ext4: Rename read_block_bitmap() to ext4_read_block_bitmap()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / balloc.c
blobba411233cc252a5e5fbf63b20f99de946043daed
1 /*
2 * linux/fs/ext4/balloc.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * Enhanced block allocation by Stephen Tweedie (sct@redhat.com), 1993
10 * Big-endian to little-endian byte-swapping/bitmaps by
11 * David S. Miller (davem@caip.rutgers.edu), 1995
14 #include <linux/time.h>
15 #include <linux/capability.h>
16 #include <linux/fs.h>
17 #include <linux/jbd2.h>
18 #include <linux/quotaops.h>
19 #include <linux/buffer_head.h>
20 #include "ext4.h"
21 #include "ext4_jbd2.h"
22 #include "group.h"
25 * balloc.c contains the blocks allocation and deallocation routines
29 * Calculate the block group number and offset, given a block number
31 void ext4_get_group_no_and_offset(struct super_block *sb, ext4_fsblk_t blocknr,
32 ext4_group_t *blockgrpp, ext4_grpblk_t *offsetp)
34 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
35 ext4_grpblk_t offset;
37 blocknr = blocknr - le32_to_cpu(es->s_first_data_block);
38 offset = do_div(blocknr, EXT4_BLOCKS_PER_GROUP(sb));
39 if (offsetp)
40 *offsetp = offset;
41 if (blockgrpp)
42 *blockgrpp = blocknr;
46 static int ext4_block_in_group(struct super_block *sb, ext4_fsblk_t block,
47 ext4_group_t block_group)
49 ext4_group_t actual_group;
50 ext4_get_group_no_and_offset(sb, block, &actual_group, 0);
51 if (actual_group == block_group)
52 return 1;
53 return 0;
56 static int ext4_group_used_meta_blocks(struct super_block *sb,
57 ext4_group_t block_group)
59 ext4_fsblk_t tmp;
60 struct ext4_sb_info *sbi = EXT4_SB(sb);
61 /* block bitmap, inode bitmap, and inode table blocks */
62 int used_blocks = sbi->s_itb_per_group + 2;
64 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
65 struct ext4_group_desc *gdp;
66 struct buffer_head *bh;
68 gdp = ext4_get_group_desc(sb, block_group, &bh);
69 if (!ext4_block_in_group(sb, ext4_block_bitmap(sb, gdp),
70 block_group))
71 used_blocks--;
73 if (!ext4_block_in_group(sb, ext4_inode_bitmap(sb, gdp),
74 block_group))
75 used_blocks--;
77 tmp = ext4_inode_table(sb, gdp);
78 for (; tmp < ext4_inode_table(sb, gdp) +
79 sbi->s_itb_per_group; tmp++) {
80 if (!ext4_block_in_group(sb, tmp, block_group))
81 used_blocks -= 1;
84 return used_blocks;
86 /* Initializes an uninitialized block bitmap if given, and returns the
87 * number of blocks free in the group. */
88 unsigned ext4_init_block_bitmap(struct super_block *sb, struct buffer_head *bh,
89 ext4_group_t block_group, struct ext4_group_desc *gdp)
91 int bit, bit_max;
92 unsigned free_blocks, group_blocks;
93 struct ext4_sb_info *sbi = EXT4_SB(sb);
95 if (bh) {
96 J_ASSERT_BH(bh, buffer_locked(bh));
98 /* If checksum is bad mark all blocks used to prevent allocation
99 * essentially implementing a per-group read-only flag. */
100 if (!ext4_group_desc_csum_verify(sbi, block_group, gdp)) {
101 ext4_error(sb, __func__,
102 "Checksum bad for group %lu\n", block_group);
103 gdp->bg_free_blocks_count = 0;
104 gdp->bg_free_inodes_count = 0;
105 gdp->bg_itable_unused = 0;
106 memset(bh->b_data, 0xff, sb->s_blocksize);
107 return 0;
109 memset(bh->b_data, 0, sb->s_blocksize);
112 /* Check for superblock and gdt backups in this group */
113 bit_max = ext4_bg_has_super(sb, block_group);
115 if (!EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_META_BG) ||
116 block_group < le32_to_cpu(sbi->s_es->s_first_meta_bg) *
117 sbi->s_desc_per_block) {
118 if (bit_max) {
119 bit_max += ext4_bg_num_gdb(sb, block_group);
120 bit_max +=
121 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks);
123 } else { /* For META_BG_BLOCK_GROUPS */
124 int group_rel = (block_group -
125 le32_to_cpu(sbi->s_es->s_first_meta_bg)) %
126 EXT4_DESC_PER_BLOCK(sb);
127 if (group_rel == 0 || group_rel == 1 ||
128 (group_rel == EXT4_DESC_PER_BLOCK(sb) - 1))
129 bit_max += 1;
132 if (block_group == sbi->s_groups_count - 1) {
134 * Even though mke2fs always initialize first and last group
135 * if some other tool enabled the EXT4_BG_BLOCK_UNINIT we need
136 * to make sure we calculate the right free blocks
138 group_blocks = ext4_blocks_count(sbi->s_es) -
139 le32_to_cpu(sbi->s_es->s_first_data_block) -
140 (EXT4_BLOCKS_PER_GROUP(sb) * (sbi->s_groups_count -1));
141 } else {
142 group_blocks = EXT4_BLOCKS_PER_GROUP(sb);
145 free_blocks = group_blocks - bit_max;
147 if (bh) {
148 ext4_fsblk_t start, tmp;
149 int flex_bg = 0;
151 for (bit = 0; bit < bit_max; bit++)
152 ext4_set_bit(bit, bh->b_data);
154 start = ext4_group_first_block_no(sb, block_group);
156 if (EXT4_HAS_INCOMPAT_FEATURE(sb,
157 EXT4_FEATURE_INCOMPAT_FLEX_BG))
158 flex_bg = 1;
160 /* Set bits for block and inode bitmaps, and inode table */
161 tmp = ext4_block_bitmap(sb, gdp);
162 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
163 ext4_set_bit(tmp - start, bh->b_data);
165 tmp = ext4_inode_bitmap(sb, gdp);
166 if (!flex_bg || ext4_block_in_group(sb, tmp, block_group))
167 ext4_set_bit(tmp - start, bh->b_data);
169 tmp = ext4_inode_table(sb, gdp);
170 for (; tmp < ext4_inode_table(sb, gdp) +
171 sbi->s_itb_per_group; tmp++) {
172 if (!flex_bg ||
173 ext4_block_in_group(sb, tmp, block_group))
174 ext4_set_bit(tmp - start, bh->b_data);
177 * Also if the number of blocks within the group is
178 * less than the blocksize * 8 ( which is the size
179 * of bitmap ), set rest of the block bitmap to 1
181 mark_bitmap_end(group_blocks, sb->s_blocksize * 8, bh->b_data);
183 return free_blocks - ext4_group_used_meta_blocks(sb, block_group);
188 * The free blocks are managed by bitmaps. A file system contains several
189 * blocks groups. Each group contains 1 bitmap block for blocks, 1 bitmap
190 * block for inodes, N blocks for the inode table and data blocks.
192 * The file system contains group descriptors which are located after the
193 * super block. Each descriptor contains the number of the bitmap block and
194 * the free blocks count in the block. The descriptors are loaded in memory
195 * when a file system is mounted (see ext4_fill_super).
199 #define in_range(b, first, len) ((b) >= (first) && (b) <= (first) + (len) - 1)
202 * ext4_get_group_desc() -- load group descriptor from disk
203 * @sb: super block
204 * @block_group: given block group
205 * @bh: pointer to the buffer head to store the block
206 * group descriptor
208 struct ext4_group_desc * ext4_get_group_desc(struct super_block * sb,
209 ext4_group_t block_group,
210 struct buffer_head ** bh)
212 unsigned long group_desc;
213 unsigned long offset;
214 struct ext4_group_desc * desc;
215 struct ext4_sb_info *sbi = EXT4_SB(sb);
217 if (block_group >= sbi->s_groups_count) {
218 ext4_error (sb, "ext4_get_group_desc",
219 "block_group >= groups_count - "
220 "block_group = %lu, groups_count = %lu",
221 block_group, sbi->s_groups_count);
223 return NULL;
225 smp_rmb();
227 group_desc = block_group >> EXT4_DESC_PER_BLOCK_BITS(sb);
228 offset = block_group & (EXT4_DESC_PER_BLOCK(sb) - 1);
229 if (!sbi->s_group_desc[group_desc]) {
230 ext4_error (sb, "ext4_get_group_desc",
231 "Group descriptor not loaded - "
232 "block_group = %lu, group_desc = %lu, desc = %lu",
233 block_group, group_desc, offset);
234 return NULL;
237 desc = (struct ext4_group_desc *)(
238 (__u8 *)sbi->s_group_desc[group_desc]->b_data +
239 offset * EXT4_DESC_SIZE(sb));
240 if (bh)
241 *bh = sbi->s_group_desc[group_desc];
242 return desc;
245 static int ext4_valid_block_bitmap(struct super_block *sb,
246 struct ext4_group_desc *desc,
247 unsigned int block_group,
248 struct buffer_head *bh)
250 ext4_grpblk_t offset;
251 ext4_grpblk_t next_zero_bit;
252 ext4_fsblk_t bitmap_blk;
253 ext4_fsblk_t group_first_block;
255 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_FLEX_BG)) {
256 /* with FLEX_BG, the inode/block bitmaps and itable
257 * blocks may not be in the group at all
258 * so the bitmap validation will be skipped for those groups
259 * or it has to also read the block group where the bitmaps
260 * are located to verify they are set.
