md/raid1: fix counting of write targets.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid1.c
blob81f3317bb399268e6d4939b66945630763c2100d
1 /*
2 * raid1.c : Multiple Devices driver for Linux
4 * Copyright (C) 1999, 2000, 2001 Ingo Molnar, Red Hat
6 * Copyright (C) 1996, 1997, 1998 Ingo Molnar, Miguel de Icaza, Gadi Oxman
8 * RAID-1 management functions.
10 * Better read-balancing code written by Mika Kuoppala <miku@iki.fi>, 2000
12 * Fixes to reconstruction by Jakob Østergaard" <jakob@ostenfeld.dk>
13 * Various fixes by Neil Brown <neilb@cse.unsw.edu.au>
15 * Changes by Peter T. Breuer <ptb@it.uc3m.es> 31/1/2003 to support
16 * bitmapped intelligence in resync:
18 * - bitmap marked during normal i/o
19 * - bitmap used to skip nondirty blocks during sync
21 * Additions to bitmap code, (C) 2003-2004 Paul Clements, SteelEye Technology:
22 * - persistent bitmap code
24 * This program is free software; you can redistribute it and/or modify
25 * it under the terms of the GNU General Public License as published by
26 * the Free Software Foundation; either version 2, or (at your option)
27 * any later version.
29 * You should have received a copy of the GNU General Public License
30 * (for example /usr/src/linux/COPYING); if not, write to the Free
31 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
34 #include <linux/delay.h>
35 #include <linux/blkdev.h>
36 #include <linux/seq_file.h>
37 #include "md.h"
38 #include "raid1.h"
39 #include "bitmap.h"
41 #define DEBUG 0
42 #if DEBUG
43 #define PRINTK(x...) printk(x)
44 #else
45 #define PRINTK(x...)
46 #endif
49 * Number of guaranteed r1bios in case of extreme VM load:
51 #define NR_RAID1_BIOS 256
54 static void unplug_slaves(mddev_t *mddev);
56 static void allow_barrier(conf_t *conf);
57 static void lower_barrier(conf_t *conf);
59 static void * r1bio_pool_alloc(gfp_t gfp_flags, void *data)
61 struct pool_info *pi = data;
62 r1bio_t *r1_bio;
63 int size = offsetof(r1bio_t, bios[pi->raid_disks]);
65 /* allocate a r1bio with room for raid_disks entries in the bios array */
66 r1_bio = kzalloc(size, gfp_flags);
67 if (!r1_bio && pi->mddev)
68 unplug_slaves(pi->mddev);
70 return r1_bio;
73 static void r1bio_pool_free(void *r1_bio, void *data)
75 kfree(r1_bio);
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 //#define RESYNC_BLOCK_SIZE PAGE_SIZE
80 #define RESYNC_SECTORS (RESYNC_BLOCK_SIZE >> 9)
81 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
82 #define RESYNC_WINDOW (2048*1024)
84 static void * r1buf_pool_alloc(gfp_t gfp_flags, void *data)
86 struct pool_info *pi = data;
87 struct page *page;
88 r1bio_t *r1_bio;
89 struct bio *bio;
90 int i, j;
92 r1_bio = r1bio_pool_alloc(gfp_flags, pi);
93 if (!r1_bio) {
94 unplug_slaves(pi->mddev);
95 return NULL;
99 * Allocate bios : 1 for reading, n-1 for writing
101 for (j = pi->raid_disks ; j-- ; ) {
102 bio = bio_alloc(gfp_flags, RESYNC_PAGES);
103 if (!bio)
104 goto out_free_bio;
105 r1_bio->bios[j] = bio;
108 * Allocate RESYNC_PAGES data pages and attach them to
109 * the first bio.
110 * If this is a user-requested check/repair, allocate
111 * RESYNC_PAGES for each bio.
113 if (test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery))
114 j = pi->raid_disks;
115 else
116 j = 1;
117 while(j--) {
118 bio = r1_bio->bios[j];
119 for (i = 0; i < RESYNC_PAGES; i++) {
120 page = alloc_page(gfp_flags);
121 if (unlikely(!page))
122 goto out_free_pages;
124 bio->bi_io_vec[i].bv_page = page;
125 bio->bi_vcnt = i+1;
128 /* If not user-requests, copy the page pointers to all bios */
129 if (!test_bit(MD_RECOVERY_REQUESTED, &pi->mddev->recovery)) {
130 for (i=0; i<RESYNC_PAGES ; i++)
131 for (j=1; j<pi->raid_disks; j++)
132 r1_bio->bios[j]->bi_io_vec[i].bv_page =
133 r1_bio->bios[0]->bi_io_vec[i].bv_page;
136 r1_bio->master_bio = NULL;
138 return r1_bio;
140 out_free_pages:
141 for (j=0 ; j < pi->raid_disks; j++)
142 for (i=0; i < r1_bio->bios[j]->bi_vcnt ; i++)
143 put_page(r1_bio->bios[j]->bi_io_vec[i].bv_page);
144 j = -1;
145 out_free_bio:
146 while ( ++j < pi->raid_disks )
147 bio_put(r1_bio->bios[j]);
148 r1bio_pool_free(r1_bio, data);
149 return NULL;
152 static void r1buf_pool_free(void *__r1_bio, void *data)
154 struct pool_info *pi = data;
155 int i,j;
156 r1bio_t *r1bio = __r1_bio;
158 for (i = 0; i < RESYNC_PAGES; i++)
159 for (j = pi->raid_disks; j-- ;) {
160 if (j == 0 ||
161 r1bio->bios[j]->bi_io_vec[i].bv_page !=
162 r1bio->bios[0]->bi_io_vec[i].bv_page)
163 safe_put_page(r1bio->bios[j]->bi_io_vec[i].bv_page);
165 for (i=0 ; i < pi->raid_disks; i++)
166 bio_put(r1bio->bios[i]);
168 r1bio_pool_free(r1bio, data);
171 static void put_all_bios(conf_t *conf, r1bio_t *r1_bio)
173 int i;
175 for (i = 0; i < conf->raid_disks; i++) {
176 struct bio **bio = r1_bio->bios + i;
177 if (*bio && *bio != IO_BLOCKED)
178 bio_put(*bio);
179 *bio = NULL;
183 static void free_r1bio(r1bio_t *r1_bio)
185 conf_t *conf = r1_bio->mddev->private;
188 * Wake up any possible resync thread that waits for the device
189 * to go idle.
191 allow_barrier(conf);
193 put_all_bios(conf, r1_bio);
194 mempool_free(r1_bio, conf->r1bio_pool);
197 static void put_buf(r1bio_t *r1_bio)
199 conf_t *conf = r1_bio->mddev->private;
200 int i;
202 for (i=0; i<conf->raid_disks; i++) {
203 struct bio *bio = r1_bio->bios[i];
204 if (bio->bi_end_io)
205 rdev_dec_pending(conf->mirrors[i].rdev, r1_bio->mddev);
208 mempool_free(r1_bio, conf->r1buf_pool);
210 lower_barrier(conf);
213 static void reschedule_retry(r1bio_t *r1_bio)
215 unsigned long flags;
216 mddev_t *mddev = r1_bio->mddev;
217 conf_t *conf = mddev->private;
219 spin_lock_irqsave(&conf->device_lock, flags);
220 list_add(&r1_bio->retry_list, &conf->retry_list);
221 conf->nr_queued ++;
222 spin_unlock_irqrestore(&conf->device_lock, flags);
224 wake_up(&conf->wait_barrier);
225 md_wakeup_thread(mddev->thread);
229 * raid_end_bio_io() is called when we have finished servicing a mirrored
230 * operation and are ready to return a success/failure code to the buffer
231 * cache layer.
233 static void raid_end_bio_io(r1bio_t *r1_bio)
235 struct bio *bio = r1_bio->master_bio;
237 /* if nobody has done the final endio yet, do it now */
238 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
239 PRINTK(KERN_DEBUG "raid1: sync end %s on sectors %llu-%llu\n",
240 (bio_data_dir(bio) == WRITE) ? "write" : "read",
241 (unsigned long long) bio->bi_sector,
242 (unsigned long long) bio->bi_sector +
243 (bio->bi_size >> 9) - 1);
245 bio_endio(bio,
246 test_bit(R1BIO_Uptodate, &r1_bio->state) ? 0 : -EIO);
248 free_r1bio(r1_bio);
252 * Update disk head position estimator based on IRQ completion info.
254 static inline void update_head_pos(int disk, r1bio_t *r1_bio)
256 conf_t *conf = r1_bio->mddev->private;
258 conf->mirrors[disk].head_position =
259 r1_bio->sector + (r1_bio->sectors);
262 static void raid1_end_read_request(struct bio *bio, int error)
264 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
265 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
266 int mirror;
267 conf_t *conf = r1_bio->mddev->private;
269 mirror = r1_bio->read_disk;
271 * this branch is our 'one mirror IO has finished' event handler:
273 update_head_pos(mirror, r1_bio);
275 if (uptodate)
276 set_bit(R1BIO_Uptodate, &r1_bio->state);
277 else {
278 /* If all other devices have failed, we want to return
279 * the error upwards rather than fail the last device.
