USB: serial: add special case for processing of empty read urbs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / ib_recv.c
blobc7dd11b835f04447cb2e63d013e0b49fd9a384b2
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds.h"
40 #include "ib.h"
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46 static void rds_ib_frag_drop_page(struct rds_page_frag *frag)
48 rdsdebug("frag %p page %p\n", frag, frag->f_page);
49 __free_page(frag->f_page);
50 frag->f_page = NULL;
53 static void rds_ib_frag_free(struct rds_page_frag *frag)
55 rdsdebug("frag %p page %p\n", frag, frag->f_page);
56 BUG_ON(frag->f_page != NULL);
57 kmem_cache_free(rds_ib_frag_slab, frag);
61 * We map a page at a time. Its fragments are posted in order. This
62 * is called in fragment order as the fragments get send completion events.
63 * Only the last frag in the page performs the unmapping.
65 * It's OK for ring cleanup to call this in whatever order it likes because
66 * DMA is not in flight and so we can unmap while other ring entries still
67 * hold page references in their frags.
69 static void rds_ib_recv_unmap_page(struct rds_ib_connection *ic,
70 struct rds_ib_recv_work *recv)
72 struct rds_page_frag *frag = recv->r_frag;
74 rdsdebug("recv %p frag %p page %p\n", recv, frag, frag->f_page);
75 if (frag->f_mapped)
76 ib_dma_unmap_page(ic->i_cm_id->device,
77 frag->f_mapped,
78 RDS_FRAG_SIZE, DMA_FROM_DEVICE);
79 frag->f_mapped = 0;
82 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
84 struct rds_ib_recv_work *recv;
85 u32 i;
87 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
88 struct ib_sge *sge;
90 recv->r_ibinc = NULL;
91 recv->r_frag = NULL;
93 recv->r_wr.next = NULL;
94 recv->r_wr.wr_id = i;
95 recv->r_wr.sg_list = recv->r_sge;
96 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
98 sge = rds_ib_data_sge(ic, recv->r_sge);
99 sge->addr = 0;
100 sge->length = RDS_FRAG_SIZE;
101 sge->lkey = ic->i_mr->lkey;
103 sge = rds_ib_header_sge(ic, recv->r_sge);
104 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
105 sge->length = sizeof(struct rds_header);
106 sge->lkey = ic->i_mr->lkey;
110 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
111 struct rds_ib_recv_work *recv)
113 if (recv->r_ibinc) {
114 rds_inc_put(&recv->r_ibinc->ii_inc);
115 recv->r_ibinc = NULL;
117 if (recv->r_frag) {
118 rds_ib_recv_unmap_page(ic, recv);
119 if (recv->r_frag->f_page)
120 rds_ib_frag_drop_page(recv->r_frag);
121 rds_ib_frag_free(recv->r_frag);
122 recv->r_frag = NULL;
126 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
128 u32 i;
130 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
131 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
133 if (ic->i_frag.f_page)
134 rds_ib_frag_drop_page(&ic->i_frag);
137 static int rds_ib_recv_refill_one(struct rds_connection *conn,
138 struct rds_ib_recv_work *recv,
139 gfp_t kptr_gfp, gfp_t page_gfp)
141 struct rds_ib_connection *ic = conn->c_transport_data;
142 dma_addr_t dma_addr;
143 struct ib_sge *sge;
144 int ret = -ENOMEM;
146 if (recv->r_ibinc == NULL) {
147 if (!atomic_add_unless(&rds_ib_allocation, 1, rds_ib_sysctl_max_recv_allocation)) {
148 rds_ib_stats_inc(s_ib_rx_alloc_limit);
149 goto out;
151 recv->r_ibinc = kmem_cache_alloc(rds_ib_incoming_slab,
152 kptr_gfp);
153 if (recv->r_ibinc == NULL) {
154 atomic_dec(&rds_ib_allocation);
155 goto out;
157 INIT_LIST_HEAD(&recv->r_ibinc->ii_frags);
158 rds_inc_init(&recv->r_ibinc->ii_inc, conn, conn->c_faddr);
161 if (recv->r_frag == NULL) {
162 recv->r_frag = kmem_cache_alloc(rds_ib_frag_slab, kptr_gfp);
163 if (recv->r_frag == NULL)
164 goto out;
165 INIT_LIST_HEAD(&recv->r_frag->f_item);
166 recv->r_frag->f_page = NULL;
169 if (ic->i_frag.f_page == NULL) {
170 ic->i_frag.f_page = alloc_page(page_gfp);
171 if (ic->i_frag.f_page == NULL)
172 goto out;
173 ic->i_frag.f_offset = 0;
176 dma_addr = ib_dma_map_page(ic->i_cm_id->device,
177 ic->i_frag.f_page,
178 ic->i_frag.f_offset,
179 RDS_FRAG_SIZE,
180 DMA_FROM_DEVICE);
181 if (ib_dma_mapping_error(ic->i_cm_id->device, dma_addr))
182 goto out;
185 * Once we get the RDS_PAGE_LAST_OFF frag then rds_ib_frag_unmap()
186 * must be called on this recv. This happens as completions hit
187 * in order or on connection shutdown.
