hostap: add radiotap support in monitor mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / asm-powerpc / io.h
blob89189488e28692becd753aafe7dfa2dcd137b615
1 #ifndef _ASM_POWERPC_IO_H
2 #define _ASM_POWERPC_IO_H
3 #ifdef __KERNEL__
5 /*
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 /* Check of existence of legacy devices */
13 extern int check_legacy_ioport(unsigned long base_port);
14 #define I8042_DATA_REG 0x60
15 #define FDC_BASE 0x3f0
16 /* only relevant for PReP */
17 #define _PIDXR 0x279
18 #define _PNPWRP 0xa79
19 #define PNPBIOS_BASE 0xf000
21 #include <linux/device.h>
22 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <asm/page.h>
26 #include <asm/byteorder.h>
27 #include <asm/synch.h>
28 #include <asm/delay.h>
29 #include <asm/mmu.h>
31 #include <asm-generic/iomap.h>
33 #ifdef CONFIG_PPC64
34 #include <asm/paca.h>
35 #endif
37 #define SIO_CONFIG_RA 0x398
38 #define SIO_CONFIG_RD 0x399
40 #define SLOW_DOWN_IO
42 /* 32 bits uses slightly different variables for the various IO
43 * bases. Most of this file only uses _IO_BASE though which we
44 * define properly based on the platform
46 #ifndef CONFIG_PCI
47 #define _IO_BASE 0
48 #define _ISA_MEM_BASE 0
49 #define PCI_DRAM_OFFSET 0
50 #elif defined(CONFIG_PPC32)
51 #define _IO_BASE isa_io_base
52 #define _ISA_MEM_BASE isa_mem_base
53 #define PCI_DRAM_OFFSET pci_dram_offset
54 #else
55 #define _IO_BASE pci_io_base
56 #define _ISA_MEM_BASE isa_mem_base
57 #define PCI_DRAM_OFFSET 0
58 #endif
60 extern unsigned long isa_io_base;
61 extern unsigned long pci_io_base;
62 extern unsigned long pci_dram_offset;
64 extern resource_size_t isa_mem_base;
66 #if defined(CONFIG_PPC32) && defined(CONFIG_PPC_INDIRECT_IO)
67 #error CONFIG_PPC_INDIRECT_IO is not yet supported on 32 bits
68 #endif
72 * Low level MMIO accessors
74 * This provides the non-bus specific accessors to MMIO. Those are PowerPC
75 * specific and thus shouldn't be used in generic code. The accessors
76 * provided here are:
78 * in_8, in_le16, in_be16, in_le32, in_be32, in_le64, in_be64
79 * out_8, out_le16, out_be16, out_le32, out_be32, out_le64, out_be64
80 * _insb, _insw_ns, _insl_ns, _outsb, _outsw_ns, _outsl_ns
82 * Those operate directly on a kernel virtual address. Note that the prototype
83 * for the out_* accessors has the arguments in opposite order from the usual
84 * linux PCI accessors. Unlike those, they take the address first and the value
85 * next.
87 * Note: I might drop the _ns suffix on the stream operations soon as it is
88 * simply normal for stream operations to not swap in the first place.
