2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/slab.h>
11 #include <linux/blkdev.h>
12 #include <linux/elevator.h>
13 #include <linux/jiffies.h>
14 #include <linux/rbtree.h>
15 #include <linux/ioprio.h>
16 #include <linux/blktrace_api.h>
22 /* max queue in one round of service */
23 static const int cfq_quantum
= 8;
24 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
25 /* maximum backwards seek, in KiB */
26 static const int cfq_back_max
= 16 * 1024;
27 /* penalty of a backwards seek */
28 static const int cfq_back_penalty
= 2;
29 static const int cfq_slice_sync
= HZ
/ 10;
30 static int cfq_slice_async
= HZ
/ 25;
31 static const int cfq_slice_async_rq
= 2;
32 static int cfq_slice_idle
= HZ
/ 125;
33 static int cfq_group_idle
= HZ
/ 125;
34 static const int cfq_target_latency
= HZ
* 3/10; /* 300 ms */
35 static const int cfq_hist_divisor
= 4;
38 * offset from end of service tree
40 #define CFQ_IDLE_DELAY (HZ / 5)
43 * below this threshold, we consider thinktime immediate
45 #define CFQ_MIN_TT (2)
47 #define CFQ_SLICE_SCALE (5)
48 #define CFQ_HW_QUEUE_MIN (5)
49 #define CFQ_SERVICE_SHIFT 12
51 #define CFQQ_SEEK_THR (sector_t)(8 * 100)
52 #define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
53 #define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
54 #define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
57 ((struct cfq_io_context *) (rq)->elevator_private)
58 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
59 #define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private3)
61 static struct kmem_cache
*cfq_pool
;
62 static struct kmem_cache
*cfq_ioc_pool
;
64 static DEFINE_PER_CPU(unsigned long, cfq_ioc_count
);
65 static struct completion
*ioc_gone
;
66 static DEFINE_SPINLOCK(ioc_gone_lock
);
68 static DEFINE_SPINLOCK(cic_index_lock
);
69 static DEFINE_IDA(cic_index_ida
);
71 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
72 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
73 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
75 #define sample_valid(samples) ((samples) > 80)
76 #define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
79 * Most of our rbtree usage is for sorting with min extraction, so
80 * if we cache the leftmost node we don't have to walk down the tree
81 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
82 * move this into the elevator for the rq sorting as well.
88 unsigned total_weight
;
90 struct rb_node
*active
;
92 #define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, .left = NULL, \
93 .count = 0, .min_vdisktime = 0, }
96 * Per process-grouping structure
101 /* various state flags, see below */
103 /* parent cfq_data */
104 struct cfq_data
*cfqd
;
105 /* service_tree member */
106 struct rb_node rb_node
;
107 /* service_tree key */
108 unsigned long rb_key
;
109 /* prio tree member */
110 struct rb_node p_node
;
111 /* prio tree root we belong to, if any */
112 struct rb_root
*p_root
;
113 /* sorted list of pending requests */
114 struct rb_root sort_list
;
115 /* if fifo isn't expired, next request to serve */
116 struct request
*next_rq
;
117 /* requests queued in sort_list */
119 /* currently allocated requests */
121 /* fifo list of requests in sort_list */
122 struct list_head fifo
;
124 /* time when queue got scheduled in to dispatch first request. */
125 unsigned long dispatch_start
;
126 unsigned int allocated_slice
;
127 unsigned int slice_dispatch
;
128 /* time when first request from queue completed and slice started. */
129 unsigned long slice_start
;
130 unsigned long slice_end
;
133 /* pending metadata requests */
135 /* number of requests that are on the dispatch list or inside driver */
138 /* io prio of this group */
139 unsigned short ioprio
, org_ioprio
;
140 unsigned short ioprio_class
, org_ioprio_class
;
145 sector_t last_request_pos
;
147 struct cfq_rb_root
*service_tree
;
148 struct cfq_queue
*new_cfqq
;
149 struct cfq_group
*cfqg
;
150 struct cfq_group
*orig_cfqg
;
151 /* Number of sectors dispatched from queue in single dispatch round */
152 unsigned long nr_sectors
;
156 * First index in the service_trees.
157 * IDLE is handled separately, so it has negative index
166 * Second index in the service_trees.
170 SYNC_NOIDLE_WORKLOAD
= 1,
174 /* This is per cgroup per device grouping structure */
176 /* group service_tree member */
177 struct rb_node rb_node
;
179 /* group service_tree key */
184 /* number of cfqq currently on this group */
187 /* Per group busy queus average. Useful for workload slice calc. */
188 unsigned int busy_queues_avg
[2];
190 * rr lists of queues with requests, onle rr for each priority class.
191 * Counts are embedded in the cfq_rb_root
193 struct cfq_rb_root service_trees
[2][3];
194 struct cfq_rb_root service_tree_idle
;
196 unsigned long saved_workload_slice
;
197 enum wl_type_t saved_workload
;
198 enum wl_prio_t saved_serving_prio
;
199 struct blkio_group blkg
;
200 #ifdef CONFIG_CFQ_GROUP_IOSCHED
201 struct hlist_node cfqd_node
;
204 /* number of requests that are on the dispatch list or inside driver */
209 * Per block device queue structure
212 struct request_queue
*queue
;
213 /* Root service tree for cfq_groups */
214 struct cfq_rb_root grp_service_tree
;
215 struct cfq_group root_group
;
218 * The priority currently being served
220 enum wl_prio_t serving_prio
;
221 enum wl_type_t serving_type
;
222 unsigned long workload_expires
;
223 struct cfq_group
*serving_group
;
224 bool noidle_tree_requires_idle
;
227 * Each priority tree is sorted by next_request position. These
228 * trees are used when determining if two or more queues are
229 * interleaving requests (see cfq_close_cooperator).
231 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
233 unsigned int busy_queues
;
239 * queue-depth detection
245 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
246 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
249 int hw_tag_est_depth
;
250 unsigned int hw_tag_samples
;
253 * idle window management
255 struct timer_list idle_slice_timer
;
256 struct work_struct unplug_work
;
258 struct cfq_queue
*active_queue
;
259 struct cfq_io_context
*active_cic
;
262 * async queue for each priority case
264 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
265 struct cfq_queue
*async_idle_cfqq
;
267 sector_t last_position
;
270 * tunables, see top of file
272 unsigned int cfq_quantum
;
273 unsigned int cfq_fifo_expire
[2];
274 unsigned int cfq_back_penalty
;
275 unsigned int cfq_back_max
;
276 unsigned int cfq_slice
[2];
277 unsigned int cfq_slice_async_rq
;
278 unsigned int cfq_slice_idle
;
279 unsigned int cfq_group_idle
;
280 unsigned int cfq_latency
;
281 unsigned int cfq_group_isolation
;
283 unsigned int cic_index
;
284 struct list_head cic_list
;
287 * Fallback dummy cfqq for extreme OOM conditions
289 struct cfq_queue oom_cfqq
;
291 unsigned long last_delayed_sync
;
293 /* List of cfq groups being managed on this device*/
294 struct hlist_head cfqg_list
;
298 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
);
300 static struct cfq_rb_root
*service_tree_for(struct cfq_group
*cfqg
,
307 if (prio
== IDLE_WORKLOAD
)
308 return &cfqg
->service_tree_idle
;
310 return &cfqg
->service_trees
[prio
][type
];
313 enum cfqq_state_flags
{
314 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
315 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
316 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
317 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
318 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
319 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
320 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
321 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
322 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
323 CFQ_CFQQ_FLAG_coop
, /* cfqq is shared */
324 CFQ_CFQQ_FLAG_split_coop
, /* shared cfqq will be splitted */
325 CFQ_CFQQ_FLAG_deep
, /* sync cfqq experienced large depth */
326 CFQ_CFQQ_FLAG_wait_busy
, /* Waiting for next request */
329 #define CFQ_CFQQ_FNS(name) \
330 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
332 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
334 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
336 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
338 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
340 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
344 CFQ_CFQQ_FNS(wait_request
);
345 CFQ_CFQQ_FNS(must_dispatch
);
346 CFQ_CFQQ_FNS(must_alloc_slice
);
347 CFQ_CFQQ_FNS(fifo_expire
);
348 CFQ_CFQQ_FNS(idle_window
);
349 CFQ_CFQQ_FNS(prio_changed
);
350 CFQ_CFQQ_FNS(slice_new
);
353 CFQ_CFQQ_FNS(split_coop
);
355 CFQ_CFQQ_FNS(wait_busy
);
358 #ifdef CONFIG_CFQ_GROUP_IOSCHED
359 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
360 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
361 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
362 blkg_path(&(cfqq)->cfqg->blkg), ##args);
364 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
366 blkg_path(&(cfqg)->blkg), ##args); \
369 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
371 #define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0);
373 #define cfq_log(cfqd, fmt, args...) \
374 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
376 /* Traverses through cfq group service trees */
377 #define for_each_cfqg_st(cfqg, i, j, st) \
378 for (i = 0; i <= IDLE_WORKLOAD; i++) \
379 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
380 : &cfqg->service_tree_idle; \
381 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
382 (i == IDLE_WORKLOAD && j == 0); \
383 j++, st = i < IDLE_WORKLOAD ? \
384 &cfqg->service_trees[i][j]: NULL) \
387 static inline bool iops_mode(struct cfq_data *cfqd)
390 * If we are not idling on queues and it is a NCQ drive, parallel
391 * execution of requests is on and measuring time is not possible
392 * in most of the cases until and unless we drive shallower queue
393 * depths and that becomes a performance bottleneck. In such cases
394 * switch to start providing fairness in terms of number of IOs.
396 if (!cfqd
->cfq_slice_idle
&& cfqd
->hw_tag
)
402 static inline enum wl_prio_t
cfqq_prio(struct cfq_queue
*cfqq
)
404 if (cfq_class_idle(cfqq
))
405 return IDLE_WORKLOAD
;
406 if (cfq_class_rt(cfqq
))
412 static enum wl_type_t
cfqq_type(struct cfq_queue
*cfqq
)
414 if (!cfq_cfqq_sync(cfqq
))
415 return ASYNC_WORKLOAD
;
416 if (!cfq_cfqq_idle_window(cfqq
))
417 return SYNC_NOIDLE_WORKLOAD
;
418 return SYNC_WORKLOAD
;
421 static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl
,
422 struct cfq_data
*cfqd
,
423 struct cfq_group
*cfqg
)
425 if (wl
== IDLE_WORKLOAD
)
426 return cfqg
->service_tree_idle
.count
;
428 return cfqg
->service_trees
[wl
][ASYNC_WORKLOAD
].count
429 + cfqg
->service_trees
[wl
][SYNC_NOIDLE_WORKLOAD
].count
430 + cfqg
->service_trees
[wl
][SYNC_WORKLOAD
].count
;
433 static inline int cfqg_busy_async_queues(struct cfq_data
*cfqd
,
434 struct cfq_group
*cfqg
)
436 return cfqg
->service_trees
[RT_WORKLOAD
][ASYNC_WORKLOAD
].count
437 + cfqg
->service_trees
[BE_WORKLOAD
][ASYNC_WORKLOAD
].count
;
440 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
441 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, bool,
442 struct io_context
*, gfp_t
);
443 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
444 struct io_context
*);
446 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
449 return cic
->cfqq
[is_sync
];
452 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
453 struct cfq_queue
*cfqq
, bool is_sync
)
455 cic
->cfqq
[is_sync
] = cfqq
;
458 #define CIC_DEAD_KEY 1ul
459 #define CIC_DEAD_INDEX_SHIFT 1
461 static inline void *cfqd_dead_key(struct cfq_data
*cfqd
)
463 return (void *)(cfqd
->cic_index
<< CIC_DEAD_INDEX_SHIFT
| CIC_DEAD_KEY
);
466 static inline struct cfq_data
*cic_to_cfqd(struct cfq_io_context
*cic
)
468 struct cfq_data
*cfqd
= cic
->key
;
470 if (unlikely((unsigned long) cfqd
& CIC_DEAD_KEY
))
477 * We regard a request as SYNC, if it's either a read or has the SYNC bit
478 * set (in which case it could also be direct WRITE).
480 static inline bool cfq_bio_sync(struct bio
*bio
)
482 return bio_data_dir(bio
) == READ
|| (bio
->bi_rw
& REQ_SYNC
);
486 * scheduler run of queue, if there are requests pending and no one in the
487 * driver that will restart queueing
489 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
491 if (cfqd
->busy_queues
) {
492 cfq_log(cfqd
, "schedule dispatch");
493 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
497 static int cfq_queue_empty(struct request_queue
*q
)
499 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
501 return !cfqd
->rq_queued
;
505 * Scale schedule slice based on io priority. Use the sync time slice only
506 * if a queue is marked sync and has sync io queued. A sync queue with async
507 * io only, should not get full sync slice length.