262 return 1;
264 group_first_block = ext4_group_first_block_no(sb, block_group);
266 /* check whether block bitmap block number is set */
267 bitmap_blk = ext4_block_bitmap(sb, desc);
268 offset = bitmap_blk - group_first_block;
269 if (!ext4_test_bit(offset, bh->b_data))
270 /* bad block bitmap */
271 goto err_out;
273 /* check whether the inode bitmap block number is set */
274 bitmap_blk = ext4_inode_bitmap(sb, desc);
275 offset = bitmap_blk - group_first_block;
276 if (!ext4_test_bit(offset, bh->b_data))
277 /* bad block bitmap */
278 goto err_out;
280 /* check whether the inode table block number is set */
281 bitmap_blk = ext4_inode_table(sb, desc);
282 offset = bitmap_blk - group_first_block;
283 next_zero_bit = ext4_find_next_zero_bit(bh->b_data,
284 offset + EXT4_SB(sb)->s_itb_per_group,
285 offset);
286 if (next_zero_bit >= offset + EXT4_SB(sb)->s_itb_per_group)
287 /* good bitmap for inode tables */
288 return 1;
290 err_out:
291 ext4_error(sb, __func__,
292 "Invalid block bitmap - "
293 "block_group = %d, block = %llu",
294 block_group, bitmap_blk);
295 return 0;
298 * ext4_read_block_bitmap()
299 * @sb: super block
300 * @block_group: given block group
302 * Read the bitmap for a given block_group,and validate the
303 * bits for block/inode/inode tables are set in the bitmaps
305 * Return buffer_head on success or NULL in case of failure.
307 struct buffer_head *
308 ext4_read_block_bitmap(struct super_block *sb, ext4_group_t block_group)
310 struct ext4_group_desc * desc;
311 struct buffer_head * bh = NULL;
312 ext4_fsblk_t bitmap_blk;
314 desc = ext4_get_group_desc(sb, block_group, NULL);
315 if (!desc)
316 return NULL;
317 bitmap_blk = ext4_block_bitmap(sb, desc);
318 bh = sb_getblk(sb, bitmap_blk);
319 if (unlikely(!bh)) {
320 ext4_error(sb, __func__,
321 "Cannot read block bitmap - "
322 "block_group = %d, block_bitmap = %llu",
323 (int)block_group, (unsigned long long)bitmap_blk);
324 return NULL;
326 if (bh_uptodate_or_lock(bh))
327 return bh;
329 if (desc->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT)) {
330 ext4_init_block_bitmap(sb, bh, block_group, desc);
331 set_buffer_uptodate(bh);
332 unlock_buffer(bh);
333 return bh;
335 if (bh_submit_read(bh) < 0) {
336 put_bh(bh);
337 ext4_error(sb, __func__,
338 "Cannot read block bitmap - "
339 "block_group = %d, block_bitmap = %llu",
340 (int)block_group, (unsigned long long)bitmap_blk);
341 return NULL;
343 ext4_valid_block_bitmap(sb, desc, block_group, bh);
345 * file system mounted not to panic on error,
346 * continue with corrupt bitmap
348 return bh;
351 * The reservation window structure operations
352 * --------------------------------------------
353 * Operations include:
354 * dump, find, add, remove, is_empty, find_next_reservable_window, etc.
356 * We use a red-black tree to represent per-filesystem reservation
357 * windows.
362 * __rsv_window_dump() -- Dump the filesystem block allocation reservation map
363 * @rb_root: root of per-filesystem reservation rb tree
364 * @verbose: verbose mode
365 * @fn: function which wishes to dump the reservation map
367 * If verbose is turned on, it will print the whole block reservation
368 * windows(start, end). Otherwise, it will only print out the "bad" windows,
369 * those windows that overlap with their immediate neighbors.
371 #if 1
372 static void __rsv_window_dump(struct rb_root *root, int verbose,
373 const char *fn)
375 struct rb_node *n;
376 struct ext4_reserve_window_node *rsv, *prev;
377 int bad;
379 restart:
380 n = rb_first(root);
381 bad = 0;
382 prev = NULL;
384 printk("Block Allocation Reservation Windows Map (%s):\n", fn);
385 while (n) {
386 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
387 if (verbose)
388 printk("reservation window 0x%p "
389 "start: %llu, end: %llu\n",
390 rsv, rsv->rsv_start, rsv->rsv_end);
391 if (rsv->rsv_start && rsv->rsv_start >= rsv->rsv_end) {
392 printk("Bad reservation %p (start >= end)\n",
393 rsv);
394 bad = 1;
396 if (prev && prev->rsv_end >= rsv->rsv_start) {
397 printk("Bad reservation %p (prev->end >= start)\n",
398 rsv);
399 bad = 1;
401 if (bad) {
402 if (!verbose) {
403 printk("Restarting reservation walk in verbose mode\n");
404 verbose = 1;
405 goto restart;
408 n = rb_next(n);
409 prev = rsv;
411 printk("Window map complete.\n");
412 BUG_ON(bad);
414 #define rsv_window_dump(root, verbose) \
415 __rsv_window_dump((root), (verbose), __func__)
416 #else
417 #define rsv_window_dump(root, verbose) do {} while (0)
418 #endif
421 * goal_in_my_reservation()
422 * @rsv: inode's reservation window
423 * @grp_goal: given goal block relative to the allocation block group
424 * @group: the current allocation block group
425 * @sb: filesystem super block
427 * Test if the given goal block (group relative) is within the file's
428 * own block reservation window range.
430 * If the reservation window is outside the goal allocation group, return 0;
431 * grp_goal (given goal block) could be -1, which means no specific
432 * goal block. In this case, always return 1.
433 * If the goal block is within the reservation window, return 1;
434 * otherwise, return 0;
436 static int
437 goal_in_my_reservation(struct ext4_reserve_window *rsv, ext4_grpblk_t grp_goal,
438 ext4_group_t group, struct super_block *sb)
440 ext4_fsblk_t group_first_block, group_last_block;
442 group_first_block = ext4_group_first_block_no(sb, group);
443 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
445 if ((rsv->_rsv_start > group_last_block) ||
446 (rsv->_rsv_end < group_first_block))
447 return 0;
448 if ((grp_goal >= 0) && ((grp_goal + group_first_block < rsv->_rsv_start)
449 || (grp_goal + group_first_block > rsv->_rsv_end)))
450 return 0;
451 return 1;
455 * search_reserve_window()
456 * @rb_root: root of reservation tree
457 * @goal: target allocation block
459 * Find the reserved window which includes the goal, or the previous one
460 * if the goal is not in any window.
461 * Returns NULL if there are no windows or if all windows start after the goal.
463 static struct ext4_reserve_window_node *
464 search_reserve_window(struct rb_root *root, ext4_fsblk_t goal)
466 struct rb_node *n = root->rb_node;
467 struct ext4_reserve_window_node *rsv;
469 if (!n)
470 return NULL;
472 do {
473 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
475 if (goal < rsv->rsv_start)
476 n = n->rb_left;
477 else if (goal > rsv->rsv_end)
478 n = n->rb_right;
479 else
480 return rsv;
481 } while (n);
483 * We've fallen off the end of the tree: the goal wasn't inside
484 * any particular node. OK, the previous node must be to one
485 * side of the interval containing the goal. If it's the RHS,
486 * we need to back up one.
488 if (rsv->rsv_start > goal) {
489 n = rb_prev(&rsv->rsv_node);
490 rsv = rb_entry(n, struct ext4_reserve_window_node, rsv_node);
492 return rsv;
496 * ext4_rsv_window_add() -- Insert a window to the block reservation rb tree.
497 * @sb: super block
498 * @rsv: reservation window to add
500 * Must be called with rsv_lock hold.
502 void ext4_rsv_window_add(struct super_block *sb,
503 struct ext4_reserve_window_node *rsv)
505 struct rb_root *root = &EXT4_SB(sb)->s_rsv_window_root;
506 struct rb_node *node = &rsv->rsv_node;
507 ext4_fsblk_t start = rsv->rsv_start;
509 struct rb_node ** p = &root->rb_node;
510 struct rb_node * parent = NULL;
511 struct ext4_reserve_window_node *this;
513 while (*p)
515 parent = *p;
516 this = rb_entry(parent, struct ext4_reserve_window_node, rsv_node);
518 if (start < this->rsv_start)
519 p = &(*p)->rb_left;
520 else if (start > this->rsv_end)
521 p = &(*p)->rb_right;
522 else {
523 rsv_window_dump(root, 1);
524 BUG();
528 rb_link_node(node, parent, p);
529 rb_insert_color(node, root);
533 * ext4_rsv_window_remove() -- unlink a window from the reservation rb tree
534 * @sb: super block
535 * @rsv: reservation window to remove
537 * Mark the block reservation window as not allocated, and unlink it
538 * from the filesystem reservation window rb tree. Must be called with
539 * rsv_lock hold.
