drivers/hwmon/adcxx.c: fix for single-channel ADCs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blobfcd593c9c997153e78737fc9243d84499205590a
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
40 * (code doesn't rely on that order so it could be switched around)
41 * ->tasklist_lock
42 * anon_vma->lock (memory_failure, collect_procs_anon)
43 * pte map lock
46 #include <linux/mm.h>
47 #include <linux/pagemap.h>
48 #include <linux/swap.h>
49 #include <linux/swapops.h>
50 #include <linux/slab.h>
51 #include <linux/init.h>
52 #include <linux/ksm.h>
53 #include <linux/rmap.h>
54 #include <linux/rcupdate.h>
55 #include <linux/module.h>
56 #include <linux/memcontrol.h>
57 #include <linux/mmu_notifier.h>
58 #include <linux/migrate.h>
60 #include <asm/tlbflush.h>
62 #include "internal.h"
64 static struct kmem_cache *anon_vma_cachep;
65 static struct kmem_cache *anon_vma_chain_cachep;
67 static inline struct anon_vma *anon_vma_alloc(void)
69 return kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
72 void anon_vma_free(struct anon_vma *anon_vma)
74 kmem_cache_free(anon_vma_cachep, anon_vma);
77 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
79 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
82 void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
84 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
87 /**
88 * anon_vma_prepare - attach an anon_vma to a memory region
89 * @vma: the memory region in question
91 * This makes sure the memory mapping described by 'vma' has
92 * an 'anon_vma' attached to it, so that we can associate the
93 * anonymous pages mapped into it with that anon_vma.
95 * The common case will be that we already have one, but if
96 * if not we either need to find an adjacent mapping that we
97 * can re-use the anon_vma from (very common when the only
98 * reason for splitting a vma has been mprotect()), or we
99 * allocate a new one.
101 * Anon-vma allocations are very subtle, because we may have
102 * optimistically looked up an anon_vma in page_lock_anon_vma()
103 * and that may actually touch the spinlock even in the newly
104 * allocated vma (it depends on RCU to make sure that the
105 * anon_vma isn't actually destroyed).
107 * As a result, we need to do proper anon_vma locking even
108 * for the new allocation. At the same time, we do not want
109 * to do any locking for the common case of already having
110 * an anon_vma.
112 * This must be called with the mmap_sem held for reading.
114 int anon_vma_prepare(struct vm_area_struct *vma)
116 struct anon_vma *anon_vma = vma->anon_vma;
117 struct anon_vma_chain *avc;
119 might_sleep();
120 if (unlikely(!anon_vma)) {
121 struct mm_struct *mm = vma->vm_mm;
122 struct anon_vma *allocated;
124 avc = anon_vma_chain_alloc();
125 if (!avc)
126 goto out_enomem;
128 anon_vma = find_mergeable_anon_vma(vma);
129 allocated = NULL;
130 if (!anon_vma) {
131 anon_vma = anon_vma_alloc();
132 if (unlikely(!anon_vma))
133 goto out_enomem_free_avc;
134 allocated = anon_vma;
136 spin_lock(&anon_vma->lock);
138 /* page_table_lock to protect against threads */
139 spin_lock(&mm->page_table_lock);
140 if (likely(!vma->anon_vma)) {
141 vma->anon_vma = anon_vma;
142 avc->anon_vma = anon_vma;
143 avc->vma = vma;
144 list_add(&avc->same_vma, &vma->anon_vma_chain);
145 list_add(&avc->same_anon_vma, &anon_vma->head);
146 allocated = NULL;
148 spin_unlock(&mm->page_table_lock);
150 spin_unlock(&anon_vma->lock);
151 if (unlikely(allocated)) {
152 anon_vma_free(allocated);
153 anon_vma_chain_free(avc);
156 return 0;
158 out_enomem_free_avc:
159 anon_vma_chain_free(avc);
160 out_enomem:
161 return -ENOMEM;
164 static void anon_vma_chain_link(struct vm_area_struct *vma,
165 struct anon_vma_chain *avc,
166 struct anon_vma *anon_vma)
168 avc->vma = vma;
169 avc->anon_vma = anon_vma;
170 list_add(&avc->same_vma, &vma->anon_vma_chain);
172 spin_lock(&anon_vma->lock);
173 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
174 spin_unlock(&anon_vma->lock);
178 * Attach the anon_vmas from src to dst.
179 * Returns 0 on success, -ENOMEM on failure.
181 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
183 struct anon_vma_chain *avc, *pavc;
185 list_for_each_entry(pavc, &src->anon_vma_chain, same_vma) {
186 avc = anon_vma_chain_alloc();
187 if (!avc)
188 goto enomem_failure;
189 anon_vma_chain_link(dst, avc, pavc->anon_vma);
191 return 0;
193 enomem_failure:
194 unlink_anon_vmas(dst);
195 return -ENOMEM;
199 * Attach vma to its own anon_vma, as well as to the anon_vmas that
200 * the corresponding VMA in the parent process is attached to.
201 * Returns 0 on success, non-zero on failure.