509 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, bool sync
,
512 const int base_slice
= cfqd
->cfq_slice
[sync
];
514 WARN_ON(prio
>= IOPRIO_BE_NR
);
516 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
520 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
522 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
525 static inline u64
cfq_scale_slice(unsigned long delta
, struct cfq_group
*cfqg
)
527 u64 d
= delta
<< CFQ_SERVICE_SHIFT
;
529 d
= d
* BLKIO_WEIGHT_DEFAULT
;
530 do_div(d
, cfqg
->weight
);
534 static inline u64
max_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
536 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
538 min_vdisktime
= vdisktime
;
540 return min_vdisktime
;
543 static inline u64
min_vdisktime(u64 min_vdisktime
, u64 vdisktime
)
545 s64 delta
= (s64
)(vdisktime
- min_vdisktime
);
547 min_vdisktime
= vdisktime
;
549 return min_vdisktime
;
552 static void update_min_vdisktime(struct cfq_rb_root
*st
)
554 u64 vdisktime
= st
->min_vdisktime
;
555 struct cfq_group
*cfqg
;
558 cfqg
= rb_entry_cfqg(st
->active
);
559 vdisktime
= cfqg
->vdisktime
;
563 cfqg
= rb_entry_cfqg(st
->left
);
564 vdisktime
= min_vdisktime(vdisktime
, cfqg
->vdisktime
);
567 st
->min_vdisktime
= max_vdisktime(st
->min_vdisktime
, vdisktime
);
571 * get averaged number of queues of RT/BE priority.
572 * average is updated, with a formula that gives more weight to higher numbers,
573 * to quickly follows sudden increases and decrease slowly
576 static inline unsigned cfq_group_get_avg_queues(struct cfq_data
*cfqd
,
577 struct cfq_group
*cfqg
, bool rt
)
579 unsigned min_q
, max_q
;
580 unsigned mult
= cfq_hist_divisor
- 1;
581 unsigned round
= cfq_hist_divisor
/ 2;
582 unsigned busy
= cfq_group_busy_queues_wl(rt
, cfqd
, cfqg
);
584 min_q
= min(cfqg
->busy_queues_avg
[rt
], busy
);
585 max_q
= max(cfqg
->busy_queues_avg
[rt
], busy
);
586 cfqg
->busy_queues_avg
[rt
] = (mult
* max_q
+ min_q
+ round
) /
588 return cfqg
->busy_queues_avg
[rt
];
591 static inline unsigned
592 cfq_group_slice(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
594 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
596 return cfq_target_latency
* cfqg
->weight
/ st
->total_weight
;
600 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
602 unsigned slice
= cfq_prio_to_slice(cfqd
, cfqq
);
603 if (cfqd
->cfq_latency
) {
605 * interested queues (we consider only the ones with the same
606 * priority class in the cfq group)
608 unsigned iq
= cfq_group_get_avg_queues(cfqd
, cfqq
->cfqg
,
610 unsigned sync_slice
= cfqd
->cfq_slice
[1];
611 unsigned expect_latency
= sync_slice
* iq
;
612 unsigned group_slice
= cfq_group_slice(cfqd
, cfqq
->cfqg
);
614 if (expect_latency
> group_slice
) {
615 unsigned base_low_slice
= 2 * cfqd
->cfq_slice_idle
;
616 /* scale low_slice according to IO priority
617 * and sync vs async */
619 min(slice
, base_low_slice
* slice
/ sync_slice
);
620 /* the adapted slice value is scaled to fit all iqs
621 * into the target latency */
622 slice
= max(slice
* group_slice
/ expect_latency
,
626 cfqq
->slice_start
= jiffies
;
627 cfqq
->slice_end
= jiffies
+ slice
;
628 cfqq
->allocated_slice
= slice
;
629 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
633 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
634 * isn't valid until the first request from the dispatch is activated
635 * and the slice time set.
637 static inline bool cfq_slice_used(struct cfq_queue
*cfqq
)
639 if (cfq_cfqq_slice_new(cfqq
))
641 if (time_before(jiffies
, cfqq
->slice_end
))
648 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
649 * We choose the request that is closest to the head right now. Distance
650 * behind the head is penalized and only allowed to a certain extent.
652 static struct request
*
653 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
, sector_t last
)
655 sector_t s1
, s2
, d1
= 0, d2
= 0;
656 unsigned long back_max
;
657 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
658 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
659 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
661 if (rq1
== NULL
|| rq1
== rq2
)
666 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
668 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
670 if ((rq1
->cmd_flags
& REQ_META
) && !(rq2
->cmd_flags
& REQ_META
))
672 else if ((rq2
->cmd_flags
& REQ_META
) &&
673 !(rq1
->cmd_flags
& REQ_META
))
676 s1
= blk_rq_pos(rq1
);
677 s2
= blk_rq_pos(rq2
);
680 * by definition, 1KiB is 2 sectors
682 back_max
= cfqd
->cfq_back_max
* 2;
685 * Strict one way elevator _except_ in the case where we allow
686 * short backward seeks which are biased as twice the cost of a
687 * similar forward seek.
691 else if (s1
+ back_max
>= last
)
692 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
694 wrap
|= CFQ_RQ1_WRAP
;
698 else if (s2
+ back_max
>= last
)
699 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
701 wrap
|= CFQ_RQ2_WRAP
;
703 /* Found required data */
706 * By doing switch() on the bit mask "wrap" we avoid having to
707 * check two variables for all permutations: --> faster!
710 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
726 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
729 * Since both rqs are wrapped,
730 * start with the one that's further behind head
731 * (--> only *one* back seek required),
732 * since back seek takes more time than forward.
742 * The below is leftmost cache rbtree addon
744 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
746 /* Service tree is empty */
751 root
->left
= rb_first(&root
->rb
);
754 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
759 static struct cfq_group
*cfq_rb_first_group(struct cfq_rb_root
*root
)
762 root
->left
= rb_first(&root
->rb
);
765 return rb_entry_cfqg(root
->left
);
770 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
776 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
780 rb_erase_init(n
, &root
->rb
);
785 * would be nice to take fifo expire time into account as well
787 static struct request
*
788 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
789 struct request
*last
)
791 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
792 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
793 struct request
*next
= NULL
, *prev
= NULL
;
795 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
798 prev
= rb_entry_rq(rbprev
);
801 next
= rb_entry_rq(rbnext
);
803 rbnext
= rb_first(&cfqq
->sort_list
);
804 if (rbnext
&& rbnext
!= &last
->rb_node
)
805 next
= rb_entry_rq(rbnext
);
808 return cfq_choose_req(cfqd
, next
, prev
, blk_rq_pos(last
));
811 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
812 struct cfq_queue
*cfqq
)
815 * just an approximation, should be ok.
817 return (cfqq
->cfqg
->nr_cfqq
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
818 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
822 cfqg_key(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
824 return cfqg
->vdisktime
- st
->min_vdisktime
;
828 __cfq_group_service_tree_add(struct cfq_rb_root
*st
, struct cfq_group
*cfqg
)
830 struct rb_node
**node
= &st
->rb
.rb_node
;
831 struct rb_node
*parent
= NULL
;
832 struct cfq_group
*__cfqg
;
833 s64 key
= cfqg_key(st
, cfqg
);
836 while (*node
!= NULL
) {
838 __cfqg
= rb_entry_cfqg(parent
);
840 if (key
< cfqg_key(st
, __cfqg
))
841 node
= &parent
->rb_left
;
843 node
= &parent
->rb_right
;
849 st
->left
= &cfqg
->rb_node
;
851 rb_link_node(&cfqg
->rb_node
, parent
, node
);
852 rb_insert_color(&cfqg
->rb_node
, &st
->rb
);
856 cfq_group_service_tree_add(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
858 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
859 struct cfq_group
*__cfqg
;
867 * Currently put the group at the end. Later implement something
868 * so that groups get lesser vtime based on their weights, so that
869 * if group does not loose all if it was not continously backlogged.
871 n
= rb_last(&st
->rb
);
873 __cfqg
= rb_entry_cfqg(n
);
874 cfqg
->vdisktime
= __cfqg
->vdisktime
+ CFQ_IDLE_DELAY
;
876 cfqg
->vdisktime
= st
->min_vdisktime
;
878 __cfq_group_service_tree_add(st
, cfqg
);
880 st
->total_weight
+= cfqg
->weight
;
884 cfq_group_service_tree_del(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
886 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
888 if (st
->active
== &cfqg
->rb_node
)
891 BUG_ON(cfqg
->nr_cfqq
< 1);
894 /* If there are other cfq queues under this group, don't delete it */
898 cfq_log_cfqg(cfqd
, cfqg
, "del_from_rr group");
900 st
->total_weight
-= cfqg
->weight
;
901 if (!RB_EMPTY_NODE(&cfqg
->rb_node
))
902 cfq_rb_erase(&cfqg
->rb_node
, st
);
903 cfqg
->saved_workload_slice
= 0;
904 cfq_blkiocg_update_dequeue_stats(&cfqg
->blkg
, 1);
907 static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue
*cfqq
)
909 unsigned int slice_used
;
912 * Queue got expired before even a single request completed or
913 * got expired immediately after first request completion.
915 if (!cfqq
->slice_start
|| cfqq
->slice_start
== jiffies
) {
917 * Also charge the seek time incurred to the group, otherwise
918 * if there are mutiple queues in the group, each can dispatch
919 * a single request on seeky media and cause lots of seek time
920 * and group will never know it.
922 slice_used
= max_t(unsigned, (jiffies
- cfqq
->dispatch_start
),
925 slice_used
= jiffies
- cfqq
->slice_start
;
926 if (slice_used
> cfqq
->allocated_slice
)
927 slice_used
= cfqq
->allocated_slice
;
933 static void cfq_group_served(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
,
934 struct cfq_queue
*cfqq
)
936 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
937 unsigned int used_sl
, charge
;
938 int nr_sync
= cfqg
->nr_cfqq
- cfqg_busy_async_queues(cfqd
, cfqg
)
939 - cfqg
->service_tree_idle
.count
;
942 used_sl
= charge
= cfq_cfqq_slice_usage(cfqq
);
945 charge
= cfqq
->slice_dispatch
;
946 else if (!cfq_cfqq_sync(cfqq
) && !nr_sync
)
947 charge
= cfqq
->allocated_slice
;
949 /* Can't update vdisktime while group is on service tree */
950 cfq_rb_erase(&cfqg
->rb_node
, st
);
951 cfqg
->vdisktime
+= cfq_scale_slice(charge
, cfqg
);
952 __cfq_group_service_tree_add(st
, cfqg
);
954 /* This group is being expired. Save the context */
955 if (time_after(cfqd
->workload_expires
, jiffies
)) {
956 cfqg
->saved_workload_slice
= cfqd
->workload_expires
958 cfqg
->saved_workload
= cfqd
->serving_type
;
959 cfqg
->saved_serving_prio
= cfqd
->serving_prio
;
961 cfqg
->saved_workload_slice
= 0;
963 cfq_log_cfqg(cfqd
, cfqg
, "served: vt=%llu min_vt=%llu", cfqg
->vdisktime
,
965 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "sl_used=%u disp=%u charge=%u iops=%u"
966 " sect=%u", used_sl
, cfqq
->slice_dispatch
, charge
,
967 iops_mode(cfqd
), cfqq
->nr_sectors
);
968 cfq_blkiocg_update_timeslice_used(&cfqg
->blkg
, used_sl
);
969 cfq_blkiocg_set_start_empty_time(&cfqg
->blkg
);
972 #ifdef CONFIG_CFQ_GROUP_IOSCHED
973 static inline struct cfq_group
*cfqg_of_blkg(struct blkio_group
*blkg
)
976 return container_of(blkg
, struct cfq_group
, blkg
);
981 cfq_update_blkio_group_weight(struct blkio_group
*blkg
, unsigned int weight
)
983 cfqg_of_blkg(blkg
)->weight
= weight
;
986 static struct cfq_group
*
987 cfq_find_alloc_cfqg(struct cfq_data
*cfqd
, struct cgroup
*cgroup
, int create
)
989 struct blkio_cgroup
*blkcg
= cgroup_to_blkio_cgroup(cgroup
);
990 struct cfq_group
*cfqg
= NULL
;
993 struct cfq_rb_root
*st
;
994 struct backing_dev_info
*bdi
= &cfqd
->queue
->backing_dev_info
;
995 unsigned int major
, minor
;
997 cfqg
= cfqg_of_blkg(blkiocg_lookup_group(blkcg
, key
));
998 if (cfqg
&& !cfqg
->blkg
.dev
&& bdi
->dev
&& dev_name(bdi
->dev
)) {
999 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1000 cfqg
->blkg
.dev
= MKDEV(major
, minor
);
1003 if (cfqg
|| !create
)
1006 cfqg
= kzalloc_node(sizeof(*cfqg
), GFP_ATOMIC
, cfqd
->queue
->node
);
1010 for_each_cfqg_st(cfqg
, i
, j
, st
)
1012 RB_CLEAR_NODE(&cfqg
->rb_node
);
1015 * Take the initial reference that will be released on destroy
1016 * This can be thought of a joint reference by cgroup and
1017 * elevator which will be dropped by either elevator exit
1018 * or cgroup deletion path depending on who is exiting first.
1020 atomic_set(&cfqg
->ref
, 1);
1022 /* Add group onto cgroup list */
1023 sscanf(dev_name(bdi
->dev
), "%u:%u", &major
, &minor
);
1024 cfq_blkiocg_add_blkio_group(blkcg
, &cfqg
->blkg
, (void *)cfqd
,
1025 MKDEV(major
, minor
));
1026 cfqg
->weight
= blkcg_get_weight(blkcg
, cfqg
->blkg
.dev
);
1028 /* Add group on cfqd list */
1029 hlist_add_head(&cfqg
->cfqd_node
, &cfqd
->cfqg_list
);
1036 * Search for the cfq group current task belongs to. If create = 1, then also
1037 * create the cfq group if it does not exist. request_queue lock must be held.
