gru: add additional GRU statistics
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / misc / sgi-gru / grukservices.c
blob4da6f56833d125d209ff4637d17b3d6c43e8f9f5
1 /*
2 * SN Platform GRU Driver
4 * KERNEL SERVICES THAT USE THE GRU
6 * Copyright (c) 2008 Silicon Graphics, Inc. All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include "gru.h"
35 #include "grulib.h"
36 #include "grutables.h"
37 #include "grukservices.h"
38 #include "gru_instructions.h"
39 #include <asm/uv/uv_hub.h>
42 * Kernel GRU Usage
44 * The following is an interim algorithm for management of kernel GRU
45 * resources. This will likely be replaced when we better understand the
46 * kernel/user requirements.
48 * Blade percpu resources reserved for kernel use. These resources are
49 * reserved whenever the the kernel context for the blade is loaded. Note
50 * that the kernel context is not guaranteed to be always available. It is
51 * loaded on demand & can be stolen by a user if the user demand exceeds the
52 * kernel demand. The kernel can always reload the kernel context but
53 * a SLEEP may be required!!!.
55 * Async Overview:
57 * Each blade has one "kernel context" that owns GRU kernel resources
58 * located on the blade. Kernel drivers use GRU resources in this context
59 * for sending messages, zeroing memory, etc.
61 * The kernel context is dynamically loaded on demand. If it is not in
62 * use by the kernel, the kernel context can be unloaded & given to a user.
63 * The kernel context will be reloaded when needed. This may require that
64 * a context be stolen from a user.
65 * NOTE: frequent unloading/reloading of the kernel context is
66 * expensive. We are depending on batch schedulers, cpusets, sane
67 * drivers or some other mechanism to prevent the need for frequent
68 * stealing/reloading.
70 * The kernel context consists of two parts:
71 * - 1 CB & a few DSRs that are reserved for each cpu on the blade.
72 * Each cpu has it's own private resources & does not share them
73 * with other cpus. These resources are used serially, ie,
74 * locked, used & unlocked on each call to a function in
75 * grukservices.
76 * (Now that we have dynamic loading of kernel contexts, I
77 * may rethink this & allow sharing between cpus....)
79 * - Additional resources can be reserved long term & used directly
80 * by UV drivers located in the kernel. Drivers using these GRU
81 * resources can use asynchronous GRU instructions that send
82 * interrupts on completion.
83 * - these resources must be explicitly locked/unlocked
84 * - locked resources prevent (obviously) the kernel
85 * context from being unloaded.
86 * - drivers using these resource directly issue their own
87 * GRU instruction and must wait/check completion.
89 * When these resources are reserved, the caller can optionally
90 * associate a wait_queue with the resources and use asynchronous
91 * GRU instructions. When an async GRU instruction completes, the
92 * driver will do a wakeup on the event.
97 #define ASYNC_HAN_TO_BID(h) ((h) - 1)
98 #define ASYNC_BID_TO_HAN(b) ((b) + 1)
99 #define ASYNC_HAN_TO_BS(h) gru_base[ASYNC_HAN_TO_BID(h)]
100 #define KCB_TO_GID(cb) ((cb - gru_start_vaddr) / \
101 (GRU_SIZE * GRU_CHIPLETS_PER_BLADE))
102 #define KCB_TO_BS(cb) gru_base[KCB_TO_GID(cb)]
104 #define GRU_NUM_KERNEL_CBR 1
105 #define GRU_NUM_KERNEL_DSR_BYTES 256
106 #define GRU_NUM_KERNEL_DSR_CL (GRU_NUM_KERNEL_DSR_BYTES / \
107 GRU_CACHE_LINE_BYTES)
109 /* GRU instruction attributes for all instructions */
110 #define IMA IMA_CB_DELAY
112 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
113 #define __gru_cacheline_aligned__ \
114 __attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
116 #define MAGIC 0x1234567887654321UL
118 /* Default retry count for GRU errors on kernel instructions */
119 #define EXCEPTION_RETRY_LIMIT 3
121 /* Status of message queue sections */
122 #define MQS_EMPTY 0
123 #define MQS_FULL 1
124 #define MQS_NOOP 2
126 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
127 /* optimized for x86_64 */
128 struct message_queue {
129 union gru_mesqhead head __gru_cacheline_aligned__; /* CL 0 */
130 int qlines; /* DW 1 */
131 long hstatus[2];
132 void *next __gru_cacheline_aligned__;/* CL 1 */
133 void *limit;
134 void *start;
135 void *start2;
136 char data ____cacheline_aligned; /* CL 2 */
139 /* First word in every message - used by mesq interface */
140 struct message_header {
141 char present;
142 char present2;
143 char lines;
144 char fill;
147 #define HSTATUS(mq, h) ((mq) + offsetof(struct message_queue, hstatus[h]))
150 * Reload the blade's kernel context into a GRU chiplet. Called holding
151 * the bs_kgts_sema for READ. Will steal user contexts if necessary.