280 * Here we redefine "uptodate" to mean "Don't want to retry"
282 unsigned long flags;
283 spin_lock_irqsave(&conf->device_lock, flags);
284 if (r1_bio->mddev->degraded == conf->raid_disks ||
285 (r1_bio->mddev->degraded == conf->raid_disks-1 &&
286 !test_bit(Faulty, &conf->mirrors[mirror].rdev->flags)))
287 uptodate = 1;
288 spin_unlock_irqrestore(&conf->device_lock, flags);
291 if (uptodate)
292 raid_end_bio_io(r1_bio);
293 else {
295 * oops, read error:
297 char b[BDEVNAME_SIZE];
298 if (printk_ratelimit())
299 printk(KERN_ERR "raid1: %s: rescheduling sector %llu\n",
300 bdevname(conf->mirrors[mirror].rdev->bdev,b), (unsigned long long)r1_bio->sector);
301 reschedule_retry(r1_bio);
304 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
307 static void raid1_end_write_request(struct bio *bio, int error)
309 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
310 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
311 int mirror, behind = test_bit(R1BIO_BehindIO, &r1_bio->state);
312 conf_t *conf = r1_bio->mddev->private;
313 struct bio *to_put = NULL;
316 for (mirror = 0; mirror < conf->raid_disks; mirror++)
317 if (r1_bio->bios[mirror] == bio)
318 break;
320 if (error == -EOPNOTSUPP && test_bit(R1BIO_Barrier, &r1_bio->state)) {
321 set_bit(BarriersNotsupp, &conf->mirrors[mirror].rdev->flags);
322 set_bit(R1BIO_BarrierRetry, &r1_bio->state);
323 r1_bio->mddev->barriers_work = 0;
324 /* Don't rdev_dec_pending in this branch - keep it for the retry */
325 } else {
327 * this branch is our 'one mirror IO has finished' event handler:
329 r1_bio->bios[mirror] = NULL;
330 to_put = bio;
331 if (!uptodate) {
332 md_error(r1_bio->mddev, conf->mirrors[mirror].rdev);
333 /* an I/O failed, we can't clear the bitmap */
334 set_bit(R1BIO_Degraded, &r1_bio->state);
335 } else
337 * Set R1BIO_Uptodate in our master bio, so that
338 * we will return a good error code for to the higher
339 * levels even if IO on some other mirrored buffer fails.
341 * The 'master' represents the composite IO operation to
342 * user-side. So if something waits for IO, then it will
343 * wait for the 'master' bio.
345 set_bit(R1BIO_Uptodate, &r1_bio->state);
347 update_head_pos(mirror, r1_bio);
349 if (behind) {
350 if (test_bit(WriteMostly, &conf->mirrors[mirror].rdev->flags))
351 atomic_dec(&r1_bio->behind_remaining);
353 /* In behind mode, we ACK the master bio once the I/O has safely
354 * reached all non-writemostly disks. Setting the Returned bit
355 * ensures that this gets done only once -- we don't ever want to
356 * return -EIO here, instead we'll wait */
358 if (atomic_read(&r1_bio->behind_remaining) >= (atomic_read(&r1_bio->remaining)-1) &&
359 test_bit(R1BIO_Uptodate, &r1_bio->state)) {
360 /* Maybe we can return now */
361 if (!test_and_set_bit(R1BIO_Returned, &r1_bio->state)) {
362 struct bio *mbio = r1_bio->master_bio;
363 PRINTK(KERN_DEBUG "raid1: behind end write sectors %llu-%llu\n",
364 (unsigned long long) mbio->bi_sector,
365 (unsigned long long) mbio->bi_sector +
366 (mbio->bi_size >> 9) - 1);
367 bio_endio(mbio, 0);
371 rdev_dec_pending(conf->mirrors[mirror].rdev, conf->mddev);
375 * Let's see if all mirrored write operations have finished
376 * already.
378 if (atomic_dec_and_test(&r1_bio->remaining)) {
379 if (test_bit(R1BIO_BarrierRetry, &r1_bio->state))
380 reschedule_retry(r1_bio);
381 else {
382 /* it really is the end of this request */
383 if (test_bit(R1BIO_BehindIO, &r1_bio->state)) {
384 /* free extra copy of the data pages */
385 int i = bio->bi_vcnt;
386 while (i--)
387 safe_put_page(bio->bi_io_vec[i].bv_page);
389 /* clear the bitmap if all writes complete successfully */
390 bitmap_endwrite(r1_bio->mddev->bitmap, r1_bio->sector,
391 r1_bio->sectors,
392 !test_bit(R1BIO_Degraded, &r1_bio->state),
393 behind);
394 md_write_end(r1_bio->mddev);
395 raid_end_bio_io(r1_bio);
399 if (to_put)
400 bio_put(to_put);
405 * This routine returns the disk from which the requested read should
406 * be done. There is a per-array 'next expected sequential IO' sector
407 * number - if this matches on the next IO then we use the last disk.
408 * There is also a per-disk 'last know head position' sector that is
409 * maintained from IRQ contexts, both the normal and the resync IO
410 * completion handlers update this position correctly. If there is no
411 * perfect sequential match then we pick the disk whose head is closest.
413 * If there are 2 mirrors in the same 2 devices, performance degrades
414 * because position is mirror, not device based.
416 * The rdev for the device selected will have nr_pending incremented.
418 static int read_balance(conf_t *conf, r1bio_t *r1_bio)
420 const unsigned long this_sector = r1_bio->sector;
421 int new_disk = conf->last_used, disk = new_disk;
422 int wonly_disk = -1;
423 const int sectors = r1_bio->sectors;
424 sector_t new_distance, current_distance;
425 mdk_rdev_t *rdev;
427 rcu_read_lock();
429 * Check if we can balance. We can balance on the whole
430 * device if no resync is going on, or below the resync window.
431 * We take the first readable disk when above the resync window.
433 retry:
434 if (conf->mddev->recovery_cp < MaxSector &&
435 (this_sector + sectors >= conf->next_resync)) {
436 /* Choose the first operation device, for consistancy */
437 new_disk = 0;
439 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
440 r1_bio->bios[new_disk] == IO_BLOCKED ||
441 !rdev || !test_bit(In_sync, &rdev->flags)
442 || test_bit(WriteMostly, &rdev->flags);
443 rdev = rcu_dereference(conf->mirrors[++new_disk].rdev)) {
445 if (rdev && test_bit(In_sync, &rdev->flags) &&
446 r1_bio->bios[new_disk] != IO_BLOCKED)
447 wonly_disk = new_disk;
449 if (new_disk == conf->raid_disks - 1) {
450 new_disk = wonly_disk;
451 break;
454 goto rb_out;
458 /* make sure the disk is operational */
459 for (rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
460 r1_bio->bios[new_disk] == IO_BLOCKED ||
461 !rdev || !test_bit(In_sync, &rdev->flags) ||
462 test_bit(WriteMostly, &rdev->flags);
463 rdev = rcu_dereference(conf->mirrors[new_disk].rdev)) {
465 if (rdev && test_bit(In_sync, &rdev->flags) &&
466 r1_bio->bios[new_disk] != IO_BLOCKED)
467 wonly_disk = new_disk;
469 if (new_disk <= 0)
470 new_disk = conf->raid_disks;
471 new_disk--;
472 if (new_disk == disk) {
473 new_disk = wonly_disk;
474 break;
478 if (new_disk < 0)
479 goto rb_out;
481 disk = new_disk;
482 /* now disk == new_disk == starting point for search */
485 * Don't change to another disk for sequential reads:
487 if (conf->next_seq_sect == this_sector)
488 goto rb_out;
489 if (this_sector == conf->mirrors[new_disk].head_position)
490 goto rb_out;
492 current_distance = abs(this_sector - conf->mirrors[disk].head_position);
494 /* Find the disk whose head is closest */
496 do {
497 if (disk <= 0)
498 disk = conf->raid_disks;
499 disk--;
501 rdev = rcu_dereference(conf->mirrors[disk].rdev);
503 if (!rdev || r1_bio->bios[disk] == IO_BLOCKED ||
504 !test_bit(In_sync, &rdev->flags) ||
505 test_bit(WriteMostly, &rdev->flags))
506 continue;
508 if (!atomic_read(&rdev->nr_pending)) {
509 new_disk = disk;
510 break;
512 new_distance = abs(this_sector - conf->mirrors[disk].head_position);
513 if (new_distance < current_distance) {
514 current_distance = new_distance;
515 new_disk = disk;
517 } while (disk != conf->last_used);
519 rb_out:
522 if (new_disk >= 0) {
523 rdev = rcu_dereference(conf->mirrors[new_disk].rdev);
524 if (!rdev)
525 goto retry;
526 atomic_inc(&rdev->nr_pending);
527 if (!test_bit(In_sync, &rdev->flags)) {
528 /* cannot risk returning a device that failed
529 * before we inc'ed nr_pending
531 rdev_dec_pending(rdev, conf->mddev);
532 goto retry;
534 conf->next_seq_sect = this_sector + sectors;
535 conf->last_used = new_disk;
537 rcu_read_unlock();
539 return new_disk;
542 static void unplug_slaves(mddev_t *mddev)
544 conf_t *conf = mddev->private;
545 int i;
547 rcu_read_lock();
548 for (i=0; i<mddev->raid_disks; i++) {
549 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
550 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
551 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
553 atomic_inc(&rdev->nr_pending);
554 rcu_read_unlock();
556 blk_unplug(r_queue);
558 rdev_dec_pending(rdev, mddev);
559 rcu_read_lock();
562 rcu_read_unlock();
565 static void raid1_unplug(struct request_queue *q)
567 mddev_t *mddev = q->queuedata;
569 unplug_slaves(mddev);
570 md_wakeup_thread(mddev->thread);
573 static int raid1_congested(void *data, int bits)
575 mddev_t *mddev = data;
576 conf_t *conf = mddev->private;
577 int i, ret = 0;
579 if (mddev_congested(mddev, bits))
580 return 1;
582 rcu_read_lock();
583 for (i = 0; i < mddev->raid_disks; i++) {
584 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
585 if (rdev && !test_bit(Faulty, &rdev->flags)) {
586 struct request_queue *q = bdev_get_queue(rdev->bdev);
588 /* Note the '|| 1' - when read_balance prefers
589 * non-congested targets, it can be removed
591 if ((bits & (1<<BDI_async_congested)) || 1)
592 ret |= bdi_congested(&q->backing_dev_info, bits);
593 else
594 ret &= bdi_congested(&q->backing_dev_info, bits);
597 rcu_read_unlock();
598 return ret;
602 static int flush_pending_writes(conf_t *conf)
604 /* Any writes that have been queued but are awaiting
605 * bitmap updates get flushed here.
606 * We return 1 if any requests were actually submitted.