1039 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1041 struct cgroup
*cgroup
;
1042 struct cfq_group
*cfqg
= NULL
;
1045 cgroup
= task_cgroup(current
, blkio_subsys_id
);
1046 cfqg
= cfq_find_alloc_cfqg(cfqd
, cgroup
, create
);
1047 if (!cfqg
&& create
)
1048 cfqg
= &cfqd
->root_group
;
1053 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1055 atomic_inc(&cfqg
->ref
);
1059 static void cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
)
1061 /* Currently, all async queues are mapped to root group */
1062 if (!cfq_cfqq_sync(cfqq
))
1063 cfqg
= &cfqq
->cfqd
->root_group
;
1066 /* cfqq reference on cfqg */
1067 atomic_inc(&cfqq
->cfqg
->ref
);
1070 static void cfq_put_cfqg(struct cfq_group
*cfqg
)
1072 struct cfq_rb_root
*st
;
1075 BUG_ON(atomic_read(&cfqg
->ref
) <= 0);
1076 if (!atomic_dec_and_test(&cfqg
->ref
))
1078 for_each_cfqg_st(cfqg
, i
, j
, st
)
1079 BUG_ON(!RB_EMPTY_ROOT(&st
->rb
) || st
->active
!= NULL
);
1083 static void cfq_destroy_cfqg(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
1085 /* Something wrong if we are trying to remove same group twice */
1086 BUG_ON(hlist_unhashed(&cfqg
->cfqd_node
));
1088 hlist_del_init(&cfqg
->cfqd_node
);
1091 * Put the reference taken at the time of creation so that when all
1092 * queues are gone, group can be destroyed.
1097 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
)
1099 struct hlist_node
*pos
, *n
;
1100 struct cfq_group
*cfqg
;
1102 hlist_for_each_entry_safe(cfqg
, pos
, n
, &cfqd
->cfqg_list
, cfqd_node
) {
1104 * If cgroup removal path got to blk_group first and removed
1105 * it from cgroup list, then it will take care of destroying
1108 if (!cfq_blkiocg_del_blkio_group(&cfqg
->blkg
))
1109 cfq_destroy_cfqg(cfqd
, cfqg
);
1114 * Blk cgroup controller notification saying that blkio_group object is being
1115 * delinked as associated cgroup object is going away. That also means that
1116 * no new IO will come in this group. So get rid of this group as soon as
1117 * any pending IO in the group is finished.
1119 * This function is called under rcu_read_lock(). key is the rcu protected
1120 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1123 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1124 * it should not be NULL as even if elevator was exiting, cgroup deltion
1125 * path got to it first.
1127 void cfq_unlink_blkio_group(void *key
, struct blkio_group
*blkg
)
1129 unsigned long flags
;
1130 struct cfq_data
*cfqd
= key
;
1132 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1133 cfq_destroy_cfqg(cfqd
, cfqg_of_blkg(blkg
));
1134 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1137 #else /* GROUP_IOSCHED */
1138 static struct cfq_group
*cfq_get_cfqg(struct cfq_data
*cfqd
, int create
)
1140 return &cfqd
->root_group
;
1143 static inline struct cfq_group
*cfq_ref_get_cfqg(struct cfq_group
*cfqg
)
1149 cfq_link_cfqq_cfqg(struct cfq_queue
*cfqq
, struct cfq_group
*cfqg
) {
1153 static void cfq_release_cfq_groups(struct cfq_data
*cfqd
) {}
1154 static inline void cfq_put_cfqg(struct cfq_group
*cfqg
) {}
1156 #endif /* GROUP_IOSCHED */
1159 * The cfqd->service_trees holds all pending cfq_queue's that have
1160 * requests waiting to be processed. It is sorted in the order that
1161 * we will service the queues.
1163 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1166 struct rb_node
**p
, *parent
;
1167 struct cfq_queue
*__cfqq
;
1168 unsigned long rb_key
;
1169 struct cfq_rb_root
*service_tree
;
1172 int group_changed
= 0;
1174 #ifdef CONFIG_CFQ_GROUP_IOSCHED
1175 if (!cfqd
->cfq_group_isolation
1176 && cfqq_type(cfqq
) == SYNC_NOIDLE_WORKLOAD
1177 && cfqq
->cfqg
&& cfqq
->cfqg
!= &cfqd
->root_group
) {
1178 /* Move this cfq to root group */
1179 cfq_log_cfqq(cfqd
, cfqq
, "moving to root group");
1180 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1181 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1182 cfqq
->orig_cfqg
= cfqq
->cfqg
;
1183 cfqq
->cfqg
= &cfqd
->root_group
;
1184 atomic_inc(&cfqd
->root_group
.ref
);
1186 } else if (!cfqd
->cfq_group_isolation
1187 && cfqq_type(cfqq
) == SYNC_WORKLOAD
&& cfqq
->orig_cfqg
) {
1188 /* cfqq is sequential now needs to go to its original group */
1189 BUG_ON(cfqq
->cfqg
!= &cfqd
->root_group
);
1190 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
1191 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1192 cfq_put_cfqg(cfqq
->cfqg
);
1193 cfqq
->cfqg
= cfqq
->orig_cfqg
;
1194 cfqq
->orig_cfqg
= NULL
;
1196 cfq_log_cfqq(cfqd
, cfqq
, "moved to origin group");
1200 service_tree
= service_tree_for(cfqq
->cfqg
, cfqq_prio(cfqq
),
1202 if (cfq_class_idle(cfqq
)) {
1203 rb_key
= CFQ_IDLE_DELAY
;
1204 parent
= rb_last(&service_tree
->rb
);
1205 if (parent
&& parent
!= &cfqq
->rb_node
) {
1206 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1207 rb_key
+= __cfqq
->rb_key
;
1210 } else if (!add_front
) {
1212 * Get our rb key offset. Subtract any residual slice
1213 * value carried from last service. A negative resid
1214 * count indicates slice overrun, and this should position
1215 * the next service time further away in the tree.
1217 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
1218 rb_key
-= cfqq
->slice_resid
;
1219 cfqq
->slice_resid
= 0;
1222 __cfqq
= cfq_rb_first(service_tree
);
1223 rb_key
+= __cfqq
? __cfqq
->rb_key
: jiffies
;
1226 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1229 * same position, nothing more to do
1231 if (rb_key
== cfqq
->rb_key
&&
1232 cfqq
->service_tree
== service_tree
)
1235 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1236 cfqq
->service_tree
= NULL
;
1241 cfqq
->service_tree
= service_tree
;
1242 p
= &service_tree
->rb
.rb_node
;
1247 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
1250 * sort by key, that represents service time.
1252 if (time_before(rb_key
, __cfqq
->rb_key
))
1255 n
= &(*p
)->rb_right
;
1263 service_tree
->left
= &cfqq
->rb_node
;
1265 cfqq
->rb_key
= rb_key
;
1266 rb_link_node(&cfqq
->rb_node
, parent
, p
);
1267 rb_insert_color(&cfqq
->rb_node
, &service_tree
->rb
);
1268 service_tree
->count
++;
1269 if ((add_front
|| !new_cfqq
) && !group_changed
)
1271 cfq_group_service_tree_add(cfqd
, cfqq
->cfqg
);
1274 static struct cfq_queue
*
1275 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
1276 sector_t sector
, struct rb_node
**ret_parent
,
1277 struct rb_node
***rb_link
)
1279 struct rb_node
**p
, *parent
;
1280 struct cfq_queue
*cfqq
= NULL
;
1288 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1291 * Sort strictly based on sector. Smallest to the left,
1292 * largest to the right.
1294 if (sector
> blk_rq_pos(cfqq
->next_rq
))
1295 n
= &(*p
)->rb_right
;
1296 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
1304 *ret_parent
= parent
;
1310 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1312 struct rb_node
**p
, *parent
;
1313 struct cfq_queue
*__cfqq
;
1316 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1317 cfqq
->p_root
= NULL
;
1320 if (cfq_class_idle(cfqq
))
1325 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
1326 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
1327 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
1329 rb_link_node(&cfqq
->p_node
, parent
, p
);
1330 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
1332 cfqq
->p_root
= NULL
;
1336 * Update cfqq's position in the service tree.
1338 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1341 * Resorting requires the cfqq to be on the RR list already.
1343 if (cfq_cfqq_on_rr(cfqq
)) {
1344 cfq_service_tree_add(cfqd
, cfqq
, 0);
1345 cfq_prio_tree_add(cfqd
, cfqq
);
1350 * add to busy list of queues for service, trying to be fair in ordering
1351 * the pending list according to last request service
1353 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1355 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
1356 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1357 cfq_mark_cfqq_on_rr(cfqq
);
1358 cfqd
->busy_queues
++;
1360 cfq_resort_rr_list(cfqd
, cfqq
);
1364 * Called when the cfqq no longer has requests pending, remove it from
1367 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1369 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
1370 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
1371 cfq_clear_cfqq_on_rr(cfqq
);
1373 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
1374 cfq_rb_erase(&cfqq
->rb_node
, cfqq
->service_tree
);
1375 cfqq
->service_tree
= NULL
;
1378 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1379 cfqq
->p_root
= NULL
;
1382 cfq_group_service_tree_del(cfqd
, cfqq
->cfqg
);
1383 BUG_ON(!cfqd
->busy_queues
);
1384 cfqd
->busy_queues
--;
1388 * rb tree support functions
1390 static void cfq_del_rq_rb(struct request
*rq
)
1392 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1393 const int sync
= rq_is_sync(rq
);
1395 BUG_ON(!cfqq
->queued
[sync
]);
1396 cfqq
->queued
[sync
]--;
1398 elv_rb_del(&cfqq
->sort_list
, rq
);
1400 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
)) {
1402 * Queue will be deleted from service tree when we actually
1403 * expire it later. Right now just remove it from prio tree
1407 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
1408 cfqq
->p_root
= NULL
;
1413 static void cfq_add_rq_rb(struct request
*rq
)
1415 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1416 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1417 struct request
*__alias
, *prev
;
1419 cfqq
->queued
[rq_is_sync(rq
)]++;
1422 * looks a little odd, but the first insert might return an alias.
1423 * if that happens, put the alias on the dispatch list
1425 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
1426 cfq_dispatch_insert(cfqd
->queue
, __alias
);
1428 if (!cfq_cfqq_on_rr(cfqq
))
1429 cfq_add_cfqq_rr(cfqd
, cfqq
);
1432 * check if this request is a better next-serve candidate
1434 prev
= cfqq
->next_rq
;
1435 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
, cfqd
->last_position
);
1438 * adjust priority tree position, if ->next_rq changes
1440 if (prev
!= cfqq
->next_rq
)
1441 cfq_prio_tree_add(cfqd
, cfqq
);
1443 BUG_ON(!cfqq
->next_rq
);
1446 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
1448 elv_rb_del(&cfqq
->sort_list
, rq
);
1449 cfqq
->queued
[rq_is_sync(rq
)]--;
1450 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1451 rq_data_dir(rq
), rq_is_sync(rq
));
1453 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
1454 &cfqq
->cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
1458 static struct request
*
1459 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
1461 struct task_struct
*tsk
= current
;
1462 struct cfq_io_context
*cic
;
1463 struct cfq_queue
*cfqq
;
1465 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
1469 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1471 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
1473 return elv_rb_find(&cfqq
->sort_list
, sector
);
1479 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
1481 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1483 cfqd
->rq_in_driver
++;
1484 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
1485 cfqd
->rq_in_driver
);
1487 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
1490 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
1492 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1494 WARN_ON(!cfqd
->rq_in_driver
);
1495 cfqd
->rq_in_driver
--;
1496 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
1497 cfqd
->rq_in_driver
);
1500 static void cfq_remove_request(struct request
*rq
)
1502 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1504 if (cfqq
->next_rq
== rq
)
1505 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
1507 list_del_init(&rq
->queuelist
);
1510 cfqq
->cfqd
->rq_queued
--;
1511 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq
))->blkg
,
1512 rq_data_dir(rq
), rq_is_sync(rq
));
1513 if (rq
->cmd_flags
& REQ_META
) {
1514 WARN_ON(!cfqq
->meta_pending
);
1515 cfqq
->meta_pending
--;
1519 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
1522 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1523 struct request
*__rq
;
1525 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
1526 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
1528 return ELEVATOR_FRONT_MERGE
;
1531 return ELEVATOR_NO_MERGE
;
1534 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
1537 if (type
== ELEVATOR_FRONT_MERGE
) {
1538 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
1540 cfq_reposition_rq_rb(cfqq
, req
);
1544 static void cfq_bio_merged(struct request_queue
*q
, struct request
*req
,
1547 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req
))->blkg
,
1548 bio_data_dir(bio
), cfq_bio_sync(bio
));
1552 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
1553 struct request
*next
)
1555 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1557 * reposition in fifo if next is older than rq
1559 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
1560 time_before(rq_fifo_time(next
), rq_fifo_time(rq
))) {
1561 list_move(&rq
->queuelist
, &next
->queuelist
);
1562 rq_set_fifo_time(rq
, rq_fifo_time(next
));
1565 if (cfqq
->next_rq
== next
)
1567 cfq_remove_request(next
);
1568 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq
))->blkg
,
1569 rq_data_dir(next
), rq_is_sync(next
));
1572 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
1575 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1576 struct cfq_io_context
*cic
;
1577 struct cfq_queue
*cfqq
;
1580 * Disallow merge of a sync bio into an async request.