189 recv->r_frag->f_page = ic->i_frag.f_page;
190 recv->r_frag->f_offset = ic->i_frag.f_offset;
191 recv->r_frag->f_mapped = dma_addr;
193 sge = rds_ib_data_sge(ic, recv->r_sge);
194 sge->addr = dma_addr;
195 sge->length = RDS_FRAG_SIZE;
197 sge = rds_ib_header_sge(ic, recv->r_sge);
198 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
199 sge->length = sizeof(struct rds_header);
201 get_page(recv->r_frag->f_page);
203 if (ic->i_frag.f_offset < RDS_PAGE_LAST_OFF) {
204 ic->i_frag.f_offset += RDS_FRAG_SIZE;
205 } else {
206 put_page(ic->i_frag.f_page);
207 ic->i_frag.f_page = NULL;
208 ic->i_frag.f_offset = 0;
211 ret = 0;
212 out:
213 return ret;
217 * This tries to allocate and post unused work requests after making sure that
218 * they have all the allocations they need to queue received fragments into
219 * sockets. The i_recv_mutex is held here so that ring_alloc and _unalloc
220 * pairs don't go unmatched.
222 * -1 is returned if posting fails due to temporary resource exhaustion.
224 int rds_ib_recv_refill(struct rds_connection *conn, gfp_t kptr_gfp,
225 gfp_t page_gfp, int prefill)
227 struct rds_ib_connection *ic = conn->c_transport_data;
228 struct rds_ib_recv_work *recv;
229 struct ib_recv_wr *failed_wr;
230 unsigned int posted = 0;
231 int ret = 0;
232 u32 pos;
234 while ((prefill || rds_conn_up(conn)) &&
235 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
236 if (pos >= ic->i_recv_ring.w_nr) {
237 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
238 pos);
239 ret = -EINVAL;
240 break;
243 recv = &ic->i_recvs[pos];
244 ret = rds_ib_recv_refill_one(conn, recv, kptr_gfp, page_gfp);
245 if (ret) {
246 ret = -1;
247 break;
250 /* XXX when can this fail? */
251 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
252 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
253 recv->r_ibinc, recv->r_frag->f_page,
254 (long) recv->r_frag->f_mapped, ret);
255 if (ret) {
256 rds_ib_conn_error(conn, "recv post on "
257 "%pI4 returned %d, disconnecting and "
258 "reconnecting\n", &conn->c_faddr,
259 ret);
260 ret = -1;
261 break;
264 posted++;
267 /* We're doing flow control - update the window. */
268 if (ic->i_flowctl && posted)
269 rds_ib_advertise_credits(conn, posted);
271 if (ret)
272 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
273 return ret;
276 void rds_ib_inc_purge(struct rds_incoming *inc)
278 struct rds_ib_incoming *ibinc;
279 struct rds_page_frag *frag;
280 struct rds_page_frag *pos;
282 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
283 rdsdebug("purging ibinc %p inc %p\n", ibinc, inc);
285 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
286 list_del_init(&frag->f_item);
287 rds_ib_frag_drop_page(frag);
288 rds_ib_frag_free(frag);
292 void rds_ib_inc_free(struct rds_incoming *inc)
294 struct rds_ib_incoming *ibinc;
296 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
298 rds_ib_inc_purge(inc);
299 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
300 BUG_ON(!list_empty(&ibinc->ii_frags));
301 kmem_cache_free(rds_ib_incoming_slab, ibinc);
302 atomic_dec(&rds_ib_allocation);
303 BUG_ON(atomic_read(&rds_ib_allocation) < 0);