608 int rv = 0;
610 spin_lock_irq(&conf->device_lock);
612 if (conf->pending_bio_list.head) {
613 struct bio *bio;
614 bio = bio_list_get(&conf->pending_bio_list);
615 blk_remove_plug(conf->mddev->queue);
616 spin_unlock_irq(&conf->device_lock);
617 /* flush any pending bitmap writes to
618 * disk before proceeding w/ I/O */
619 bitmap_unplug(conf->mddev->bitmap);
621 while (bio) { /* submit pending writes */
622 struct bio *next = bio->bi_next;
623 bio->bi_next = NULL;
624 generic_make_request(bio);
625 bio = next;
627 rv = 1;
628 } else
629 spin_unlock_irq(&conf->device_lock);
630 return rv;
633 /* Barriers....
634 * Sometimes we need to suspend IO while we do something else,
635 * either some resync/recovery, or reconfigure the array.
636 * To do this we raise a 'barrier'.
637 * The 'barrier' is a counter that can be raised multiple times
638 * to count how many activities are happening which preclude
639 * normal IO.
640 * We can only raise the barrier if there is no pending IO.
641 * i.e. if nr_pending == 0.
642 * We choose only to raise the barrier if no-one is waiting for the
643 * barrier to go down. This means that as soon as an IO request
644 * is ready, no other operations which require a barrier will start
645 * until the IO request has had a chance.
647 * So: regular IO calls 'wait_barrier'. When that returns there
648 * is no backgroup IO happening, It must arrange to call
649 * allow_barrier when it has finished its IO.
650 * backgroup IO calls must call raise_barrier. Once that returns
651 * there is no normal IO happeing. It must arrange to call
652 * lower_barrier when the particular background IO completes.
654 #define RESYNC_DEPTH 32
656 static void raise_barrier(conf_t *conf)
658 spin_lock_irq(&conf->resync_lock);
660 /* Wait until no block IO is waiting */
661 wait_event_lock_irq(conf->wait_barrier, !conf->nr_waiting,
662 conf->resync_lock,
663 raid1_unplug(conf->mddev->queue));
665 /* block any new IO from starting */
666 conf->barrier++;
668 /* No wait for all pending IO to complete */
669 wait_event_lock_irq(conf->wait_barrier,
670 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
671 conf->resync_lock,
672 raid1_unplug(conf->mddev->queue));
674 spin_unlock_irq(&conf->resync_lock);
677 static void lower_barrier(conf_t *conf)
679 unsigned long flags;
680 BUG_ON(conf->barrier <= 0);
681 spin_lock_irqsave(&conf->resync_lock, flags);
682 conf->barrier--;
683 spin_unlock_irqrestore(&conf->resync_lock, flags);
684 wake_up(&conf->wait_barrier);
687 static void wait_barrier(conf_t *conf)
689 spin_lock_irq(&conf->resync_lock);
690 if (conf->barrier) {
691 conf->nr_waiting++;
692 wait_event_lock_irq(conf->wait_barrier, !conf->barrier,
693 conf->resync_lock,
694 raid1_unplug(conf->mddev->queue));
695 conf->nr_waiting--;
697 conf->nr_pending++;
698 spin_unlock_irq(&conf->resync_lock);
701 static void allow_barrier(conf_t *conf)
703 unsigned long flags;
704 spin_lock_irqsave(&conf->resync_lock, flags);
705 conf->nr_pending--;
706 spin_unlock_irqrestore(&conf->resync_lock, flags);
707 wake_up(&conf->wait_barrier);
710 static void freeze_array(conf_t *conf)
712 /* stop syncio and normal IO and wait for everything to
713 * go quite.
714 * We increment barrier and nr_waiting, and then
715 * wait until nr_pending match nr_queued+1
716 * This is called in the context of one normal IO request
717 * that has failed. Thus any sync request that might be pending
718 * will be blocked by nr_pending, and we need to wait for
719 * pending IO requests to complete or be queued for re-try.
720 * Thus the number queued (nr_queued) plus this request (1)
721 * must match the number of pending IOs (nr_pending) before
722 * we continue.
724 spin_lock_irq(&conf->resync_lock);
725 conf->barrier++;
726 conf->nr_waiting++;
727 wait_event_lock_irq(conf->wait_barrier,
728 conf->nr_pending == conf->nr_queued+1,
729 conf->resync_lock,
730 ({ flush_pending_writes(conf);
731 raid1_unplug(conf->mddev->queue); }));
732 spin_unlock_irq(&conf->resync_lock);
734 static void unfreeze_array(conf_t *conf)
736 /* reverse the effect of the freeze */
737 spin_lock_irq(&conf->resync_lock);
738 conf->barrier--;
739 conf->nr_waiting--;
740 wake_up(&conf->wait_barrier);
741 spin_unlock_irq(&conf->resync_lock);
745 /* duplicate the data pages for behind I/O */
746 static struct page **alloc_behind_pages(struct bio *bio)
748 int i;
749 struct bio_vec *bvec;
750 struct page **pages = kzalloc(bio->bi_vcnt * sizeof(struct page *),
751 GFP_NOIO);
752 if (unlikely(!pages))
753 goto do_sync_io;
755 bio_for_each_segment(bvec, bio, i) {
756 pages[i] = alloc_page(GFP_NOIO);
757 if (unlikely(!pages[i]))
758 goto do_sync_io;
759 memcpy(kmap(pages[i]) + bvec->bv_offset,
760 kmap(bvec->bv_page) + bvec->bv_offset, bvec->bv_len);
761 kunmap(pages[i]);
762 kunmap(bvec->bv_page);
765 return pages;
767 do_sync_io:
768 if (pages)
769 for (i = 0; i < bio->bi_vcnt && pages[i]; i++)
770 put_page(pages[i]);
771 kfree(pages);
772 PRINTK("%dB behind alloc failed, doing sync I/O\n", bio->bi_size);
773 return NULL;
776 static int make_request(struct request_queue *q, struct bio * bio)
778 mddev_t *mddev = q->queuedata;
779 conf_t *conf = mddev->private;
780 mirror_info_t *mirror;
781 r1bio_t *r1_bio;
782 struct bio *read_bio;
783 int i, targets = 0, disks;
784 struct bitmap *bitmap;
785 unsigned long flags;
786 struct bio_list bl;
787 struct page **behind_pages = NULL;
788 const int rw = bio_data_dir(bio);
789 const bool do_sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
790 int cpu;
791 bool do_barriers;
792 mdk_rdev_t *blocked_rdev;
795 * Register the new request and wait if the reconstruction
796 * thread has put up a bar for new requests.
797 * Continue immediately if no resync is active currently.
798 * We test barriers_work *after* md_write_start as md_write_start
799 * may cause the first superblock write, and that will check out
800 * if barriers work.
803 md_write_start(mddev, bio); /* wait on superblock update early */
805 if (bio_data_dir(bio) == WRITE &&
806 bio->bi_sector + bio->bi_size/512 > mddev->suspend_lo &&
807 bio->bi_sector < mddev->suspend_hi) {
808 /* As the suspend_* range is controlled by
809 * userspace, we want an interruptible
810 * wait.
812 DEFINE_WAIT(w);
813 for (;;) {
814 flush_signals(current);
815 prepare_to_wait(&conf->wait_barrier,
816 &w, TASK_INTERRUPTIBLE);
817 if (bio->bi_sector + bio->bi_size/512 <= mddev->suspend_lo ||
818 bio->bi_sector >= mddev->suspend_hi)
819 break;
820 schedule();
822 finish_wait(&conf->wait_barrier, &w);
824 if (unlikely(!mddev->barriers_work &&
825 bio_rw_flagged(bio, BIO_RW_BARRIER))) {
826 if (rw == WRITE)
827 md_write_end(mddev);
828 bio_endio(bio, -EOPNOTSUPP);
829 return 0;
832 wait_barrier(conf);
834 bitmap = mddev->bitmap;
836 cpu = part_stat_lock();
837 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
838 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
839 bio_sectors(bio));
840 part_stat_unlock();
843 * make_request() can abort the operation when READA is being
844 * used and no empty request is available.