541 static void rsv_window_remove(struct super_block *sb,
542 struct ext4_reserve_window_node *rsv)
544 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
545 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
546 rsv->rsv_alloc_hit = 0;
547 rb_erase(&rsv->rsv_node, &EXT4_SB(sb)->s_rsv_window_root);
551 * rsv_is_empty() -- Check if the reservation window is allocated.
552 * @rsv: given reservation window to check
554 * returns 1 if the end block is EXT4_RESERVE_WINDOW_NOT_ALLOCATED.
556 static inline int rsv_is_empty(struct ext4_reserve_window *rsv)
558 /* a valid reservation end block could not be 0 */
559 return rsv->_rsv_end == EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
563 * ext4_init_block_alloc_info()
564 * @inode: file inode structure
566 * Allocate and initialize the reservation window structure, and
567 * link the window to the ext4 inode structure at last
569 * The reservation window structure is only dynamically allocated
570 * and linked to ext4 inode the first time the open file
571 * needs a new block. So, before every ext4_new_block(s) call, for
572 * regular files, we should check whether the reservation window
573 * structure exists or not. In the latter case, this function is called.
574 * Fail to do so will result in block reservation being turned off for that
575 * open file.
577 * This function is called from ext4_get_blocks_handle(), also called
578 * when setting the reservation window size through ioctl before the file
579 * is open for write (needs block allocation).
581 * Needs down_write(i_data_sem) protection prior to call this function.
583 void ext4_init_block_alloc_info(struct inode *inode)
585 struct ext4_inode_info *ei = EXT4_I(inode);
586 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
587 struct super_block *sb = inode->i_sb;
589 block_i = kmalloc(sizeof(*block_i), GFP_NOFS);
590 if (block_i) {
591 struct ext4_reserve_window_node *rsv = &block_i->rsv_window_node;
593 rsv->rsv_start = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
594 rsv->rsv_end = EXT4_RESERVE_WINDOW_NOT_ALLOCATED;
597 * if filesystem is mounted with NORESERVATION, the goal
598 * reservation window size is set to zero to indicate
599 * block reservation is off
601 if (!test_opt(sb, RESERVATION))
602 rsv->rsv_goal_size = 0;
603 else
604 rsv->rsv_goal_size = EXT4_DEFAULT_RESERVE_BLOCKS;
605 rsv->rsv_alloc_hit = 0;
606 block_i->last_alloc_logical_block = 0;
607 block_i->last_alloc_physical_block = 0;
609 ei->i_block_alloc_info = block_i;
613 * ext4_discard_reservation()
614 * @inode: inode
616 * Discard(free) block reservation window on last file close, or truncate
617 * or at last iput().
619 * It is being called in three cases:
620 * ext4_release_file(): last writer close the file
621 * ext4_clear_inode(): last iput(), when nobody link to this file.
622 * ext4_truncate(): when the block indirect map is about to change.
625 void ext4_discard_reservation(struct inode *inode)
627 struct ext4_inode_info *ei = EXT4_I(inode);
628 struct ext4_block_alloc_info *block_i = ei->i_block_alloc_info;
629 struct ext4_reserve_window_node *rsv;
630 spinlock_t *rsv_lock = &EXT4_SB(inode->i_sb)->s_rsv_window_lock;
632 ext4_mb_discard_inode_preallocations(inode);
634 if (!block_i)
635 return;
637 rsv = &block_i->rsv_window_node;
638 if (!rsv_is_empty(&rsv->rsv_window)) {
639 spin_lock(rsv_lock);
640 if (!rsv_is_empty(&rsv->rsv_window))
641 rsv_window_remove(inode->i_sb, rsv);
642 spin_unlock(rsv_lock);
647 * ext4_free_blocks_sb() -- Free given blocks and update quota
648 * @handle: handle to this transaction
649 * @sb: super block
650 * @block: start physcial block to free
651 * @count: number of blocks to free
652 * @pdquot_freed_blocks: pointer to quota
654 void ext4_free_blocks_sb(handle_t *handle, struct super_block *sb,
655 ext4_fsblk_t block, unsigned long count,
656 unsigned long *pdquot_freed_blocks)
658 struct buffer_head *bitmap_bh = NULL;
659 struct buffer_head *gd_bh;
660 ext4_group_t block_group;
661 ext4_grpblk_t bit;
662 unsigned long i;
663 unsigned long overflow;
664 struct ext4_group_desc * desc;
665 struct ext4_super_block * es;
666 struct ext4_sb_info *sbi;
667 int err = 0, ret;
668 ext4_grpblk_t group_freed;
670 *pdquot_freed_blocks = 0;
671 sbi = EXT4_SB(sb);
672 es = sbi->s_es;
673 if (block < le32_to_cpu(es->s_first_data_block) ||
674 block + count < block ||
675 block + count > ext4_blocks_count(es)) {
676 ext4_error (sb, "ext4_free_blocks",
677 "Freeing blocks not in datazone - "
678 "block = %llu, count = %lu", block, count);
679 goto error_return;
682 ext4_debug ("freeing block(s) %llu-%llu\n", block, block + count - 1);
684 do_more:
685 overflow = 0;
686 ext4_get_group_no_and_offset(sb, block, &block_group, &bit);
688 * Check to see if we are freeing blocks across a group
689 * boundary.
691 if (bit + count > EXT4_BLOCKS_PER_GROUP(sb)) {
692 overflow = bit + count - EXT4_BLOCKS_PER_GROUP(sb);
693 count -= overflow;
695 brelse(bitmap_bh);
696 bitmap_bh = ext4_read_block_bitmap(sb, block_group);
697 if (!bitmap_bh)
698 goto error_return;
699 desc = ext4_get_group_desc (sb, block_group, &gd_bh);
700 if (!desc)
701 goto error_return;
703 if (in_range(ext4_block_bitmap(sb, desc), block, count) ||
704 in_range(ext4_inode_bitmap(sb, desc), block, count) ||
705 in_range(block, ext4_inode_table(sb, desc), sbi->s_itb_per_group) ||
706 in_range(block + count - 1, ext4_inode_table(sb, desc),
707 sbi->s_itb_per_group)) {
708 ext4_error (sb, "ext4_free_blocks",
709 "Freeing blocks in system zones - "
710 "Block = %llu, count = %lu",
711 block, count);
712 goto error_return;
716 * We are about to start releasing blocks in the bitmap,
717 * so we need undo access.
719 /* @@@ check errors */
720 BUFFER_TRACE(bitmap_bh, "getting undo access");
721 err = ext4_journal_get_undo_access(handle, bitmap_bh);
722 if (err)
723 goto error_return;
726 * We are about to modify some metadata. Call the journal APIs
727 * to unshare ->b_data if a currently-committing transaction is
728 * using it
730 BUFFER_TRACE(gd_bh, "get_write_access");
731 err = ext4_journal_get_write_access(handle, gd_bh);
732 if (err)
733 goto error_return;
735 jbd_lock_bh_state(bitmap_bh);
737 for (i = 0, group_freed = 0; i < count; i++) {
739 * An HJ special. This is expensive...
741 #ifdef CONFIG_JBD2_DEBUG
742 jbd_unlock_bh_state(bitmap_bh);
744 struct buffer_head *debug_bh;
745 debug_bh = sb_find_get_block(sb, block + i);
746 if (debug_bh) {
747 BUFFER_TRACE(debug_bh, "Deleted!");
748 if (!bh2jh(bitmap_bh)->b_committed_data)
749 BUFFER_TRACE(debug_bh,
750 "No commited data in bitmap");
751 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap");
752 __brelse(debug_bh);
755 jbd_lock_bh_state(bitmap_bh);
756 #endif
757 if (need_resched()) {
758 jbd_unlock_bh_state(bitmap_bh);
759 cond_resched();
760 jbd_lock_bh_state(bitmap_bh);
762 /* @@@ This prevents newly-allocated data from being
763 * freed and then reallocated within the same
764 * transaction.
766 * Ideally we would want to allow that to happen, but to
767 * do so requires making jbd2_journal_forget() capable of
768 * revoking the queued write of a data block, which
769 * implies blocking on the journal lock. *forget()
770 * cannot block due to truncate races.
772 * Eventually we can fix this by making jbd2_journal_forget()
773 * return a status indicating whether or not it was able
774 * to revoke the buffer. On successful revoke, it is
775 * safe not to set the allocation bit in the committed
776 * bitmap, because we know that there is no outstanding
777 * activity on the buffer any more and so it is safe to
778 * reallocate it.
780 BUFFER_TRACE(bitmap_bh, "set in b_committed_data");
781 J_ASSERT_BH(bitmap_bh,
782 bh2jh(bitmap_bh)->b_committed_data != NULL);
783 ext4_set_bit_atomic(sb_bgl_lock(sbi, block_group), bit + i,
784 bh2jh(bitmap_bh)->b_committed_data);
787 * We clear the bit in the bitmap after setting the committed
788 * data bit, because this is the reverse order to that which
789 * the allocator uses.