203 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
205 struct anon_vma_chain *avc;
206 struct anon_vma *anon_vma;
208 /* Don't bother if the parent process has no anon_vma here. */
209 if (!pvma->anon_vma)
210 return 0;
213 * First, attach the new VMA to the parent VMA's anon_vmas,
214 * so rmap can find non-COWed pages in child processes.
216 if (anon_vma_clone(vma, pvma))
217 return -ENOMEM;
219 /* Then add our own anon_vma. */
220 anon_vma = anon_vma_alloc();
221 if (!anon_vma)
222 goto out_error;
223 avc = anon_vma_chain_alloc();
224 if (!avc)
225 goto out_error_free_anon_vma;
226 anon_vma_chain_link(vma, avc, anon_vma);
227 /* Mark this anon_vma as the one where our new (COWed) pages go. */
228 vma->anon_vma = anon_vma;
230 return 0;
232 out_error_free_anon_vma:
233 anon_vma_free(anon_vma);
234 out_error:
235 return -ENOMEM;
238 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
240 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
241 int empty;
243 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
244 if (!anon_vma)
245 return;
247 spin_lock(&anon_vma->lock);
248 list_del(&anon_vma_chain->same_anon_vma);
250 /* We must garbage collect the anon_vma if it's empty */
251 empty = list_empty(&anon_vma->head) && !ksm_refcount(anon_vma);
252 spin_unlock(&anon_vma->lock);
254 if (empty)
255 anon_vma_free(anon_vma);
258 void unlink_anon_vmas(struct vm_area_struct *vma)
260 struct anon_vma_chain *avc, *next;
262 /* Unlink each anon_vma chained to the VMA. */
263 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
264 anon_vma_unlink(avc);
265 list_del(&avc->same_vma);
266 anon_vma_chain_free(avc);
270 static void anon_vma_ctor(void *data)
272 struct anon_vma *anon_vma = data;
274 spin_lock_init(&anon_vma->lock);
275 ksm_refcount_init(anon_vma);
276 INIT_LIST_HEAD(&anon_vma->head);
279 void __init anon_vma_init(void)
281 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
282 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
283 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
287 * Getting a lock on a stable anon_vma from a page off the LRU is
288 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
290 struct anon_vma *page_lock_anon_vma(struct page *page)
292 struct anon_vma *anon_vma;
293 unsigned long anon_mapping;
295 rcu_read_lock();
296 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
297 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
298 goto out;
299 if (!page_mapped(page))
300 goto out;
302 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
303 spin_lock(&anon_vma->lock);
304 return anon_vma;
305 out:
306 rcu_read_unlock();
307 return NULL;
310 void page_unlock_anon_vma(struct anon_vma *anon_vma)
312 spin_unlock(&anon_vma->lock);
313 rcu_read_unlock();
317 * At what user virtual address is page expected in @vma?
318 * Returns virtual address or -EFAULT if page's index/offset is not
319 * within the range mapped the @vma.
321 static inline unsigned long
322 vma_address(struct page *page, struct vm_area_struct *vma)
324 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
325 unsigned long address;
327 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
328 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
329 /* page should be within @vma mapping range */
330 return -EFAULT;
332 return address;
336 * At what user virtual address is page expected in vma?
337 * checking that the page matches the vma.
339 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
341 if (PageAnon(page)) {
342 if (vma->anon_vma != page_anon_vma(page))
343 return -EFAULT;
344 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
345 if (!vma->vm_file ||
346 vma->vm_file->f_mapping != page->mapping)
347 return -EFAULT;
348 } else
349 return -EFAULT;
350 return vma_address(page, vma);
354 * Check that @page is mapped at @address into @mm.
356 * If @sync is false, page_check_address may perform a racy check to avoid
357 * the page table lock when the pte is not present (helpful when reclaiming
358 * highly shared pages).
360 * On success returns with pte mapped and locked.
362 pte_t *page_check_address(struct page *page, struct mm_struct *mm,
363 unsigned long address, spinlock_t **ptlp, int sync)
365 pgd_t *pgd;
366 pud_t *pud;
367 pmd_t *pmd;
368 pte_t *pte;
369 spinlock_t *ptl;
371 pgd = pgd_offset(mm, address);
372 if (!pgd_present(*pgd))
373 return NULL;
375 pud = pud_offset(pgd, address);
376 if (!pud_present(*pud))
377 return NULL;
379 pmd = pmd_offset(pud, address);
380 if (!pmd_present(*pmd))
381 return NULL;
383 pte = pte_offset_map(pmd, address);
384 /* Make a quick check before getting the lock */
385 if (!sync && !pte_present(*pte)) {
386 pte_unmap(pte);
387 return NULL;
390 ptl = pte_lockptr(mm, pmd);
391 spin_lock(ptl);
392 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
393 *ptlp = ptl;
394 return pte;
396 pte_unmap_unlock(pte, ptl);
397 return NULL;
401 * page_mapped_in_vma - check whether a page is really mapped in a VMA
402 * @page: the page to test
403 * @vma: the VMA to test
405 * Returns 1 if the page is mapped into the page tables of the VMA, 0
406 * if the page is not mapped into the page tables of this VMA. Only
407 * valid for normal file or anonymous VMAs.