92 #ifdef CONFIG_PPC64
93 #define IO_SET_SYNC_FLAG() do { local_paca->io_sync = 1; } while(0)
94 #else
95 #define IO_SET_SYNC_FLAG()
96 #endif
98 #define DEF_MMIO_IN(name, type, insn) \
99 static inline type name(const volatile type __iomem *addr) \
101 type ret; \
102 __asm__ __volatile__("sync;" insn ";twi 0,%0,0;isync" \
103 : "=r" (ret) : "r" (addr), "m" (*addr) : "memory"); \
104 return ret; \
107 #define DEF_MMIO_OUT(name, type, insn) \
108 static inline void name(volatile type __iomem *addr, type val) \
110 __asm__ __volatile__("sync;" insn \
111 : "=m" (*addr) : "r" (val), "r" (addr) : "memory"); \
112 IO_SET_SYNC_FLAG(); \
116 #define DEF_MMIO_IN_BE(name, size, insn) \
117 DEF_MMIO_IN(name, u##size, __stringify(insn)"%U2%X2 %0,%2")
118 #define DEF_MMIO_IN_LE(name, size, insn) \
119 DEF_MMIO_IN(name, u##size, __stringify(insn)" %0,0,%1")
121 #define DEF_MMIO_OUT_BE(name, size, insn) \
122 DEF_MMIO_OUT(name, u##size, __stringify(insn)"%U0%X0 %1,%0")
123 #define DEF_MMIO_OUT_LE(name, size, insn) \
124 DEF_MMIO_OUT(name, u##size, __stringify(insn)" %1,0,%2")
126 DEF_MMIO_IN_BE(in_8, 8, lbz);
127 DEF_MMIO_IN_BE(in_be16, 16, lhz);
128 DEF_MMIO_IN_BE(in_be32, 32, lwz);
129 DEF_MMIO_IN_LE(in_le16, 16, lhbrx);
130 DEF_MMIO_IN_LE(in_le32, 32, lwbrx);
132 DEF_MMIO_OUT_BE(out_8, 8, stb);
133 DEF_MMIO_OUT_BE(out_be16, 16, sth);
134 DEF_MMIO_OUT_BE(out_be32, 32, stw);
135 DEF_MMIO_OUT_LE(out_le16, 16, sthbrx);
136 DEF_MMIO_OUT_LE(out_le32, 32, stwbrx);
138 #ifdef __powerpc64__
139 DEF_MMIO_OUT_BE(out_be64, 64, std);
140 DEF_MMIO_IN_BE(in_be64, 64, ld);
142 /* There is no asm instructions for 64 bits reverse loads and stores */
143 static inline u64 in_le64(const volatile u64 __iomem *addr)
145 return swab64(in_be64(addr));
148 static inline void out_le64(volatile u64 __iomem *addr, u64 val)
150 out_be64(addr, swab64(val));
152 #endif /* __powerpc64__ */
155 * Low level IO stream instructions are defined out of line for now
157 extern void _insb(const volatile u8 __iomem *addr, void *buf, long count);
158 extern void _outsb(volatile u8 __iomem *addr,const void *buf,long count);
159 extern void _insw_ns(const volatile u16 __iomem *addr, void *buf, long count);
160 extern void _outsw_ns(volatile u16 __iomem *addr, const void *buf, long count);
161 extern void _insl_ns(const volatile u32 __iomem *addr, void *buf, long count);
162 extern void _outsl_ns(volatile u32 __iomem *addr, const void *buf, long count);
164 /* The _ns naming is historical and will be removed. For now, just #define
165 * the non _ns equivalent names
167 #define _insw _insw_ns
168 #define _insl _insl_ns
169 #define _outsw _outsw_ns
170 #define _outsl _outsl_ns
174 * memset_io, memcpy_toio, memcpy_fromio base implementations are out of line
177 extern void _memset_io(volatile void __iomem *addr, int c, unsigned long n);
178 extern void _memcpy_fromio(void *dest, const volatile void __iomem *src,
179 unsigned long n);
180 extern void _memcpy_toio(volatile void __iomem *dest, const void *src,
181 unsigned long n);
185 * PCI and standard ISA accessors
187 * Those are globally defined linux accessors for devices on PCI or ISA
188 * busses. They follow the Linux defined semantics. The current implementation
189 * for PowerPC is as close as possible to the x86 version of these, and thus
190 * provides fairly heavy weight barriers for the non-raw versions
192 * In addition, they support a hook mechanism when CONFIG_PPC_INDIRECT_IO
193 * allowing the platform to provide its own implementation of some or all
194 * of the accessors.