1582 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
1586 * Lookup the cfqq that this bio will be queued with. Allow
1587 * merge only if rq is queued there.
1589 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
1593 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
1594 return cfqq
== RQ_CFQQ(rq
);
1597 static inline void cfq_del_timer(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1599 del_timer(&cfqd
->idle_slice_timer
);
1600 cfq_blkiocg_update_idle_time_stats(&cfqq
->cfqg
->blkg
);
1603 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
1604 struct cfq_queue
*cfqq
)
1607 cfq_log_cfqq(cfqd
, cfqq
, "set_active wl_prio:%d wl_type:%d",
1608 cfqd
->serving_prio
, cfqd
->serving_type
);
1609 cfq_blkiocg_update_avg_queue_size_stats(&cfqq
->cfqg
->blkg
);
1610 cfqq
->slice_start
= 0;
1611 cfqq
->dispatch_start
= jiffies
;
1612 cfqq
->allocated_slice
= 0;
1613 cfqq
->slice_end
= 0;
1614 cfqq
->slice_dispatch
= 0;
1615 cfqq
->nr_sectors
= 0;
1617 cfq_clear_cfqq_wait_request(cfqq
);
1618 cfq_clear_cfqq_must_dispatch(cfqq
);
1619 cfq_clear_cfqq_must_alloc_slice(cfqq
);
1620 cfq_clear_cfqq_fifo_expire(cfqq
);
1621 cfq_mark_cfqq_slice_new(cfqq
);
1623 cfq_del_timer(cfqd
, cfqq
);
1626 cfqd
->active_queue
= cfqq
;
1630 * current cfqq expired its slice (or was too idle), select new one
1633 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1636 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
1638 if (cfq_cfqq_wait_request(cfqq
))
1639 cfq_del_timer(cfqd
, cfqq
);
1641 cfq_clear_cfqq_wait_request(cfqq
);
1642 cfq_clear_cfqq_wait_busy(cfqq
);
1645 * If this cfqq is shared between multiple processes, check to
1646 * make sure that those processes are still issuing I/Os within
1647 * the mean seek distance. If not, it may be time to break the
1648 * queues apart again.
1650 if (cfq_cfqq_coop(cfqq
) && CFQQ_SEEKY(cfqq
))
1651 cfq_mark_cfqq_split_coop(cfqq
);
1654 * store what was left of this slice, if the queue idled/timed out
1656 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
1657 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
1658 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
1661 cfq_group_served(cfqd
, cfqq
->cfqg
, cfqq
);
1663 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
1664 cfq_del_cfqq_rr(cfqd
, cfqq
);
1666 cfq_resort_rr_list(cfqd
, cfqq
);
1668 if (cfqq
== cfqd
->active_queue
)
1669 cfqd
->active_queue
= NULL
;
1671 if (&cfqq
->cfqg
->rb_node
== cfqd
->grp_service_tree
.active
)
1672 cfqd
->grp_service_tree
.active
= NULL
;
1674 if (cfqd
->active_cic
) {
1675 put_io_context(cfqd
->active_cic
->ioc
);
1676 cfqd
->active_cic
= NULL
;
1680 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, bool timed_out
)
1682 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1685 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
1689 * Get next queue for service. Unless we have a queue preemption,
1690 * we'll simply select the first cfqq in the service tree.
1692 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
1694 struct cfq_rb_root
*service_tree
=
1695 service_tree_for(cfqd
->serving_group
, cfqd
->serving_prio
,
1696 cfqd
->serving_type
);
1698 if (!cfqd
->rq_queued
)
1701 /* There is nothing to dispatch */
1704 if (RB_EMPTY_ROOT(&service_tree
->rb
))
1706 return cfq_rb_first(service_tree
);
1709 static struct cfq_queue
*cfq_get_next_queue_forced(struct cfq_data
*cfqd
)
1711 struct cfq_group
*cfqg
;
1712 struct cfq_queue
*cfqq
;
1714 struct cfq_rb_root
*st
;
1716 if (!cfqd
->rq_queued
)
1719 cfqg
= cfq_get_next_cfqg(cfqd
);
1723 for_each_cfqg_st(cfqg
, i
, j
, st
)
1724 if ((cfqq
= cfq_rb_first(st
)) != NULL
)
1730 * Get and set a new active queue for service.
1732 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
1733 struct cfq_queue
*cfqq
)
1736 cfqq
= cfq_get_next_queue(cfqd
);
1738 __cfq_set_active_queue(cfqd
, cfqq
);
1742 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
1745 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
1746 return blk_rq_pos(rq
) - cfqd
->last_position
;
1748 return cfqd
->last_position
- blk_rq_pos(rq
);
1751 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1754 return cfq_dist_from_last(cfqd
, rq
) <= CFQQ_CLOSE_THR
;
1757 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
1758 struct cfq_queue
*cur_cfqq
)
1760 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
1761 struct rb_node
*parent
, *node
;
1762 struct cfq_queue
*__cfqq
;
1763 sector_t sector
= cfqd
->last_position
;
1765 if (RB_EMPTY_ROOT(root
))
1769 * First, if we find a request starting at the end of the last
1770 * request, choose it.
1772 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
1777 * If the exact sector wasn't found, the parent of the NULL leaf
1778 * will contain the closest sector.
1780 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1781 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1784 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1785 node
= rb_next(&__cfqq
->p_node
);
1787 node
= rb_prev(&__cfqq
->p_node
);
1791 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1792 if (cfq_rq_close(cfqd
, cur_cfqq
, __cfqq
->next_rq
))
1800 * cur_cfqq - passed in so that we don't decide that the current queue is
1801 * closely cooperating with itself.
1803 * So, basically we're assuming that that cur_cfqq has dispatched at least
1804 * one request, and that cfqd->last_position reflects a position on the disk
1805 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1808 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1809 struct cfq_queue
*cur_cfqq
)
1811 struct cfq_queue
*cfqq
;
1813 if (cfq_class_idle(cur_cfqq
))
1815 if (!cfq_cfqq_sync(cur_cfqq
))
1817 if (CFQQ_SEEKY(cur_cfqq
))
1821 * Don't search priority tree if it's the only queue in the group.
1823 if (cur_cfqq
->cfqg
->nr_cfqq
== 1)
1827 * We should notice if some of the queues are cooperating, eg
1828 * working closely on the same area of the disk. In that case,
1829 * we can group them together and don't waste time idling.
1831 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1835 /* If new queue belongs to different cfq_group, don't choose it */
1836 if (cur_cfqq
->cfqg
!= cfqq
->cfqg
)
1840 * It only makes sense to merge sync queues.
1842 if (!cfq_cfqq_sync(cfqq
))
1844 if (CFQQ_SEEKY(cfqq
))
1848 * Do not merge queues of different priority classes
1850 if (cfq_class_rt(cfqq
) != cfq_class_rt(cur_cfqq
))
1857 * Determine whether we should enforce idle window for this queue.
1860 static bool cfq_should_idle(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1862 enum wl_prio_t prio
= cfqq_prio(cfqq
);
1863 struct cfq_rb_root
*service_tree
= cfqq
->service_tree
;
1865 BUG_ON(!service_tree
);
1866 BUG_ON(!service_tree
->count
);
1868 if (!cfqd
->cfq_slice_idle
)
1871 /* We never do for idle class queues. */
1872 if (prio
== IDLE_WORKLOAD
)
1875 /* We do for queues that were marked with idle window flag. */
1876 if (cfq_cfqq_idle_window(cfqq
) &&
1877 !(blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
))
1881 * Otherwise, we do only if they are the last ones
1882 * in their service tree.
1884 if (service_tree
->count
== 1 && cfq_cfqq_sync(cfqq
))
1886 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. st->count:%d",
1887 service_tree
->count
);
1891 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1893 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1894 struct cfq_io_context
*cic
;
1895 unsigned long sl
, group_idle
= 0;
1898 * SSD device without seek penalty, disable idling. But only do so
1899 * for devices that support queuing, otherwise we still have a problem
1900 * with sync vs async workloads.
1902 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1905 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1906 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1909 * idle is disabled, either manually or by past process history
1911 if (!cfq_should_idle(cfqd
, cfqq
)) {
1912 /* no queue idling. Check for group idling */
1913 if (cfqd
->cfq_group_idle
)
1914 group_idle
= cfqd
->cfq_group_idle
;
1920 * still active requests from this queue, don't idle
1922 if (cfqq
->dispatched
)
1926 * task has exited, don't wait
1928 cic
= cfqd
->active_cic
;
1929 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1933 * If our average think time is larger than the remaining time
1934 * slice, then don't idle. This avoids overrunning the allotted
1937 if (sample_valid(cic
->ttime_samples
) &&
1938 (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
)) {
1939 cfq_log_cfqq(cfqd
, cfqq
, "Not idling. think_time:%d",
1944 /* There are other queues in the group, don't do group idle */
1945 if (group_idle
&& cfqq
->cfqg
->nr_cfqq
> 1)
1948 cfq_mark_cfqq_wait_request(cfqq
);
1951 sl
= cfqd
->cfq_group_idle
;
1953 sl
= cfqd
->cfq_slice_idle
;
1955 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1956 cfq_blkiocg_update_set_idle_time_stats(&cfqq
->cfqg
->blkg
);
1957 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu group_idle: %d", sl
,
1958 group_idle
? 1 : 0);
1962 * Move request from internal lists to the request queue dispatch list.
1964 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1966 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1967 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1969 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1971 cfqq
->next_rq
= cfq_find_next_rq(cfqd
, cfqq
, rq
);
1972 cfq_remove_request(rq
);
1974 (RQ_CFQG(rq
))->dispatched
++;
1975 elv_dispatch_sort(q
, rq
);
1977 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]++;
1978 cfqq
->nr_sectors
+= blk_rq_sectors(rq
);
1979 cfq_blkiocg_update_dispatch_stats(&cfqq
->cfqg
->blkg
, blk_rq_bytes(rq
),
1980 rq_data_dir(rq
), rq_is_sync(rq
));
1984 * return expired entry, or NULL to just start from scratch in rbtree
1986 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1988 struct request
*rq
= NULL
;
1990 if (cfq_cfqq_fifo_expire(cfqq
))
1993 cfq_mark_cfqq_fifo_expire(cfqq
);
1995 if (list_empty(&cfqq
->fifo
))
1998 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1999 if (time_before(jiffies
, rq_fifo_time(rq
)))
2002 cfq_log_cfqq(cfqq
->cfqd
, cfqq
, "fifo=%p", rq
);
2007 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2009 const int base_rq
= cfqd
->cfq_slice_async_rq
;
2011 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
2013 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
2017 * Must be called with the queue_lock held.
2019 static int cfqq_process_refs(struct cfq_queue
*cfqq
)
2021 int process_refs
, io_refs
;
2023 io_refs
= cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
];
2024 process_refs
= atomic_read(&cfqq
->ref
) - io_refs
;
2025 BUG_ON(process_refs
< 0);
2026 return process_refs
;
2029 static void cfq_setup_merge(struct cfq_queue
*cfqq
, struct cfq_queue
*new_cfqq
)
2031 int process_refs
, new_process_refs
;
2032 struct cfq_queue
*__cfqq
;
2035 * If there are no process references on the new_cfqq, then it is
2036 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2037 * chain may have dropped their last reference (not just their
2038 * last process reference).
2040 if (!cfqq_process_refs(new_cfqq
))
2043 /* Avoid a circular list and skip interim queue merges */
2044 while ((__cfqq
= new_cfqq
->new_cfqq
)) {
2050 process_refs
= cfqq_process_refs(cfqq
);
2051 new_process_refs
= cfqq_process_refs(new_cfqq
);
2053 * If the process for the cfqq has gone away, there is no
2054 * sense in merging the queues.
2056 if (process_refs
== 0 || new_process_refs
== 0)
2060 * Merge in the direction of the lesser amount of work.