791 BUFFER_TRACE(bitmap_bh, "clear bit");
792 if (!ext4_clear_bit_atomic(sb_bgl_lock(sbi, block_group),
793 bit + i, bitmap_bh->b_data)) {
794 jbd_unlock_bh_state(bitmap_bh);
795 ext4_error(sb, __func__,
796 "bit already cleared for block %llu",
797 (ext4_fsblk_t)(block + i));
798 jbd_lock_bh_state(bitmap_bh);
799 BUFFER_TRACE(bitmap_bh, "bit already cleared");
800 } else {
801 group_freed++;
804 jbd_unlock_bh_state(bitmap_bh);
806 spin_lock(sb_bgl_lock(sbi, block_group));
807 le16_add_cpu(&desc->bg_free_blocks_count, group_freed);
808 desc->bg_checksum = ext4_group_desc_csum(sbi, block_group, desc);
809 spin_unlock(sb_bgl_lock(sbi, block_group));
810 percpu_counter_add(&sbi->s_freeblocks_counter, count);
812 /* We dirtied the bitmap block */
813 BUFFER_TRACE(bitmap_bh, "dirtied bitmap block");
814 err = ext4_journal_dirty_metadata(handle, bitmap_bh);
816 /* And the group descriptor block */
817 BUFFER_TRACE(gd_bh, "dirtied group descriptor block");
818 ret = ext4_journal_dirty_metadata(handle, gd_bh);
819 if (!err) err = ret;
820 *pdquot_freed_blocks += group_freed;
822 if (overflow && !err) {
823 block += count;
824 count = overflow;
825 goto do_more;
827 sb->s_dirt = 1;
828 error_return:
829 brelse(bitmap_bh);
830 ext4_std_error(sb, err);
831 return;
835 * ext4_free_blocks() -- Free given blocks and update quota
836 * @handle: handle for this transaction
837 * @inode: inode
838 * @block: start physical block to free
839 * @count: number of blocks to count
840 * @metadata: Are these metadata blocks
842 void ext4_free_blocks(handle_t *handle, struct inode *inode,
843 ext4_fsblk_t block, unsigned long count,
844 int metadata)
846 struct super_block * sb;
847 unsigned long dquot_freed_blocks;
849 /* this isn't the right place to decide whether block is metadata
850 * inode.c/extents.c knows better, but for safety ... */
851 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode) ||
852 ext4_should_journal_data(inode))
853 metadata = 1;
855 sb = inode->i_sb;
857 if (!test_opt(sb, MBALLOC) || !EXT4_SB(sb)->s_group_info)
858 ext4_free_blocks_sb(handle, sb, block, count,
859 &dquot_freed_blocks);
860 else
861 ext4_mb_free_blocks(handle, inode, block, count,
862 metadata, &dquot_freed_blocks);
863 if (dquot_freed_blocks)
864 DQUOT_FREE_BLOCK(inode, dquot_freed_blocks);
865 return;
869 * ext4_test_allocatable()
870 * @nr: given allocation block group
871 * @bh: bufferhead contains the bitmap of the given block group
873 * For ext4 allocations, we must not reuse any blocks which are
874 * allocated in the bitmap buffer's "last committed data" copy. This
875 * prevents deletes from freeing up the page for reuse until we have
876 * committed the delete transaction.
878 * If we didn't do this, then deleting something and reallocating it as
879 * data would allow the old block to be overwritten before the
880 * transaction committed (because we force data to disk before commit).
881 * This would lead to corruption if we crashed between overwriting the
882 * data and committing the delete.
884 * @@@ We may want to make this allocation behaviour conditional on
885 * data-writes at some point, and disable it for metadata allocations or
886 * sync-data inodes.
888 static int ext4_test_allocatable(ext4_grpblk_t nr, struct buffer_head *bh)
890 int ret;
891 struct journal_head *jh = bh2jh(bh);
893 if (ext4_test_bit(nr, bh->b_data))
894 return 0;
896 jbd_lock_bh_state(bh);
897 if (!jh->b_committed_data)
898 ret = 1;
899 else
900 ret = !ext4_test_bit(nr, jh->b_committed_data);
901 jbd_unlock_bh_state(bh);
902 return ret;
906 * bitmap_search_next_usable_block()
907 * @start: the starting block (group relative) of the search
908 * @bh: bufferhead contains the block group bitmap
909 * @maxblocks: the ending block (group relative) of the reservation
911 * The bitmap search --- search forward alternately through the actual
912 * bitmap on disk and the last-committed copy in journal, until we find a
913 * bit free in both bitmaps.
915 static ext4_grpblk_t
916 bitmap_search_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
917 ext4_grpblk_t maxblocks)
919 ext4_grpblk_t next;
920 struct journal_head *jh = bh2jh(bh);
922 while (start < maxblocks) {
923 next = ext4_find_next_zero_bit(bh->b_data, maxblocks, start);
924 if (next >= maxblocks)
925 return -1;
926 if (ext4_test_allocatable(next, bh))
927 return next;
928 jbd_lock_bh_state(bh);
929 if (jh->b_committed_data)
930 start = ext4_find_next_zero_bit(jh->b_committed_data,
931 maxblocks, next);
932 jbd_unlock_bh_state(bh);
934 return -1;
938 * find_next_usable_block()
939 * @start: the starting block (group relative) to find next
940 * allocatable block in bitmap.
941 * @bh: bufferhead contains the block group bitmap
942 * @maxblocks: the ending block (group relative) for the search
944 * Find an allocatable block in a bitmap. We honor both the bitmap and
945 * its last-committed copy (if that exists), and perform the "most
946 * appropriate allocation" algorithm of looking for a free block near
947 * the initial goal; then for a free byte somewhere in the bitmap; then
948 * for any free bit in the bitmap.
950 static ext4_grpblk_t
951 find_next_usable_block(ext4_grpblk_t start, struct buffer_head *bh,
952 ext4_grpblk_t maxblocks)
954 ext4_grpblk_t here, next;
955 char *p, *r;
957 if (start > 0) {
959 * The goal was occupied; search forward for a free
960 * block within the next XX blocks.
962 * end_goal is more or less random, but it has to be
963 * less than EXT4_BLOCKS_PER_GROUP. Aligning up to the
964 * next 64-bit boundary is simple..
966 ext4_grpblk_t end_goal = (start + 63) & ~63;
967 if (end_goal > maxblocks)
968 end_goal = maxblocks;
969 here = ext4_find_next_zero_bit(bh->b_data, end_goal, start);
970 if (here < end_goal && ext4_test_allocatable(here, bh))
971 return here;
972 ext4_debug("Bit not found near goal\n");
975 here = start;
976 if (here < 0)
977 here = 0;
979 p = ((char *)bh->b_data) + (here >> 3);
980 r = memscan(p, 0, ((maxblocks + 7) >> 3) - (here >> 3));
981 next = (r - ((char *)bh->b_data)) << 3;
983 if (next < maxblocks && next >= start && ext4_test_allocatable(next, bh))
984 return next;
987 * The bitmap search --- search forward alternately through the actual
988 * bitmap and the last-committed copy until we find a bit free in
989 * both
991 here = bitmap_search_next_usable_block(here, bh, maxblocks);
992 return here;
996 * claim_block()
997 * @block: the free block (group relative) to allocate
998 * @bh: the bufferhead containts the block group bitmap
1000 * We think we can allocate this block in this bitmap. Try to set the bit.
1001 * If that succeeds then check that nobody has allocated and then freed the
1002 * block since we saw that is was not marked in b_committed_data. If it _was_
1003 * allocated and freed then clear the bit in the bitmap again and return
1004 * zero (failure).
1006 static inline int
1007 claim_block(spinlock_t *lock, ext4_grpblk_t block, struct buffer_head *bh)
1009 struct journal_head *jh = bh2jh(bh);
1010 int ret;
1012 if (ext4_set_bit_atomic(lock, block, bh->b_data))
1013 return 0;
1014 jbd_lock_bh_state(bh);
1015 if (jh->b_committed_data && ext4_test_bit(block,jh->b_committed_data)) {
1016 ext4_clear_bit_atomic(lock, block, bh->b_data);
1017 ret = 0;
1018 } else {
1019 ret = 1;
1021 jbd_unlock_bh_state(bh);
1022 return ret;
1026 * ext4_try_to_allocate()
1027 * @sb: superblock
1028 * @handle: handle to this transaction
1029 * @group: given allocation block group
1030 * @bitmap_bh: bufferhead holds the block bitmap
1031 * @grp_goal: given target block within the group
1032 * @count: target number of blocks to allocate
1033 * @my_rsv: reservation window
1035 * Attempt to allocate blocks within a give range. Set the range of allocation
1036 * first, then find the first free bit(s) from the bitmap (within the range),
1037 * and at last, allocate the blocks by claiming the found free bit as allocated.
1039 * To set the range of this allocation:
1040 * if there is a reservation window, only try to allocate block(s) from the
1041 * file's own reservation window;
1042 * Otherwise, the allocation range starts from the give goal block, ends at
1043 * the block group's last block.