847 r1_bio = mempool_alloc(conf->r1bio_pool, GFP_NOIO);
849 r1_bio->master_bio = bio;
850 r1_bio->sectors = bio->bi_size >> 9;
851 r1_bio->state = 0;
852 r1_bio->mddev = mddev;
853 r1_bio->sector = bio->bi_sector;
855 if (rw == READ) {
857 * read balancing logic:
859 int rdisk = read_balance(conf, r1_bio);
861 if (rdisk < 0) {
862 /* couldn't find anywhere to read from */
863 raid_end_bio_io(r1_bio);
864 return 0;
866 mirror = conf->mirrors + rdisk;
868 r1_bio->read_disk = rdisk;
870 read_bio = bio_clone(bio, GFP_NOIO);
872 r1_bio->bios[rdisk] = read_bio;
874 read_bio->bi_sector = r1_bio->sector + mirror->rdev->data_offset;
875 read_bio->bi_bdev = mirror->rdev->bdev;
876 read_bio->bi_end_io = raid1_end_read_request;
877 read_bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
878 read_bio->bi_private = r1_bio;
880 generic_make_request(read_bio);
881 return 0;
885 * WRITE:
887 /* first select target devices under spinlock and
888 * inc refcount on their rdev. Record them by setting
889 * bios[x] to bio
891 disks = conf->raid_disks;
892 #if 0
893 { static int first=1;
894 if (first) printk("First Write sector %llu disks %d\n",
895 (unsigned long long)r1_bio->sector, disks);
896 first = 0;
898 #endif
899 retry_write:
900 blocked_rdev = NULL;
901 rcu_read_lock();
902 for (i = 0; i < disks; i++) {
903 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
904 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
905 atomic_inc(&rdev->nr_pending);
906 blocked_rdev = rdev;
907 break;
909 if (rdev && !test_bit(Faulty, &rdev->flags)) {
910 atomic_inc(&rdev->nr_pending);
911 if (test_bit(Faulty, &rdev->flags)) {
912 rdev_dec_pending(rdev, mddev);
913 r1_bio->bios[i] = NULL;
914 } else {
915 r1_bio->bios[i] = bio;
916 targets++;
918 } else
919 r1_bio->bios[i] = NULL;
921 rcu_read_unlock();
923 if (unlikely(blocked_rdev)) {
924 /* Wait for this device to become unblocked */
925 int j;
927 for (j = 0; j < i; j++)
928 if (r1_bio->bios[j])
929 rdev_dec_pending(conf->mirrors[j].rdev, mddev);
931 allow_barrier(conf);
932 md_wait_for_blocked_rdev(blocked_rdev, mddev);
933 wait_barrier(conf);
934 goto retry_write;
937 BUG_ON(targets == 0); /* we never fail the last device */
939 if (targets < conf->raid_disks) {
940 /* array is degraded, we will not clear the bitmap
941 * on I/O completion (see raid1_end_write_request) */
942 set_bit(R1BIO_Degraded, &r1_bio->state);
945 /* do behind I/O ? */
946 if (bitmap &&
947 (atomic_read(&bitmap->behind_writes)
948 < mddev->bitmap_info.max_write_behind) &&
949 (behind_pages = alloc_behind_pages(bio)) != NULL)
950 set_bit(R1BIO_BehindIO, &r1_bio->state);
952 atomic_set(&r1_bio->remaining, 0);
953 atomic_set(&r1_bio->behind_remaining, 0);
955 do_barriers = bio_rw_flagged(bio, BIO_RW_BARRIER);
956 if (do_barriers)
957 set_bit(R1BIO_Barrier, &r1_bio->state);
959 bio_list_init(&bl);
960 for (i = 0; i < disks; i++) {
961 struct bio *mbio;
962 if (!r1_bio->bios[i])
963 continue;
965 mbio = bio_clone(bio, GFP_NOIO);
966 r1_bio->bios[i] = mbio;
968 mbio->bi_sector = r1_bio->sector + conf->mirrors[i].rdev->data_offset;
969 mbio->bi_bdev = conf->mirrors[i].rdev->bdev;
970 mbio->bi_end_io = raid1_end_write_request;
971 mbio->bi_rw = WRITE | (do_barriers << BIO_RW_BARRIER) |
972 (do_sync << BIO_RW_SYNCIO);
973 mbio->bi_private = r1_bio;
975 if (behind_pages) {
976 struct bio_vec *bvec;
977 int j;
979 /* Yes, I really want the '__' version so that
980 * we clear any unused pointer in the io_vec, rather
981 * than leave them unchanged. This is important
982 * because when we come to free the pages, we won't
983 * know the originial bi_idx, so we just free
984 * them all
986 __bio_for_each_segment(bvec, mbio, j, 0)
987 bvec->bv_page = behind_pages[j];
988 if (test_bit(WriteMostly, &conf->mirrors[i].rdev->flags))
989 atomic_inc(&r1_bio->behind_remaining);
992 atomic_inc(&r1_bio->remaining);
994 bio_list_add(&bl, mbio);
996 kfree(behind_pages); /* the behind pages are attached to the bios now */
998 bitmap_startwrite(bitmap, bio->bi_sector, r1_bio->sectors,
999 test_bit(R1BIO_BehindIO, &r1_bio->state));
1000 spin_lock_irqsave(&conf->device_lock, flags);
1001 bio_list_merge(&conf->pending_bio_list, &bl);
1002 bio_list_init(&bl);
1004 blk_plug_device(mddev->queue);
1005 spin_unlock_irqrestore(&conf->device_lock, flags);
1007 /* In case raid1d snuck into freeze_array */
1008 wake_up(&conf->wait_barrier);
1010 if (do_sync)
1011 md_wakeup_thread(mddev->thread);
1012 #if 0
1013 while ((bio = bio_list_pop(&bl)) != NULL)
1014 generic_make_request(bio);
1015 #endif
1017 return 0;
1020 static void status(struct seq_file *seq, mddev_t *mddev)
1022 conf_t *conf = mddev->private;
1023 int i;
1025 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
1026 conf->raid_disks - mddev->degraded);
1027 rcu_read_lock();
1028 for (i = 0; i < conf->raid_disks; i++) {
1029 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1030 seq_printf(seq, "%s",
1031 rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
1033 rcu_read_unlock();
1034 seq_printf(seq, "]");
1038 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1040 char b[BDEVNAME_SIZE];
1041 conf_t *conf = mddev->private;
1044 * If it is not operational, then we have already marked it as dead
1045 * else if it is the last working disks, ignore the error, let the
1046 * next level up know.
1047 * else mark the drive as failed
1049 if (test_bit(In_sync, &rdev->flags)
1050 && (conf->raid_disks - mddev->degraded) == 1) {
1052 * Don't fail the drive, act as though we were just a
1053 * normal single drive.
1054 * However don't try a recovery from this drive as
1055 * it is very likely to fail.
1057 mddev->recovery_disabled = 1;
1058 return;
1060 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1061 unsigned long flags;
1062 spin_lock_irqsave(&conf->device_lock, flags);
1063 mddev->degraded++;
1064 set_bit(Faulty, &rdev->flags);
1065 spin_unlock_irqrestore(&conf->device_lock, flags);
1067 * if recovery is running, make sure it aborts.
1069 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1070 } else
1071 set_bit(Faulty, &rdev->flags);
1072 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1073 printk(KERN_ALERT "raid1: Disk failure on %s, disabling device.\n"
1074 "raid1: Operation continuing on %d devices.\n",
1075 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1078 static void print_conf(conf_t *conf)
1080 int i;
1082 printk("RAID1 conf printout:\n");
1083 if (!conf) {
1084 printk("(!conf)\n");
1085 return;
1087 printk(" --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1088 conf->raid_disks);
1090 rcu_read_lock();
1091 for (i = 0; i < conf->raid_disks; i++) {
1092 char b[BDEVNAME_SIZE];
1093 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
1094 if (rdev)
1095 printk(" disk %d, wo:%d, o:%d, dev:%s\n",
1096 i, !test_bit(In_sync, &rdev->flags),
1097 !test_bit(Faulty, &rdev->flags),
1098 bdevname(rdev->bdev,b));
1100 rcu_read_unlock();
1103 static void close_sync(conf_t *conf)
1105 wait_barrier(conf);
1106 allow_barrier(conf);
1108 mempool_destroy(conf->r1buf_pool);
1109 conf->r1buf_pool = NULL;
1112 static int raid1_spare_active(mddev_t *mddev)
1114 int i;
1115 conf_t *conf = mddev->private;
1118 * Find all failed disks within the RAID1 configuration
1119 * and mark them readable.
1120 * Called under mddev lock, so rcu protection not needed.
1122 for (i = 0; i < conf->raid_disks; i++) {
1123 mdk_rdev_t *rdev = conf->mirrors[i].rdev;
1124 if (rdev
1125 && !test_bit(Faulty, &rdev->flags)
1126 && !test_and_set_bit(In_sync, &rdev->flags)) {
1127 unsigned long flags;
1128 spin_lock_irqsave(&conf->device_lock, flags);
1129 mddev->degraded--;
1130 spin_unlock_irqrestore(&conf->device_lock, flags);
1134 print_conf(conf);
1135 return 0;
1139 static int raid1_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1141 conf_t *conf = mddev->private;
1142 int err = -EEXIST;
1143 int mirror = 0;
1144 mirror_info_t *p;
1145 int first = 0;
1146 int last = mddev->raid_disks - 1;
1148 if (rdev->raid_disk >= 0)
1149 first = last = rdev->raid_disk;
1151 for (mirror = first; mirror <= last; mirror++)
1152 if ( !(p=conf->mirrors+mirror)->rdev) {
1154 disk_stack_limits(mddev->gendisk, rdev->bdev,
1155 rdev->data_offset << 9);
1156 /* as we don't honour merge_bvec_fn, we must never risk
1157 * violating it, so limit ->max_sector to one PAGE, as
1158 * a one page request is never in violation.
1160 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
1161 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
1162 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
1164 p->head_position = 0;
1165 rdev->raid_disk = mirror;
1166 err = 0;
1167 /* As all devices are equivalent, we don't need a full recovery
1168 * if this was recently any drive of the array
1170 if (rdev->saved_raid_disk < 0)
1171 conf->fullsync = 1;
1172 rcu_assign_pointer(p->rdev, rdev);
1173 break;
1175 md_integrity_add_rdev(rdev, mddev);
1176 print_conf(conf);
1177 return err;
1180 static int raid1_remove_disk(mddev_t *mddev, int number)
1182 conf_t *conf = mddev->private;
1183 int err = 0;
1184 mdk_rdev_t *rdev;
1185 mirror_info_t *p = conf->mirrors+ number;
1187 print_conf(conf);
1188 rdev = p->rdev;
1189 if (rdev) {
1190 if (test_bit(In_sync, &rdev->flags) ||
1191 atomic_read(&rdev->nr_pending)) {
1192 err = -EBUSY;
1193 goto abort;
1195 /* Only remove non-faulty devices is recovery
1196 * is not possible.
1198 if (!test_bit(Faulty, &rdev->flags) &&
1199 mddev->degraded < conf->raid_disks) {
1200 err = -EBUSY;
1201 goto abort;
1203 p->rdev = NULL;
1204 synchronize_rcu();
1205 if (atomic_read(&rdev->nr_pending)) {
1206 /* lost the race, try later */
1207 err = -EBUSY;
1208 p->rdev = rdev;
1209 goto abort;
1211 md_integrity_register(mddev);
1213 abort:
1215 print_conf(conf);
1216 return err;
1220 static void end_sync_read(struct bio *bio, int error)
1222 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1223 int i;
1225 for (i=r1_bio->mddev->raid_disks; i--; )
1226 if (r1_bio->bios[i] == bio)
1227 break;
1228 BUG_ON(i < 0);
1229 update_head_pos(i, r1_bio);
1231 * we have read a block, now it needs to be re-written,
1232 * or re-read if the read failed.