198 * Include the EEH definitions when EEH is enabled only so they don't get
199 * in the way when building for 32 bits
201 #ifdef CONFIG_EEH
202 #include <asm/eeh.h>
203 #endif
205 /* Shortcut to the MMIO argument pointer */
206 #define PCI_IO_ADDR volatile void __iomem *
208 /* Indirect IO address tokens:
210 * When CONFIG_PPC_INDIRECT_IO is set, the platform can provide hooks
211 * on all IOs. (Note that this is all 64 bits only for now)
213 * To help platforms who may need to differenciate MMIO addresses in
214 * their hooks, a bitfield is reserved for use by the platform near the
215 * top of MMIO addresses (not PIO, those have to cope the hard way).
217 * This bit field is 12 bits and is at the top of the IO virtual
218 * addresses PCI_IO_INDIRECT_TOKEN_MASK.
220 * The kernel virtual space is thus:
222 * 0xD000000000000000 : vmalloc
223 * 0xD000080000000000 : PCI PHB IO space
224 * 0xD000080080000000 : ioremap
225 * 0xD0000fffffffffff : end of ioremap region
227 * Since the top 4 bits are reserved as the region ID, we use thus
228 * the next 12 bits and keep 4 bits available for the future if the
229 * virtual address space is ever to be extended.
231 * The direct IO mapping operations will then mask off those bits
232 * before doing the actual access, though that only happen when
233 * CONFIG_PPC_INDIRECT_IO is set, thus be careful when you use that
234 * mechanism
237 #ifdef CONFIG_PPC_INDIRECT_IO
238 #define PCI_IO_IND_TOKEN_MASK 0x0fff000000000000ul
239 #define PCI_IO_IND_TOKEN_SHIFT 48
240 #define PCI_FIX_ADDR(addr) \
241 ((PCI_IO_ADDR)(((unsigned long)(addr)) & ~PCI_IO_IND_TOKEN_MASK))
242 #define PCI_GET_ADDR_TOKEN(addr) \
243 (((unsigned long)(addr) & PCI_IO_IND_TOKEN_MASK) >> \
244 PCI_IO_IND_TOKEN_SHIFT)
245 #define PCI_SET_ADDR_TOKEN(addr, token) \
246 do { \
247 unsigned long __a = (unsigned long)(addr); \
248 __a &= ~PCI_IO_IND_TOKEN_MASK; \
249 __a |= ((unsigned long)(token)) << PCI_IO_IND_TOKEN_SHIFT; \
250 (addr) = (void __iomem *)__a; \
251 } while(0)
252 #else
253 #define PCI_FIX_ADDR(addr) (addr)
254 #endif
258 * Non ordered and non-swapping "raw" accessors
261 static inline unsigned char __raw_readb(const volatile void __iomem *addr)
263 return *(volatile unsigned char __force *)PCI_FIX_ADDR(addr);
265 static inline unsigned short __raw_readw(const volatile void __iomem *addr)
267 return *(volatile unsigned short __force *)PCI_FIX_ADDR(addr);
269 static inline unsigned int __raw_readl(const volatile void __iomem *addr)
271 return *(volatile unsigned int __force *)PCI_FIX_ADDR(addr);
273 static inline void __raw_writeb(unsigned char v, volatile void __iomem *addr)
275 *(volatile unsigned char __force *)PCI_FIX_ADDR(addr) = v;
277 static inline void __raw_writew(unsigned short v, volatile void __iomem *addr)
279 *(volatile unsigned short __force *)PCI_FIX_ADDR(addr) = v;
281 static inline void __raw_writel(unsigned int v, volatile void __iomem *addr)
283 *(volatile unsigned int __force *)PCI_FIX_ADDR(addr) = v;
286 #ifdef __powerpc64__
287 static inline unsigned long __raw_readq(const volatile void __iomem *addr)
289 return *(volatile unsigned long __force *)PCI_FIX_ADDR(addr);
291 static inline void __raw_writeq(unsigned long v, volatile void __iomem *addr)
293 *(volatile unsigned long __force *)PCI_FIX_ADDR(addr) = v;
295 #endif /* __powerpc64__ */
299 * PCI PIO and MMIO accessors.