153 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
155 struct gru_state *gru;
156 struct gru_thread_state *kgts;
157 void *vaddr;
158 int ctxnum, ncpus;
160 up_read(&bs->bs_kgts_sema);
161 down_write(&bs->bs_kgts_sema);
163 if (!bs->bs_kgts) {
164 bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0);
165 bs->bs_kgts->ts_user_blade_id = blade_id;
167 kgts = bs->bs_kgts;
169 if (!kgts->ts_gru) {
170 STAT(load_kernel_context);
171 ncpus = uv_blade_nr_possible_cpus(blade_id);
172 kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
173 GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
174 kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
175 GRU_NUM_KERNEL_DSR_BYTES * ncpus +
176 bs->bs_async_dsr_bytes);
177 while (!gru_assign_gru_context(kgts)) {
178 msleep(1);
179 gru_steal_context(kgts);
181 gru_load_context(kgts);
182 gru = bs->bs_kgts->ts_gru;
183 vaddr = gru->gs_gru_base_vaddr;
184 ctxnum = kgts->ts_ctxnum;
185 bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
186 bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
188 downgrade_write(&bs->bs_kgts_sema);
192 * Free all kernel contexts that are not currently in use.
193 * Returns 0 if all freed, else number of inuse context.
195 static int gru_free_kernel_contexts(void)
197 struct gru_blade_state *bs;
198 struct gru_thread_state *kgts;
199 int bid, ret = 0;
201 for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
202 bs = gru_base[bid];
203 if (!bs)
204 continue;
206 /* Ignore busy contexts. Don't want to block here. */
207 if (down_write_trylock(&bs->bs_kgts_sema)) {
208 kgts = bs->bs_kgts;
209 if (kgts && kgts->ts_gru)
210 gru_unload_context(kgts, 0);
211 bs->bs_kgts = NULL;
212 up_write(&bs->bs_kgts_sema);
213 kfree(kgts);
214 } else {
215 ret++;
218 return ret;
222 * Lock & load the kernel context for the specified blade.
224 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
226 struct gru_blade_state *bs;
228 STAT(lock_kernel_context);
229 bs = gru_base[blade_id];
231 down_read(&bs->bs_kgts_sema);
232 if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
233 gru_load_kernel_context(bs, blade_id);
234 return bs;
239 * Unlock the kernel context for the specified blade. Context is not
240 * unloaded but may be stolen before next use.
242 static void gru_unlock_kernel_context(int blade_id)
244 struct gru_blade_state *bs;
246 bs = gru_base[blade_id];
247 up_read(&bs->bs_kgts_sema);
248 STAT(unlock_kernel_context);
252 * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
253 * - returns with preemption disabled
255 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
257 struct gru_blade_state *bs;
258 int lcpu;
260 BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
261 preempt_disable();
262 bs = gru_lock_kernel_context(uv_numa_blade_id());
263 lcpu = uv_blade_processor_id();
264 *cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
265 *dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
266 return 0;
270 * Free the current cpus reserved DSR/CBR resources.
272 static void gru_free_cpu_resources(void *cb, void *dsr)
274 gru_unlock_kernel_context(uv_numa_blade_id());
275 preempt_enable();
279 * Reserve GRU resources to be used asynchronously.
280 * Note: currently supports only 1 reservation per blade.
282 * input:
283 * blade_id - blade on which resources should be reserved
284 * cbrs - number of CBRs
285 * dsr_bytes - number of DSR bytes needed
286 * output:
287 * handle to identify resource
288 * (0 = async resources already reserved)
290 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
291 struct completion *cmp)
293 struct gru_blade_state *bs;
294 struct gru_thread_state *kgts;
295 int ret = 0;
297 bs = gru_base[blade_id];
299 down_write(&bs->bs_kgts_sema);
301 /* Verify no resources already reserved */
302 if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
303 goto done;
304 bs->bs_async_dsr_bytes = dsr_bytes;
305 bs->bs_async_cbrs = cbrs;
306 bs->bs_async_wq = cmp;
307 kgts = bs->bs_kgts;
309 /* Resources changed. Unload context if already loaded */
310 if (kgts && kgts->ts_gru)
311 gru_unload_context(kgts, 0);
312 ret = ASYNC_BID_TO_HAN(blade_id);
314 done:
315 up_write(&bs->bs_kgts_sema);
316 return ret;
320 * Release async resources previously reserved.