1233 * We don't do much here, just schedule handling by raid1d
1235 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1236 set_bit(R1BIO_Uptodate, &r1_bio->state);
1238 if (atomic_dec_and_test(&r1_bio->remaining))
1239 reschedule_retry(r1_bio);
1242 static void end_sync_write(struct bio *bio, int error)
1244 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1245 r1bio_t * r1_bio = (r1bio_t *)(bio->bi_private);
1246 mddev_t *mddev = r1_bio->mddev;
1247 conf_t *conf = mddev->private;
1248 int i;
1249 int mirror=0;
1251 for (i = 0; i < conf->raid_disks; i++)
1252 if (r1_bio->bios[i] == bio) {
1253 mirror = i;
1254 break;
1256 if (!uptodate) {
1257 int sync_blocks = 0;
1258 sector_t s = r1_bio->sector;
1259 long sectors_to_go = r1_bio->sectors;
1260 /* make sure these bits doesn't get cleared. */
1261 do {
1262 bitmap_end_sync(mddev->bitmap, s,
1263 &sync_blocks, 1);
1264 s += sync_blocks;
1265 sectors_to_go -= sync_blocks;
1266 } while (sectors_to_go > 0);
1267 md_error(mddev, conf->mirrors[mirror].rdev);
1270 update_head_pos(mirror, r1_bio);
1272 if (atomic_dec_and_test(&r1_bio->remaining)) {
1273 sector_t s = r1_bio->sectors;
1274 put_buf(r1_bio);
1275 md_done_sync(mddev, s, uptodate);
1279 static void sync_request_write(mddev_t *mddev, r1bio_t *r1_bio)
1281 conf_t *conf = mddev->private;
1282 int i;
1283 int disks = conf->raid_disks;
1284 struct bio *bio, *wbio;
1286 bio = r1_bio->bios[r1_bio->read_disk];
1289 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1290 /* We have read all readable devices. If we haven't
1291 * got the block, then there is no hope left.
1292 * If we have, then we want to do a comparison
1293 * and skip the write if everything is the same.
1294 * If any blocks failed to read, then we need to
1295 * attempt an over-write
1297 int primary;
1298 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1299 for (i=0; i<mddev->raid_disks; i++)
1300 if (r1_bio->bios[i]->bi_end_io == end_sync_read)
1301 md_error(mddev, conf->mirrors[i].rdev);
1303 md_done_sync(mddev, r1_bio->sectors, 1);
1304 put_buf(r1_bio);
1305 return;
1307 for (primary=0; primary<mddev->raid_disks; primary++)
1308 if (r1_bio->bios[primary]->bi_end_io == end_sync_read &&
1309 test_bit(BIO_UPTODATE, &r1_bio->bios[primary]->bi_flags)) {
1310 r1_bio->bios[primary]->bi_end_io = NULL;
1311 rdev_dec_pending(conf->mirrors[primary].rdev, mddev);
1312 break;
1314 r1_bio->read_disk = primary;
1315 for (i=0; i<mddev->raid_disks; i++)
1316 if (r1_bio->bios[i]->bi_end_io == end_sync_read) {
1317 int j;
1318 int vcnt = r1_bio->sectors >> (PAGE_SHIFT- 9);
1319 struct bio *pbio = r1_bio->bios[primary];
1320 struct bio *sbio = r1_bio->bios[i];
1322 if (test_bit(BIO_UPTODATE, &sbio->bi_flags)) {
1323 for (j = vcnt; j-- ; ) {
1324 struct page *p, *s;
1325 p = pbio->bi_io_vec[j].bv_page;
1326 s = sbio->bi_io_vec[j].bv_page;
1327 if (memcmp(page_address(p),
1328 page_address(s),
1329 PAGE_SIZE))
1330 break;
1332 } else
1333 j = 0;
1334 if (j >= 0)
1335 mddev->resync_mismatches += r1_bio->sectors;
1336 if (j < 0 || (test_bit(MD_RECOVERY_CHECK, &mddev->recovery)
1337 && test_bit(BIO_UPTODATE, &sbio->bi_flags))) {
1338 sbio->bi_end_io = NULL;
1339 rdev_dec_pending(conf->mirrors[i].rdev, mddev);
1340 } else {
1341 /* fixup the bio for reuse */
1342 int size;
1343 sbio->bi_vcnt = vcnt;
1344 sbio->bi_size = r1_bio->sectors << 9;
1345 sbio->bi_idx = 0;
1346 sbio->bi_phys_segments = 0;
1347 sbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1348 sbio->bi_flags |= 1 << BIO_UPTODATE;
1349 sbio->bi_next = NULL;
1350 sbio->bi_sector = r1_bio->sector +
1351 conf->mirrors[i].rdev->data_offset;
1352 sbio->bi_bdev = conf->mirrors[i].rdev->bdev;
1353 size = sbio->bi_size;
1354 for (j = 0; j < vcnt ; j++) {
1355 struct bio_vec *bi;
1356 bi = &sbio->bi_io_vec[j];
1357 bi->bv_offset = 0;
1358 if (size > PAGE_SIZE)
1359 bi->bv_len = PAGE_SIZE;
1360 else
1361 bi->bv_len = size;
1362 size -= PAGE_SIZE;
1363 memcpy(page_address(bi->bv_page),
1364 page_address(pbio->bi_io_vec[j].bv_page),
1365 PAGE_SIZE);
1371 if (!test_bit(R1BIO_Uptodate, &r1_bio->state)) {
1372 /* ouch - failed to read all of that.
1373 * Try some synchronous reads of other devices to get
1374 * good data, much like with normal read errors. Only
1375 * read into the pages we already have so we don't
1376 * need to re-issue the read request.
1377 * We don't need to freeze the array, because being in an
1378 * active sync request, there is no normal IO, and
1379 * no overlapping syncs.
1381 sector_t sect = r1_bio->sector;
1382 int sectors = r1_bio->sectors;
1383 int idx = 0;
1385 while(sectors) {
1386 int s = sectors;
1387 int d = r1_bio->read_disk;
1388 int success = 0;
1389 mdk_rdev_t *rdev;
1391 if (s > (PAGE_SIZE>>9))
1392 s = PAGE_SIZE >> 9;
1393 do {
1394 if (r1_bio->bios[d]->bi_end_io == end_sync_read) {
1395 /* No rcu protection needed here devices
1396 * can only be removed when no resync is
1397 * active, and resync is currently active
1399 rdev = conf->mirrors[d].rdev;
1400 if (sync_page_io(rdev->bdev,
1401 sect + rdev->data_offset,
1402 s<<9,
1403 bio->bi_io_vec[idx].bv_page,
1404 READ)) {
1405 success = 1;
1406 break;
1409 d++;
1410 if (d == conf->raid_disks)
1411 d = 0;
1412 } while (!success && d != r1_bio->read_disk);
1414 if (success) {
1415 int start = d;
1416 /* write it back and re-read */
1417 set_bit(R1BIO_Uptodate, &r1_bio->state);
1418 while (d != r1_bio->read_disk) {
1419 if (d == 0)
1420 d = conf->raid_disks;
1421 d--;
1422 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1423 continue;
1424 rdev = conf->mirrors[d].rdev;
1425 atomic_add(s, &rdev->corrected_errors);
1426 if (sync_page_io(rdev->bdev,
1427 sect + rdev->data_offset,
1428 s<<9,
1429 bio->bi_io_vec[idx].bv_page,
1430 WRITE) == 0)
1431 md_error(mddev, rdev);
1433 d = start;
1434 while (d != r1_bio->read_disk) {
1435 if (d == 0)
1436 d = conf->raid_disks;
1437 d--;
1438 if (r1_bio->bios[d]->bi_end_io != end_sync_read)
1439 continue;
1440 rdev = conf->mirrors[d].rdev;
1441 if (sync_page_io(rdev->bdev,
1442 sect + rdev->data_offset,
1443 s<<9,
1444 bio->bi_io_vec[idx].bv_page,
1445 READ) == 0)
1446 md_error(mddev, rdev);
1448 } else {
1449 char b[BDEVNAME_SIZE];
1450 /* Cannot read from anywhere, array is toast */
1451 md_error(mddev, conf->mirrors[r1_bio->read_disk].rdev);
1452 printk(KERN_ALERT "raid1: %s: unrecoverable I/O read error"
1453 " for block %llu\n",
1454 bdevname(bio->bi_bdev,b),
1455 (unsigned long long)r1_bio->sector);
1456 md_done_sync(mddev, r1_bio->sectors, 0);
1457 put_buf(r1_bio);
1458 return;
1460 sectors -= s;
1461 sect += s;
1462 idx ++;
1467 * schedule writes
1469 atomic_set(&r1_bio->remaining, 1);
1470 for (i = 0; i < disks ; i++) {
1471 wbio = r1_bio->bios[i];
1472 if (wbio->bi_end_io == NULL ||
1473 (wbio->bi_end_io == end_sync_read &&
1474 (i == r1_bio->read_disk ||
1475 !test_bit(MD_RECOVERY_SYNC, &mddev->recovery))))
1476 continue;
1478 wbio->bi_rw = WRITE;
1479 wbio->bi_end_io = end_sync_write;
1480 atomic_inc(&r1_bio->remaining);
1481 md_sync_acct(conf->mirrors[i].rdev->bdev, wbio->bi_size >> 9);
1483 generic_make_request(wbio);
1486 if (atomic_dec_and_test(&r1_bio->remaining)) {
1487 /* if we're here, all write(s) have completed, so clean up */
1488 md_done_sync(mddev, r1_bio->sectors, 1);
1489 put_buf(r1_bio);
1494 * This is a kernel thread which:
1496 * 1. Retries failed read operations on working mirrors.
1497 * 2. Updates the raid superblock when problems encounter.
1498 * 3. Performs writes following reads for array syncronising.