302 * On 32 bits, PIO operations have a recovery mechanism in case they trigger
303 * machine checks (which they occasionally do when probing non existing
304 * IO ports on some platforms, like PowerMac and 8xx).
305 * I always found it to be of dubious reliability and I am tempted to get
306 * rid of it one of these days. So if you think it's important to keep it,
307 * please voice up asap. We never had it for 64 bits and I do not intend
308 * to port it over
311 #ifdef CONFIG_PPC32
313 #define __do_in_asm(name, op) \
314 static inline unsigned int name(unsigned int port) \
316 unsigned int x; \
317 __asm__ __volatile__( \
318 "sync\n" \
319 "0:" op " %0,0,%1\n" \
320 "1: twi 0,%0,0\n" \
321 "2: isync\n" \
322 "3: nop\n" \
323 "4:\n" \
324 ".section .fixup,\"ax\"\n" \
325 "5: li %0,-1\n" \
326 " b 4b\n" \
327 ".previous\n" \
328 ".section __ex_table,\"a\"\n" \
329 " .align 2\n" \
330 " .long 0b,5b\n" \
331 " .long 1b,5b\n" \
332 " .long 2b,5b\n" \
333 " .long 3b,5b\n" \
334 ".previous" \
335 : "=&r" (x) \
336 : "r" (port + _IO_BASE) \
337 : "memory"); \
338 return x; \
341 #define __do_out_asm(name, op) \
342 static inline void name(unsigned int val, unsigned int port) \
344 __asm__ __volatile__( \
345 "sync\n" \
346 "0:" op " %0,0,%1\n" \
347 "1: sync\n" \
348 "2:\n" \
349 ".section __ex_table,\"a\"\n" \
350 " .align 2\n" \
351 " .long 0b,2b\n" \
352 " .long 1b,2b\n" \
353 ".previous" \
354 : : "r" (val), "r" (port + _IO_BASE) \
355 : "memory"); \
358 __do_in_asm(_rec_inb, "lbzx")
359 __do_in_asm(_rec_inw, "lhbrx")
360 __do_in_asm(_rec_inl, "lwbrx")
361 __do_out_asm(_rec_outb, "stbx")
362 __do_out_asm(_rec_outw, "sthbrx")
363 __do_out_asm(_rec_outl, "stwbrx")
365 #endif /* CONFIG_PPC32 */
367 /* The "__do_*" operations below provide the actual "base" implementation
368 * for each of the defined acccessor. Some of them use the out_* functions
369 * directly, some of them still use EEH, though we might change that in the
370 * future. Those macros below provide the necessary argument swapping and
371 * handling of the IO base for PIO.
373 * They are themselves used by the macros that define the actual accessors
374 * and can be used by the hooks if any.