322 * input:
323 * han - handle to identify resources
325 void gru_release_async_resources(unsigned long han)
327 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
329 down_write(&bs->bs_kgts_sema);
330 bs->bs_async_dsr_bytes = 0;
331 bs->bs_async_cbrs = 0;
332 bs->bs_async_wq = NULL;
333 up_write(&bs->bs_kgts_sema);
337 * Wait for async GRU instructions to complete.
339 * input:
340 * han - handle to identify resources
342 void gru_wait_async_cbr(unsigned long han)
344 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
346 wait_for_completion(bs->bs_async_wq);
347 mb();
351 * Lock previous reserved async GRU resources
353 * input:
354 * han - handle to identify resources
355 * output:
356 * cb - pointer to first CBR
357 * dsr - pointer to first DSR
359 void gru_lock_async_resource(unsigned long han, void **cb, void **dsr)
361 struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
362 int blade_id = ASYNC_HAN_TO_BID(han);
363 int ncpus;
365 gru_lock_kernel_context(blade_id);
366 ncpus = uv_blade_nr_possible_cpus(blade_id);
367 if (cb)
368 *cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
369 if (dsr)
370 *dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
374 * Unlock previous reserved async GRU resources
376 * input:
377 * han - handle to identify resources
379 void gru_unlock_async_resource(unsigned long han)
381 int blade_id = ASYNC_HAN_TO_BID(han);
383 gru_unlock_kernel_context(blade_id);
386 /*----------------------------------------------------------------------*/
387 int gru_get_cb_exception_detail(void *cb,
388 struct control_block_extended_exc_detail *excdet)
390 struct gru_control_block_extended *cbe;
391 struct gru_blade_state *bs;
392 int cbrnum;
394 bs = KCB_TO_BS(cb);
395 cbrnum = thread_cbr_number(bs->bs_kgts, get_cb_number(cb));
396 cbe = get_cbe(GRUBASE(cb), cbrnum);
397 gru_flush_cache(cbe); /* CBE not coherent */
398 sync_core();
399 excdet->opc = cbe->opccpy;
400 excdet->exopc = cbe->exopccpy;
401 excdet->ecause = cbe->ecause;
402 excdet->exceptdet0 = cbe->idef1upd;
403 excdet->exceptdet1 = cbe->idef3upd;
404 gru_flush_cache(cbe);
405 return 0;
408 char *gru_get_cb_exception_detail_str(int ret, void *cb,
409 char *buf, int size)
411 struct gru_control_block_status *gen = (void *)cb;
412 struct control_block_extended_exc_detail excdet;
414 if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
415 gru_get_cb_exception_detail(cb, &excdet);
416 snprintf(buf, size,
417 "GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
418 "excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
419 gen, excdet.opc, excdet.exopc, excdet.ecause,
420 excdet.exceptdet0, excdet.exceptdet1);
421 } else {
422 snprintf(buf, size, "No exception");
424 return buf;
427 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
429 while (gen->istatus >= CBS_ACTIVE) {
430 cpu_relax();
431 barrier();
433 return gen->istatus;
436 static int gru_retry_exception(void *cb)
438 struct gru_control_block_status *gen = (void *)cb;
439 struct control_block_extended_exc_detail excdet;
440 int retry = EXCEPTION_RETRY_LIMIT;
442 while (1) {
443 if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
444 return CBS_IDLE;
445 if (gru_get_cb_message_queue_substatus(cb))
446 return CBS_EXCEPTION;
447 gru_get_cb_exception_detail(cb, &excdet);
448 if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
449 (excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
450 break;
451 if (retry-- == 0)
452 break;
453 gen->icmd = 1;
454 gru_flush_cache(gen);
456 return CBS_EXCEPTION;
459 int gru_check_status_proc(void *cb)
461 struct gru_control_block_status *gen = (void *)cb;
462 int ret;
464 ret = gen->istatus;
465 if (ret == CBS_EXCEPTION)
466 ret = gru_retry_exception(cb);
467 rmb();
468 return ret;
472 int gru_wait_proc(void *cb)
474 struct gru_control_block_status *gen = (void *)cb;
475 int ret;
477 ret = gru_wait_idle_or_exception(gen);
478 if (ret == CBS_EXCEPTION)
479 ret = gru_retry_exception(cb);
480 rmb();
481 return ret;
484 void gru_abort(int ret, void *cb, char *str)
486 char buf[GRU_EXC_STR_SIZE];
488 panic("GRU FATAL ERROR: %s - %s\n", str,
489 gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
492 void gru_wait_abort_proc(void *cb)
494 int ret;
496 ret = gru_wait_proc(cb);
497 if (ret)
498 gru_abort(ret, cb, "gru_wait_abort");
502 /*------------------------------ MESSAGE QUEUES -----------------------------*/
504 /* Internal status . These are NOT returned to the user. */
505 #define MQIE_AGAIN -1 /* try again */
509 * Save/restore the "present" flag that is in the second line of 2-line
510 * messages
512 static inline int get_present2(void *p)
514 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
515 return mhdr->present;
518 static inline void restore_present2(void *p, int val)
520 struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
521 mhdr->present = val;
525 * Create a message queue.