1045 * If we failed to allocate the desired block then we may end up crossing to a
1046 * new bitmap. In that case we must release write access to the old one via
1047 * ext4_journal_release_buffer(), else we'll run out of credits.
1049 static ext4_grpblk_t
1050 ext4_try_to_allocate(struct super_block *sb, handle_t *handle,
1051 ext4_group_t group, struct buffer_head *bitmap_bh,
1052 ext4_grpblk_t grp_goal, unsigned long *count,
1053 struct ext4_reserve_window *my_rsv)
1055 ext4_fsblk_t group_first_block;
1056 ext4_grpblk_t start, end;
1057 unsigned long num = 0;
1059 /* we do allocation within the reservation window if we have a window */
1060 if (my_rsv) {
1061 group_first_block = ext4_group_first_block_no(sb, group);
1062 if (my_rsv->_rsv_start >= group_first_block)
1063 start = my_rsv->_rsv_start - group_first_block;
1064 else
1065 /* reservation window cross group boundary */
1066 start = 0;
1067 end = my_rsv->_rsv_end - group_first_block + 1;
1068 if (end > EXT4_BLOCKS_PER_GROUP(sb))
1069 /* reservation window crosses group boundary */
1070 end = EXT4_BLOCKS_PER_GROUP(sb);
1071 if ((start <= grp_goal) && (grp_goal < end))
1072 start = grp_goal;
1073 else
1074 grp_goal = -1;
1075 } else {
1076 if (grp_goal > 0)
1077 start = grp_goal;
1078 else
1079 start = 0;
1080 end = EXT4_BLOCKS_PER_GROUP(sb);
1083 BUG_ON(start > EXT4_BLOCKS_PER_GROUP(sb));
1085 repeat:
1086 if (grp_goal < 0 || !ext4_test_allocatable(grp_goal, bitmap_bh)) {
1087 grp_goal = find_next_usable_block(start, bitmap_bh, end);
1088 if (grp_goal < 0)
1089 goto fail_access;
1090 if (!my_rsv) {
1091 int i;
1093 for (i = 0; i < 7 && grp_goal > start &&
1094 ext4_test_allocatable(grp_goal - 1,
1095 bitmap_bh);
1096 i++, grp_goal--)
1100 start = grp_goal;
1102 if (!claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1103 grp_goal, bitmap_bh)) {
1105 * The block was allocated by another thread, or it was
1106 * allocated and then freed by another thread
1108 start++;
1109 grp_goal++;
1110 if (start >= end)
1111 goto fail_access;
1112 goto repeat;
1114 num++;
1115 grp_goal++;
1116 while (num < *count && grp_goal < end
1117 && ext4_test_allocatable(grp_goal, bitmap_bh)
1118 && claim_block(sb_bgl_lock(EXT4_SB(sb), group),
1119 grp_goal, bitmap_bh)) {
1120 num++;
1121 grp_goal++;
1123 *count = num;
1124 return grp_goal - num;
1125 fail_access:
1126 *count = num;
1127 return -1;
1131 * find_next_reservable_window():
1132 * find a reservable space within the given range.
1133 * It does not allocate the reservation window for now:
1134 * alloc_new_reservation() will do the work later.
1136 * @search_head: the head of the searching list;
1137 * This is not necessarily the list head of the whole filesystem
1139 * We have both head and start_block to assist the search
1140 * for the reservable space. The list starts from head,
1141 * but we will shift to the place where start_block is,
1142 * then start from there, when looking for a reservable space.
1144 * @size: the target new reservation window size
1146 * @group_first_block: the first block we consider to start
1147 * the real search from
1149 * @last_block:
1150 * the maximum block number that our goal reservable space
1151 * could start from. This is normally the last block in this
1152 * group. The search will end when we found the start of next
1153 * possible reservable space is out of this boundary.
1154 * This could handle the cross boundary reservation window
1155 * request.
1157 * basically we search from the given range, rather than the whole
1158 * reservation double linked list, (start_block, last_block)
1159 * to find a free region that is of my size and has not
1160 * been reserved.
1163 static int find_next_reservable_window(
1164 struct ext4_reserve_window_node *search_head,
1165 struct ext4_reserve_window_node *my_rsv,
1166 struct super_block * sb,
1167 ext4_fsblk_t start_block,
1168 ext4_fsblk_t last_block)
1170 struct rb_node *next;
1171 struct ext4_reserve_window_node *rsv, *prev;
1172 ext4_fsblk_t cur;
1173 int size = my_rsv->rsv_goal_size;
1175 /* TODO: make the start of the reservation window byte-aligned */
1176 /* cur = *start_block & ~7;*/
1177 cur = start_block;
1178 rsv = search_head;
1179 if (!rsv)
1180 return -1;
1182 while (1) {
1183 if (cur <= rsv->rsv_end)
1184 cur = rsv->rsv_end + 1;
1186 /* TODO?
1187 * in the case we could not find a reservable space
1188 * that is what is expected, during the re-search, we could
1189 * remember what's the largest reservable space we could have
1190 * and return that one.
1192 * For now it will fail if we could not find the reservable
1193 * space with expected-size (or more)...
1195 if (cur > last_block)
1196 return -1; /* fail */
1198 prev = rsv;
1199 next = rb_next(&rsv->rsv_node);
1200 rsv = rb_entry(next,struct ext4_reserve_window_node,rsv_node);
1203 * Reached the last reservation, we can just append to the
1204 * previous one.
1206 if (!next)
1207 break;
1209 if (cur + size <= rsv->rsv_start) {
1211 * Found a reserveable space big enough. We could
1212 * have a reservation across the group boundary here
1214 break;
1218 * we come here either :
1219 * when we reach the end of the whole list,
1220 * and there is empty reservable space after last entry in the list.
1221 * append it to the end of the list.
1223 * or we found one reservable space in the middle of the list,
1224 * return the reservation window that we could append to.
1225 * succeed.
1228 if ((prev != my_rsv) && (!rsv_is_empty(&my_rsv->rsv_window)))
1229 rsv_window_remove(sb, my_rsv);
1232 * Let's book the whole avaliable window for now. We will check the
1233 * disk bitmap later and then, if there are free blocks then we adjust
1234 * the window size if it's larger than requested.
1235 * Otherwise, we will remove this node from the tree next time
1236 * call find_next_reservable_window.
1238 my_rsv->rsv_start = cur;
1239 my_rsv->rsv_end = cur + size - 1;
1240 my_rsv->rsv_alloc_hit = 0;
1242 if (prev != my_rsv)
1243 ext4_rsv_window_add(sb, my_rsv);
1245 return 0;
1249 * alloc_new_reservation()--allocate a new reservation window
1251 * To make a new reservation, we search part of the filesystem
1252 * reservation list (the list that inside the group). We try to
1253 * allocate a new reservation window near the allocation goal,
1254 * or the beginning of the group, if there is no goal.
1256 * We first find a reservable space after the goal, then from
1257 * there, we check the bitmap for the first free block after
1258 * it. If there is no free block until the end of group, then the
1259 * whole group is full, we failed. Otherwise, check if the free
1260 * block is inside the expected reservable space, if so, we
1261 * succeed.
1262 * If the first free block is outside the reservable space, then
1263 * start from the first free block, we search for next available
1264 * space, and go on.
1266 * on succeed, a new reservation will be found and inserted into the list
1267 * It contains at least one free block, and it does not overlap with other
1268 * reservation windows.
1270 * failed: we failed to find a reservation window in this group
1272 * @rsv: the reservation
1274 * @grp_goal: The goal (group-relative). It is where the search for a
1275 * free reservable space should start from.
1276 * if we have a grp_goal(grp_goal >0 ), then start from there,
1277 * no grp_goal(grp_goal = -1), we start from the first block
1278 * of the group.
1280 * @sb: the super block
1281 * @group: the group we are trying to allocate in
1282 * @bitmap_bh: the block group block bitmap
1285 static int alloc_new_reservation(struct ext4_reserve_window_node *my_rsv,
1286 ext4_grpblk_t grp_goal, struct super_block *sb,
1287 ext4_group_t group, struct buffer_head *bitmap_bh)
1289 struct ext4_reserve_window_node *search_head;
1290 ext4_fsblk_t group_first_block, group_end_block, start_block;
1291 ext4_grpblk_t first_free_block;
1292 struct rb_root *fs_rsv_root = &EXT4_SB(sb)->s_rsv_window_root;
1293 unsigned long size;
1294 int ret;
1295 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1297 group_first_block = ext4_group_first_block_no(sb, group);
1298 group_end_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1300 if (grp_goal < 0)
1301 start_block = group_first_block;
1302 else
1303 start_block = grp_goal + group_first_block;
1305 size = my_rsv->rsv_goal_size;
1307 if (!rsv_is_empty(&my_rsv->rsv_window)) {
1309 * if the old reservation is cross group boundary
1310 * and if the goal is inside the old reservation window,
1311 * we will come here when we just failed to allocate from
1312 * the first part of the window. We still have another part
1313 * that belongs to the next group. In this case, there is no
1314 * point to discard our window and try to allocate a new one
1315 * in this group(which will fail). we should
1316 * keep the reservation window, just simply move on.
1318 * Maybe we could shift the start block of the reservation
1319 * window to the first block of next group.