376 * Note that PIO operations are always defined in terms of their corresonding
377 * MMIO operations. That allows platforms like iSeries who want to modify the
378 * behaviour of both to only hook on the MMIO version and get both. It's also
379 * possible to hook directly at the toplevel PIO operation if they have to
380 * be handled differently
382 #define __do_writeb(val, addr) out_8(PCI_FIX_ADDR(addr), val)
383 #define __do_writew(val, addr) out_le16(PCI_FIX_ADDR(addr), val)
384 #define __do_writel(val, addr) out_le32(PCI_FIX_ADDR(addr), val)
385 #define __do_writeq(val, addr) out_le64(PCI_FIX_ADDR(addr), val)
386 #define __do_writew_be(val, addr) out_be16(PCI_FIX_ADDR(addr), val)
387 #define __do_writel_be(val, addr) out_be32(PCI_FIX_ADDR(addr), val)
388 #define __do_writeq_be(val, addr) out_be64(PCI_FIX_ADDR(addr), val)
390 #ifdef CONFIG_EEH
391 #define __do_readb(addr) eeh_readb(PCI_FIX_ADDR(addr))
392 #define __do_readw(addr) eeh_readw(PCI_FIX_ADDR(addr))
393 #define __do_readl(addr) eeh_readl(PCI_FIX_ADDR(addr))
394 #define __do_readq(addr) eeh_readq(PCI_FIX_ADDR(addr))
395 #define __do_readw_be(addr) eeh_readw_be(PCI_FIX_ADDR(addr))
396 #define __do_readl_be(addr) eeh_readl_be(PCI_FIX_ADDR(addr))
397 #define __do_readq_be(addr) eeh_readq_be(PCI_FIX_ADDR(addr))
398 #else /* CONFIG_EEH */
399 #define __do_readb(addr) in_8(PCI_FIX_ADDR(addr))
400 #define __do_readw(addr) in_le16(PCI_FIX_ADDR(addr))
401 #define __do_readl(addr) in_le32(PCI_FIX_ADDR(addr))
402 #define __do_readq(addr) in_le64(PCI_FIX_ADDR(addr))
403 #define __do_readw_be(addr) in_be16(PCI_FIX_ADDR(addr))
404 #define __do_readl_be(addr) in_be32(PCI_FIX_ADDR(addr))
405 #define __do_readq_be(addr) in_be64(PCI_FIX_ADDR(addr))
406 #endif /* !defined(CONFIG_EEH) */
408 #ifdef CONFIG_PPC32
409 #define __do_outb(val, port) _rec_outb(val, port)
410 #define __do_outw(val, port) _rec_outw(val, port)
411 #define __do_outl(val, port) _rec_outl(val, port)
412 #define __do_inb(port) _rec_inb(port)
413 #define __do_inw(port) _rec_inw(port)
414 #define __do_inl(port) _rec_inl(port)
415 #else /* CONFIG_PPC32 */
416 #define __do_outb(val, port) writeb(val,(PCI_IO_ADDR)_IO_BASE+port);
417 #define __do_outw(val, port) writew(val,(PCI_IO_ADDR)_IO_BASE+port);
418 #define __do_outl(val, port) writel(val,(PCI_IO_ADDR)_IO_BASE+port);
419 #define __do_inb(port) readb((PCI_IO_ADDR)_IO_BASE + port);
420 #define __do_inw(port) readw((PCI_IO_ADDR)_IO_BASE + port);
421 #define __do_inl(port) readl((PCI_IO_ADDR)_IO_BASE + port);
422 #endif /* !CONFIG_PPC32 */
424 #ifdef CONFIG_EEH
425 #define __do_readsb(a, b, n) eeh_readsb(PCI_FIX_ADDR(a), (b), (n))
426 #define __do_readsw(a, b, n) eeh_readsw(PCI_FIX_ADDR(a), (b), (n))
427 #define __do_readsl(a, b, n) eeh_readsl(PCI_FIX_ADDR(a), (b), (n))
428 #else /* CONFIG_EEH */
429 #define __do_readsb(a, b, n) _insb(PCI_FIX_ADDR(a), (b), (n))
430 #define __do_readsw(a, b, n) _insw(PCI_FIX_ADDR(a), (b), (n))
431 #define __do_readsl(a, b, n) _insl(PCI_FIX_ADDR(a), (b), (n))
432 #endif /* !CONFIG_EEH */
433 #define __do_writesb(a, b, n) _outsb(PCI_FIX_ADDR(a),(b),(n))
434 #define __do_writesw(a, b, n) _outsw(PCI_FIX_ADDR(a),(b),(n))
435 #define __do_writesl(a, b, n) _outsl(PCI_FIX_ADDR(a),(b),(n))
437 #define __do_insb(p, b, n) readsb((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
438 #define __do_insw(p, b, n) readsw((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
439 #define __do_insl(p, b, n) readsl((PCI_IO_ADDR)_IO_BASE+(p), (b), (n))
