely call this member for any
2237 * type of request, bidi or uni. In the later case @bidi_bytes is
2241 * %false - we are done with this request
2242 * %true - still buffers pending for this request
2244 static bool blk_end_bidi_request(struct request
*rq
, int error
,
2245 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2247 struct request_queue
*q
= rq
->q
;
2248 unsigned long flags
;
2250 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2253 spin_lock_irqsave(q
->queue_lock
, flags
);
2254 blk_finish_request(rq
, error
);
2255 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2261 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2262 * @rq: the request to complete
2263 * @error: %0 for success, < %0 for error
2264 * @nr_bytes: number of bytes to complete @rq
2265 * @bidi_bytes: number of bytes to complete @rq->next_rq
2268 * Identical to blk_end_bidi_request() except that queue lock is
2269 * assumed to be locked on entry and remains so on return.
2272 * %false - we are done with this request
2273 * %true - still buffers pending for this request
2275 static bool __blk_end_bidi_request(struct request
*rq
, int error
,
2276 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2278 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2281 blk_finish_request(rq
, error
);
2287 * blk_end_request - Helper function for drivers to complete the request.
2288 * @rq: the request being processed
2289 * @error: %0 for success, < %0 for error
2290 * @nr_bytes: number of bytes to complete
2293 * Ends I/O on a number of bytes attached to @rq.
2294 * If @rq has leftover, sets it up for the next range of segments.
2297 * %false - we are done with this request
2298 * %true - still buffers pending for this request
2300 bool blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2302 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2304 EXPORT_SYMBOL(blk_end_request
);
2307 * blk_end_request_all - Helper function for drives to finish the request.
2308 * @rq: the request to finish
2309 * @error: %0 for success, < %0 for error
2312 * Completely finish @rq.
2314 void blk_end_request_all(struct request
*rq
, int error
)
2317 unsigned int bidi_bytes
= 0;
2319 if (unlikely(blk_bidi_rq(rq
)))
2320 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2322 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2325 EXPORT_SYMBOL(blk_end_request_all
);
2328 * blk_end_request_cur - Helper function to finish the current request chunk.
2329 * @rq: the request to finish the current chunk for
2330 * @error: %0 for success, < %0 for error
2333 * Complete the current consecutively mapped chunk from @rq.
2336 * %false - we are done with this request
2337 * %true - still buffers pending for this request
2339 bool blk_end_request_cur(struct request
*rq
, int error
)
2341 return blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2343 EXPORT_SYMBOL(blk_end_request_cur
);
2346 * blk_end_request_err - Finish a request till the next failure boundary.
2347 * @rq: the request to finish till the next failure boundary for
2348 * @error: must be negative errno
2351 * Complete @rq till the next failure boundary.
2354 * %false - we are done with this request
2355 * %true - still buffers pending for this request
2357 bool blk_end_request_err(struct request
*rq
, int error
)
2359 WARN_ON(error
>= 0);
2360 return blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2362 EXPORT_SYMBOL_GPL(blk_end_request_err
);
2365 * __blk_end_request - Helper function for drivers to complete the request.
2366 * @rq: the request being processed
2367 * @error: %0 for success, < %0 for error
2368 * @nr_bytes: number of bytes to complete
2371 * Must be called with queue lock held unlike blk_end_request().
2374 * %false - we are done with this request
2375 * %true - still buffers pending for this request
2377 bool __blk_end_request(struct request
*rq
, int error
, unsigned int nr_bytes
)
2379 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2381 EXPORT_SYMBOL(__blk_end_request
);
2384 * __blk_end_request_all - Helper function for drives to finish the request.
2385 * @rq: the request to finish
2386 * @error: %0 for success, < %0 for error
2389 * Completely finish @rq. Must be called with queue lock held.
2391 void __blk_end_request_all(struct request
*rq
, int error
)
2394 unsigned int bidi_bytes
= 0;
2396 if (unlikely(blk_bidi_rq(rq
)))
2397 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2399 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2402 EXPORT_SYMBOL(__blk_end_request_all
);
2405 * __blk_end_request_cur - Helper function to finish the current request chunk.
2406 * @rq: the request to finish the current chunk for
2407 * @error: %0 for success, < %0 for error
2410 * Complete the current consecutively mapped chunk from @rq. Must
2411 * be called with queue lock held.
2414 * %false - we are done with this request
2415 * %true - still buffers pending for this request
2417 bool __blk_end_request_cur(struct request
*rq
, int error
)
2419 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
2421 EXPORT_SYMBOL(__blk_end_request_cur
);
2424 * __blk_end_request_err - Finish a request till the next failure boundary.