1501 static void fix_read_error(conf_t *conf, int read_disk,
1502 sector_t sect, int sectors)
1504 mddev_t *mddev = conf->mddev;
1505 while(sectors) {
1506 int s = sectors;
1507 int d = read_disk;
1508 int success = 0;
1509 int start;
1510 mdk_rdev_t *rdev;
1512 if (s > (PAGE_SIZE>>9))
1513 s = PAGE_SIZE >> 9;
1515 do {
1516 /* Note: no rcu protection needed here
1517 * as this is synchronous in the raid1d thread
1518 * which is the thread that might remove
1519 * a device. If raid1d ever becomes multi-threaded....
1521 rdev = conf->mirrors[d].rdev;
1522 if (rdev &&
1523 test_bit(In_sync, &rdev->flags) &&
1524 sync_page_io(rdev->bdev,
1525 sect + rdev->data_offset,
1526 s<<9,
1527 conf->tmppage, READ))
1528 success = 1;
1529 else {
1530 d++;
1531 if (d == conf->raid_disks)
1532 d = 0;
1534 } while (!success && d != read_disk);
1536 if (!success) {
1537 /* Cannot read from anywhere -- bye bye array */
1538 md_error(mddev, conf->mirrors[read_disk].rdev);
1539 break;
1541 /* write it back and re-read */
1542 start = d;
1543 while (d != read_disk) {
1544 if (d==0)
1545 d = conf->raid_disks;
1546 d--;
1547 rdev = conf->mirrors[d].rdev;
1548 if (rdev &&
1549 test_bit(In_sync, &rdev->flags)) {
1550 if (sync_page_io(rdev->bdev,
1551 sect + rdev->data_offset,
1552 s<<9, conf->tmppage, WRITE)
1553 == 0)
1554 /* Well, this device is dead */
1555 md_error(mddev, rdev);
1558 d = start;
1559 while (d != read_disk) {
1560 char b[BDEVNAME_SIZE];
1561 if (d==0)
1562 d = conf->raid_disks;
1563 d--;
1564 rdev = conf->mirrors[d].rdev;
1565 if (rdev &&
1566 test_bit(In_sync, &rdev->flags)) {
1567 if (sync_page_io(rdev->bdev,
1568 sect + rdev->data_offset,
1569 s<<9, conf->tmppage, READ)
1570 == 0)
1571 /* Well, this device is dead */
1572 md_error(mddev, rdev);
1573 else {
1574 atomic_add(s, &rdev->corrected_errors);
1575 printk(KERN_INFO
1576 "raid1:%s: read error corrected "
1577 "(%d sectors at %llu on %s)\n",
1578 mdname(mddev), s,
1579 (unsigned long long)(sect +
1580 rdev->data_offset),
1581 bdevname(rdev->bdev, b));
1585 sectors -= s;
1586 sect += s;
1590 static void raid1d(mddev_t *mddev)
1592 r1bio_t *r1_bio;
1593 struct bio *bio;
1594 unsigned long flags;
1595 conf_t *conf = mddev->private;
1596 struct list_head *head = &conf->retry_list;
1597 int unplug=0;
1598 mdk_rdev_t *rdev;
1600 md_check_recovery(mddev);
1602 for (;;) {
1603 char b[BDEVNAME_SIZE];
1605 unplug += flush_pending_writes(conf);
1607 spin_lock_irqsave(&conf->device_lock, flags);
1608 if (list_empty(head)) {
1609 spin_unlock_irqrestore(&conf->device_lock, flags);
1610 break;
1612 r1_bio = list_entry(head->prev, r1bio_t, retry_list);
1613 list_del(head->prev);
1614 conf->nr_queued--;
1615 spin_unlock_irqrestore(&conf->device_lock, flags);
1617 mddev = r1_bio->mddev;
1618 conf = mddev->private;
1619 if (test_bit(R1BIO_IsSync, &r1_bio->state)) {
1620 sync_request_write(mddev, r1_bio);
1621 unplug = 1;
1622 } else if (test_bit(R1BIO_BarrierRetry, &r1_bio->state)) {
1623 /* some requests in the r1bio were BIO_RW_BARRIER
1624 * requests which failed with -EOPNOTSUPP. Hohumm..
1625 * Better resubmit without the barrier.
1626 * We know which devices to resubmit for, because
1627 * all others have had their bios[] entry cleared.
1628 * We already have a nr_pending reference on these rdevs.
1630 int i;
1631 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1632 clear_bit(R1BIO_BarrierRetry, &r1_bio->state);
1633 clear_bit(R1BIO_Barrier, &r1_bio->state);
1634 for (i=0; i < conf->raid_disks; i++)
1635 if (r1_bio->bios[i])
1636 atomic_inc(&r1_bio->remaining);
1637 for (i=0; i < conf->raid_disks; i++)
1638 if (r1_bio->bios[i]) {
1639 struct bio_vec *bvec;
1640 int j;
1642 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1643 /* copy pages from the failed bio, as
1644 * this might be a write-behind device */
1645 __bio_for_each_segment(bvec, bio, j, 0)
1646 bvec->bv_page = bio_iovec_idx(r1_bio->bios[i], j)->bv_page;
1647 bio_put(r1_bio->bios[i]);
1648 bio->bi_sector = r1_bio->sector +
1649 conf->mirrors[i].rdev->data_offset;
1650 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1651 bio->bi_end_io = raid1_end_write_request;
1652 bio->bi_rw = WRITE |
1653 (do_sync << BIO_RW_SYNCIO);
1654 bio->bi_private = r1_bio;
1655 r1_bio->bios[i] = bio;
1656 generic_make_request(bio);
1658 } else {
1659 int disk;
1661 /* we got a read error. Maybe the drive is bad. Maybe just
1662 * the block and we can fix it.
1663 * We freeze all other IO, and try reading the block from
1664 * other devices. When we find one, we re-write
1665 * and check it that fixes the read error.
1666 * This is all done synchronously while the array is
1667 * frozen
1669 if (mddev->ro == 0) {
1670 freeze_array(conf);
1671 fix_read_error(conf, r1_bio->read_disk,
1672 r1_bio->sector,
1673 r1_bio->sectors);
1674 unfreeze_array(conf);
1675 } else
1676 md_error(mddev,
1677 conf->mirrors[r1_bio->read_disk].rdev);
1679 bio = r1_bio->bios[r1_bio->read_disk];
1680 if ((disk=read_balance(conf, r1_bio)) == -1) {
1681 printk(KERN_ALERT "raid1: %s: unrecoverable I/O"
1682 " read error for block %llu\n",
1683 bdevname(bio->bi_bdev,b),
1684 (unsigned long long)r1_bio->sector);
1685 raid_end_bio_io(r1_bio);
1686 } else {
1687 const bool do_sync = bio_rw_flagged(r1_bio->master_bio, BIO_RW_SYNCIO);
1688 r1_bio->bios[r1_bio->read_disk] =
1689 mddev->ro ? IO_BLOCKED : NULL;
1690 r1_bio->read_disk = disk;
1691 bio_put(bio);
1692 bio = bio_clone(r1_bio->master_bio, GFP_NOIO);
1693 r1_bio->bios[r1_bio->read_disk] = bio;
1694 rdev = conf->mirrors[disk].rdev;
1695 if (printk_ratelimit())
1696 printk(KERN_ERR "raid1: %s: redirecting sector %llu to"
1697 " another mirror\n",
1698 bdevname(rdev->bdev,b),
1699 (unsigned long long)r1_bio->sector);
1700 bio->bi_sector = r1_bio->sector + rdev->data_offset;
1701 bio->bi_bdev = rdev->bdev;
1702 bio->bi_end_io = raid1_end_read_request;
1703 bio->bi_rw = READ | (do_sync << BIO_RW_SYNCIO);
1704 bio->bi_private = r1_bio;
1705 unplug = 1;
1706 generic_make_request(bio);
1709 cond_resched();
1711 if (unplug)
1712 unplug_slaves(mddev);
1716 static int init_resync(conf_t *conf)
1718 int buffs;
1720 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1721 BUG_ON(conf->r1buf_pool);
1722 conf->r1buf_pool = mempool_create(buffs, r1buf_pool_alloc, r1buf_pool_free,
1723 conf->poolinfo);
1724 if (!conf->r1buf_pool)
1725 return -ENOMEM;
1726 conf->next_resync = 0;
1727 return 0;
1731 * perform a "sync" on one "block"
1733 * We need to make sure that no normal I/O request - particularly write
1734 * requests - conflict with active sync requests.
1736 * This is achieved by tracking pending requests and a 'barrier' concept
1737 * that can be installed to exclude normal IO requests.
1740 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
1742 conf_t *conf = mddev->private;
1743 r1bio_t *r1_bio;
1744 struct bio *bio;
1745 sector_t max_sector, nr_sectors;
1746 int disk = -1;
1747 int i;
1748 int wonly = -1;
1749 int write_targets = 0, read_targets = 0;
1750 int sync_blocks;
1751 int still_degraded = 0;
1753 if (!conf->r1buf_pool)
1756 printk("sync start - bitmap %p\n", mddev->bitmap);
1758 if (init_resync(conf))
1759 return 0;
1762 max_sector = mddev->dev_sectors;
1763 if (sector_nr >= max_sector) {
1764 /* If we aborted, we need to abort the
1765 * sync on the 'current' bitmap chunk (there will
1766 * only be one in raid1 resync.
1767 * We can find the current addess in mddev->curr_resync
1769 if (mddev->curr_resync < max_sector) /* aborted */
1770 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1771 &sync_blocks, 1);
1772 else /* completed sync */
1773 conf->fullsync = 0;
1775 bitmap_close_sync(mddev->bitmap);
1776 close_sync(conf);
1777 return 0;
1780 if (mddev->bitmap == NULL &&
1781 mddev->recovery_cp == MaxSector &&
1782 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
1783 conf->fullsync == 0) {
1784 *skipped = 1;
1785 return max_sector - sector_nr;
1787 /* before building a request, check if we can skip these blocks..
1788 * This call the bitmap_start_sync doesn't actually record anything
1790 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
1791 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1792 /* We can skip this block, and probably several more */
1793 *skipped = 1;
1794 return sync_blocks;
1797 * If there is non-resync activity waiting for a turn,
1798 * and resync is going fast enough,
1799 * then let it though before starting on this new sync request.