409 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
411 unsigned long address;
412 pte_t *pte;
413 spinlock_t *ptl;
415 address = vma_address(page, vma);
416 if (address == -EFAULT) /* out of vma range */
417 return 0;
418 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
419 if (!pte) /* the page is not in this mm */
420 return 0;
421 pte_unmap_unlock(pte, ptl);
423 return 1;
427 * Subfunctions of page_referenced: page_referenced_one called
428 * repeatedly from either page_referenced_anon or page_referenced_file.
430 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
431 unsigned long address, unsigned int *mapcount,
432 unsigned long *vm_flags)
434 struct mm_struct *mm = vma->vm_mm;
435 pte_t *pte;
436 spinlock_t *ptl;
437 int referenced = 0;
439 pte = page_check_address(page, mm, address, &ptl, 0);
440 if (!pte)
441 goto out;
444 * Don't want to elevate referenced for mlocked page that gets this far,
445 * in order that it progresses to try_to_unmap and is moved to the
446 * unevictable list.
448 if (vma->vm_flags & VM_LOCKED) {
449 *mapcount = 1; /* break early from loop */
450 *vm_flags |= VM_LOCKED;
451 goto out_unmap;
454 if (ptep_clear_flush_young_notify(vma, address, pte)) {
456 * Don't treat a reference through a sequentially read
457 * mapping as such. If the page has been used in
458 * another mapping, we will catch it; if this other
459 * mapping is already gone, the unmap path will have
460 * set PG_referenced or activated the page.
462 if (likely(!VM_SequentialReadHint(vma)))
463 referenced++;
466 /* Pretend the page is referenced if the task has the
467 swap token and is in the middle of a page fault. */
468 if (mm != current->mm && has_swap_token(mm) &&
469 rwsem_is_locked(&mm->mmap_sem))
470 referenced++;
472 out_unmap:
473 (*mapcount)--;
474 pte_unmap_unlock(pte, ptl);
476 if (referenced)
477 *vm_flags |= vma->vm_flags;
478 out:
479 return referenced;
482 static int page_referenced_anon(struct page *page,
483 struct mem_cgroup *mem_cont,
484 unsigned long *vm_flags)
486 unsigned int mapcount;
487 struct anon_vma *anon_vma;
488 struct anon_vma_chain *avc;
489 int referenced = 0;
491 anon_vma = page_lock_anon_vma(page);
492 if (!anon_vma)
493 return referenced;
495 mapcount = page_mapcount(page);
496 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
497 struct vm_area_struct *vma = avc->vma;
498 unsigned long address = vma_address(page, vma);
499 if (address == -EFAULT)
500 continue;
502 * If we are reclaiming on behalf of a cgroup, skip
503 * counting on behalf of references from different
504 * cgroups
506 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
507 continue;
508 referenced += page_referenced_one(page, vma, address,
509 &mapcount, vm_flags);
510 if (!mapcount)
511 break;
514 page_unlock_anon_vma(anon_vma);
515 return referenced;
519 * page_referenced_file - referenced check for object-based rmap
520 * @page: the page we're checking references on.
521 * @mem_cont: target memory controller
522 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
524 * For an object-based mapped page, find all the places it is mapped and
525 * check/clear the referenced flag. This is done by following the page->mapping
526 * pointer, then walking the chain of vmas it holds. It returns the number
527 * of references it found.
529 * This function is only called from page_referenced for object-based pages.
531 static int page_referenced_file(struct page *page,
532 struct mem_cgroup *mem_cont,
533 unsigned long *vm_flags)
535 unsigned int mapcount;
536 struct address_space *mapping = page->mapping;
537 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
538 struct vm_area_struct *vma;
539 struct prio_tree_iter iter;
540 int referenced = 0;
543 * The caller's checks on page->mapping and !PageAnon have made
544 * sure that this is a file page: the check for page->mapping
545 * excludes the case just before it gets set on an anon page.
547 BUG_ON(PageAnon(page));
550 * The page lock not only makes sure that page->mapping cannot
551 * suddenly be NULLified by truncation, it makes sure that the
552 * structure at mapping cannot be freed and reused yet,
553 * so we can safely take mapping->i_mmap_lock.
555 BUG_ON(!PageLocked(page));
557 spin_lock(&mapping->i_mmap_lock);
560 * i_mmap_lock does not stabilize mapcount at all, but mapcount
561 * is more likely to be accurate if we note it after spinning.
563 mapcount = page_mapcount(page);
565 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
566 unsigned long address = vma_address(page, vma);
567 if (address == -EFAULT)
568 continue;
570 * If we are reclaiming on behalf of a cgroup, skip
571 * counting on behalf of references from different
572 * cgroups
574 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
575 continue;
576 referenced += page_referenced_one(page, vma, address,
577 &mapcount, vm_flags);
578 if (!mapcount)
579 break;
582 spin_unlock(&mapping->i_mmap_lock);
583 return referenced;
587 * page_referenced - test if the page was referenced
588 * @page: the page to test
589 * @is_locked: caller holds lock on the page
590 * @mem_cont: target memory controller
591 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
593 * Quick test_and_clear_referenced for all mappings to a page,
594 * returns the number of ptes which referenced the page.