2425 * @rq: the request to finish till the next failure boundary for
2426 * @error: must be negative errno
2429 * Complete @rq till the next failure boundary. Must be called
2430 * with queue lock held.
2433 * %false - we are done with this request
2434 * %true - still buffers pending for this request
2436 bool __blk_end_request_err(struct request
*rq
, int error
)
2438 WARN_ON(error
>= 0);
2439 return __blk_end_request(rq
, error
, blk_rq_err_bytes(rq
));
2441 EXPORT_SYMBOL_GPL(__blk_end_request_err
);
2443 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
2446 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2447 rq
->cmd_flags
|= bio
->bi_rw
& REQ_WRITE
;
2449 if (bio_has_data(bio
)) {
2450 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
2451 rq
->buffer
= bio_data(bio
);
2453 rq
->__data_len
= bio
->bi_size
;
2454 rq
->bio
= rq
->biotail
= bio
;
2457 rq
->rq_disk
= bio
->bi_bdev
->bd_disk
;
2460 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2462 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2463 * @rq: the request to be flushed
2466 * Flush all pages in @rq.
2468 void rq_flush_dcache_pages(struct request
*rq
)
2470 struct req_iterator iter
;
2471 struct bio_vec
*bvec
;
2473 rq_for_each_segment(bvec
, rq
, iter
)
2474 flush_dcache_page(bvec
->bv_page
);
2476 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
2480 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2481 * @q : the queue of the device being checked
2484 * Check if underlying low-level drivers of a device are busy.
2485 * If the drivers want to export their busy state, they must set own
2486 * exporting function using blk_queue_lld_busy() first.
2488 * Basically, this function is used only by request stacking drivers
2489 * to stop dispatching requests to underlying devices when underlying
2490 * devices are busy. This behavior helps more I/O merging on the queue
2491 * of the request stacking driver and prevents I/O throughput regression
2492 * on burst I/O load.
2495 * 0 - Not busy (The request stacking driver should dispatch request)
2496 * 1 - Busy (The request stacking driver should stop dispatching request)
2498 int blk_lld_busy(struct request_queue
*q
)
2501 return q
->lld_busy_fn(q
);
2505 EXPORT_SYMBOL_GPL(blk_lld_busy
);
2508 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2509 * @rq: the clone request to be cleaned up
2512 * Free all bios in @rq for a cloned request.
2514 void blk_rq_unprep_clone(struct request
*rq
)
2518 while ((bio
= rq
->bio
) != NULL
) {
2519 rq
->bio
= bio
->bi_next
;
2524 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
2527 * Copy attributes of the original request to the clone request.
2528 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2530 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
2532 dst
->cpu
= src
->cpu
;
2533 dst
->cmd_flags
= (src
->cmd_flags
& REQ_CLONE_MASK
) | REQ_NOMERGE
;
2534 dst
->cmd_type
= src
->cmd_type
;
2535 dst
->__sector
= blk_rq_pos(src
);
2536 dst
->__data_len
= blk_rq_bytes(src
);
2537 dst
->nr_phys_segments
= src
->nr_phys_segments
;
2538 dst
->ioprio
= src
->ioprio
;
2539 dst
->extra_len
= src
->extra_len
;
2543 * blk_rq_prep_clone - Helper function to setup clone request
2544 * @rq: the request to be setup
2545 * @rq_src: original request to be cloned
2546 * @bs: bio_set that bios for clone are allocated from
2547 * @gfp_mask: memory allocation mask for bio
2548 * @bio_ctr: setup function to be called for each clone bio.
2549 * Returns %0 for success, non %0 for failure.
2550 * @data: private data to be passed to @bio_ctr
2553 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2554 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2555 * are not copied, and copying such parts is the caller's responsibility.
2556 * Also, pages which the original bios are pointing to are not copied
2557 * and the cloned bios just point same pages.
2558 * So cloned bios must be completed before original bios, which means
2559 * the caller must complete @rq before @rq_src.