526 * qlines - message queue size in cache lines. Includes 2-line header.
528 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
529 void *p, unsigned int bytes, int nasid, int vector, int apicid)
531 struct message_queue *mq = p;
532 unsigned int qlines;
534 qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
535 memset(mq, 0, bytes);
536 mq->start = &mq->data;
537 mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
538 mq->next = &mq->data;
539 mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
540 mq->qlines = qlines;
541 mq->hstatus[0] = 0;
542 mq->hstatus[1] = 1;
543 mq->head = gru_mesq_head(2, qlines / 2 + 1);
544 mqd->mq = mq;
545 mqd->mq_gpa = uv_gpa(mq);
546 mqd->qlines = qlines;
547 mqd->interrupt_pnode = UV_NASID_TO_PNODE(nasid);
548 mqd->interrupt_vector = vector;
549 mqd->interrupt_apicid = apicid;
550 return 0;
552 EXPORT_SYMBOL_GPL(gru_create_message_queue);
555 * Send a NOOP message to a message queue
556 * Returns:
557 * 0 - if queue is full after the send. This is the normal case
558 * but various races can change this.
559 * -1 - if mesq sent successfully but queue not full
560 * >0 - unexpected error. MQE_xxx returned
562 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
563 void *mesg)
565 const struct message_header noop_header = {
566 .present = MQS_NOOP, .lines = 1};
567 unsigned long m;
568 int substatus, ret;
569 struct message_header save_mhdr, *mhdr = mesg;
571 STAT(mesq_noop);
572 save_mhdr = *mhdr;
573 *mhdr = noop_header;
574 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
575 ret = gru_wait(cb);
577 if (ret) {
578 substatus = gru_get_cb_message_queue_substatus(cb);
579 switch (substatus) {
580 case CBSS_NO_ERROR:
581 STAT(mesq_noop_unexpected_error);
582 ret = MQE_UNEXPECTED_CB_ERR;
583 break;
584 case CBSS_LB_OVERFLOWED:
585 STAT(mesq_noop_lb_overflow);
586 ret = MQE_CONGESTION;
587 break;
588 case CBSS_QLIMIT_REACHED:
589 STAT(mesq_noop_qlimit_reached);
590 ret = 0;
591 break;
592 case CBSS_AMO_NACKED:
593 STAT(mesq_noop_amo_nacked);
594 ret = MQE_CONGESTION;
595 break;
596 case CBSS_PUT_NACKED:
597 STAT(mesq_noop_put_nacked);
598 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
599 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
600 IMA);
601 if (gru_wait(cb) == CBS_IDLE)
602 ret = MQIE_AGAIN;
603 else
604 ret = MQE_UNEXPECTED_CB_ERR;
605 break;
606 case CBSS_PAGE_OVERFLOW:
607 STAT(mesq_noop_page_overflow);
608 /* fallthru */
609 default:
610 BUG();
613 *mhdr = save_mhdr;
614 return ret;
618 * Handle a gru_mesq full.