440 #define __do_outsb(p, b, n) writesb((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
441 #define __do_outsw(p, b, n) writesw((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
442 #define __do_outsl(p, b, n) writesl((PCI_IO_ADDR)_IO_BASE+(p),(b),(n))
444 #define __do_memset_io(addr, c, n) \
445 _memset_io(PCI_FIX_ADDR(addr), c, n)
446 #define __do_memcpy_toio(dst, src, n) \
447 _memcpy_toio(PCI_FIX_ADDR(dst), src, n)
449 #ifdef CONFIG_EEH
450 #define __do_memcpy_fromio(dst, src, n) \
451 eeh_memcpy_fromio(dst, PCI_FIX_ADDR(src), n)
452 #else /* CONFIG_EEH */
453 #define __do_memcpy_fromio(dst, src, n) \
454 _memcpy_fromio(dst,PCI_FIX_ADDR(src),n)
455 #endif /* !CONFIG_EEH */
457 #ifdef CONFIG_PPC_INDIRECT_IO
458 #define DEF_PCI_HOOK(x) x
459 #else
460 #define DEF_PCI_HOOK(x) NULL
461 #endif
463 /* Structure containing all the hooks */
464 extern struct ppc_pci_io {
466 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) ret (*name) at;
467 #define DEF_PCI_AC_NORET(name, at, al, space, aa) void (*name) at;
469 #include <asm/io-defs.h>
471 #undef DEF_PCI_AC_RET
472 #undef DEF_PCI_AC_NORET
474 } ppc_pci_io;
476 /* The inline wrappers */
477 #define DEF_PCI_AC_RET(name, ret, at, al, space, aa) \
478 static inline ret name at \
480 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
481 return ppc_pci_io.name al; \
482 return __do_##name al; \
485 #define DEF_PCI_AC_NORET(name, at, al, space, aa) \
486 static inline void name at \
488 if (DEF_PCI_HOOK(ppc_pci_io.name) != NULL) \
489 ppc_pci_io.name al; \
490 else \
491 __do_##name al; \
494 #include <asm/io-defs.h>
496 #undef DEF_PCI_AC_RET
497 #undef DEF_PCI_AC_NORET
499 /* Some drivers check for the presence of readq & writeq with
500 * a #ifdef, so we make them happy here.
502 #ifdef __powerpc64__
503 #define readq readq
504 #define writeq writeq
505 #endif
508 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
509 * access
511 #define xlate_dev_mem_ptr(p) __va(p)
514 * Convert a virtual cached pointer to an uncached pointer
516 #define xlate_dev_kmem_ptr(p) p
519 * We don't do relaxed operations yet, at least not with this semantic
521 #define readb_relaxed(addr) readb(addr)
522 #define readw_relaxed(addr) readw(addr)
523 #define readl_relaxed(addr) readl(addr)
524 #define readq_relaxed(addr) readq(addr)
526 #ifdef CONFIG_PPC32
527 #define mmiowb()
528 #else
530 * Enforce synchronisation of stores vs. spin_unlock
531 * (this does it explicitly, though our implementation of spin_unlock
532 * does it implicitely too)
534 static inline void mmiowb(void)
536 unsigned long tmp;
538 __asm__ __volatile__("sync; li %0,0; stb %0,%1(13)"
539 : "=&r" (tmp) : "i" (offsetof(struct paca_struct, io_sync))
540 : "memory");
542 #endif /* !CONFIG_PPC32 */
544 static inline void iosync(void)
546 __asm__ __volatile__ ("sync" : : : "memory");
549 /* Enforce in-order execution of data I/O.
550 * No distinction between read/write on PPC; use eieio for all three.
551 * Those are fairly week though. They don't provide a barrier between
552 * MMIO and cacheable storage nor do they provide a barrier vs. locks,
553 * they only provide barriers between 2 __raw MMIO operations and
554 * possibly break write combining.
556 #define iobarrier_rw() eieio()
557 #define iobarrier_r() eieio()
558 #define iobarrier_w() eieio()
562 * output pause versions need a delay at least for the
563 * w83c105 ide controller in a p610.