2062 if (new_process_refs
>= process_refs
) {
2063 cfqq
->new_cfqq
= new_cfqq
;
2064 atomic_add(process_refs
, &new_cfqq
->ref
);
2066 new_cfqq
->new_cfqq
= cfqq
;
2067 atomic_add(new_process_refs
, &cfqq
->ref
);
2071 static enum wl_type_t
cfq_choose_wl(struct cfq_data
*cfqd
,
2072 struct cfq_group
*cfqg
, enum wl_prio_t prio
)
2074 struct cfq_queue
*queue
;
2076 bool key_valid
= false;
2077 unsigned long lowest_key
= 0;
2078 enum wl_type_t cur_best
= SYNC_NOIDLE_WORKLOAD
;
2080 for (i
= 0; i
<= SYNC_WORKLOAD
; ++i
) {
2081 /* select the one with lowest rb_key */
2082 queue
= cfq_rb_first(service_tree_for(cfqg
, prio
, i
));
2084 (!key_valid
|| time_before(queue
->rb_key
, lowest_key
))) {
2085 lowest_key
= queue
->rb_key
;
2094 static void choose_service_tree(struct cfq_data
*cfqd
, struct cfq_group
*cfqg
)
2098 struct cfq_rb_root
*st
;
2099 unsigned group_slice
;
2102 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2103 cfqd
->workload_expires
= jiffies
+ 1;
2107 /* Choose next priority. RT > BE > IDLE */
2108 if (cfq_group_busy_queues_wl(RT_WORKLOAD
, cfqd
, cfqg
))
2109 cfqd
->serving_prio
= RT_WORKLOAD
;
2110 else if (cfq_group_busy_queues_wl(BE_WORKLOAD
, cfqd
, cfqg
))
2111 cfqd
->serving_prio
= BE_WORKLOAD
;
2113 cfqd
->serving_prio
= IDLE_WORKLOAD
;
2114 cfqd
->workload_expires
= jiffies
+ 1;
2119 * For RT and BE, we have to choose also the type
2120 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2123 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2127 * check workload expiration, and that we still have other queues ready
2129 if (count
&& !time_after(jiffies
, cfqd
->workload_expires
))
2132 /* otherwise select new workload type */
2133 cfqd
->serving_type
=
2134 cfq_choose_wl(cfqd
, cfqg
, cfqd
->serving_prio
);
2135 st
= service_tree_for(cfqg
, cfqd
->serving_prio
, cfqd
->serving_type
);
2139 * the workload slice is computed as a fraction of target latency
2140 * proportional to the number of queues in that workload, over
2141 * all the queues in the same priority class
2143 group_slice
= cfq_group_slice(cfqd
, cfqg
);
2145 slice
= group_slice
* count
/
2146 max_t(unsigned, cfqg
->busy_queues_avg
[cfqd
->serving_prio
],
2147 cfq_group_busy_queues_wl(cfqd
->serving_prio
, cfqd
, cfqg
));
2149 if (cfqd
->serving_type
== ASYNC_WORKLOAD
) {
2153 * Async queues are currently system wide. Just taking
2154 * proportion of queues with-in same group will lead to higher
2155 * async ratio system wide as generally root group is going
2156 * to have higher weight. A more accurate thing would be to
2157 * calculate system wide asnc/sync ratio.
2159 tmp
= cfq_target_latency
* cfqg_busy_async_queues(cfqd
, cfqg
);
2160 tmp
= tmp
/cfqd
->busy_queues
;
2161 slice
= min_t(unsigned, slice
, tmp
);
2163 /* async workload slice is scaled down according to
2164 * the sync/async slice ratio. */
2165 slice
= slice
* cfqd
->cfq_slice
[0] / cfqd
->cfq_slice
[1];
2167 /* sync workload slice is at least 2 * cfq_slice_idle */
2168 slice
= max(slice
, 2 * cfqd
->cfq_slice_idle
);
2170 slice
= max_t(unsigned, slice
, CFQ_MIN_TT
);
2171 cfq_log(cfqd
, "workload slice:%d", slice
);
2172 cfqd
->workload_expires
= jiffies
+ slice
;
2173 cfqd
->noidle_tree_requires_idle
= false;
2176 static struct cfq_group
*cfq_get_next_cfqg(struct cfq_data
*cfqd
)
2178 struct cfq_rb_root
*st
= &cfqd
->grp_service_tree
;
2179 struct cfq_group
*cfqg
;
2181 if (RB_EMPTY_ROOT(&st
->rb
))
2183 cfqg
= cfq_rb_first_group(st
);
2184 st
->active
= &cfqg
->rb_node
;
2185 update_min_vdisktime(st
);
2189 static void cfq_choose_cfqg(struct cfq_data
*cfqd
)
2191 struct cfq_group
*cfqg
= cfq_get_next_cfqg(cfqd
);
2193 cfqd
->serving_group
= cfqg
;
2195 /* Restore the workload type data */
2196 if (cfqg
->saved_workload_slice
) {
2197 cfqd
->workload_expires
= jiffies
+ cfqg
->saved_workload_slice
;
2198 cfqd
->serving_type
= cfqg
->saved_workload
;
2199 cfqd
->serving_prio
= cfqg
->saved_serving_prio
;
2201 cfqd
->workload_expires
= jiffies
- 1;
2203 choose_service_tree(cfqd
, cfqg
);
2207 * Select a queue for service. If we have a current active queue,
2208 * check whether to continue servicing it, or retrieve and set a new one.
2210 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
2212 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2214 cfqq
= cfqd
->active_queue
;
2218 if (!cfqd
->rq_queued
)
2222 * We were waiting for group to get backlogged. Expire the queue
2224 if (cfq_cfqq_wait_busy(cfqq
) && !RB_EMPTY_ROOT(&cfqq
->sort_list
))
2228 * The active queue has run out of time, expire it and select new.
2230 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
)) {
2232 * If slice had not expired at the completion of last request
2233 * we might not have turned on wait_busy flag. Don't expire
2234 * the queue yet. Allow the group to get backlogged.
2236 * The very fact that we have used the slice, that means we
2237 * have been idling all along on this queue and it should be
2238 * ok to wait for this request to complete.
2240 if (cfqq
->cfqg
->nr_cfqq
== 1 && RB_EMPTY_ROOT(&cfqq
->sort_list
)
2241 && cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2245 goto check_group_idle
;
2249 * The active queue has requests and isn't expired, allow it to
2252 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2256 * If another queue has a request waiting within our mean seek
2257 * distance, let it run. The expire code will check for close
2258 * cooperators and put the close queue at the front of the service
2259 * tree. If possible, merge the expiring queue with the new cfqq.
2261 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
);
2263 if (!cfqq
->new_cfqq
)
2264 cfq_setup_merge(cfqq
, new_cfqq
);
2269 * No requests pending. If the active queue still has requests in
2270 * flight or is idling for a new request, allow either of these
2271 * conditions to happen (or time out) before selecting a new queue.
2273 if (timer_pending(&cfqd
->idle_slice_timer
)) {
2278 if (cfqq
->dispatched
&& cfq_should_idle(cfqd
, cfqq
)) {
2284 * If group idle is enabled and there are requests dispatched from
2285 * this group, wait for requests to complete.
2288 if (cfqd
->cfq_group_idle
&& cfqq
->cfqg
->nr_cfqq
== 1
2289 && cfqq
->cfqg
->dispatched
) {
2295 cfq_slice_expired(cfqd
, 0);
2298 * Current queue expired. Check if we have to switch to a new
2302 cfq_choose_cfqg(cfqd
);
2304 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
2309 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
2313 while (cfqq
->next_rq
) {
2314 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
2318 BUG_ON(!list_empty(&cfqq
->fifo
));
2320 /* By default cfqq is not expired if it is empty. Do it explicitly */
2321 __cfq_slice_expired(cfqq
->cfqd
, cfqq
, 0);
2326 * Drain our current requests. Used for barriers and when switching
2327 * io schedulers on-the-fly.
2329 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
2331 struct cfq_queue
*cfqq
;
2334 /* Expire the timeslice of the current active queue first */
2335 cfq_slice_expired(cfqd
, 0);
2336 while ((cfqq
= cfq_get_next_queue_forced(cfqd
)) != NULL
) {
2337 __cfq_set_active_queue(cfqd
, cfqq
);
2338 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
2341 BUG_ON(cfqd
->busy_queues
);
2343 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
2347 static inline bool cfq_slice_used_soon(struct cfq_data
*cfqd
,
2348 struct cfq_queue
*cfqq
)
2350 /* the queue hasn't finished any request, can't estimate */
2351 if (cfq_cfqq_slice_new(cfqq
))
2353 if (time_after(jiffies
+ cfqd
->cfq_slice_idle
* cfqq
->dispatched
,
2360 static bool cfq_may_dispatch(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2362 unsigned int max_dispatch
;
2365 * Drain async requests before we start sync IO
2367 if (cfq_should_idle(cfqd
, cfqq
) && cfqd
->rq_in_flight
[BLK_RW_ASYNC
])
2371 * If this is an async queue and we have sync IO in flight, let it wait
2373 if (cfqd
->rq_in_flight
[BLK_RW_SYNC
] && !cfq_cfqq_sync(cfqq
))
2376 max_dispatch
= max_t(unsigned int, cfqd
->cfq_quantum
/ 2, 1);
2377 if (cfq_class_idle(cfqq
))
2381 * Does this cfqq already have too much IO in flight?
2383 if (cfqq
->dispatched
>= max_dispatch
) {
2385 * idle queue must always only have a single IO in flight
2387 if (cfq_class_idle(cfqq
))
2391 * We have other queues, don't allow more IO from this one
2393 if (cfqd
->busy_queues
> 1 && cfq_slice_used_soon(cfqd
, cfqq
))
2397 * Sole queue user, no limit
2399 if (cfqd
->busy_queues
== 1)
2403 * Normally we start throttling cfqq when cfq_quantum/2
2404 * requests have been dispatched. But we can drive
2405 * deeper queue depths at the beginning of slice
2406 * subjected to upper limit of cfq_quantum.
2408 max_dispatch
= cfqd
->cfq_quantum
;
2412 * Async queues must wait a bit before being allowed dispatch.
2413 * We also ramp up the dispatch depth gradually for async IO,
2414 * based on the last sync IO we serviced
2416 if (!cfq_cfqq_sync(cfqq
) && cfqd
->cfq_latency
) {
2417 unsigned long last_sync
= jiffies
- cfqd
->last_delayed_sync
;
2420 depth
= last_sync
/ cfqd
->cfq_slice
[1];
2421 if (!depth
&& !cfqq
->dispatched
)
2423 if (depth
< max_dispatch
)
2424 max_dispatch
= depth
;
2428 * If we're below the current max, allow a dispatch
2430 return cfqq
->dispatched
< max_dispatch
;
2434 * Dispatch a request from cfqq, moving them to the request queue
2437 static bool cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2441 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
2443 if (!cfq_may_dispatch(cfqd
, cfqq
))
2447 * follow expired path, else get first next available
2449 rq
= cfq_check_fifo(cfqq
);
2454 * insert request into driver dispatch list
2456 cfq_dispatch_insert(cfqd
->queue
, rq
);
2458 if (!cfqd
->active_cic
) {
2459 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2461 atomic_long_inc(&cic
->ioc
->refcount
);
2462 cfqd
->active_cic
= cic
;
2469 * Find the cfqq that we need to service and move a request from that to the
2472 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
2474 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2475 struct cfq_queue
*cfqq
;
2477 if (!cfqd
->busy_queues
)
2480 if (unlikely(force
))
2481 return cfq_forced_dispatch(cfqd
);
2483 cfqq
= cfq_select_queue(cfqd
);
2488 * Dispatch a request from this cfqq, if it is allowed
2490 if (!cfq_dispatch_request(cfqd
, cfqq
))
2493 cfqq
->slice_dispatch
++;
2494 cfq_clear_cfqq_must_dispatch(cfqq
);
2497 * expire an async queue immediately if it has used up its slice. idle
2498 * queue always expire after 1 dispatch round.
2500 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
2501 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
2502 cfq_class_idle(cfqq
))) {
2503 cfqq
->slice_end
= jiffies
+ 1;
2504 cfq_slice_expired(cfqd
, 0);
2507 cfq_log_cfqq(cfqd
, cfqq
, "dispatched a request");
2512 * task holds one reference to the queue, dropped when task exits. each rq
2513 * in-flight on this queue also holds a reference, dropped when rq is freed.
2515 * Each cfq queue took a reference on the parent group. Drop it now.
2516 * queue lock must be held here.
2518 static void cfq_put_queue(struct cfq_queue
*cfqq
)
2520 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2521 struct cfq_group
*cfqg
, *orig_cfqg
;
2523 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
2525 if (!atomic_dec_and_test(&cfqq
->ref
))
2528 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
2529 BUG_ON(rb_first(&cfqq
->sort_list
));
2530 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
2532 orig_cfqg
= cfqq
->orig_cfqg
;
2534 if (unlikely(cfqd
->active_queue
== cfqq
)) {
2535 __cfq_slice_expired(cfqd
, cfqq
, 0);
2536 cfq_schedule_dispatch(cfqd
);
2539 BUG_ON(cfq_cfqq_on_rr(cfqq
));
2540 kmem_cache_free(cfq_pool
, cfqq
);
2543 cfq_put_cfqg(orig_cfqg
);
2547 * Must always be called with the rcu_read_lock() held
2550 __call_for_each_cic(struct io_context
*ioc
,
2551 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2553 struct cfq_io_context
*cic
;
2554 struct hlist_node
*n
;
2556 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
2561 * Call func for each cic attached to this ioc.
2564 call_for_each_cic(struct io_context
*ioc
,
2565 void (*func
)(struct io_context
*, struct cfq_io_context
*))
2568 __call_for_each_cic(ioc
, func
);
2572 static void cfq_cic_free_rcu(struct rcu_head
*head
)
2574 struct cfq_io_context
*cic
;
2576 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
2578 kmem_cache_free(cfq_ioc_pool
, cic
);
2579 elv_ioc_count_dec(cfq_ioc_count
);
2583 * CFQ scheduler is exiting, grab exit lock and check
2584 * the pending io context count. If it hits zero,
2585 * complete ioc_gone and set it back to NULL
2587 spin_lock(&ioc_gone_lock
);
2588 if (ioc_gone
&& !elv_ioc_count_read(cfq_ioc_count
)) {
2592 spin_unlock(&ioc_gone_lock
);
2596 static void cfq_cic_free(struct cfq_io_context
*cic
)
2598 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
2601 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2603 unsigned long flags
;
2604 unsigned long dead_key
= (unsigned long) cic
->key
;
2606 BUG_ON(!(dead_key
& CIC_DEAD_KEY
));
2608 spin_lock_irqsave(&ioc
->lock
, flags
);
2609 radix_tree_delete(&ioc
->radix_root
, dead_key
>> CIC_DEAD_INDEX_SHIFT
);
2610 hlist_del_rcu(&cic
->cic_list
);
2611 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2617 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
2618 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
2619 * and ->trim() which is called with the task lock held
2621 static void cfq_free_io_context(struct io_context
*ioc
)
2624 * ioc->refcount is zero here, or we are called from elv_unregister(),
2625 * so no more cic's are allowed to be linked into this ioc. So it
2626 * should be ok to iterate over the known list, we will see all cic's
2627 * since no new ones are added.