2561 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
2562 struct bio_set
*bs
, gfp_t gfp_mask
,
2563 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
2566 struct bio
*bio
, *bio_src
;
2571 blk_rq_init(NULL
, rq
);
2573 __rq_for_each_bio(bio_src
, rq_src
) {
2574 bio
= bio_alloc_bioset(gfp_mask
, bio_src
->bi_max_vecs
, bs
);
2578 __bio_clone(bio
, bio_src
);
2580 if (bio_integrity(bio_src
) &&
2581 bio_integrity_clone(bio
, bio_src
, gfp_mask
, bs
))
2584 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
2588 rq
->biotail
->bi_next
= bio
;
2591 rq
->bio
= rq
->biotail
= bio
;
2594 __blk_rq_prep_clone(rq
, rq_src
);
2601 blk_rq_unprep_clone(rq
);
2605 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
2607 int kblockd_schedule_work(struct request_queue
*q
, struct work_struct
*work
)
2609 return queue_work(kblockd_workqueue
, work
);
2611 EXPORT_SYMBOL(kblockd_schedule_work
);
2613 int kblockd_schedule_delayed_work(struct request_queue
*q
,
2614 struct delayed_work
*dwork
, unsigned long delay
)
2616 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
2618 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
2620 #define PLUG_MAGIC 0x91827364
2622 void blk_start_plug(struct blk_plug
*plug
)
2624 struct task_struct
*tsk
= current
;
2626 plug
->magic
= PLUG_MAGIC
;
2627 INIT_LIST_HEAD(&plug
->list
);
2628 INIT_LIST_HEAD(&plug
->cb_list
);
2629 plug
->should_sort
= 0;
2633 * If this is a nested plug, don't actually assign it. It will be
2634 * flushed on its own.
2638 * Store ordering should not be needed here, since a potential
2639 * preempt will imply a full memory barrier
2644 EXPORT_SYMBOL(blk_start_plug
);
2646 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
2648 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
2649 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
2651 return !(rqa
->q
<= rqb
->q
);
2655 * If 'from_schedule' is true, then postpone the dispatch of requests
2656 * until a safe kblockd context. We due this to avoid accidental big
2657 * additional stack usage in driver dispatch, in places where the originally
2658 * plugger did not intend it.
2660 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
2662 __releases(q
->queue_lock
)
2664 trace_block_unplug(q
, depth
, !from_schedule
);
2667 * If we are punting this to kblockd, then we can safely drop
2668 * the queue_lock before waking kblockd (which needs to take
2671 if (from_schedule
) {
2672 spin_unlock(q
->queue_lock
);
2673 blk_run_queue_async(q
);
2676 spin_unlock(q
->queue_lock
);
2681 static void flush_plug_callbacks(struct blk_plug
*plug
)
2683 LIST_HEAD(callbacks
);
2685 if (list_empty(&plug
->cb_list
))
2688 list_splice_init(&plug
->cb_list
, &callbacks
);
2690 while (!list_empty(&callbacks
)) {
2691 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
2694 list_del(&cb
->list
);
2699 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
2701 struct request_queue
*q
;
2702 unsigned long flags
;
2707 BUG_ON(plug
->magic
!= PLUG_MAGIC
);
2709 flush_plug_callbacks(plug
);
2710 if (list_empty(&plug
->list
))
2713 list_splice_init(&plug
->list
, &list
);
2716 if (plug
->should_sort
) {
2717 list_sort(NULL
, &list
, plug_rq_cmp
);
2718 plug
->should_sort
= 0;
2725 * Save and disable interrupts here, to avoid doing it for every
2726 * queue lock we have to take.
2728 local_irq_save(flags
);
2729 while (!list_empty(&list
)) {
2730 rq
= list_entry_rq(list
.next
);
2731 list_del_init(&rq
->queuelist
);
2735 * This drops the queue lock
2738 queue_unplugged(q
, depth
, from_schedule
);
2741 spin_lock(q
->queue_lock
);
2744 * rq is already accounted, so use raw insert
2746 if (rq
->cmd_flags
& (REQ_FLUSH
| REQ_FUA
))
2747 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
2749 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
2755 * This drops the queue lock
2758 queue_unplugged(q
, depth
, from_schedule
);
2760 local_irq_restore(flags
);
2763 void blk_finish_plug(struct blk_plug
*plug
)
2765 blk_flush_plug_list(plug
, false);
2767 if (plug
== current
->plug
)
2768 current
->plug
= NULL
;
2770 EXPORT_SYMBOL(blk_finish_plug
);
2772 int __init
blk_dev_init(void)
2774 BUILD_BUG_ON(__REQ_NR_BITS
> 8 *
2775 sizeof(((struct request
*)0)->cmd_flags
));
2777 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
2778 kblockd_workqueue
= alloc_workqueue("kblockd",
2779 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
2780 if (!kblockd_workqueue
)
2781 panic("Failed to create kblockd\n");
2783 request_cachep
= kmem_cache_create("blkdev_requests",
2784 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
2786 blk_requestq_cachep
= kmem_cache_create("blkdev_queue",
2787 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);