1322 if ((my_rsv->rsv_start <= group_end_block) &&
1323 (my_rsv->rsv_end > group_end_block) &&
1324 (start_block >= my_rsv->rsv_start))
1325 return -1;
1327 if ((my_rsv->rsv_alloc_hit >
1328 (my_rsv->rsv_end - my_rsv->rsv_start + 1) / 2)) {
1330 * if the previously allocation hit ratio is
1331 * greater than 1/2, then we double the size of
1332 * the reservation window the next time,
1333 * otherwise we keep the same size window
1335 size = size * 2;
1336 if (size > EXT4_MAX_RESERVE_BLOCKS)
1337 size = EXT4_MAX_RESERVE_BLOCKS;
1338 my_rsv->rsv_goal_size= size;
1342 spin_lock(rsv_lock);
1344 * shift the search start to the window near the goal block
1346 search_head = search_reserve_window(fs_rsv_root, start_block);
1349 * find_next_reservable_window() simply finds a reservable window
1350 * inside the given range(start_block, group_end_block).
1352 * To make sure the reservation window has a free bit inside it, we
1353 * need to check the bitmap after we found a reservable window.
1355 retry:
1356 ret = find_next_reservable_window(search_head, my_rsv, sb,
1357 start_block, group_end_block);
1359 if (ret == -1) {
1360 if (!rsv_is_empty(&my_rsv->rsv_window))
1361 rsv_window_remove(sb, my_rsv);
1362 spin_unlock(rsv_lock);
1363 return -1;
1367 * On success, find_next_reservable_window() returns the
1368 * reservation window where there is a reservable space after it.
1369 * Before we reserve this reservable space, we need
1370 * to make sure there is at least a free block inside this region.
1372 * searching the first free bit on the block bitmap and copy of
1373 * last committed bitmap alternatively, until we found a allocatable
1374 * block. Search start from the start block of the reservable space
1375 * we just found.
1377 spin_unlock(rsv_lock);
1378 first_free_block = bitmap_search_next_usable_block(
1379 my_rsv->rsv_start - group_first_block,
1380 bitmap_bh, group_end_block - group_first_block + 1);
1382 if (first_free_block < 0) {
1384 * no free block left on the bitmap, no point
1385 * to reserve the space. return failed.
1387 spin_lock(rsv_lock);
1388 if (!rsv_is_empty(&my_rsv->rsv_window))
1389 rsv_window_remove(sb, my_rsv);
1390 spin_unlock(rsv_lock);
1391 return -1; /* failed */
1394 start_block = first_free_block + group_first_block;
1396 * check if the first free block is within the
1397 * free space we just reserved
1399 if (start_block >= my_rsv->rsv_start && start_block <= my_rsv->rsv_end)
1400 return 0; /* success */
1402 * if the first free bit we found is out of the reservable space
1403 * continue search for next reservable space,
1404 * start from where the free block is,
1405 * we also shift the list head to where we stopped last time
1407 search_head = my_rsv;
1408 spin_lock(rsv_lock);
1409 goto retry;
1413 * try_to_extend_reservation()
1414 * @my_rsv: given reservation window
1415 * @sb: super block
1416 * @size: the delta to extend
1418 * Attempt to expand the reservation window large enough to have
1419 * required number of free blocks
1421 * Since ext4_try_to_allocate() will always allocate blocks within
1422 * the reservation window range, if the window size is too small,
1423 * multiple blocks allocation has to stop at the end of the reservation
1424 * window. To make this more efficient, given the total number of
1425 * blocks needed and the current size of the window, we try to
1426 * expand the reservation window size if necessary on a best-effort
1427 * basis before ext4_new_blocks() tries to allocate blocks,
1429 static void try_to_extend_reservation(struct ext4_reserve_window_node *my_rsv,
1430 struct super_block *sb, int size)
1432 struct ext4_reserve_window_node *next_rsv;
1433 struct rb_node *next;
1434 spinlock_t *rsv_lock = &EXT4_SB(sb)->s_rsv_window_lock;
1436 if (!spin_trylock(rsv_lock))
1437 return;
1439 next = rb_next(&my_rsv->rsv_node);
1441 if (!next)
1442 my_rsv->rsv_end += size;
1443 else {
1444 next_rsv = rb_entry(next, struct ext4_reserve_window_node, rsv_node);
1446 if ((next_rsv->rsv_start - my_rsv->rsv_end - 1) >= size)
1447 my_rsv->rsv_end += size;
1448 else
1449 my_rsv->rsv_end = next_rsv->rsv_start - 1;
1451 spin_unlock(rsv_lock);
1455 * ext4_try_to_allocate_with_rsv()
1456 * @sb: superblock
1457 * @handle: handle to this transaction
1458 * @group: given allocation block group
1459 * @bitmap_bh: bufferhead holds the block bitmap
1460 * @grp_goal: given target block within the group
1461 * @count: target number of blocks to allocate
1462 * @my_rsv: reservation window
1463 * @errp: pointer to store the error code
1465 * This is the main function used to allocate a new block and its reservation
1466 * window.
1468 * Each time when a new block allocation is need, first try to allocate from
1469 * its own reservation. If it does not have a reservation window, instead of
1470 * looking for a free bit on bitmap first, then look up the reservation list to
1471 * see if it is inside somebody else's reservation window, we try to allocate a
1472 * reservation window for it starting from the goal first. Then do the block
1473 * allocation within the reservation window.
1475 * This will avoid keeping on searching the reservation list again and
1476 * again when somebody is looking for a free block (without
1477 * reservation), and there are lots of free blocks, but they are all
1478 * being reserved.
1480 * We use a red-black tree for the per-filesystem reservation list.
1483 static ext4_grpblk_t
1484 ext4_try_to_allocate_with_rsv(struct super_block *sb, handle_t *handle,
1485 ext4_group_t group, struct buffer_head *bitmap_bh,
1486 ext4_grpblk_t grp_goal,
1487 struct ext4_reserve_window_node * my_rsv,
1488 unsigned long *count, int *errp)
1490 ext4_fsblk_t group_first_block, group_last_block;
1491 ext4_grpblk_t ret = 0;
1492 int fatal;
1493 unsigned long num = *count;
1495 *errp = 0;
1498 * Make sure we use undo access for the bitmap, because it is critical
1499 * that we do the frozen_data COW on bitmap buffers in all cases even
1500 * if the buffer is in BJ_Forget state in the committing transaction.
1502 BUFFER_TRACE(bitmap_bh, "get undo access for new block");
1503 fatal = ext4_journal_get_undo_access(handle, bitmap_bh);
1504 if (fatal) {
1505 *errp = fatal;
1506 return -1;
1510 * we don't deal with reservation when
1511 * filesystem is mounted without reservation
1512 * or the file is not a regular file
1513 * or last attempt to allocate a block with reservation turned on failed
1515 if (my_rsv == NULL ) {
1516 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1517 grp_goal, count, NULL);
1518 goto out;
1521 * grp_goal is a group relative block number (if there is a goal)
1522 * 0 <= grp_goal < EXT4_BLOCKS_PER_GROUP(sb)
1523 * first block is a filesystem wide block number
1524 * first block is the block number of the first block in this group
1526 group_first_block = ext4_group_first_block_no(sb, group);
1527 group_last_block = group_first_block + (EXT4_BLOCKS_PER_GROUP(sb) - 1);
1530 * Basically we will allocate a new block from inode's reservation
1531 * window.
1533 * We need to allocate a new reservation window, if:
1534 * a) inode does not have a reservation window; or
1535 * b) last attempt to allocate a block from existing reservation
1536 * failed; or
1537 * c) we come here with a goal and with a reservation window
1539 * We do not need to allocate a new reservation window if we come here
1540 * at the beginning with a goal and the goal is inside the window, or
1541 * we don't have a goal but already have a reservation window.
1542 * then we could go to allocate from the reservation window directly.
1544 while (1) {
1545 if (rsv_is_empty(&my_rsv->rsv_window) || (ret < 0) ||
1546 !goal_in_my_reservation(&my_rsv->rsv_window,
1547 grp_goal, group, sb)) {
1548 if (my_rsv->rsv_goal_size < *count)
1549 my_rsv->rsv_goal_size = *count;
1550 ret = alloc_new_reservation(my_rsv, grp_goal, sb,
1551 group, bitmap_bh);
1552 if (ret < 0)
1553 break; /* failed */
1555 if (!goal_in_my_reservation(&my_rsv->rsv_window,
1556 grp_goal, group, sb))
1557 grp_goal = -1;
1558 } else if (grp_goal >= 0) {
1559 int curr = my_rsv->rsv_end -
1560 (grp_goal + group_first_block) + 1;
1562 if (curr < *count)
1563 try_to_extend_reservation(my_rsv, sb,
1564 *count - curr);
1567 if ((my_rsv->rsv_start > group_last_block) ||
1568 (my_rsv->rsv_end < group_first_block)) {
1569 rsv_window_dump(&EXT4_SB(sb)->s_rsv_window_root, 1);
1570 BUG();
1572 ret = ext4_try_to_allocate(sb, handle, group, bitmap_bh,
1573 grp_goal, &num, &my_rsv->rsv_window);
1574 if (ret >= 0) {
1575 my_rsv->rsv_alloc_hit += num;
1576 *count = num;
1577 break; /* succeed */
1579 num = *count;
1581 out:
1582 if (ret >= 0) {
1583 BUFFER_TRACE(bitmap_bh, "journal_dirty_metadata for "
1584 "bitmap block");
1585 fatal = ext4_journal_dirty_metadata(handle, bitmap_bh);
1586 if (fatal) {
1587 *errp = fatal;
1588 return -1;
1590 return ret;
1593 BUFFER_TRACE(bitmap_bh, "journal_release_buffer");
1594 ext4_journal_release_buffer(handle, bitmap_bh);
1595 return ret;
1599 * ext4_has_free_blocks()
1600 * @sbi: in-core super block structure.