620 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
621 void *mesg, int lines)
623 union gru_mesqhead mqh;
624 unsigned int limit, head;
625 unsigned long avalue;
626 int half, qlines;
628 /* Determine if switching to first/second half of q */
629 avalue = gru_get_amo_value(cb);
630 head = gru_get_amo_value_head(cb);
631 limit = gru_get_amo_value_limit(cb);
633 qlines = mqd->qlines;
634 half = (limit != qlines);
636 if (half)
637 mqh = gru_mesq_head(qlines / 2 + 1, qlines);
638 else
639 mqh = gru_mesq_head(2, qlines / 2 + 1);
641 /* Try to get lock for switching head pointer */
642 gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
643 if (gru_wait(cb) != CBS_IDLE)
644 goto cberr;
645 if (!gru_get_amo_value(cb)) {
646 STAT(mesq_qf_locked);
647 return MQE_QUEUE_FULL;
650 /* Got the lock. Send optional NOP if queue not full, */
651 if (head != limit) {
652 if (send_noop_message(cb, mqd, mesg)) {
653 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
654 XTYPE_DW, IMA);
655 if (gru_wait(cb) != CBS_IDLE)
656 goto cberr;
657 STAT(mesq_qf_noop_not_full);
658 return MQIE_AGAIN;
660 avalue++;
663 /* Then flip queuehead to other half of queue. */
664 gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
665 IMA);
666 if (gru_wait(cb) != CBS_IDLE)
667 goto cberr;
669 /* If not successfully in swapping queue head, clear the hstatus lock */
670 if (gru_get_amo_value(cb) != avalue) {
671 STAT(mesq_qf_switch_head_failed);
672 gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
673 IMA);
674 if (gru_wait(cb) != CBS_IDLE)
675 goto cberr;
677 return MQIE_AGAIN;
678 cberr:
679 STAT(mesq_qf_unexpected_error);
680 return MQE_UNEXPECTED_CB_ERR;
684 * Send a cross-partition interrupt to the SSI that contains the target
685 * message queue. Normally, the interrupt is automatically delivered by hardware
686 * but some error conditions require explicit delivery.
688 static void send_message_queue_interrupt(struct gru_message_queue_desc *mqd)
690 if (mqd->interrupt_vector)
691 uv_hub_send_ipi(mqd->interrupt_pnode, mqd->interrupt_apicid,
692 mqd->interrupt_vector);
696 * Handle a PUT failure. Note: if message was a 2-line message, one of the
697 * lines might have successfully have been written. Before sending the
698 * message, "present" must be cleared in BOTH lines to prevent the receiver
699 * from prematurely seeing the full message.
701 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
702 void *mesg, int lines)
704 unsigned long m;
706 m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
707 if (lines == 2) {
708 gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
709 if (gru_wait(cb) != CBS_IDLE)
710 return MQE_UNEXPECTED_CB_ERR;
712 gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
713 if (gru_wait(cb) != CBS_IDLE)
714 return MQE_UNEXPECTED_CB_ERR;
715 send_message_queue_interrupt(mqd);
716 return MQE_OK;
720 * Handle a gru_mesq failure. Some of these failures are software recoverable
721 * or retryable.
723 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
724 void *mesg, int lines)
726 int substatus, ret = 0;
728 substatus = gru_get_cb_message_queue_substatus(cb);
729 switch (substatus) {
730 case CBSS_NO_ERROR:
731 STAT(mesq_send_unexpected_error);
732 ret = MQE_UNEXPECTED_CB_ERR;
733 break;
734 case CBSS_LB_OVERFLOWED:
735 STAT(mesq_send_lb_overflow);
736 ret = MQE_CONGESTION;
737 break;
738 case CBSS_QLIMIT_REACHED:
739 STAT(mesq_send_qlimit_reached);
740 ret = send_message_queue_full(cb, mqd, mesg, lines);
741 break;
742 case CBSS_AMO_NACKED:
743 STAT(mesq_send_amo_nacked);
744 ret = MQE_CONGESTION;
745 break;
746 case CBSS_PUT_NACKED:
747 STAT(mesq_send_put_nacked);
748 ret = send_message_put_nacked(cb, mqd, mesg, lines);
749 break;
750 case CBSS_PAGE_OVERFLOW:
751 STAT(mesq_page_overflow);
752 /* fallthru */
753 default:
754 BUG();
756 return ret;
760 * Send a message to a message queue
761 * mqd message queue descriptor
762 * mesg message. ust be vaddr within a GSEG
763 * bytes message size (<= 2 CL)
765 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
766 unsigned int bytes)
768 struct message_header *mhdr;
769 void *cb;
770 void *dsr;
771 int istatus, clines, ret;
773 STAT(mesq_send);
774 BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
776 clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
777 if (gru_get_cpu_resources(bytes, &cb, &dsr))
778 return MQE_BUG_NO_RESOURCES;
779 memcpy(dsr, mesg, bytes);
780 mhdr = dsr;
781 mhdr->present = MQS_FULL;
782 mhdr->lines = clines;
783 if (clines == 2) {
784 mhdr->present2 = get_present2(mhdr);
785 restore_present2(mhdr, MQS_FULL);
788 do {
789 ret = MQE_OK;
790 gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
791 istatus = gru_wait(cb);
792 if (istatus != CBS_IDLE)
793 ret = send_message_failure(cb, mqd, dsr, clines);
794 } while (ret == MQIE_AGAIN);
795 gru_free_cpu_resources(cb, dsr);
797 if (ret)
798 STAT(mesq_send_failed);
799 return ret;
801 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
804 * Advance the receive pointer for the queue to the next message.