306 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
307 size_t size)
309 struct rds_ib_incoming *ibinc;
310 struct rds_page_frag *frag;
311 struct iovec *iov = first_iov;
312 unsigned long to_copy;
313 unsigned long frag_off = 0;
314 unsigned long iov_off = 0;
315 int copied = 0;
316 int ret;
317 u32 len;
319 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
320 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
321 len = be32_to_cpu(inc->i_hdr.h_len);
323 while (copied < size && copied < len) {
324 if (frag_off == RDS_FRAG_SIZE) {
325 frag = list_entry(frag->f_item.next,
326 struct rds_page_frag, f_item);
327 frag_off = 0;
329 while (iov_off == iov->iov_len) {
330 iov_off = 0;
331 iov++;
334 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
335 to_copy = min_t(size_t, to_copy, size - copied);
336 to_copy = min_t(unsigned long, to_copy, len - copied);
338 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
339 "[%p, %lu] + %lu\n",
340 to_copy, iov->iov_base, iov->iov_len, iov_off,
341 frag->f_page, frag->f_offset, frag_off);
343 /* XXX needs + offset for multiple recvs per page */
344 ret = rds_page_copy_to_user(frag->f_page,
345 frag->f_offset + frag_off,
346 iov->iov_base + iov_off,
347 to_copy);
348 if (ret) {
349 copied = ret;
350 break;
353 iov_off += to_copy;
354 frag_off += to_copy;
355 copied += to_copy;
358 return copied;
361 /* ic starts out kzalloc()ed */
362 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
364 struct ib_send_wr *wr = &ic->i_ack_wr;
365 struct ib_sge *sge = &ic->i_ack_sge;
367 sge->addr = ic->i_ack_dma;
368 sge->length = sizeof(struct rds_header);
369 sge->lkey = ic->i_mr->lkey;
371 wr->sg_list = sge;
372 wr->num_sge = 1;
373 wr->opcode = IB_WR_SEND;
374 wr->wr_id = RDS_IB_ACK_WR_ID;
375 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
379 * You'd think that with reliable IB connections you wouldn't need to ack
380 * messages that have been received. The problem is that IB hardware generates
381 * an ack message before it has DMAed the message into memory. This creates a
382 * potential message loss if the HCA is disabled for any reason between when it
383 * sends the ack and before the message is DMAed and processed. This is only a
384 * potential issue if another HCA is available for fail-over.
386 * When the remote host receives our ack they'll free the sent message from
387 * their send queue. To decrease the latency of this we always send an ack
388 * immediately after we've received messages.
390 * For simplicity, we only have one ack in flight at a time. This puts
391 * pressure on senders to have deep enough send queues to absorb the latency of
392 * a single ack frame being in flight. This might not be good enough.
394 * This is implemented by have a long-lived send_wr and sge which point to a
395 * statically allocated ack frame. This ack wr does not fall under the ring
396 * accounting that the tx and rx wrs do. The QP attribute specifically makes
397 * room for it beyond the ring size. Send completion notices its special
398 * wr_id and avoids working with the ring in that case.