1602 * Check if filesystem has at least 1 free block available for allocation.
1604 static int ext4_has_free_blocks(struct ext4_sb_info *sbi)
1606 ext4_fsblk_t free_blocks, root_blocks;
1608 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
1609 root_blocks = ext4_r_blocks_count(sbi->s_es);
1610 if (free_blocks < root_blocks + 1 && !capable(CAP_SYS_RESOURCE) &&
1611 sbi->s_resuid != current->fsuid &&
1612 (sbi->s_resgid == 0 || !in_group_p (sbi->s_resgid))) {
1613 return 0;
1615 return 1;
1619 * ext4_should_retry_alloc()
1620 * @sb: super block
1621 * @retries number of attemps has been made
1623 * ext4_should_retry_alloc() is called when ENOSPC is returned, and if
1624 * it is profitable to retry the operation, this function will wait
1625 * for the current or commiting transaction to complete, and then
1626 * return TRUE.
1628 * if the total number of retries exceed three times, return FALSE.
1630 int ext4_should_retry_alloc(struct super_block *sb, int *retries)
1632 if (!ext4_has_free_blocks(EXT4_SB(sb)) || (*retries)++ > 3)
1633 return 0;
1635 jbd_debug(1, "%s: retrying operation after ENOSPC\n", sb->s_id);
1637 return jbd2_journal_force_commit_nested(EXT4_SB(sb)->s_journal);
1641 * ext4_new_blocks_old() -- core block(s) allocation function
1642 * @handle: handle to this transaction
1643 * @inode: file inode
1644 * @goal: given target block(filesystem wide)
1645 * @count: target number of blocks to allocate
1646 * @errp: error code
1648 * ext4_new_blocks uses a goal block to assist allocation. It tries to
1649 * allocate block(s) from the block group contains the goal block first. If that
1650 * fails, it will try to allocate block(s) from other block groups without
1651 * any specific goal block.
1654 ext4_fsblk_t ext4_new_blocks_old(handle_t *handle, struct inode *inode,
1655 ext4_fsblk_t goal, unsigned long *count, int *errp)
1657 struct buffer_head *bitmap_bh = NULL;
1658 struct buffer_head *gdp_bh;
1659 ext4_group_t group_no;
1660 ext4_group_t goal_group;
1661 ext4_grpblk_t grp_target_blk; /* blockgroup relative goal block */
1662 ext4_grpblk_t grp_alloc_blk; /* blockgroup-relative allocated block*/
1663 ext4_fsblk_t ret_block; /* filesyetem-wide allocated block */
1664 ext4_group_t bgi; /* blockgroup iteration index */
1665 int fatal = 0, err;
1666 int performed_allocation = 0;
1667 ext4_grpblk_t free_blocks; /* number of free blocks in a group */
1668 struct super_block *sb;
1669 struct ext4_group_desc *gdp;
1670 struct ext4_super_block *es;
1671 struct ext4_sb_info *sbi;
1672 struct ext4_reserve_window_node *my_rsv = NULL;
1673 struct ext4_block_alloc_info *block_i;
1674 unsigned short windowsz = 0;
1675 ext4_group_t ngroups;
1676 unsigned long num = *count;
1678 *errp = -ENOSPC;
1679 sb = inode->i_sb;
1680 if (!sb) {
1681 printk("ext4_new_block: nonexistent device");
1682 return 0;
1686 * Check quota for allocation of this block.
1688 if (DQUOT_ALLOC_BLOCK(inode, num)) {
1689 *errp = -EDQUOT;
1690 return 0;
1693 sbi = EXT4_SB(sb);
1694 es = EXT4_SB(sb)->s_es;
1695 ext4_debug("goal=%llu.\n", goal);
1697 * Allocate a block from reservation only when
1698 * filesystem is mounted with reservation(default,-o reservation), and
1699 * it's a regular file, and
1700 * the desired window size is greater than 0 (One could use ioctl
1701 * command EXT4_IOC_SETRSVSZ to set the window size to 0 to turn off
1702 * reservation on that particular file)
1704 block_i = EXT4_I(inode)->i_block_alloc_info;
1705 if (block_i && ((windowsz = block_i->rsv_window_node.rsv_goal_size) > 0))
1706 my_rsv = &block_i->rsv_window_node;
1708 if (!ext4_has_free_blocks(sbi)) {
1709 *errp = -ENOSPC;
1710 goto out;
1714 * First, test whether the goal block is free.
1716 if (goal < le32_to_cpu(es->s_first_data_block) ||
1717 goal >= ext4_blocks_count(es))
1718 goal = le32_to_cpu(es->s_first_data_block);
1719 ext4_get_group_no_and_offset(sb, goal, &group_no, &grp_target_blk);
1720 goal_group = group_no;
1721 retry_alloc:
1722 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1723 if (!gdp)
1724 goto io_error;
1726 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1728 * if there is not enough free blocks to make a new resevation
1729 * turn off reservation for this allocation
1731 if (my_rsv && (free_blocks < windowsz)
1732 && (rsv_is_empty(&my_rsv->rsv_window)))
1733 my_rsv = NULL;
1735 if (free_blocks > 0) {
1736 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1737 if (!bitmap_bh)
1738 goto io_error;
1739 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1740 group_no, bitmap_bh, grp_target_blk,
1741 my_rsv, &num, &fatal);
1742 if (fatal)
1743 goto out;
1744 if (grp_alloc_blk >= 0)
1745 goto allocated;
1748 ngroups = EXT4_SB(sb)->s_groups_count;
1749 smp_rmb();
1752 * Now search the rest of the groups. We assume that
1753 * group_no and gdp correctly point to the last group visited.
1755 for (bgi = 0; bgi < ngroups; bgi++) {
1756 group_no++;
1757 if (group_no >= ngroups)
1758 group_no = 0;
1759 gdp = ext4_get_group_desc(sb, group_no, &gdp_bh);
1760 if (!gdp)
1761 goto io_error;
1762 free_blocks = le16_to_cpu(gdp->bg_free_blocks_count);
1764 * skip this group if the number of
1765 * free blocks is less than half of the reservation
1766 * window size.
1768 if (free_blocks <= (windowsz/2))
1769 continue;
1771 brelse(bitmap_bh);
1772 bitmap_bh = ext4_read_block_bitmap(sb, group_no);
1773 if (!bitmap_bh)
1774 goto io_error;
1776 * try to allocate block(s) from this group, without a goal(-1).
1778 grp_alloc_blk = ext4_try_to_allocate_with_rsv(sb, handle,
1779 group_no, bitmap_bh, -1, my_rsv,
1780 &num, &fatal);
1781 if (fatal)
1782 goto out;
1783 if (grp_alloc_blk >= 0)
1784 goto allocated;
1787 * We may end up a bogus ealier ENOSPC error due to
1788 * filesystem is "full" of reservations, but
1789 * there maybe indeed free blocks avaliable on disk
1790 * In this case, we just forget about the reservations
1791 * just do block allocation as without reservations.