2629 __call_for_each_cic(ioc
, cic_free_func
);
2632 static void cfq_put_cooperator(struct cfq_queue
*cfqq
)
2634 struct cfq_queue
*__cfqq
, *next
;
2637 * If this queue was scheduled to merge with another queue, be
2638 * sure to drop the reference taken on that queue (and others in
2639 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2641 __cfqq
= cfqq
->new_cfqq
;
2643 if (__cfqq
== cfqq
) {
2644 WARN(1, "cfqq->new_cfqq loop detected\n");
2647 next
= __cfqq
->new_cfqq
;
2648 cfq_put_queue(__cfqq
);
2653 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2655 if (unlikely(cfqq
== cfqd
->active_queue
)) {
2656 __cfq_slice_expired(cfqd
, cfqq
, 0);
2657 cfq_schedule_dispatch(cfqd
);
2660 cfq_put_cooperator(cfqq
);
2662 cfq_put_queue(cfqq
);
2665 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
2666 struct cfq_io_context
*cic
)
2668 struct io_context
*ioc
= cic
->ioc
;
2670 list_del_init(&cic
->queue_list
);
2673 * Make sure dead mark is seen for dead queues
2676 cic
->key
= cfqd_dead_key(cfqd
);
2678 if (ioc
->ioc_data
== cic
)
2679 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
2681 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
2682 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
2683 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
2686 if (cic
->cfqq
[BLK_RW_SYNC
]) {
2687 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
2688 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
2692 static void cfq_exit_single_io_context(struct io_context
*ioc
,
2693 struct cfq_io_context
*cic
)
2695 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2698 struct request_queue
*q
= cfqd
->queue
;
2699 unsigned long flags
;
2701 spin_lock_irqsave(q
->queue_lock
, flags
);
2704 * Ensure we get a fresh copy of the ->key to prevent
2705 * race between exiting task and queue
2707 smp_read_barrier_depends();
2708 if (cic
->key
== cfqd
)
2709 __cfq_exit_single_io_context(cfqd
, cic
);
2711 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2716 * The process that ioc belongs to has exited, we need to clean up
2717 * and put the internal structures we have that belongs to that process.
2719 static void cfq_exit_io_context(struct io_context
*ioc
)
2721 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
2724 static struct cfq_io_context
*
2725 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
2727 struct cfq_io_context
*cic
;
2729 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
2732 cic
->last_end_request
= jiffies
;
2733 INIT_LIST_HEAD(&cic
->queue_list
);
2734 INIT_HLIST_NODE(&cic
->cic_list
);
2735 cic
->dtor
= cfq_free_io_context
;
2736 cic
->exit
= cfq_exit_io_context
;
2737 elv_ioc_count_inc(cfq_ioc_count
);
2743 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
2745 struct task_struct
*tsk
= current
;
2748 if (!cfq_cfqq_prio_changed(cfqq
))
2751 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
2752 switch (ioprio_class
) {
2754 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
2755 case IOPRIO_CLASS_NONE
:
2757 * no prio set, inherit CPU scheduling settings
2759 cfqq
->ioprio
= task_nice_ioprio(tsk
);
2760 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
2762 case IOPRIO_CLASS_RT
:
2763 cfqq
->ioprio
= task_ioprio(ioc
);
2764 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
2766 case IOPRIO_CLASS_BE
:
2767 cfqq
->ioprio
= task_ioprio(ioc
);
2768 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2770 case IOPRIO_CLASS_IDLE
:
2771 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
2773 cfq_clear_cfqq_idle_window(cfqq
);
2778 * keep track of original prio settings in case we have to temporarily
2779 * elevate the priority of this queue
2781 cfqq
->org_ioprio
= cfqq
->ioprio
;
2782 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
2783 cfq_clear_cfqq_prio_changed(cfqq
);
2786 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2788 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2789 struct cfq_queue
*cfqq
;
2790 unsigned long flags
;
2792 if (unlikely(!cfqd
))
2795 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2797 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
2799 struct cfq_queue
*new_cfqq
;
2800 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
2803 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
2804 cfq_put_queue(cfqq
);
2808 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
2810 cfq_mark_cfqq_prio_changed(cfqq
);
2812 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2815 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
2817 call_for_each_cic(ioc
, changed_ioprio
);
2818 ioc
->ioprio_changed
= 0;
2821 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2822 pid_t pid
, bool is_sync
)
2824 RB_CLEAR_NODE(&cfqq
->rb_node
);
2825 RB_CLEAR_NODE(&cfqq
->p_node
);
2826 INIT_LIST_HEAD(&cfqq
->fifo
);
2828 atomic_set(&cfqq
->ref
, 0);
2831 cfq_mark_cfqq_prio_changed(cfqq
);
2834 if (!cfq_class_idle(cfqq
))
2835 cfq_mark_cfqq_idle_window(cfqq
);
2836 cfq_mark_cfqq_sync(cfqq
);
2841 #ifdef CONFIG_CFQ_GROUP_IOSCHED
2842 static void changed_cgroup(struct io_context
*ioc
, struct cfq_io_context
*cic
)
2844 struct cfq_queue
*sync_cfqq
= cic_to_cfqq(cic
, 1);
2845 struct cfq_data
*cfqd
= cic_to_cfqd(cic
);
2846 unsigned long flags
;
2847 struct request_queue
*q
;
2849 if (unlikely(!cfqd
))
2854 spin_lock_irqsave(q
->queue_lock
, flags
);
2858 * Drop reference to sync queue. A new sync queue will be
2859 * assigned in new group upon arrival of a fresh request.
2861 cfq_log_cfqq(cfqd
, sync_cfqq
, "changed cgroup");
2862 cic_set_cfqq(cic
, NULL
, 1);
2863 cfq_put_queue(sync_cfqq
);
2866 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2869 static void cfq_ioc_set_cgroup(struct io_context
*ioc
)
2871 call_for_each_cic(ioc
, changed_cgroup
);
2872 ioc
->cgroup_changed
= 0;
2874 #endif /* CONFIG_CFQ_GROUP_IOSCHED */
2876 static struct cfq_queue
*
2877 cfq_find_alloc_queue(struct cfq_data
*cfqd
, bool is_sync
,
2878 struct io_context
*ioc
, gfp_t gfp_mask
)
2880 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
2881 struct cfq_io_context
*cic
;
2882 struct cfq_group
*cfqg
;
2885 cfqg
= cfq_get_cfqg(cfqd
, 1);
2886 cic
= cfq_cic_lookup(cfqd
, ioc
);
2887 /* cic always exists here */
2888 cfqq
= cic_to_cfqq(cic
, is_sync
);
2891 * Always try a new alloc if we fell back to the OOM cfqq
2892 * originally, since it should just be a temporary situation.
2894 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
2899 } else if (gfp_mask
& __GFP_WAIT
) {
2900 spin_unlock_irq(cfqd
->queue
->queue_lock
);
2901 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
2902 gfp_mask
| __GFP_ZERO
,
2904 spin_lock_irq(cfqd
->queue
->queue_lock
);
2908 cfqq
= kmem_cache_alloc_node(cfq_pool
,
2909 gfp_mask
| __GFP_ZERO
,
2914 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
2915 cfq_init_prio_data(cfqq
, ioc
);
2916 cfq_link_cfqq_cfqg(cfqq
, cfqg
);
2917 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
2919 cfqq
= &cfqd
->oom_cfqq
;
2923 kmem_cache_free(cfq_pool
, new_cfqq
);
2928 static struct cfq_queue
**
2929 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
2931 switch (ioprio_class
) {
2932 case IOPRIO_CLASS_RT
:
2933 return &cfqd
->async_cfqq
[0][ioprio
];
2934 case IOPRIO_CLASS_BE
:
2935 return &cfqd
->async_cfqq
[1][ioprio
];
2936 case IOPRIO_CLASS_IDLE
:
2937 return &cfqd
->async_idle_cfqq
;
2943 static struct cfq_queue
*
2944 cfq_get_queue(struct cfq_data
*cfqd
, bool is_sync
, struct io_context
*ioc
,
2947 const int ioprio
= task_ioprio(ioc
);
2948 const int ioprio_class
= task_ioprio_class(ioc
);
2949 struct cfq_queue
**async_cfqq
= NULL
;
2950 struct cfq_queue
*cfqq
= NULL
;
2953 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
2958 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
2961 * pin the queue now that it's allocated, scheduler exit will prune it
2963 if (!is_sync
&& !(*async_cfqq
)) {
2964 atomic_inc(&cfqq
->ref
);
2968 atomic_inc(&cfqq
->ref
);
2973 * We drop cfq io contexts lazily, so we may find a dead one.
2976 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
2977 struct cfq_io_context
*cic
)
2979 unsigned long flags
;
2981 WARN_ON(!list_empty(&cic
->queue_list
));
2982 BUG_ON(cic
->key
!= cfqd_dead_key(cfqd
));
2984 spin_lock_irqsave(&ioc
->lock
, flags
);
2986 BUG_ON(ioc
->ioc_data
== cic
);
2988 radix_tree_delete(&ioc
->radix_root
, cfqd
->cic_index
);
2989 hlist_del_rcu(&cic
->cic_list
);
2990 spin_unlock_irqrestore(&ioc
->lock
, flags
);
2995 static struct cfq_io_context
*
2996 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
2998 struct cfq_io_context
*cic
;
2999 unsigned long flags
;
3007 * we maintain a last-hit cache, to avoid browsing over the tree
3009 cic
= rcu_dereference(ioc
->ioc_data
);
3010 if (cic
&& cic
->key
== cfqd
) {
3016 cic
= radix_tree_lookup(&ioc
->radix_root
, cfqd
->cic_index
);
3020 if (unlikely(cic
->key
!= cfqd
)) {
3021 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
3026 spin_lock_irqsave(&ioc
->lock
, flags
);
3027 rcu_assign_pointer(ioc
->ioc_data
, cic
);
3028 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3036 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
3037 * the process specific cfq io context when entered from the block layer.
3038 * Also adds the cic to a per-cfqd list, used when this queue is removed.
3040 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
3041 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
3043 unsigned long flags
;
3046 ret
= radix_tree_preload(gfp_mask
);
3051 spin_lock_irqsave(&ioc
->lock
, flags
);
3052 ret
= radix_tree_insert(&ioc
->radix_root
,
3053 cfqd
->cic_index
, cic
);
3055 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
3056 spin_unlock_irqrestore(&ioc
->lock
, flags
);
3058 radix_tree_preload_end();
3061 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3062 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
3063 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3068 printk(KERN_ERR
"cfq: cic link failed!\n");
3074 * Setup general io context and cfq io context. There can be several cfq
3075 * io contexts per general io context, if this process is doing io to more
3076 * than one device managed by cfq.
3078 static struct cfq_io_context
*
3079 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
3081 struct io_context
*ioc
= NULL
;
3082 struct cfq_io_context
*cic
;
3084 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3086 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
3090 cic
= cfq_cic_lookup(cfqd
, ioc
);
3094 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
3098 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
3102 smp_read_barrier_depends();
3103 if (unlikely(ioc
->ioprio_changed
))
3104 cfq_ioc_set_ioprio(ioc
);
3106 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3107 if (unlikely(ioc
->cgroup_changed
))
3108 cfq_ioc_set_cgroup(ioc
);
3114 put_io_context(ioc
);
3119 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
3121 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
3122 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
3124 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
3125 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
3126 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
3130 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3134 sector_t n_sec
= blk_rq_sectors(rq
);
3135 if (cfqq
->last_request_pos
) {
3136 if (cfqq
->last_request_pos
< blk_rq_pos(rq
))
3137 sdist
= blk_rq_pos(rq
) - cfqq
->last_request_pos
;
3139 sdist
= cfqq
->last_request_pos
- blk_rq_pos(rq
);
3142 cfqq
->seek_history
<<= 1;
3143 if (blk_queue_nonrot(cfqd
->queue
))
3144 cfqq
->seek_history
|= (n_sec
< CFQQ_SECT_THR_NONROT
);
3146 cfqq
->seek_history
|= (sdist
> CFQQ_SEEK_THR
);
3150 * Disable idle window if the process thinks too long or seeks so much that
3154 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3155 struct cfq_io_context
*cic
)
3157 int old_idle
, enable_idle
;
3160 * Don't idle for async or idle io prio class
3162 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
3165 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
3167 if (cfqq
->queued
[0] + cfqq
->queued
[1] >= 4)
3168 cfq_mark_cfqq_deep(cfqq
);
3170 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
3171 (!cfq_cfqq_deep(cfqq
) && CFQQ_SEEKY(cfqq
)))
3173 else if (sample_valid(cic
->ttime_samples
)) {
3174 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
3180 if (old_idle
!= enable_idle
) {
3181 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
3183 cfq_mark_cfqq_idle_window(cfqq
);
3185 cfq_clear_cfqq_idle_window(cfqq
);
3190 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3191 * no or if we aren't sure, a 1 will cause a preempt.