400 #ifndef KERNEL_HAS_ATOMIC64
401 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
402 int ack_required)
404 unsigned long flags;
406 spin_lock_irqsave(&ic->i_ack_lock, flags);
407 ic->i_ack_next = seq;
408 if (ack_required)
409 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
410 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
413 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
415 unsigned long flags;
416 u64 seq;
418 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
420 spin_lock_irqsave(&ic->i_ack_lock, flags);
421 seq = ic->i_ack_next;
422 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
424 return seq;
426 #else
427 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
428 int ack_required)
430 atomic64_set(&ic->i_ack_next, seq);
431 if (ack_required) {
432 smp_mb__before_clear_bit();
433 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
437 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
439 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
440 smp_mb__after_clear_bit();
442 return atomic64_read(&ic->i_ack_next);
444 #endif
447 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
449 struct rds_header *hdr = ic->i_ack;
450 struct ib_send_wr *failed_wr;
451 u64 seq;
452 int ret;
454 seq = rds_ib_get_ack(ic);
456 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
457 rds_message_populate_header(hdr, 0, 0, 0);
458 hdr->h_ack = cpu_to_be64(seq);
459 hdr->h_credit = adv_credits;
460 rds_message_make_checksum(hdr);
461 ic->i_ack_queued = jiffies;
463 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
464 if (unlikely(ret)) {
465 /* Failed to send. Release the WR, and
466 * force another ACK.
468 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
469 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
471 rds_ib_stats_inc(s_ib_ack_send_failure);
472 /* Need to finesse this later. */
473 BUG();
474 } else
475 rds_ib_stats_inc(s_ib_ack_sent);
479 * There are 3 ways of getting acknowledgements to the peer:
480 * 1. We call rds_ib_attempt_ack from the recv completion handler
481 * to send an ACK-only frame.
482 * However, there can be only one such frame in the send queue
483 * at any time, so we may have to postpone it.
484 * 2. When another (data) packet is transmitted while there's
485 * an ACK in the queue, we piggyback the ACK sequence number
486 * on the data packet.
487 * 3. If the ACK WR is done sending, we get called from the
488 * send queue completion handler, and check whether there's
489 * another ACK pending (postponed because the WR was on the
490 * queue). If so, we transmit it.
492 * We maintain 2 variables:
493 * - i_ack_flags, which keeps track of whether the ACK WR
494 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
495 * - i_ack_next, which is the last sequence number we received
497 * Potentially, send queue and receive queue handlers can run concurrently.
498 * It would be nice to not have to use a spinlock to synchronize things,
499 * but the one problem that rules this out is that 64bit updates are
500 * not atomic on all platforms. Things would be a lot simpler if
501 * we had atomic64 or maybe cmpxchg64 everywhere.
503 * Reconnecting complicates this picture just slightly. When we
504 * reconnect, we may be seeing duplicate packets. The peer
505 * is retransmitting them, because it hasn't seen an ACK for
506 * them. It is important that we ACK these.
508 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
509 * this flag set *MUST* be acknowledged immediately.
513 * When we get here, we're called from the recv queue handler.
514 * Check whether we ought to transmit an ACK.
516 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
518 unsigned int adv_credits;
520 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
521 return;
523 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
524 rds_ib_stats_inc(s_ib_ack_send_delayed);
525 return;
528 /* Can we get a send credit? */
529 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
530 rds_ib_stats_inc(s_ib_tx_throttle);
531 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
532 return;
535 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
536 rds_ib_send_ack(ic, adv_credits);
540 * We get here from the send completion handler, when the
541 * adapter tells us the ACK frame was sent.
543 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
545 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
546 rds_ib_attempt_ack(ic);
550 * This is called by the regular xmit code when it wants to piggyback
551 * an ACK on an outgoing frame.
553 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
555 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
556 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
557 return rds_ib_get_ack(ic);
560 static struct rds_header *rds_ib_get_header(struct rds_connection *conn,
561 struct rds_ib_recv_work *recv,
562 u32 data_len)
564 struct rds_ib_connection *ic = conn->c_transport_data;
565 void *hdr_buff = &ic->i_recv_hdrs[recv - ic->i_recvs];
566 void *addr;
567 u32 misplaced_hdr_bytes;
570 * Support header at the front (RDS 3.1+) as well as header-at-end.
572 * Cases:
573 * 1) header all in header buff (great!)