1793 if (my_rsv) {
1794 my_rsv = NULL;
1795 windowsz = 0;
1796 group_no = goal_group;
1797 goto retry_alloc;
1799 /* No space left on the device */
1800 *errp = -ENOSPC;
1801 goto out;
1803 allocated:
1805 ext4_debug("using block group %lu(%d)\n",
1806 group_no, gdp->bg_free_blocks_count);
1808 BUFFER_TRACE(gdp_bh, "get_write_access");
1809 fatal = ext4_journal_get_write_access(handle, gdp_bh);
1810 if (fatal)
1811 goto out;
1813 ret_block = grp_alloc_blk + ext4_group_first_block_no(sb, group_no);
1815 if (in_range(ext4_block_bitmap(sb, gdp), ret_block, num) ||
1816 in_range(ext4_inode_bitmap(sb, gdp), ret_block, num) ||
1817 in_range(ret_block, ext4_inode_table(sb, gdp),
1818 EXT4_SB(sb)->s_itb_per_group) ||
1819 in_range(ret_block + num - 1, ext4_inode_table(sb, gdp),
1820 EXT4_SB(sb)->s_itb_per_group)) {
1821 ext4_error(sb, "ext4_new_block",
1822 "Allocating block in system zone - "
1823 "blocks from %llu, length %lu",
1824 ret_block, num);
1826 * claim_block marked the blocks we allocated
1827 * as in use. So we may want to selectively
1828 * mark some of the blocks as free
1830 goto retry_alloc;
1833 performed_allocation = 1;
1835 #ifdef CONFIG_JBD2_DEBUG
1837 struct buffer_head *debug_bh;
1839 /* Record bitmap buffer state in the newly allocated block */
1840 debug_bh = sb_find_get_block(sb, ret_block);
1841 if (debug_bh) {
1842 BUFFER_TRACE(debug_bh, "state when allocated");
1843 BUFFER_TRACE2(debug_bh, bitmap_bh, "bitmap state");
1844 brelse(debug_bh);
1847 jbd_lock_bh_state(bitmap_bh);
1848 spin_lock(sb_bgl_lock(sbi, group_no));
1849 if (buffer_jbd(bitmap_bh) && bh2jh(bitmap_bh)->b_committed_data) {
1850 int i;
1852 for (i = 0; i < num; i++) {
1853 if (ext4_test_bit(grp_alloc_blk+i,
1854 bh2jh(bitmap_bh)->b_committed_data)) {
1855 printk("%s: block was unexpectedly set in "
1856 "b_committed_data\n", __func__);
1860 ext4_debug("found bit %d\n", grp_alloc_blk);
1861 spin_unlock(sb_bgl_lock(sbi, group_no));
1862 jbd_unlock_bh_state(bitmap_bh);
1863 #endif
1865 if (ret_block + num - 1 >= ext4_blocks_count(es)) {
1866 ext4_error(sb, "ext4_new_block",
1867 "block(%llu) >= blocks count(%llu) - "
1868 "block_group = %lu, es == %p ", ret_block,
1869 ext4_blocks_count(es), group_no, es);
1870 goto out;
1874 * It is up to the caller to add the new buffer to a journal
1875 * list of some description. We don't know in advance whether
1876 * the caller wants to use it as metadata or data.
1878 spin_lock(sb_bgl_lock(sbi, group_no));
1879 if (gdp->bg_flags & cpu_to_le16(EXT4_BG_BLOCK_UNINIT))
1880 gdp->bg_flags &= cpu_to_le16(~EXT4_BG_BLOCK_UNINIT);
1881 le16_add_cpu(&gdp->bg_free_blocks_count, -num);
1882 gdp->bg_checksum = ext4_group_desc_csum(sbi, group_no, gdp);
1883 spin_unlock(sb_bgl_lock(sbi, group_no));
1884 percpu_counter_sub(&sbi->s_freeblocks_counter, num);
1886 BUFFER_TRACE(gdp_bh, "journal_dirty_metadata for group descriptor");
1887 err = ext4_journal_dirty_metadata(handle, gdp_bh);
1888 if (!fatal)
1889 fatal = err;
1891 sb->s_dirt = 1;
1892 if (fatal)
1893 goto out;
1895 *errp = 0;
1896 brelse(bitmap_bh);
1897 DQUOT_FREE_BLOCK(inode, *count-num);
1898 *count = num;
1899 return ret_block;
1901 io_error:
1902 *errp = -EIO;
1903 out:
1904 if (fatal) {
1905 *errp = fatal;
1906 ext4_std_error(sb, fatal);
1909 * Undo the block allocation
1911 if (!performed_allocation)
1912 DQUOT_FREE_BLOCK(inode, *count);
1913 brelse(bitmap_bh);
1914 return 0;
1917 ext4_fsblk_t ext4_new_block(handle_t *handle, struct inode *inode,
1918 ext4_fsblk_t goal, int *errp)
1920 struct ext4_allocation_request ar;
1921 ext4_fsblk_t ret;
1923 if (!test_opt(inode->i_sb, MBALLOC)) {
1924 unsigned long count = 1;
1925 ret = ext4_new_blocks_old(handle, inode, goal, &count, errp);
1926 return ret;
1929 memset(&ar, 0, sizeof(ar));
1930 ar.inode = inode;
1931 ar.goal = goal;
1932 ar.len = 1;
1933 ret = ext4_mb_new_blocks(handle, &ar, errp);
1934 return ret;
1937 ext4_fsblk_t ext4_new_blocks(handle_t *handle, struct inode *inode,
1938 ext4_fsblk_t goal, unsigned long *count, int *errp)
1940 struct ext4_allocation_request ar;
1941 ext4_fsblk_t ret;
1943 if (!test_opt(inode->i_sb, MBALLOC)) {
1944 ret = ext4_new_blocks_old(handle, inode, goal, count, errp);
1945 return ret;
1948 memset(&ar, 0, sizeof(ar));
1949 ar.inode = inode;
1950 ar.goal = goal;
1951 ar.len = *count;
1952 ret = ext4_mb_new_blocks(handle, &ar, errp);
1953 *count = ar.len;
1954 return ret;
1959 * ext4_count_free_blocks() -- count filesystem free blocks
1960 * @sb: superblock
1962 * Adds up the number of free blocks from each block group.
1964 ext4_fsblk_t ext4_count_free_blocks(struct super_block *sb)
1966 ext4_fsblk_t desc_count;
1967 struct ext4_group_desc *gdp;
1968 ext4_group_t i;
1969 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
1970 #ifdef EXT4FS_DEBUG
1971 struct ext4_super_block *es;
1972 ext4_fsblk_t bitmap_count;
1973 unsigned long x;
1974 struct buffer_head *bitmap_bh = NULL;
1976 es = EXT4_SB(sb)->s_es;
1977 desc_count = 0;
1978 bitmap_count = 0;
1979 gdp = NULL;
1981 smp_rmb();
1982 for (i = 0; i < ngroups; i++) {
1983 gdp = ext4_get_group_desc(sb, i, NULL);
1984 if (!gdp)
1985 continue;
1986 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
1987 brelse(bitmap_bh);
1988 bitmap_bh = ext4_read_block_bitmap(sb, i);
1989 if (bitmap_bh == NULL)
1990 continue;
1992 x = ext4_count_free(bitmap_bh, sb->s_blocksize);
1993 printk(KERN_DEBUG "group %lu: stored = %d, counted = %lu\n",
1994 i, le16_to_cpu(gdp->bg_free_blocks_count), x);
1995 bitmap_count += x;
1997 brelse(bitmap_bh);
1998 printk("ext4_count_free_blocks: stored = %llu"
1999 ", computed = %llu, %llu\n",
2000 ext4_free_blocks_count(es),
2001 desc_count, bitmap_count);
2002 return bitmap_count;
2003 #else
2004 desc_count = 0;
2005 smp_rmb();
2006 for (i = 0; i < ngroups; i++) {
2007 gdp = ext4_get_group_desc(sb, i, NULL);
2008 if (!gdp)
2009 continue;
2010 desc_count += le16_to_cpu(gdp->bg_free_blocks_count);
2013 return desc_count;
2014 #endif
2017 static inline int test_root(ext4_group_t a, int b)
2019 int num = b;
2021 while (a > num)
2022 num *= b;
2023 return num == a;
2026 static int ext4_group_sparse(ext4_group_t group)
2028 if (group <= 1)
2029 return 1;
2030 if (!(group & 1))
2031 return 0;
2032 return (test_root(group, 7) || test_root(group, 5) ||
2033 test_root(group, 3));
2037 * ext4_bg_has_super - number of blocks used by the superblock in group
2038 * @sb: superblock for filesystem
2039 * @group: group number to check
2041 * Return the number of blocks used by the superblock (primary or backup)
2042 * in this group. Currently this will be only 0 or 1.
2044 int ext4_bg_has_super(struct super_block *sb, ext4_group_t group)
2046 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
2047 EXT4_FEATURE_RO_COMPAT_SPARSE_SUPER) &&
2048 !ext4_group_sparse(group))
2049 return 0;
2050 return 1;
2053 static unsigned long ext4_bg_num_gdb_meta(struct super_block *sb,
2054 ext4_group_t group)
2056 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2057 ext4_group_t first = metagroup * EXT4_DESC_PER_BLOCK(sb);
2058 ext4_group_t last = first + EXT4_DESC_PER_BLOCK(sb) - 1;
2060 if (group == first || group == first + 1 || group == last)
2061 return 1;
2062 return 0;
2065 static unsigned long ext4_bg_num_gdb_nometa(struct super_block *sb,
2066 ext4_group_t group)
2068 return ext4_bg_has_super(sb, group) ? EXT4_SB(sb)->s_gdb_count : 0;
2072 * ext4_bg_num_gdb - number of blocks used by the group table in group
2073 * @sb: superblock for filesystem
2074 * @group: group number to check
2076 * Return the number of blocks used by the group descriptor table
2077 * (primary or backup) in this group. In the future there may be a
2078 * different number of descriptor blocks in each group.
2080 unsigned long ext4_bg_num_gdb(struct super_block *sb, ext4_group_t group)
2082 unsigned long first_meta_bg =
2083 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_meta_bg);
2084 unsigned long metagroup = group / EXT4_DESC_PER_BLOCK(sb);
2086 if (!EXT4_HAS_INCOMPAT_FEATURE(sb,EXT4_FEATURE_INCOMPAT_META_BG) ||
2087 metagroup < first_meta_bg)
2088 return ext4_bg_num_gdb_nometa(sb,group);
2090 return ext4_bg_num_gdb_meta(sb,group);