565 #define inb_p(port) inb(port)
566 #define outb_p(val, port) (udelay(1), outb((val), (port)))
567 #define inw_p(port) inw(port)
568 #define outw_p(val, port) (udelay(1), outw((val), (port)))
569 #define inl_p(port) inl(port)
570 #define outl_p(val, port) (udelay(1), outl((val), (port)))
573 #define IO_SPACE_LIMIT ~(0UL)
577 * ioremap - map bus memory into CPU space
578 * @address: bus address of the memory
579 * @size: size of the resource to map
581 * ioremap performs a platform specific sequence of operations to
582 * make bus memory CPU accessible via the readb/readw/readl/writeb/
583 * writew/writel functions and the other mmio helpers. The returned
584 * address is not guaranteed to be usable directly as a virtual
585 * address.
587 * We provide a few variations of it:
589 * * ioremap is the standard one and provides non-cacheable guarded mappings
590 * and can be hooked by the platform via ppc_md
592 * * ioremap_flags allows to specify the page flags as an argument and can
593 * also be hooked by the platform via ppc_md
595 * * ioremap_nocache is identical to ioremap
597 * * iounmap undoes such a mapping and can be hooked
599 * * __ioremap_at (and the pending __iounmap_at) are low level functions to
600 * create hand-made mappings for use only by the PCI code and cannot
601 * currently be hooked. Must be page aligned.
603 * * __ioremap is the low level implementation used by ioremap and
604 * ioremap_flags and cannot be hooked (but can be used by a hook on one
605 * of the previous ones)
607 * * __iounmap, is the low level implementation used by iounmap and cannot
608 * be hooked (but can be used by a hook on iounmap)
611 extern void __iomem *ioremap(phys_addr_t address, unsigned long size);
612 extern void __iomem *ioremap_flags(phys_addr_t address, unsigned long size,
613 unsigned long flags);
614 #define ioremap_nocache(addr, size) ioremap((addr), (size))
615 extern void iounmap(volatile void __iomem *addr);
617 extern void __iomem *__ioremap(phys_addr_t, unsigned long size,
618 unsigned long flags);
619 extern void __iounmap(volatile void __iomem *addr);
621 extern void __iomem * __ioremap_at(phys_addr_t pa, void *ea,
622 unsigned long size, unsigned long flags);
623 extern void __iounmap_at(void *ea, unsigned long size);
626 * When CONFIG_PPC_INDIRECT_IO is set, we use the generic iomap implementation
627 * which needs some additional definitions here. They basically allow PIO
628 * space overall to be 1GB. This will work as long as we never try to use
629 * iomap to map MMIO below 1GB which should be fine on ppc64
631 #define HAVE_ARCH_PIO_SIZE 1
632 #define PIO_OFFSET 0x00000000UL
633 #define PIO_MASK (FULL_IO_SIZE - 1)
634 #define PIO_RESERVED (FULL_IO_SIZE)
636 #define mmio_read16be(addr) readw_be(addr)
637 #define mmio_read32be(addr) readl_be(addr)
638 #define mmio_write16be(val, addr) writew_be(val, addr)
639 #define mmio_write32be(val, addr) writel_be(val, addr)
640 #define mmio_insb(addr, dst, count) readsb(addr, dst, count)
641 #define mmio_insw(addr, dst, count) readsw(addr, dst, count)
642 #define mmio_insl(addr, dst, count) readsl(addr, dst, count)
643 #define mmio_outsb(addr, src, count) writesb(addr, src, count)
644 #define mmio_outsw(addr, src, count) writesw(addr, src, count)
645 #define mmio_outsl(addr, src, count) writesl(addr, src, count)
648 * virt_to_phys - map virtual addresses to physical
649 * @address: address to remap
651 * The returned physical address is the physical (CPU) mapping for
652 * the memory address given. It is only valid to use this function on
653 * addresses directly mapped or allocated via kmalloc.