596 int page_referenced(struct page *page,
597 int is_locked,
598 struct mem_cgroup *mem_cont,
599 unsigned long *vm_flags)
601 int referenced = 0;
602 int we_locked = 0;
604 *vm_flags = 0;
605 if (page_mapped(page) && page_rmapping(page)) {
606 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
607 we_locked = trylock_page(page);
608 if (!we_locked) {
609 referenced++;
610 goto out;
613 if (unlikely(PageKsm(page)))
614 referenced += page_referenced_ksm(page, mem_cont,
615 vm_flags);
616 else if (PageAnon(page))
617 referenced += page_referenced_anon(page, mem_cont,
618 vm_flags);
619 else if (page->mapping)
620 referenced += page_referenced_file(page, mem_cont,
621 vm_flags);
622 if (we_locked)
623 unlock_page(page);
625 out:
626 if (page_test_and_clear_young(page))
627 referenced++;
629 return referenced;
632 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
633 unsigned long address)
635 struct mm_struct *mm = vma->vm_mm;
636 pte_t *pte;
637 spinlock_t *ptl;
638 int ret = 0;
640 pte = page_check_address(page, mm, address, &ptl, 1);
641 if (!pte)
642 goto out;
644 if (pte_dirty(*pte) || pte_write(*pte)) {
645 pte_t entry;
647 flush_cache_page(vma, address, pte_pfn(*pte));
648 entry = ptep_clear_flush_notify(vma, address, pte);
649 entry = pte_wrprotect(entry);
650 entry = pte_mkclean(entry);
651 set_pte_at(mm, address, pte, entry);
652 ret = 1;
655 pte_unmap_unlock(pte, ptl);
656 out:
657 return ret;
660 static int page_mkclean_file(struct address_space *mapping, struct page *page)
662 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
663 struct vm_area_struct *vma;
664 struct prio_tree_iter iter;
665 int ret = 0;
667 BUG_ON(PageAnon(page));
669 spin_lock(&mapping->i_mmap_lock);
670 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
671 if (vma->vm_flags & VM_SHARED) {
672 unsigned long address = vma_address(page, vma);
673 if (address == -EFAULT)
674 continue;
675 ret += page_mkclean_one(page, vma, address);
678 spin_unlock(&mapping->i_mmap_lock);
679 return ret;
682 int page_mkclean(struct page *page)
684 int ret = 0;
686 BUG_ON(!PageLocked(page));
688 if (page_mapped(page)) {
689 struct address_space *mapping = page_mapping(page);
690 if (mapping) {
691 ret = page_mkclean_file(mapping, page);
692 if (page_test_dirty(page)) {
693 page_clear_dirty(page);
694 ret = 1;
699 return ret;
701 EXPORT_SYMBOL_GPL(page_mkclean);
704 * page_move_anon_rmap - move a page to our anon_vma
705 * @page: the page to move to our anon_vma
706 * @vma: the vma the page belongs to
707 * @address: the user virtual address mapped
709 * When a page belongs exclusively to one process after a COW event,
710 * that page can be moved into the anon_vma that belongs to just that
711 * process, so the rmap code will not search the parent or sibling
712 * processes.
714 void page_move_anon_rmap(struct page *page,
715 struct vm_area_struct *vma, unsigned long address)
717 struct anon_vma *anon_vma = vma->anon_vma;
719 VM_BUG_ON(!PageLocked(page));
720 VM_BUG_ON(!anon_vma);
721 VM_BUG_ON(page->index != linear_page_index(vma, address));
723 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
724 page->mapping = (struct address_space *) anon_vma;
728 * __page_set_anon_rmap - setup new anonymous rmap
729 * @page: the page to add the mapping to
730 * @vma: the vm area in which the mapping is added
731 * @address: the user virtual address mapped
733 static void __page_set_anon_rmap(struct page *page,
734 struct vm_area_struct *vma, unsigned long address)
736 struct anon_vma *anon_vma = vma->anon_vma;
738 BUG_ON(!anon_vma);
739 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
740 page->mapping = (struct address_space *) anon_vma;
741 page->index = linear_page_index(vma, address);
745 * __page_check_anon_rmap - sanity check anonymous rmap addition
746 * @page: the page to add the mapping to
747 * @vma: the vm area in which the mapping is added
748 * @address: the user virtual address mapped
750 static void __page_check_anon_rmap(struct page *page,
751 struct vm_area_struct *vma, unsigned long address)
753 #ifdef CONFIG_DEBUG_VM
755 * The page's anon-rmap details (mapping and index) are guaranteed to
756 * be set up correctly at this point.
758 * We have exclusion against page_add_anon_rmap because the caller
759 * always holds the page locked, except if called from page_dup_rmap,
760 * in which case the page is already known to be setup.
762 * We have exclusion against page_add_new_anon_rmap because those pages
763 * are initially only visible via the pagetables, and the pte is locked
764 * over the call to page_add_new_anon_rmap.