574 * 2) header all in data page (copy all to header buff)
575 * 3) header split across hdr buf + data page
576 * (move bit in hdr buff to end before copying other bit from data page)
578 if (conn->c_version > RDS_PROTOCOL_3_0 || data_len == RDS_FRAG_SIZE)
579 return hdr_buff;
581 if (data_len <= (RDS_FRAG_SIZE - sizeof(struct rds_header))) {
582 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
583 memcpy(hdr_buff,
584 addr + recv->r_frag->f_offset + data_len,
585 sizeof(struct rds_header));
586 kunmap_atomic(addr, KM_SOFTIRQ0);
587 return hdr_buff;
590 misplaced_hdr_bytes = (sizeof(struct rds_header) - (RDS_FRAG_SIZE - data_len));
592 memmove(hdr_buff + misplaced_hdr_bytes, hdr_buff, misplaced_hdr_bytes);
594 addr = kmap_atomic(recv->r_frag->f_page, KM_SOFTIRQ0);
595 memcpy(hdr_buff, addr + recv->r_frag->f_offset + data_len,
596 sizeof(struct rds_header) - misplaced_hdr_bytes);
597 kunmap_atomic(addr, KM_SOFTIRQ0);
598 return hdr_buff;
602 * It's kind of lame that we're copying from the posted receive pages into
603 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
604 * them. But receiving new congestion bitmaps should be a *rare* event, so
605 * hopefully we won't need to invest that complexity in making it more
606 * efficient. By copying we can share a simpler core with TCP which has to
607 * copy.
609 static void rds_ib_cong_recv(struct rds_connection *conn,
610 struct rds_ib_incoming *ibinc)
612 struct rds_cong_map *map;
613 unsigned int map_off;
614 unsigned int map_page;
615 struct rds_page_frag *frag;
616 unsigned long frag_off;
617 unsigned long to_copy;
618 unsigned long copied;
619 uint64_t uncongested = 0;
620 void *addr;
622 /* catch completely corrupt packets */
623 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
624 return;
626 map = conn->c_fcong;
627 map_page = 0;
628 map_off = 0;
630 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
631 frag_off = 0;
633 copied = 0;
635 while (copied < RDS_CONG_MAP_BYTES) {
636 uint64_t *src, *dst;
637 unsigned int k;
639 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
640 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
642 addr = kmap_atomic(frag->f_page, KM_SOFTIRQ0);
644 src = addr + frag_off;
645 dst = (void *)map->m_page_addrs[map_page] + map_off;
646 for (k = 0; k < to_copy; k += 8) {
647 /* Record ports that became uncongested, ie
648 * bits that changed from 0 to 1. */
649 uncongested |= ~(*src) & *dst;
650 *dst++ = *src++;
652 kunmap_atomic(addr, KM_SOFTIRQ0);
654 copied += to_copy;
656 map_off += to_copy;
657 if (map_off == PAGE_SIZE) {
658 map_off = 0;
659 map_page++;
662 frag_off += to_copy;
663 if (frag_off == RDS_FRAG_SIZE) {
664 frag = list_entry(frag->f_item.next,
665 struct rds_page_frag, f_item);
666 frag_off = 0;
670 /* the congestion map is in little endian order */
671 uncongested = le64_to_cpu(uncongested);
673 rds_cong_map_updated(map, uncongested);
677 * Rings are posted with all the allocations they'll need to queue the
678 * incoming message to the receiving socket so this can't fail.