3194 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
3197 struct cfq_queue
*cfqq
;
3199 cfqq
= cfqd
->active_queue
;
3203 if (cfq_class_idle(new_cfqq
))
3206 if (cfq_class_idle(cfqq
))
3210 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3212 if (cfq_class_rt(cfqq
) && !cfq_class_rt(new_cfqq
))
3216 * if the new request is sync, but the currently running queue is
3217 * not, let the sync request have priority.
3219 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
3222 if (new_cfqq
->cfqg
!= cfqq
->cfqg
)
3225 if (cfq_slice_used(cfqq
))
3228 /* Allow preemption only if we are idling on sync-noidle tree */
3229 if (cfqd
->serving_type
== SYNC_NOIDLE_WORKLOAD
&&
3230 cfqq_type(new_cfqq
) == SYNC_NOIDLE_WORKLOAD
&&
3231 new_cfqq
->service_tree
->count
== 2 &&
3232 RB_EMPTY_ROOT(&cfqq
->sort_list
))
3236 * So both queues are sync. Let the new request get disk time if
3237 * it's a metadata request and the current queue is doing regular IO.
3239 if ((rq
->cmd_flags
& REQ_META
) && !cfqq
->meta_pending
)
3243 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3245 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
3248 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
3252 * if this request is as-good as one we would expect from the
3253 * current cfqq, let it preempt
3255 if (cfq_rq_close(cfqd
, cfqq
, rq
))
3262 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3263 * let it have half of its nominal slice.
3265 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3267 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
3268 cfq_slice_expired(cfqd
, 1);
3271 * Put the new queue at the front of the of the current list,
3272 * so we know that it will be selected next.
3274 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
3276 cfq_service_tree_add(cfqd
, cfqq
, 1);
3278 cfqq
->slice_end
= 0;
3279 cfq_mark_cfqq_slice_new(cfqq
);
3283 * Called when a new fs request (rq) is added (to cfqq). Check if there's
3284 * something we should do about it
3287 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
3290 struct cfq_io_context
*cic
= RQ_CIC(rq
);
3293 if (rq
->cmd_flags
& REQ_META
)
3294 cfqq
->meta_pending
++;
3296 cfq_update_io_thinktime(cfqd
, cic
);
3297 cfq_update_io_seektime(cfqd
, cfqq
, rq
);
3298 cfq_update_idle_window(cfqd
, cfqq
, cic
);
3300 cfqq
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
3302 if (cfqq
== cfqd
->active_queue
) {
3304 * Remember that we saw a request from this process, but
3305 * don't start queuing just yet. Otherwise we risk seeing lots
3306 * of tiny requests, because we disrupt the normal plugging
3307 * and merging. If the request is already larger than a single
3308 * page, let it rip immediately. For that case we assume that
3309 * merging is already done. Ditto for a busy system that
3310 * has other work pending, don't risk delaying until the
3311 * idle timer unplug to continue working.
3313 if (cfq_cfqq_wait_request(cfqq
)) {
3314 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
3315 cfqd
->busy_queues
> 1) {
3316 cfq_del_timer(cfqd
, cfqq
);
3317 cfq_clear_cfqq_wait_request(cfqq
);
3318 __blk_run_queue(cfqd
->queue
);
3320 cfq_blkiocg_update_idle_time_stats(
3322 cfq_mark_cfqq_must_dispatch(cfqq
);
3325 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
3327 * not the active queue - expire current slice if it is
3328 * idle and has expired it's mean thinktime or this new queue
3329 * has some old slice time left and is of higher priority or
3330 * this new queue is RT and the current one is BE
3332 cfq_preempt_queue(cfqd
, cfqq
);
3333 __blk_run_queue(cfqd
->queue
);
3337 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
3339 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3340 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3342 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
3343 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
3345 rq_set_fifo_time(rq
, jiffies
+ cfqd
->cfq_fifo_expire
[rq_is_sync(rq
)]);
3346 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
3348 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq
))->blkg
,
3349 &cfqd
->serving_group
->blkg
, rq_data_dir(rq
),
3351 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
3355 * Update hw_tag based on peak queue depth over 50 samples under
3358 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
3360 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
3362 if (cfqd
->rq_in_driver
> cfqd
->hw_tag_est_depth
)
3363 cfqd
->hw_tag_est_depth
= cfqd
->rq_in_driver
;
3365 if (cfqd
->hw_tag
== 1)
3368 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
3369 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
3373 * If active queue hasn't enough requests and can idle, cfq might not
3374 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3377 if (cfqq
&& cfq_cfqq_idle_window(cfqq
) &&
3378 cfqq
->dispatched
+ cfqq
->queued
[0] + cfqq
->queued
[1] <
3379 CFQ_HW_QUEUE_MIN
&& cfqd
->rq_in_driver
< CFQ_HW_QUEUE_MIN
)
3382 if (cfqd
->hw_tag_samples
++ < 50)
3385 if (cfqd
->hw_tag_est_depth
>= CFQ_HW_QUEUE_MIN
)
3391 static bool cfq_should_wait_busy(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
3393 struct cfq_io_context
*cic
= cfqd
->active_cic
;
3395 /* If there are other queues in the group, don't wait */
3396 if (cfqq
->cfqg
->nr_cfqq
> 1)
3399 if (cfq_slice_used(cfqq
))
3402 /* if slice left is less than think time, wait busy */
3403 if (cic
&& sample_valid(cic
->ttime_samples
)
3404 && (cfqq
->slice_end
- jiffies
< cic
->ttime_mean
))
3408 * If think times is less than a jiffy than ttime_mean=0 and above
3409 * will not be true. It might happen that slice has not expired yet
3410 * but will expire soon (4-5 ns) during select_queue(). To cover the
3411 * case where think time is less than a jiffy, mark the queue wait
3412 * busy if only 1 jiffy is left in the slice.
3414 if (cfqq
->slice_end
- jiffies
== 1)
3420 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
3422 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3423 struct cfq_data
*cfqd
= cfqq
->cfqd
;
3424 const int sync
= rq_is_sync(rq
);
3428 cfq_log_cfqq(cfqd
, cfqq
, "complete rqnoidle %d",
3429 !!(rq
->cmd_flags
& REQ_NOIDLE
));
3431 cfq_update_hw_tag(cfqd
);
3433 WARN_ON(!cfqd
->rq_in_driver
);
3434 WARN_ON(!cfqq
->dispatched
);
3435 cfqd
->rq_in_driver
--;
3437 (RQ_CFQG(rq
))->dispatched
--;
3438 cfq_blkiocg_update_completion_stats(&cfqq
->cfqg
->blkg
,
3439 rq_start_time_ns(rq
), rq_io_start_time_ns(rq
),
3440 rq_data_dir(rq
), rq_is_sync(rq
));
3442 cfqd
->rq_in_flight
[cfq_cfqq_sync(cfqq
)]--;
3445 RQ_CIC(rq
)->last_end_request
= now
;
3446 if (!time_after(rq
->start_time
+ cfqd
->cfq_fifo_expire
[1], now
))
3447 cfqd
->last_delayed_sync
= now
;
3451 * If this is the active queue, check if it needs to be expired,
3452 * or if we want to idle in case it has no pending requests.
3454 if (cfqd
->active_queue
== cfqq
) {
3455 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
3457 if (cfq_cfqq_slice_new(cfqq
)) {
3458 cfq_set_prio_slice(cfqd
, cfqq
);
3459 cfq_clear_cfqq_slice_new(cfqq
);
3463 * Should we wait for next request to come in before we expire
3466 if (cfq_should_wait_busy(cfqd
, cfqq
)) {
3467 unsigned long extend_sl
= cfqd
->cfq_slice_idle
;
3468 if (!cfqd
->cfq_slice_idle
)
3469 extend_sl
= cfqd
->cfq_group_idle
;
3470 cfqq
->slice_end
= jiffies
+ extend_sl
;
3471 cfq_mark_cfqq_wait_busy(cfqq
);
3472 cfq_log_cfqq(cfqd
, cfqq
, "will busy wait");
3476 * Idling is not enabled on:
3478 * - idle-priority queues
3480 * - queues with still some requests queued
3481 * - when there is a close cooperator
3483 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
3484 cfq_slice_expired(cfqd
, 1);
3485 else if (sync
&& cfqq_empty
&&
3486 !cfq_close_cooperator(cfqd
, cfqq
)) {
3487 cfqd
->noidle_tree_requires_idle
|=
3488 !(rq
->cmd_flags
& REQ_NOIDLE
);
3490 * Idling is enabled for SYNC_WORKLOAD.
3491 * SYNC_NOIDLE_WORKLOAD idles at the end of the tree
3492 * only if we processed at least one !REQ_NOIDLE request
3494 if (cfqd
->serving_type
== SYNC_WORKLOAD
3495 || cfqd
->noidle_tree_requires_idle
3496 || cfqq
->cfqg
->nr_cfqq
== 1)
3497 cfq_arm_slice_timer(cfqd
);
3501 if (!cfqd
->rq_in_driver
)
3502 cfq_schedule_dispatch(cfqd
);
3506 * we temporarily boost lower priority queues if they are holding fs exclusive
3507 * resources. they are boosted to normal prio (CLASS_BE/4)
3509 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
3511 if (has_fs_excl()) {
3513 * boost idle prio on transactions that would lock out other
3514 * users of the filesystem
3516 if (cfq_class_idle(cfqq
))
3517 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
3518 if (cfqq
->ioprio
> IOPRIO_NORM
)
3519 cfqq
->ioprio
= IOPRIO_NORM
;
3522 * unboost the queue (if needed)
3524 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
3525 cfqq
->ioprio
= cfqq
->org_ioprio
;
3529 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
3531 if (cfq_cfqq_wait_request(cfqq
) && !cfq_cfqq_must_alloc_slice(cfqq
)) {
3532 cfq_mark_cfqq_must_alloc_slice(cfqq
);
3533 return ELV_MQUEUE_MUST
;
3536 return ELV_MQUEUE_MAY
;
3539 static int cfq_may_queue(struct request_queue
*q
, int rw
)
3541 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3542 struct task_struct
*tsk
= current
;
3543 struct cfq_io_context
*cic
;
3544 struct cfq_queue
*cfqq
;
3547 * don't force setup of a queue from here, as a call to may_queue
3548 * does not necessarily imply that a request actually will be queued.
3549 * so just lookup a possibly existing queue, or return 'may queue'
3552 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
3554 return ELV_MQUEUE_MAY
;
3556 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
3558 cfq_init_prio_data(cfqq
, cic
->ioc
);
3559 cfq_prio_boost(cfqq
);
3561 return __cfq_may_queue(cfqq
);
3564 return ELV_MQUEUE_MAY
;
3568 * queue lock held here
3570 static void cfq_put_request(struct request
*rq
)
3572 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
3575 const int rw
= rq_data_dir(rq
);
3577 BUG_ON(!cfqq
->allocated
[rw
]);
3578 cfqq
->allocated
[rw
]--;
3580 put_io_context(RQ_CIC(rq
)->ioc
);
3582 rq
->elevator_private
= NULL
;
3583 rq
->elevator_private2
= NULL
;
3585 /* Put down rq reference on cfqg */
3586 cfq_put_cfqg(RQ_CFQG(rq
));
3587 rq
->elevator_private3
= NULL
;
3589 cfq_put_queue(cfqq
);
3593 static struct cfq_queue
*
3594 cfq_merge_cfqqs(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
3595 struct cfq_queue
*cfqq
)
3597 cfq_log_cfqq(cfqd
, cfqq
, "merging with queue %p", cfqq
->new_cfqq
);
3598 cic_set_cfqq(cic
, cfqq
->new_cfqq
, 1);
3599 cfq_mark_cfqq_coop(cfqq
->new_cfqq
);
3600 cfq_put_queue(cfqq
);
3601 return cic_to_cfqq(cic
, 1);
3605 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3606 * was the last process referring to said cfqq.
3608 static struct cfq_queue
*
3609 split_cfqq(struct cfq_io_context
*cic
, struct cfq_queue
*cfqq
)
3611 if (cfqq_process_refs(cfqq
) == 1) {
3612 cfqq
->pid
= current
->pid
;
3613 cfq_clear_cfqq_coop(cfqq
);
3614 cfq_clear_cfqq_split_coop(cfqq
);
3618 cic_set_cfqq(cic
, NULL
, 1);
3620 cfq_put_cooperator(cfqq
);
3622 cfq_put_queue(cfqq
);
3626 * Allocate cfq data structures associated with this request.
3629 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
3631 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
3632 struct cfq_io_context
*cic
;
3633 const int rw
= rq_data_dir(rq
);
3634 const bool is_sync
= rq_is_sync(rq
);
3635 struct cfq_queue
*cfqq
;
3636 unsigned long flags
;
3638 might_sleep_if(gfp_mask
& __GFP_WAIT
);
3640 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
3642 spin_lock_irqsave(q
->queue_lock
, flags
);
3648 cfqq
= cic_to_cfqq(cic
, is_sync
);
3649 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
3650 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
3651 cic_set_cfqq(cic
, cfqq
, is_sync
);
3654 * If the queue was seeky for too long, break it apart.