766 BUG_ON(page->index != linear_page_index(vma, address));
767 #endif
771 * page_add_anon_rmap - add pte mapping to an anonymous page
772 * @page: the page to add the mapping to
773 * @vma: the vm area in which the mapping is added
774 * @address: the user virtual address mapped
776 * The caller needs to hold the pte lock, and the page must be locked in
777 * the anon_vma case: to serialize mapping,index checking after setting,
778 * and to ensure that PageAnon is not being upgraded racily to PageKsm
779 * (but PageKsm is never downgraded to PageAnon).
781 void page_add_anon_rmap(struct page *page,
782 struct vm_area_struct *vma, unsigned long address)
784 int first = atomic_inc_and_test(&page->_mapcount);
785 if (first)
786 __inc_zone_page_state(page, NR_ANON_PAGES);
787 if (unlikely(PageKsm(page)))
788 return;
790 VM_BUG_ON(!PageLocked(page));
791 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
792 if (first)
793 __page_set_anon_rmap(page, vma, address);
794 else
795 __page_check_anon_rmap(page, vma, address);
799 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
800 * @page: the page to add the mapping to
801 * @vma: the vm area in which the mapping is added
802 * @address: the user virtual address mapped
804 * Same as page_add_anon_rmap but must only be called on *new* pages.
805 * This means the inc-and-test can be bypassed.
806 * Page does not have to be locked.
808 void page_add_new_anon_rmap(struct page *page,
809 struct vm_area_struct *vma, unsigned long address)
811 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
812 SetPageSwapBacked(page);
813 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
814 __inc_zone_page_state(page, NR_ANON_PAGES);
815 __page_set_anon_rmap(page, vma, address);
816 if (page_evictable(page, vma))
817 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
818 else
819 add_page_to_unevictable_list(page);
823 * page_add_file_rmap - add pte mapping to a file page
824 * @page: the page to add the mapping to
826 * The caller needs to hold the pte lock.
828 void page_add_file_rmap(struct page *page)
830 if (atomic_inc_and_test(&page->_mapcount)) {
831 __inc_zone_page_state(page, NR_FILE_MAPPED);
832 mem_cgroup_update_file_mapped(page, 1);
837 * page_remove_rmap - take down pte mapping from a page
838 * @page: page to remove mapping from
840 * The caller needs to hold the pte lock.
842 void page_remove_rmap(struct page *page)
844 /* page still mapped by someone else? */
845 if (!atomic_add_negative(-1, &page->_mapcount))
846 return;
849 * Now that the last pte has gone, s390 must transfer dirty
850 * flag from storage key to struct page. We can usually skip
851 * this if the page is anon, so about to be freed; but perhaps
852 * not if it's in swapcache - there might be another pte slot
853 * containing the swap entry, but page not yet written to swap.
855 if ((!PageAnon(page) || PageSwapCache(page)) && page_test_dirty(page)) {
856 page_clear_dirty(page);
857 set_page_dirty(page);
859 if (PageAnon(page)) {
860 mem_cgroup_uncharge_page(page);
861 __dec_zone_page_state(page, NR_ANON_PAGES);
862 } else {
863 __dec_zone_page_state(page, NR_FILE_MAPPED);
864 mem_cgroup_update_file_mapped(page, -1);
867 * It would be tidy to reset the PageAnon mapping here,
868 * but that might overwrite a racing page_add_anon_rmap
869 * which increments mapcount after us but sets mapping
870 * before us: so leave the reset to free_hot_cold_page,
871 * and remember that it's only reliable while mapped.
872 * Leaving it set also helps swapoff to reinstate ptes
873 * faster for those pages still in swapcache.
878 * Subfunctions of try_to_unmap: try_to_unmap_one called
879 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
881 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
882 unsigned long address, enum ttu_flags flags)
884 struct mm_struct *mm = vma->vm_mm;
885 pte_t *pte;
886 pte_t pteval;
887 spinlock_t *ptl;
888 int ret = SWAP_AGAIN;
890 pte = page_check_address(page, mm, address, &ptl, 0);
891 if (!pte)
892 goto out;
895 * If the page is mlock()d, we cannot swap it out.
896 * If it's recently referenced (perhaps page_referenced
897 * skipped over this mm) then we should reactivate it.
899 if (!(flags & TTU_IGNORE_MLOCK)) {
900 if (vma->vm_flags & VM_LOCKED)
901 goto out_mlock;
903 if (TTU_ACTION(flags) == TTU_MUNLOCK)
904 goto out_unmap;
906 if (!(flags & TTU_IGNORE_ACCESS)) {
907 if (ptep_clear_flush_young_notify(vma, address, pte)) {
908 ret = SWAP_FAIL;
909 goto out_unmap;
913 /* Nuke the page table entry. */
914 flush_cache_page(vma, address, page_to_pfn(page));
915 pteval = ptep_clear_flush_notify(vma, address, pte);
917 /* Move the dirty bit to the physical page now the pte is gone. */
918 if (pte_dirty(pteval))
919 set_page_dirty(page);
921 /* Update high watermark before we lower rss */
922 update_hiwater_rss(mm);
924 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
925 if (PageAnon(page))
926 dec_mm_counter(mm, MM_ANONPAGES);
927 else
928 dec_mm_counter(mm, MM_FILEPAGES);
929 set_pte_at(mm, address, pte,
930 swp_entry_to_pte(make_hwpoison_entry(page)));
931 } else if (PageAnon(page)) {
932 swp_entry_t entry = { .val = page_private(page) };
934 if (PageSwapCache(page)) {
936 * Store the swap location in the pte.