679 * All fragments start with a header, so we can make sure we're not receiving
680 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
682 struct rds_ib_ack_state {
683 u64 ack_next;
684 u64 ack_recv;
685 unsigned int ack_required:1;
686 unsigned int ack_next_valid:1;
687 unsigned int ack_recv_valid:1;
690 static void rds_ib_process_recv(struct rds_connection *conn,
691 struct rds_ib_recv_work *recv, u32 data_len,
692 struct rds_ib_ack_state *state)
694 struct rds_ib_connection *ic = conn->c_transport_data;
695 struct rds_ib_incoming *ibinc = ic->i_ibinc;
696 struct rds_header *ihdr, *hdr;
698 /* XXX shut down the connection if port 0,0 are seen? */
700 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
701 data_len);
703 if (data_len < sizeof(struct rds_header)) {
704 rds_ib_conn_error(conn, "incoming message "
705 "from %pI4 didn't inclue a "
706 "header, disconnecting and "
707 "reconnecting\n",
708 &conn->c_faddr);
709 return;
711 data_len -= sizeof(struct rds_header);
713 ihdr = rds_ib_get_header(conn, recv, data_len);
715 /* Validate the checksum. */
716 if (!rds_message_verify_checksum(ihdr)) {
717 rds_ib_conn_error(conn, "incoming message "
718 "from %pI4 has corrupted header - "
719 "forcing a reconnect\n",
720 &conn->c_faddr);
721 rds_stats_inc(s_recv_drop_bad_checksum);
722 return;
725 /* Process the ACK sequence which comes with every packet */
726 state->ack_recv = be64_to_cpu(ihdr->h_ack);
727 state->ack_recv_valid = 1;
729 /* Process the credits update if there was one */
730 if (ihdr->h_credit)
731 rds_ib_send_add_credits(conn, ihdr->h_credit);
733 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
734 /* This is an ACK-only packet. The fact that it gets
735 * special treatment here is that historically, ACKs
736 * were rather special beasts.
738 rds_ib_stats_inc(s_ib_ack_received);
741 * Usually the frags make their way on to incs and are then freed as
742 * the inc is freed. We don't go that route, so we have to drop the
743 * page ref ourselves. We can't just leave the page on the recv
744 * because that confuses the dma mapping of pages and each recv's use
745 * of a partial page. We can leave the frag, though, it will be
746 * reused.
748 * FIXME: Fold this into the code path below.
750 rds_ib_frag_drop_page(recv->r_frag);
751 return;
755 * If we don't already have an inc on the connection then this
756 * fragment has a header and starts a message.. copy its header
757 * into the inc and save the inc so we can hang upcoming fragments
758 * off its list.
760 if (ibinc == NULL) {
761 ibinc = recv->r_ibinc;
762 recv->r_ibinc = NULL;
763 ic->i_ibinc = ibinc;
765 hdr = &ibinc->ii_inc.i_hdr;
766 memcpy(hdr, ihdr, sizeof(*hdr));
767 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
769 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
770 ic->i_recv_data_rem, hdr->h_flags);
771 } else {
772 hdr = &ibinc->ii_inc.i_hdr;
773 /* We can't just use memcmp here; fragments of a
774 * single message may carry different ACKs */
775 if (hdr->h_sequence != ihdr->h_sequence ||
776 hdr->h_len != ihdr->h_len ||
777 hdr->h_sport != ihdr->h_sport ||
778 hdr->h_dport != ihdr->h_dport) {
779 rds_ib_conn_error(conn,
780 "fragment header mismatch; forcing reconnect\n");
781 return;
785 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
786 recv->r_frag = NULL;
788 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
789 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
790 else {
791 ic->i_recv_data_rem = 0;
792 ic->i_ibinc = NULL;
794 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
795 rds_ib_cong_recv(conn, ibinc);
796 else {
797 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
798 &ibinc->ii_inc, GFP_ATOMIC,
799 KM_SOFTIRQ0);
800 state->ack_next = be64_to_cpu(hdr->h_sequence);
801 state->ack_next_valid = 1;
804 /* Evaluate the ACK_REQUIRED flag *after* we received
805 * the complete frame, and after bumping the next_rx
806 * sequence. */
807 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
808 rds_stats_inc(s_recv_ack_required);
809 state->ack_required = 1;
812 rds_inc_put(&ibinc->ii_inc);
817 * Plucking the oldest entry from the ring can be done concurrently with
818 * the thread refilling the ring. Each ring operation is protected by
819 * spinlocks and the transient state of refilling doesn't change the
820 * recording of which entry is oldest.
822 * This relies on IB only calling one cq comp_handler for each cq so that
823 * there will only be one caller of rds_recv_incoming() per RDS connection.