1801 if (!go_faster && conf->nr_waiting)
1802 msleep_interruptible(1000);
1804 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1805 raise_barrier(conf);
1807 conf->next_resync = sector_nr;
1809 r1_bio = mempool_alloc(conf->r1buf_pool, GFP_NOIO);
1810 rcu_read_lock();
1812 * If we get a correctably read error during resync or recovery,
1813 * we might want to read from a different device. So we
1814 * flag all drives that could conceivably be read from for READ,
1815 * and any others (which will be non-In_sync devices) for WRITE.
1816 * If a read fails, we try reading from something else for which READ
1817 * is OK.
1820 r1_bio->mddev = mddev;
1821 r1_bio->sector = sector_nr;
1822 r1_bio->state = 0;
1823 set_bit(R1BIO_IsSync, &r1_bio->state);
1825 for (i=0; i < conf->raid_disks; i++) {
1826 mdk_rdev_t *rdev;
1827 bio = r1_bio->bios[i];
1829 /* take from bio_init */
1830 bio->bi_next = NULL;
1831 bio->bi_flags |= 1 << BIO_UPTODATE;
1832 bio->bi_rw = READ;
1833 bio->bi_vcnt = 0;
1834 bio->bi_idx = 0;
1835 bio->bi_phys_segments = 0;
1836 bio->bi_size = 0;
1837 bio->bi_end_io = NULL;
1838 bio->bi_private = NULL;
1840 rdev = rcu_dereference(conf->mirrors[i].rdev);
1841 if (rdev == NULL ||
1842 test_bit(Faulty, &rdev->flags)) {
1843 still_degraded = 1;
1844 continue;
1845 } else if (!test_bit(In_sync, &rdev->flags)) {
1846 bio->bi_rw = WRITE;
1847 bio->bi_end_io = end_sync_write;
1848 write_targets ++;
1849 } else {
1850 /* may need to read from here */
1851 bio->bi_rw = READ;
1852 bio->bi_end_io = end_sync_read;
1853 if (test_bit(WriteMostly, &rdev->flags)) {
1854 if (wonly < 0)
1855 wonly = i;
1856 } else {
1857 if (disk < 0)
1858 disk = i;
1860 read_targets++;
1862 atomic_inc(&rdev->nr_pending);
1863 bio->bi_sector = sector_nr + rdev->data_offset;
1864 bio->bi_bdev = rdev->bdev;
1865 bio->bi_private = r1_bio;
1867 rcu_read_unlock();
1868 if (disk < 0)
1869 disk = wonly;
1870 r1_bio->read_disk = disk;
1872 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery) && read_targets > 0)
1873 /* extra read targets are also write targets */
1874 write_targets += read_targets-1;
1876 if (write_targets == 0 || read_targets == 0) {
1877 /* There is nowhere to write, so all non-sync
1878 * drives must be failed - so we are finished
1880 sector_t rv = max_sector - sector_nr;
1881 *skipped = 1;
1882 put_buf(r1_bio);
1883 return rv;
1886 if (max_sector > mddev->resync_max)
1887 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1888 nr_sectors = 0;
1889 sync_blocks = 0;
1890 do {
1891 struct page *page;
1892 int len = PAGE_SIZE;
1893 if (sector_nr + (len>>9) > max_sector)
1894 len = (max_sector - sector_nr) << 9;
1895 if (len == 0)
1896 break;
1897 if (sync_blocks == 0) {
1898 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1899 &sync_blocks, still_degraded) &&
1900 !conf->fullsync &&
1901 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery))
1902 break;
1903 BUG_ON(sync_blocks < (PAGE_SIZE>>9));
1904 if (len > (sync_blocks<<9))
1905 len = sync_blocks<<9;
1908 for (i=0 ; i < conf->raid_disks; i++) {
1909 bio = r1_bio->bios[i];
1910 if (bio->bi_end_io) {
1911 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
1912 if (bio_add_page(bio, page, len, 0) == 0) {
1913 /* stop here */
1914 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
1915 while (i > 0) {
1916 i--;
1917 bio = r1_bio->bios[i];
1918 if (bio->bi_end_io==NULL)
1919 continue;
1920 /* remove last page from this bio */
1921 bio->bi_vcnt--;
1922 bio->bi_size -= len;
1923 bio->bi_flags &= ~(1<< BIO_SEG_VALID);
1925 goto bio_full;
1929 nr_sectors += len>>9;
1930 sector_nr += len>>9;
1931 sync_blocks -= (len>>9);
1932 } while (r1_bio->bios[disk]->bi_vcnt < RESYNC_PAGES);
1933 bio_full:
1934 r1_bio->sectors = nr_sectors;
1936 /* For a user-requested sync, we read all readable devices and do a
1937 * compare
1939 if (test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery)) {
1940 atomic_set(&r1_bio->remaining, read_targets);
1941 for (i=0; i<conf->raid_disks; i++) {
1942 bio = r1_bio->bios[i];
1943 if (bio->bi_end_io == end_sync_read) {
1944 md_sync_acct(bio->bi_bdev, nr_sectors);
1945 generic_make_request(bio);
1948 } else {
1949 atomic_set(&r1_bio->remaining, 1);
1950 bio = r1_bio->bios[r1_bio->read_disk];
1951 md_sync_acct(bio->bi_bdev, nr_sectors);
1952 generic_make_request(bio);
1955 return nr_sectors;
1958 static sector_t raid1_size(mddev_t *mddev, sector_t sectors, int raid_disks)
1960 if (sectors)
1961 return sectors;
1963 return mddev->dev_sectors;
1966 static conf_t *setup_conf(mddev_t *mddev)
1968 conf_t *conf;
1969 int i;
1970 mirror_info_t *disk;
1971 mdk_rdev_t *rdev;
1972 int err = -ENOMEM;
1974 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
1975 if (!conf)
1976 goto abort;
1978 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
1979 GFP_KERNEL);
1980 if (!conf->mirrors)
1981 goto abort;
1983 conf->tmppage = alloc_page(GFP_KERNEL);
1984 if (!conf->tmppage)
1985 goto abort;
1987 conf->poolinfo = kzalloc(sizeof(*conf->poolinfo), GFP_KERNEL);
1988 if (!conf->poolinfo)
1989 goto abort;
1990 conf->poolinfo->raid_disks = mddev->raid_disks;
1991 conf->r1bio_pool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
1992 r1bio_pool_free,
1993 conf->poolinfo);
1994 if (!conf->r1bio_pool)
1995 goto abort;
1997 conf->poolinfo->mddev = mddev;
1999 spin_lock_init(&conf->device_lock);
2000 list_for_each_entry(rdev, &mddev->disks, same_set) {
2001 int disk_idx = rdev->raid_disk;
2002 if (disk_idx >= mddev->raid_disks
2003 || disk_idx < 0)
2004 continue;
2005 disk = conf->mirrors + disk_idx;
2007 disk->rdev = rdev;
2009 disk->head_position = 0;
2011 conf->raid_disks = mddev->raid_disks;
2012 conf->mddev = mddev;
2013 INIT_LIST_HEAD(&conf->retry_list);
2015 spin_lock_init(&conf->resync_lock);
2016 init_waitqueue_head(&conf->wait_barrier);
2018 bio_list_init(&conf->pending_bio_list);
2019 bio_list_init(&conf->flushing_bio_list);
2021 conf->last_used = -1;
2022 for (i = 0; i < conf->raid_disks; i++) {
2024 disk = conf->mirrors + i;
2026 if (!disk->rdev ||
2027 !test_bit(In_sync, &disk->rdev->flags)) {
2028 disk->head_position = 0;
2029 if (disk->rdev)
2030 conf->fullsync = 1;
2031 } else if (conf->last_used < 0)
2033 * The first working device is used as a
2034 * starting point to read balancing.
2036 conf->last_used = i;
2039 err = -EIO;
2040 if (conf->last_used < 0) {
2041 printk(KERN_ERR "raid1: no operational mirrors for %s\n",
2042 mdname(mddev));
2043 goto abort;
2045 err = -ENOMEM;
2046 conf->thread = md_register_thread(raid1d, mddev, NULL);
2047 if (!conf->thread) {
2048 printk(KERN_ERR
2049 "raid1: couldn't allocate thread for %s\n",
2050 mdname(mddev));
2051 goto abort;
2054 return conf;
2056 abort:
2057 if (conf) {
2058 if (conf->r1bio_pool)
2059 mempool_destroy(conf->r1bio_pool);
2060 kfree(conf->mirrors);
2061 safe_put_page(conf->tmppage);
2062 kfree(conf->poolinfo);
2063 kfree(conf);
2065 return ERR_PTR(err);
2068 static int run(mddev_t *mddev)
2070 conf_t *conf;
2071 int i;
2072 mdk_rdev_t *rdev;
2074 if (mddev->level != 1) {
2075 printk("raid1: %s: raid level not set to mirroring (%d)\n",
2076 mdname(mddev), mddev->level);
2077 return -EIO;
2079 if (mddev->reshape_position != MaxSector) {
2080 printk("raid1: %s: reshape_position set but not supported\n",
2081 mdname(mddev));
2082 return -EIO;
2085 * copy the already verified devices into our private RAID1
2086 * bookkeeping area. [whatever we allocate in run(),
2087 * should be freed in stop()]
2089 if (mddev->private == NULL)
2090 conf = setup_conf(mddev);
2091 else
2092 conf = mddev->private;
2094 if (IS_ERR(conf))
2095 return PTR_ERR(conf);
2097 mddev->queue->queue_lock = &conf->device_lock;
2098 list_for_each_entry(rdev, &mddev->disks, same_set) {
2099 disk_stack_limits(mddev->gendisk, rdev->bdev,
2100 rdev->data_offset << 9);
2101 /* as we don't honour merge_bvec_fn, we must never risk
2102 * violating it, so limit ->max_sector to one PAGE, as
2103 * a one page request is never in violation.