937 * See handle_pte_fault() ...
939 if (swap_duplicate(entry) < 0) {
940 set_pte_at(mm, address, pte, pteval);
941 ret = SWAP_FAIL;
942 goto out_unmap;
944 if (list_empty(&mm->mmlist)) {
945 spin_lock(&mmlist_lock);
946 if (list_empty(&mm->mmlist))
947 list_add(&mm->mmlist, &init_mm.mmlist);
948 spin_unlock(&mmlist_lock);
950 dec_mm_counter(mm, MM_ANONPAGES);
951 inc_mm_counter(mm, MM_SWAPENTS);
952 } else if (PAGE_MIGRATION) {
954 * Store the pfn of the page in a special migration
955 * pte. do_swap_page() will wait until the migration
956 * pte is removed and then restart fault handling.
958 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
959 entry = make_migration_entry(page, pte_write(pteval));
961 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
962 BUG_ON(pte_file(*pte));
963 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
964 /* Establish migration entry for a file page */
965 swp_entry_t entry;
966 entry = make_migration_entry(page, pte_write(pteval));
967 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
968 } else
969 dec_mm_counter(mm, MM_FILEPAGES);
971 page_remove_rmap(page);
972 page_cache_release(page);
974 out_unmap:
975 pte_unmap_unlock(pte, ptl);
976 out:
977 return ret;
979 out_mlock:
980 pte_unmap_unlock(pte, ptl);
984 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
985 * unstable result and race. Plus, We can't wait here because
986 * we now hold anon_vma->lock or mapping->i_mmap_lock.
987 * if trylock failed, the page remain in evictable lru and later
988 * vmscan could retry to move the page to unevictable lru if the
989 * page is actually mlocked.
991 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
992 if (vma->vm_flags & VM_LOCKED) {
993 mlock_vma_page(page);
994 ret = SWAP_MLOCK;
996 up_read(&vma->vm_mm->mmap_sem);
998 return ret;
1002 * objrmap doesn't work for nonlinear VMAs because the assumption that
1003 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1004 * Consequently, given a particular page and its ->index, we cannot locate the
1005 * ptes which are mapping that page without an exhaustive linear search.
1007 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1008 * maps the file to which the target page belongs. The ->vm_private_data field
1009 * holds the current cursor into that scan. Successive searches will circulate
1010 * around the vma's virtual address space.
1012 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1013 * more scanning pressure is placed against them as well. Eventually pages
1014 * will become fully unmapped and are eligible for eviction.
1016 * For very sparsely populated VMAs this is a little inefficient - chances are
1017 * there there won't be many ptes located within the scan cluster. In this case
1018 * maybe we could scan further - to the end of the pte page, perhaps.
1020 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1021 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1022 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1023 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1025 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1026 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1028 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1029 struct vm_area_struct *vma, struct page *check_page)
1031 struct mm_struct *mm = vma->vm_mm;
1032 pgd_t *pgd;
1033 pud_t *pud;
1034 pmd_t *pmd;
1035 pte_t *pte;
1036 pte_t pteval;
1037 spinlock_t *ptl;
1038 struct page *page;
1039 unsigned long address;
1040 unsigned long end;
1041 int ret = SWAP_AGAIN;
1042 int locked_vma = 0;
1044 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1045 end = address + CLUSTER_SIZE;
1046 if (address < vma->vm_start)
1047 address = vma->vm_start;
1048 if (end > vma->vm_end)
1049 end = vma->vm_end;
1051 pgd = pgd_offset(mm, address);
1052 if (!pgd_present(*pgd))
1053 return ret;
1055 pud = pud_offset(pgd, address);
1056 if (!pud_present(*pud))
1057 return ret;
1059 pmd = pmd_offset(pud, address);
1060 if (!pmd_present(*pmd))
1061 return ret;
1064 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1065 * keep the sem while scanning the cluster for mlocking pages.