825 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
827 struct rds_connection *conn = context;
828 struct rds_ib_connection *ic = conn->c_transport_data;
830 rdsdebug("conn %p cq %p\n", conn, cq);
832 rds_ib_stats_inc(s_ib_rx_cq_call);
834 tasklet_schedule(&ic->i_recv_tasklet);
837 static inline void rds_poll_cq(struct rds_ib_connection *ic,
838 struct rds_ib_ack_state *state)
840 struct rds_connection *conn = ic->conn;
841 struct ib_wc wc;
842 struct rds_ib_recv_work *recv;
844 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
845 rdsdebug("wc wr_id 0x%llx status %u byte_len %u imm_data %u\n",
846 (unsigned long long)wc.wr_id, wc.status, wc.byte_len,
847 be32_to_cpu(wc.ex.imm_data));
848 rds_ib_stats_inc(s_ib_rx_cq_event);
850 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
852 rds_ib_recv_unmap_page(ic, recv);
855 * Also process recvs in connecting state because it is possible
856 * to get a recv completion _before_ the rdmacm ESTABLISHED
857 * event is processed.
859 if (rds_conn_up(conn) || rds_conn_connecting(conn)) {
860 /* We expect errors as the qp is drained during shutdown */
861 if (wc.status == IB_WC_SUCCESS) {
862 rds_ib_process_recv(conn, recv, wc.byte_len, state);
863 } else {
864 rds_ib_conn_error(conn, "recv completion on "
865 "%pI4 had status %u, disconnecting and "
866 "reconnecting\n", &conn->c_faddr,
867 wc.status);
871 rds_ib_ring_free(&ic->i_recv_ring, 1);
875 void rds_ib_recv_tasklet_fn(unsigned long data)
877 struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
878 struct rds_connection *conn = ic->conn;
879 struct rds_ib_ack_state state = { 0, };
881 rds_poll_cq(ic, &state);
882 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
883 rds_poll_cq(ic, &state);
885 if (state.ack_next_valid)
886 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
887 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
888 rds_send_drop_acked(conn, state.ack_recv, NULL);
889 ic->i_ack_recv = state.ack_recv;
891 if (rds_conn_up(conn))
892 rds_ib_attempt_ack(ic);
894 /* If we ever end up with a really empty receive ring, we're
895 * in deep trouble, as the sender will definitely see RNR
896 * timeouts. */
897 if (rds_ib_ring_empty(&ic->i_recv_ring))
898 rds_ib_stats_inc(s_ib_rx_ring_empty);
901 * If the ring is running low, then schedule the thread to refill.
903 if (rds_ib_ring_low(&ic->i_recv_ring))
904 queue_delayed_work(rds_wq, &conn->c_recv_w, 0);
907 int rds_ib_recv(struct rds_connection *conn)
909 struct rds_ib_connection *ic = conn->c_transport_data;
910 int ret = 0;
912 rdsdebug("conn %p\n", conn);
915 * If we get a temporary posting failure in this context then
916 * we're really low and we want the caller to back off for a bit.
918 mutex_lock(&ic->i_recv_mutex);
919 if (rds_ib_recv_refill(conn, GFP_KERNEL, GFP_HIGHUSER, 0))
920 ret = -ENOMEM;
921 else
922 rds_ib_stats_inc(s_ib_rx_refill_from_thread);
923 mutex_unlock(&ic->i_recv_mutex);
925 if (rds_conn_up(conn))
926 rds_ib_attempt_ack(ic);
928 return ret;
931 int __init rds_ib_recv_init(void)
933 struct sysinfo si;
934 int ret = -ENOMEM;
936 /* Default to 30% of all available RAM for recv memory */
937 si_meminfo(&si);
938 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
940 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
941 sizeof(struct rds_ib_incoming),
942 0, 0, NULL);
943 if (rds_ib_incoming_slab == NULL)
944 goto out;
946 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
947 sizeof(struct rds_page_frag),
948 0, 0, NULL);
949 if (rds_ib_frag_slab == NULL)
950 kmem_cache_destroy(rds_ib_incoming_slab);
951 else
952 ret = 0;
953 out:
954 return ret;
957 void rds_ib_recv_exit(void)
959 kmem_cache_destroy(rds_ib_incoming_slab);
960 kmem_cache_destroy(rds_ib_frag_slab);