655 * This function does not give bus mappings for DMA transfers. In
656 * almost all conceivable cases a device driver should not be using
657 * this function
659 static inline unsigned long virt_to_phys(volatile void * address)
661 return __pa((unsigned long)address);
665 * phys_to_virt - map physical address to virtual
666 * @address: address to remap
668 * The returned virtual address is a current CPU mapping for
669 * the memory address given. It is only valid to use this function on
670 * addresses that have a kernel mapping
672 * This function does not handle bus mappings for DMA transfers. In
673 * almost all conceivable cases a device driver should not be using
674 * this function
676 static inline void * phys_to_virt(unsigned long address)
678 return (void *)__va(address);
682 * Change "struct page" to physical address.
684 #define page_to_phys(page) (page_to_pfn(page) << PAGE_SHIFT)
686 /* We do NOT want virtual merging, it would put too much pressure on
687 * our iommu allocator. Instead, we want drivers to be smart enough
688 * to coalesce sglists that happen to have been mapped in a contiguous
689 * way by the iommu
691 #define BIO_VMERGE_BOUNDARY 0
694 * 32 bits still uses virt_to_bus() for it's implementation of DMA
695 * mappings se we have to keep it defined here. We also have some old
696 * drivers (shame shame shame) that use bus_to_virt() and haven't been
697 * fixed yet so I need to define it here.
699 #ifdef CONFIG_PPC32
701 static inline unsigned long virt_to_bus(volatile void * address)
703 if (address == NULL)
704 return 0;
705 return __pa(address) + PCI_DRAM_OFFSET;
708 static inline void * bus_to_virt(unsigned long address)
710 if (address == 0)
711 return NULL;
712 return __va(address - PCI_DRAM_OFFSET);
715 #define page_to_bus(page) (page_to_phys(page) + PCI_DRAM_OFFSET)
717 #endif /* CONFIG_PPC32 */
719 /* access ports */
720 #define setbits32(_addr, _v) out_be32((_addr), in_be32(_addr) | (_v))
721 #define clrbits32(_addr, _v) out_be32((_addr), in_be32(_addr) & ~(_v))
723 #define setbits16(_addr, _v) out_be16((_addr), in_be16(_addr) | (_v))
724 #define clrbits16(_addr, _v) out_be16((_addr), in_be16(_addr) & ~(_v))
726 #define setbits8(_addr, _v) out_8((_addr), in_8(_addr) | (_v))
727 #define clrbits8(_addr, _v) out_8((_addr), in_8(_addr) & ~(_v))
729 /* Clear and set bits in one shot. These macros can be used to clear and
730 * set multiple bits in a register using a single read-modify-write. These
731 * macros can also be used to set a multiple-bit bit pattern using a mask,
732 * by specifying the mask in the 'clear' parameter and the new bit pattern
733 * in the 'set' parameter.
736 #define clrsetbits(type, addr, clear, set) \
737 out_##type((addr), (in_##type(addr) & ~(clear)) | (set))
739 #ifdef __powerpc64__
740 #define clrsetbits_be64(addr, clear, set) clrsetbits(be64, addr, clear, set)
741 #define clrsetbits_le64(addr, clear, set) clrsetbits(le64, addr, clear, set)
742 #endif
744 #define clrsetbits_be32(addr, clear, set) clrsetbits(be32, addr, clear, set)
745 #define clrsetbits_le32(addr, clear, set) clrsetbits(le32, addr, clear, set)
747 #define clrsetbits_be16(addr, clear, set) clrsetbits(be16, addr, clear, set)
748 #define clrsetbits_le16(addr, clear, set) clrsetbits(le32, addr, clear, set)
750 #define clrsetbits_8(addr, clear, set) clrsetbits(8, addr, clear, set)
752 void __iomem *devm_ioremap_prot(struct device *dev, resource_size_t offset,
753 size_t size, unsigned long flags);
755 #endif /* __KERNEL__ */
757 #endif /* _ASM_POWERPC_IO_H */