2105 if (rdev->bdev->bd_disk->queue->merge_bvec_fn &&
2106 queue_max_sectors(mddev->queue) > (PAGE_SIZE>>9))
2107 blk_queue_max_sectors(mddev->queue, PAGE_SIZE>>9);
2110 mddev->degraded = 0;
2111 for (i=0; i < conf->raid_disks; i++)
2112 if (conf->mirrors[i].rdev == NULL ||
2113 !test_bit(In_sync, &conf->mirrors[i].rdev->flags) ||
2114 test_bit(Faulty, &conf->mirrors[i].rdev->flags))
2115 mddev->degraded++;
2117 if (conf->raid_disks - mddev->degraded == 1)
2118 mddev->recovery_cp = MaxSector;
2120 if (mddev->recovery_cp != MaxSector)
2121 printk(KERN_NOTICE "raid1: %s is not clean"
2122 " -- starting background reconstruction\n",
2123 mdname(mddev));
2124 printk(KERN_INFO
2125 "raid1: raid set %s active with %d out of %d mirrors\n",
2126 mdname(mddev), mddev->raid_disks - mddev->degraded,
2127 mddev->raid_disks);
2130 * Ok, everything is just fine now
2132 mddev->thread = conf->thread;
2133 conf->thread = NULL;
2134 mddev->private = conf;
2136 md_set_array_sectors(mddev, raid1_size(mddev, 0, 0));
2138 mddev->queue->unplug_fn = raid1_unplug;
2139 mddev->queue->backing_dev_info.congested_fn = raid1_congested;
2140 mddev->queue->backing_dev_info.congested_data = mddev;
2141 md_integrity_register(mddev);
2142 return 0;
2145 static int stop(mddev_t *mddev)
2147 conf_t *conf = mddev->private;
2148 struct bitmap *bitmap = mddev->bitmap;
2149 int behind_wait = 0;
2151 /* wait for behind writes to complete */
2152 while (bitmap && atomic_read(&bitmap->behind_writes) > 0) {
2153 behind_wait++;
2154 printk(KERN_INFO "raid1: behind writes in progress on device %s, waiting to stop (%d)\n", mdname(mddev), behind_wait);
2155 set_current_state(TASK_UNINTERRUPTIBLE);
2156 schedule_timeout(HZ); /* wait a second */
2157 /* need to kick something here to make sure I/O goes? */
2160 raise_barrier(conf);
2161 lower_barrier(conf);
2163 md_unregister_thread(mddev->thread);
2164 mddev->thread = NULL;
2165 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2166 if (conf->r1bio_pool)
2167 mempool_destroy(conf->r1bio_pool);
2168 kfree(conf->mirrors);
2169 kfree(conf->poolinfo);
2170 kfree(conf);
2171 mddev->private = NULL;
2172 return 0;
2175 static int raid1_resize(mddev_t *mddev, sector_t sectors)
2177 /* no resync is happening, and there is enough space
2178 * on all devices, so we can resize.
2179 * We need to make sure resync covers any new space.
2180 * If the array is shrinking we should possibly wait until
2181 * any io in the removed space completes, but it hardly seems
2182 * worth it.
2184 md_set_array_sectors(mddev, raid1_size(mddev, sectors, 0));
2185 if (mddev->array_sectors > raid1_size(mddev, sectors, 0))
2186 return -EINVAL;
2187 set_capacity(mddev->gendisk, mddev->array_sectors);
2188 mddev->changed = 1;
2189 revalidate_disk(mddev->gendisk);
2190 if (sectors > mddev->dev_sectors &&
2191 mddev->recovery_cp == MaxSector) {
2192 mddev->recovery_cp = mddev->dev_sectors;
2193 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2195 mddev->dev_sectors = sectors;
2196 mddev->resync_max_sectors = sectors;
2197 return 0;
2200 static int raid1_reshape(mddev_t *mddev)
2202 /* We need to:
2203 * 1/ resize the r1bio_pool
2204 * 2/ resize conf->mirrors
2206 * We allocate a new r1bio_pool if we can.
2207 * Then raise a device barrier and wait until all IO stops.
2208 * Then resize conf->mirrors and swap in the new r1bio pool.
2210 * At the same time, we "pack" the devices so that all the missing
2211 * devices have the higher raid_disk numbers.
2213 mempool_t *newpool, *oldpool;
2214 struct pool_info *newpoolinfo;
2215 mirror_info_t *newmirrors;
2216 conf_t *conf = mddev->private;
2217 int cnt, raid_disks;
2218 unsigned long flags;
2219 int d, d2, err;
2221 /* Cannot change chunk_size, layout, or level */
2222 if (mddev->chunk_sectors != mddev->new_chunk_sectors ||
2223 mddev->layout != mddev->new_layout ||
2224 mddev->level != mddev->new_level) {
2225 mddev->new_chunk_sectors = mddev->chunk_sectors;
2226 mddev->new_layout = mddev->layout;
2227 mddev->new_level = mddev->level;
2228 return -EINVAL;
2231 err = md_allow_write(mddev);
2232 if (err)
2233 return err;
2235 raid_disks = mddev->raid_disks + mddev->delta_disks;
2237 if (raid_disks < conf->raid_disks) {
2238 cnt=0;
2239 for (d= 0; d < conf->raid_disks; d++)
2240 if (conf->mirrors[d].rdev)
2241 cnt++;
2242 if (cnt > raid_disks)
2243 return -EBUSY;
2246 newpoolinfo = kmalloc(sizeof(*newpoolinfo), GFP_KERNEL);
2247 if (!newpoolinfo)
2248 return -ENOMEM;
2249 newpoolinfo->mddev = mddev;
2250 newpoolinfo->raid_disks = raid_disks;
2252 newpool = mempool_create(NR_RAID1_BIOS, r1bio_pool_alloc,
2253 r1bio_pool_free, newpoolinfo);
2254 if (!newpool) {
2255 kfree(newpoolinfo);
2256 return -ENOMEM;
2258 newmirrors = kzalloc(sizeof(struct mirror_info) * raid_disks, GFP_KERNEL);
2259 if (!newmirrors) {
2260 kfree(newpoolinfo);
2261 mempool_destroy(newpool);
2262 return -ENOMEM;
2265 raise_barrier(conf);
2267 /* ok, everything is stopped */
2268 oldpool = conf->r1bio_pool;
2269 conf->r1bio_pool = newpool;
2271 for (d = d2 = 0; d < conf->raid_disks; d++) {
2272 mdk_rdev_t *rdev = conf->mirrors[d].rdev;
2273 if (rdev && rdev->raid_disk != d2) {
2274 char nm[20];
2275 sprintf(nm, "rd%d", rdev->raid_disk);
2276 sysfs_remove_link(&mddev->kobj, nm);
2277 rdev->raid_disk = d2;
2278 sprintf(nm, "rd%d", rdev->raid_disk);
2279 sysfs_remove_link(&mddev->kobj, nm);
2280 if (sysfs_create_link(&mddev->kobj,
2281 &rdev->kobj, nm))
2282 printk(KERN_WARNING
2283 "md/raid1: cannot register "
2284 "%s for %s\n",
2285 nm, mdname(mddev));
2287 if (rdev)
2288 newmirrors[d2++].rdev = rdev;
2290 kfree(conf->mirrors);
2291 conf->mirrors = newmirrors;
2292 kfree(conf->poolinfo);
2293 conf->poolinfo = newpoolinfo;
2295 spin_lock_irqsave(&conf->device_lock, flags);
2296 mddev->degraded += (raid_disks - conf->raid_disks);
2297 spin_unlock_irqrestore(&conf->device_lock, flags);
2298 conf->raid_disks = mddev->raid_disks = raid_disks;
2299 mddev->delta_disks = 0;
2301 conf->last_used = 0; /* just make sure it is in-range */
2302 lower_barrier(conf);
2304 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
2305 md_wakeup_thread(mddev->thread);
2307 mempool_destroy(oldpool);
2308 return 0;
2311 static void raid1_quiesce(mddev_t *mddev, int state)
2313 conf_t *conf = mddev->private;
2315 switch(state) {
2316 case 2: /* wake for suspend */
2317 wake_up(&conf->wait_barrier);
2318 break;
2319 case 1:
2320 raise_barrier(conf);
2321 break;
2322 case 0:
2323 lower_barrier(conf);
2324 break;
2328 static void *raid1_takeover(mddev_t *mddev)
2330 /* raid1 can take over:
2331 * raid5 with 2 devices, any layout or chunk size
2333 if (mddev->level == 5 && mddev->raid_disks == 2) {
2334 conf_t *conf;
2335 mddev->new_level = 1;
2336 mddev->new_layout = 0;
2337 mddev->new_chunk_sectors = 0;
2338 conf = setup_conf(mddev);
2339 if (!IS_ERR(conf))
2340 conf->barrier = 1;
2341 return conf;
2343 return ERR_PTR(-EINVAL);
2346 static struct mdk_personality raid1_personality =
2348 .name = "raid1",
2349 .level = 1,
2350 .owner = THIS_MODULE,
2351 .make_request = make_request,
2352 .run = run,
2353 .stop = stop,
2354 .status = status,
2355 .error_handler = error,
2356 .hot_add_disk = raid1_add_disk,
2357 .hot_remove_disk= raid1_remove_disk,
2358 .spare_active = raid1_spare_active,
2359 .sync_request = sync_request,
2360 .resize = raid1_resize,
2361 .size = raid1_size,
2362 .check_reshape = raid1_reshape,
2363 .quiesce = raid1_quiesce,
2364 .takeover = raid1_takeover,
2367 static int __init raid_init(void)
2369 return register_md_personality(&raid1_personality);
2372 static void raid_exit(void)
2374 unregister_md_personality(&raid1_personality);
2377 module_init(raid_init);
2378 module_exit(raid_exit);
2379 MODULE_LICENSE("GPL");
2380 MODULE_DESCRIPTION("RAID1 (mirroring) personality for MD");
2381 MODULE_ALIAS("md-personality-3"); /* RAID1 */
2382 MODULE_ALIAS("md-raid1");
2383 MODULE_ALIAS("md-level-1");