3656 if (cfq_cfqq_coop(cfqq
) && cfq_cfqq_split_coop(cfqq
)) {
3657 cfq_log_cfqq(cfqd
, cfqq
, "breaking apart cfqq");
3658 cfqq
= split_cfqq(cic
, cfqq
);
3664 * Check to see if this queue is scheduled to merge with
3665 * another, closely cooperating queue. The merging of
3666 * queues happens here as it must be done in process context.
3667 * The reference on new_cfqq was taken in merge_cfqqs.
3670 cfqq
= cfq_merge_cfqqs(cfqd
, cic
, cfqq
);
3673 cfqq
->allocated
[rw
]++;
3674 atomic_inc(&cfqq
->ref
);
3676 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3678 rq
->elevator_private
= cic
;
3679 rq
->elevator_private2
= cfqq
;
3680 rq
->elevator_private3
= cfq_ref_get_cfqg(cfqq
->cfqg
);
3685 put_io_context(cic
->ioc
);
3687 cfq_schedule_dispatch(cfqd
);
3688 spin_unlock_irqrestore(q
->queue_lock
, flags
);
3689 cfq_log(cfqd
, "set_request fail");
3693 static void cfq_kick_queue(struct work_struct
*work
)
3695 struct cfq_data
*cfqd
=
3696 container_of(work
, struct cfq_data
, unplug_work
);
3697 struct request_queue
*q
= cfqd
->queue
;
3699 spin_lock_irq(q
->queue_lock
);
3700 __blk_run_queue(cfqd
->queue
);
3701 spin_unlock_irq(q
->queue_lock
);
3705 * Timer running if the active_queue is currently idling inside its time slice
3707 static void cfq_idle_slice_timer(unsigned long data
)
3709 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
3710 struct cfq_queue
*cfqq
;
3711 unsigned long flags
;
3714 cfq_log(cfqd
, "idle timer fired");
3716 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
3718 cfqq
= cfqd
->active_queue
;
3723 * We saw a request before the queue expired, let it through
3725 if (cfq_cfqq_must_dispatch(cfqq
))
3731 if (cfq_slice_used(cfqq
))
3735 * only expire and reinvoke request handler, if there are
3736 * other queues with pending requests
3738 if (!cfqd
->busy_queues
)
3742 * not expired and it has a request pending, let it dispatch
3744 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
3748 * Queue depth flag is reset only when the idle didn't succeed
3750 cfq_clear_cfqq_deep(cfqq
);
3753 cfq_slice_expired(cfqd
, timed_out
);
3755 cfq_schedule_dispatch(cfqd
);
3757 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
3760 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
3762 del_timer_sync(&cfqd
->idle_slice_timer
);
3763 cancel_work_sync(&cfqd
->unplug_work
);
3766 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
3770 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
3771 if (cfqd
->async_cfqq
[0][i
])
3772 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
3773 if (cfqd
->async_cfqq
[1][i
])
3774 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
3777 if (cfqd
->async_idle_cfqq
)
3778 cfq_put_queue(cfqd
->async_idle_cfqq
);
3781 static void cfq_cfqd_free(struct rcu_head
*head
)
3783 kfree(container_of(head
, struct cfq_data
, rcu
));
3786 static void cfq_exit_queue(struct elevator_queue
*e
)
3788 struct cfq_data
*cfqd
= e
->elevator_data
;
3789 struct request_queue
*q
= cfqd
->queue
;
3791 cfq_shutdown_timer_wq(cfqd
);
3793 spin_lock_irq(q
->queue_lock
);
3795 if (cfqd
->active_queue
)
3796 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
3798 while (!list_empty(&cfqd
->cic_list
)) {
3799 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
3800 struct cfq_io_context
,
3803 __cfq_exit_single_io_context(cfqd
, cic
);
3806 cfq_put_async_queues(cfqd
);
3807 cfq_release_cfq_groups(cfqd
);
3808 cfq_blkiocg_del_blkio_group(&cfqd
->root_group
.blkg
);
3810 spin_unlock_irq(q
->queue_lock
);
3812 cfq_shutdown_timer_wq(cfqd
);
3814 spin_lock(&cic_index_lock
);
3815 ida_remove(&cic_index_ida
, cfqd
->cic_index
);
3816 spin_unlock(&cic_index_lock
);
3818 /* Wait for cfqg->blkg->key accessors to exit their grace periods. */
3819 call_rcu(&cfqd
->rcu
, cfq_cfqd_free
);
3822 static int cfq_alloc_cic_index(void)
3827 if (!ida_pre_get(&cic_index_ida
, GFP_KERNEL
))
3830 spin_lock(&cic_index_lock
);
3831 error
= ida_get_new(&cic_index_ida
, &index
);
3832 spin_unlock(&cic_index_lock
);
3833 if (error
&& error
!= -EAGAIN
)
3840 static void *cfq_init_queue(struct request_queue
*q
)
3842 struct cfq_data
*cfqd
;
3844 struct cfq_group
*cfqg
;
3845 struct cfq_rb_root
*st
;
3847 i
= cfq_alloc_cic_index();
3851 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
3855 cfqd
->cic_index
= i
;
3857 /* Init root service tree */
3858 cfqd
->grp_service_tree
= CFQ_RB_ROOT
;
3860 /* Init root group */
3861 cfqg
= &cfqd
->root_group
;
3862 for_each_cfqg_st(cfqg
, i
, j
, st
)
3864 RB_CLEAR_NODE(&cfqg
->rb_node
);
3866 /* Give preference to root group over other groups */
3867 cfqg
->weight
= 2*BLKIO_WEIGHT_DEFAULT
;
3869 #ifdef CONFIG_CFQ_GROUP_IOSCHED
3871 * Take a reference to root group which we never drop. This is just
3872 * to make sure that cfq_put_cfqg() does not try to kfree root group
3874 atomic_set(&cfqg
->ref
, 1);
3876 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup
, &cfqg
->blkg
,
3881 * Not strictly needed (since RB_ROOT just clears the node and we
3882 * zeroed cfqd on alloc), but better be safe in case someone decides
3883 * to add magic to the rb code
3885 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
3886 cfqd
->prio_trees
[i
] = RB_ROOT
;
3889 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3890 * Grab a permanent reference to it, so that the normal code flow
3891 * will not attempt to free it.
3893 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
3894 atomic_inc(&cfqd
->oom_cfqq
.ref
);
3895 cfq_link_cfqq_cfqg(&cfqd
->oom_cfqq
, &cfqd
->root_group
);
3897 INIT_LIST_HEAD(&cfqd
->cic_list
);
3901 init_timer(&cfqd
->idle_slice_timer
);
3902 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
3903 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
3905 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
3907 cfqd
->cfq_quantum
= cfq_quantum
;
3908 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
3909 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
3910 cfqd
->cfq_back_max
= cfq_back_max
;
3911 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
3912 cfqd
->cfq_slice
[0] = cfq_slice_async
;
3913 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
3914 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
3915 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
3916 cfqd
->cfq_group_idle
= cfq_group_idle
;
3917 cfqd
->cfq_latency
= 1;
3918 cfqd
->cfq_group_isolation
= 0;
3921 * we optimistically start assuming sync ops weren't delayed in last
3922 * second, in order to have larger depth for async operations.
3924 cfqd
->last_delayed_sync
= jiffies
- HZ
;
3928 static void cfq_slab_kill(void)
3931 * Caller already ensured that pending RCU callbacks are completed,
3932 * so we should have no busy allocations at this point.
3935 kmem_cache_destroy(cfq_pool
);
3937 kmem_cache_destroy(cfq_ioc_pool
);
3940 static int __init
cfq_slab_setup(void)
3942 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
3946 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
3957 * sysfs parts below -->
3960 cfq_var_show(unsigned int var
, char *page
)
3962 return sprintf(page
, "%d\n", var
);
3966 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
3968 char *p
= (char *) page
;
3970 *var
= simple_strtoul(p
, &p
, 10);
3974 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
3975 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
3977 struct cfq_data *cfqd = e->elevator_data; \
3978 unsigned int __data = __VAR; \
3980 __data = jiffies_to_msecs(__data); \
3981 return cfq_var_show(__data, (page)); \
3983 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
3984 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
3985 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
3986 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
3987 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
3988 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
3989 SHOW_FUNCTION(cfq_group_idle_show
, cfqd
->cfq_group_idle
, 1);
3990 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
3991 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
3992 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
3993 SHOW_FUNCTION(cfq_low_latency_show
, cfqd
->cfq_latency
, 0);
3994 SHOW_FUNCTION(cfq_group_isolation_show
, cfqd
->cfq_group_isolation
, 0);
3995 #undef SHOW_FUNCTION
3997 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
3998 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
4000 struct cfq_data *cfqd = e->elevator_data; \
4001 unsigned int __data; \
4002 int ret = cfq_var_store(&__data, (page), count); \
4003 if (__data < (MIN)) \
4005 else if (__data > (MAX)) \
4008 *(__PTR) = msecs_to_jiffies(__data); \
4010 *(__PTR) = __data; \
4013 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
4014 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
4016 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
4018 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
4019 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
4021 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
4022 STORE_FUNCTION(cfq_group_idle_store
, &cfqd
->cfq_group_idle
, 0, UINT_MAX
, 1);
4023 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
4024 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
4025 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
4027 STORE_FUNCTION(cfq_low_latency_store
, &cfqd
->cfq_latency
, 0, 1, 0);
4028 STORE_FUNCTION(cfq_group_isolation_store
, &cfqd
->cfq_group_isolation
, 0, 1, 0);
4029 #undef STORE_FUNCTION
4031 #define CFQ_ATTR(name) \
4032 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4034 static struct elv_fs_entry cfq_attrs
[] = {
4036 CFQ_ATTR(fifo_expire_sync
),
4037 CFQ_ATTR(fifo_expire_async
),
4038 CFQ_ATTR(back_seek_max
),
4039 CFQ_ATTR(back_seek_penalty
),
4040 CFQ_ATTR(slice_sync
),
4041 CFQ_ATTR(slice_async
),
4042 CFQ_ATTR(slice_async_rq
),
4043 CFQ_ATTR(slice_idle
),
4044 CFQ_ATTR(group_idle
),
4045 CFQ_ATTR(low_latency
),
4046 CFQ_ATTR(group_isolation
),
4050 static struct elevator_type iosched_cfq
= {
4052 .elevator_merge_fn
= cfq_merge
,
4053 .elevator_merged_fn
= cfq_merged_request
,
4054 .elevator_merge_req_fn
= cfq_merged_requests
,
4055 .elevator_allow_merge_fn
= cfq_allow_merge
,
4056 .elevator_bio_merged_fn
= cfq_bio_merged
,
4057 .elevator_dispatch_fn
= cfq_dispatch_requests
,
4058 .elevator_add_req_fn
= cfq_insert_request
,
4059 .elevator_activate_req_fn
= cfq_activate_request
,
4060 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
4061 .elevator_queue_empty_fn
= cfq_queue_empty
,
4062 .elevator_completed_req_fn
= cfq_completed_request
,
4063 .elevator_former_req_fn
= elv_rb_former_request
,
4064 .elevator_latter_req_fn
= elv_rb_latter_request
,
4065 .elevator_set_req_fn
= cfq_set_request
,
4066 .elevator_put_req_fn
= cfq_put_request
,
4067 .elevator_may_queue_fn
= cfq_may_queue
,
4068 .elevator_init_fn
= cfq_init_queue
,
4069 .elevator_exit_fn
= cfq_exit_queue
,
4070 .trim
= cfq_free_io_context
,
4072 .elevator_attrs
= cfq_attrs
,
4073 .elevator_name
= "cfq",
4074 .elevator_owner
= THIS_MODULE
,
4077 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4078 static struct blkio_policy_type blkio_policy_cfq
= {
4080 .blkio_unlink_group_fn
= cfq_unlink_blkio_group
,
4081 .blkio_update_group_weight_fn
= cfq_update_blkio_group_weight
,
4085 static struct blkio_policy_type blkio_policy_cfq
;
4088 static int __init
cfq_init(void)
4091 * could be 0 on HZ < 1000 setups
4093 if (!cfq_slice_async
)
4094 cfq_slice_async
= 1;
4095 if (!cfq_slice_idle
)
4098 #ifdef CONFIG_CFQ_GROUP_IOSCHED
4099 if (!cfq_group_idle
)
4104 if (cfq_slab_setup())
4107 elv_register(&iosched_cfq
);
4108 blkio_policy_register(&blkio_policy_cfq
);
4113 static void __exit
cfq_exit(void)
4115 DECLARE_COMPLETION_ONSTACK(all_gone
);
4116 blkio_policy_unregister(&blkio_policy_cfq
);
4117 elv_unregister(&iosched_cfq
);
4118 ioc_gone
= &all_gone
;
4119 /* ioc_gone's update must be visible before reading ioc_count */
4123 * this also protects us from entering cfq_slab_kill() with
4124 * pending RCU callbacks
4126 if (elv_ioc_count_read(cfq_ioc_count
))
4127 wait_for_completion(&all_gone
);
4128 ida_destroy(&cic_index_ida
);
4132 module_init(cfq_init
);
4133 module_exit(cfq_exit
);
4135 MODULE_AUTHOR("Jens Axboe");
4136 MODULE_LICENSE("GPL");
4137 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");