1067 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1068 locked_vma = (vma->vm_flags & VM_LOCKED);
1069 if (!locked_vma)
1070 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1073 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1075 /* Update high watermark before we lower rss */
1076 update_hiwater_rss(mm);
1078 for (; address < end; pte++, address += PAGE_SIZE) {
1079 if (!pte_present(*pte))
1080 continue;
1081 page = vm_normal_page(vma, address, *pte);
1082 BUG_ON(!page || PageAnon(page));
1084 if (locked_vma) {
1085 mlock_vma_page(page); /* no-op if already mlocked */
1086 if (page == check_page)
1087 ret = SWAP_MLOCK;
1088 continue; /* don't unmap */
1091 if (ptep_clear_flush_young_notify(vma, address, pte))
1092 continue;
1094 /* Nuke the page table entry. */
1095 flush_cache_page(vma, address, pte_pfn(*pte));
1096 pteval = ptep_clear_flush_notify(vma, address, pte);
1098 /* If nonlinear, store the file page offset in the pte. */
1099 if (page->index != linear_page_index(vma, address))
1100 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1102 /* Move the dirty bit to the physical page now the pte is gone. */
1103 if (pte_dirty(pteval))
1104 set_page_dirty(page);
1106 page_remove_rmap(page);
1107 page_cache_release(page);
1108 dec_mm_counter(mm, MM_FILEPAGES);
1109 (*mapcount)--;
1111 pte_unmap_unlock(pte - 1, ptl);
1112 if (locked_vma)
1113 up_read(&vma->vm_mm->mmap_sem);
1114 return ret;
1118 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1119 * rmap method
1120 * @page: the page to unmap/unlock
1121 * @flags: action and flags
1123 * Find all the mappings of a page using the mapping pointer and the vma chains
1124 * contained in the anon_vma struct it points to.
1126 * This function is only called from try_to_unmap/try_to_munlock for
1127 * anonymous pages.
1128 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1129 * where the page was found will be held for write. So, we won't recheck
1130 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1131 * 'LOCKED.
1133 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1135 struct anon_vma *anon_vma;
1136 struct anon_vma_chain *avc;
1137 int ret = SWAP_AGAIN;
1139 anon_vma = page_lock_anon_vma(page);
1140 if (!anon_vma)
1141 return ret;
1143 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1144 struct vm_area_struct *vma = avc->vma;
1145 unsigned long address = vma_address(page, vma);
1146 if (address == -EFAULT)
1147 continue;
1148 ret = try_to_unmap_one(page, vma, address, flags);
1149 if (ret != SWAP_AGAIN || !page_mapped(page))
1150 break;
1153 page_unlock_anon_vma(anon_vma);
1154 return ret;
1158 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1159 * @page: the page to unmap/unlock
1160 * @flags: action and flags
1162 * Find all the mappings of a page using the mapping pointer and the vma chains
1163 * contained in the address_space struct it points to.
1165 * This function is only called from try_to_unmap/try_to_munlock for
1166 * object-based pages.
1167 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1168 * where the page was found will be held for write. So, we won't recheck
1169 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1170 * 'LOCKED.
1172 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1174 struct address_space *mapping = page->mapping;
1175 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1176 struct vm_area_struct *vma;
1177 struct prio_tree_iter iter;
1178 int ret = SWAP_AGAIN;
1179 unsigned long cursor;
1180 unsigned long max_nl_cursor = 0;
1181 unsigned long max_nl_size = 0;
1182 unsigned int mapcount;
1184 spin_lock(&mapping->i_mmap_lock);
1185 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1186 unsigned long address = vma_address(page, vma);
1187 if (address == -EFAULT)
1188 continue;
1189 ret = try_to_unmap_one(page, vma, address, flags);
1190 if (ret != SWAP_AGAIN || !page_mapped(page))
1191 goto out;
1194 if (list_empty(&mapping->i_mmap_nonlinear))
1195 goto out;
1198 * We don't bother to try to find the munlocked page in nonlinears.
1199 * It's costly. Instead, later, page reclaim logic may call
1200 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1202 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1203 goto out;
1205 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1206 shared.vm_set.list) {
1207 cursor = (unsigned long) vma->vm_private_data;
1208 if (cursor > max_nl_cursor)
1209 max_nl_cursor = cursor;
1210 cursor = vma->vm_end - vma->vm_start;
1211 if (cursor > max_nl_size)
1212 max_nl_size = cursor;
1215 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1216 ret = SWAP_FAIL;
1217 goto out;
1221 * We don't try to search for this page in the nonlinear vmas,
1222 * and page_referenced wouldn't have found it anyway. Instead
1223 * just walk the nonlinear vmas trying to age and unmap some.
1224 * The mapcount of the page we came in with is irrelevant,
1225 * but even so use it as a guide to how hard we should try?
1227 mapcount = page_mapcount(page);
1228 if (!mapcount)
1229 goto out;
1230 cond_resched_lock(&mapping->i_mmap_lock);
1232 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1233 if (max_nl_cursor == 0)
1234 max_nl_cursor = CLUSTER_SIZE;
1236 do {
1237 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1238 shared.vm_set.list) {
1239 cursor = (unsigned long) vma->vm_private_data;
1240 while ( cursor < max_nl_cursor &&
1241 cursor < vma->vm_end - vma->vm_start) {
1242 if (try_to_unmap_cluster(cursor, &mapcount,
1243 vma, page) == SWAP_MLOCK)
1244 ret = SWAP_MLOCK;
1245 cursor += CLUSTER_SIZE;
1246 vma->vm_private_data = (void *) cursor;
1247 if ((int)mapcount <= 0)
1248 goto out;
1250 vma->vm_private_data = (void *) max_nl_cursor;
1252 cond_resched_lock(&mapping->i_mmap_lock);
1253 max_nl_cursor += CLUSTER_SIZE;
1254 } while (max_nl_cursor <= max_nl_size);
1257 * Don't loop forever (perhaps all the remaining pages are
1258 * in locked vmas). Reset cursor on all unreserved nonlinear
1259 * vmas, now forgetting on which ones it had fallen behind.
1261 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1262 vma->vm_private_data = NULL;
1263 out:
1264 spin_unlock(&mapping->i_mmap_lock);
1265 return ret;
1269 * try_to_unmap - try to remove all page table mappings to a page
1270 * @page: the page to get unmapped
1271 * @flags: action and flags
1273 * Tries to remove all the page table entries which are mapping this
1274 * page, used in the pageout path. Caller must hold the page lock.
1275 * Return values are:
1277 * SWAP_SUCCESS - we succeeded in removing all mappings
1278 * SWAP_AGAIN - we missed a mapping, try again later
1279 * SWAP_FAIL - the page is unswappable
1280 * SWAP_MLOCK - page is mlocked.
1282 int try_to_unmap(struct page *page, enum ttu_flags flags)
1284 int ret;
1286 BUG_ON(!PageLocked(page));
1288 if (unlikely(PageKsm(page)))
1289 ret = try_to_unmap_ksm(page, flags);
1290 else if (PageAnon(page))
1291 ret = try_to_unmap_anon(page, flags);
1292 else
1293 ret = try_to_unmap_file(page, flags);
1294 if (ret != SWAP_MLOCK && !page_mapped(page))
1295 ret = SWAP_SUCCESS;
1296 return ret;
1300 * try_to_munlock - try to munlock a page
1301 * @page: the page to be munlocked
1303 * Called from munlock code. Checks all of the VMAs mapping the page
1304 * to make sure nobody else has this page mlocked. The page will be
1305 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1307 * Return values are:
1309 * SWAP_AGAIN - no vma is holding page mlocked, or,
1310 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1311 * SWAP_FAIL - page cannot be located at present
1312 * SWAP_MLOCK - page is now mlocked.
1314 int try_to_munlock(struct page *page)
1316 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1318 if (unlikely(PageKsm(page)))
1319 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1320 else if (PageAnon(page))
1321 return try_to_unmap_anon(page, TTU_MUNLOCK);
1322 else
1323 return try_to_unmap_file(page, TTU_MUNLOCK);
1326 #ifdef CONFIG_MIGRATION
1328 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1329 * Called by migrate.c to remove migration ptes, but might be used more later.
1331 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1332 struct vm_area_struct *, unsigned long, void *), void *arg)
1334 struct anon_vma *anon_vma;
1335 struct anon_vma_chain *avc;
1336 int ret = SWAP_AGAIN;
1339 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1340 * because that depends on page_mapped(); but not all its usages
1341 * are holding mmap_sem, which also gave the necessary guarantee
1342 * (that this anon_vma's slab has not already been destroyed).
1343 * This needs to be reviewed later: avoiding page_lock_anon_vma()
1344 * is risky, and currently limits the usefulness of rmap_walk().
1346 anon_vma = page_anon_vma(page);
1347 if (!anon_vma)
1348 return ret;
1349 spin_lock(&anon_vma->lock);
1350 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1351 struct vm_area_struct *vma = avc->vma;
1352 unsigned long address = vma_address(page, vma);
1353 if (address == -EFAULT)
1354 continue;
1355 ret = rmap_one(page, vma, address, arg);
1356 if (ret != SWAP_AGAIN)
1357 break;
1359 spin_unlock(&anon_vma->lock);
1360 return ret;
1363 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1364 struct vm_area_struct *, unsigned long, void *), void *arg)
1366 struct address_space *mapping = page->mapping;
1367 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1368 struct vm_area_struct *vma;
1369 struct prio_tree_iter iter;
1370 int ret = SWAP_AGAIN;
1372 if (!mapping)
1373 return ret;
1374 spin_lock(&mapping->i_mmap_lock);
1375 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1376 unsigned long address = vma_address(page, vma);
1377 if (address == -EFAULT)
1378 continue;
1379 ret = rmap_one(page, vma, address, arg);
1380 if (ret != SWAP_AGAIN)
1381 break;
1384 * No nonlinear handling: being always shared, nonlinear vmas
1385 * never contain migration ptes. Decide what to do about this
1386 * limitation to linear when we need rmap_walk() on nonlinear.
1388 spin_unlock(&mapping->i_mmap_lock);
1389 return ret;
1392 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1393 struct vm_area_struct *, unsigned long, void *), void *arg)
1395 VM_BUG_ON(!PageLocked(page));
1397 if (unlikely(PageKsm(page)))
1398 return rmap_walk_ksm(page, rmap_one, arg);
1399 else if (PageAnon(page))
1400 return rmap_walk_anon(page, rmap_one, arg);
1401 else
1402 return rmap_walk_file(page, rmap_one, arg);
1404 #endif /* CONFIG_MIGRATION */