806 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
808 struct message_queue *mq = mqd->mq;
809 struct message_header *mhdr = mq->next;
810 void *next, *pnext;
811 int half = -1;
812 int lines = mhdr->lines;
814 if (lines == 2)
815 restore_present2(mhdr, MQS_EMPTY);
816 mhdr->present = MQS_EMPTY;
818 pnext = mq->next;
819 next = pnext + GRU_CACHE_LINE_BYTES * lines;
820 if (next == mq->limit) {
821 next = mq->start;
822 half = 1;
823 } else if (pnext < mq->start2 && next >= mq->start2) {
824 half = 0;
827 if (half >= 0)
828 mq->hstatus[half] = 1;
829 mq->next = next;
831 EXPORT_SYMBOL_GPL(gru_free_message);
834 * Get next message from message queue. Return NULL if no message
835 * present. User must call next_message() to move to next message.
836 * rmq message queue
838 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
840 struct message_queue *mq = mqd->mq;
841 struct message_header *mhdr = mq->next;
842 int present = mhdr->present;
844 /* skip NOOP messages */
845 while (present == MQS_NOOP) {
846 gru_free_message(mqd, mhdr);
847 mhdr = mq->next;
848 present = mhdr->present;
851 /* Wait for both halves of 2 line messages */
852 if (present == MQS_FULL && mhdr->lines == 2 &&
853 get_present2(mhdr) == MQS_EMPTY)
854 present = MQS_EMPTY;
856 if (!present) {
857 STAT(mesq_receive_none);
858 return NULL;
861 if (mhdr->lines == 2)
862 restore_present2(mhdr, mhdr->present2);
864 STAT(mesq_receive);
865 return mhdr;
867 EXPORT_SYMBOL_GPL(gru_get_next_message);
869 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
872 * Load a DW from a global GPA. The GPA can be a memory or MMR address.
874 int gru_read_gpa(unsigned long *value, unsigned long gpa)
876 void *cb;
877 void *dsr;
878 int ret, iaa;
880 STAT(read_gpa);
881 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
882 return MQE_BUG_NO_RESOURCES;
883 iaa = gpa >> 62;
884 gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
885 ret = gru_wait(cb);
886 if (ret == CBS_IDLE)
887 *value = *(unsigned long *)dsr;
888 gru_free_cpu_resources(cb, dsr);
889 return ret;
891 EXPORT_SYMBOL_GPL(gru_read_gpa);
895 * Copy a block of data using the GRU resources
897 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
898 unsigned int bytes)
900 void *cb;
901 void *dsr;
902 int ret;
904 STAT(copy_gpa);
905 if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
906 return MQE_BUG_NO_RESOURCES;
907 gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
908 XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
909 ret = gru_wait(cb);
910 gru_free_cpu_resources(cb, dsr);
911 return ret;
913 EXPORT_SYMBOL_GPL(gru_copy_gpa);
915 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
916 /* Temp - will delete after we gain confidence in the GRU */
918 static int quicktest0(unsigned long arg)
920 unsigned long word0;
921 unsigned long word1;
922 void *cb;
923 void *dsr;
924 unsigned long *p;
925 int ret = -EIO;
927 if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
928 return MQE_BUG_NO_RESOURCES;
929 p = dsr;
930 word0 = MAGIC;
931 word1 = 0;
933 gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
934 if (gru_wait(cb) != CBS_IDLE) {
935 printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
936 goto done;
939 if (*p != MAGIC) {
940 printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
941 goto done;
943 gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
944 if (gru_wait(cb) != CBS_IDLE) {
945 printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
946 goto done;
949 if (word0 != word1 || word1 != MAGIC) {
950 printk(KERN_DEBUG
951 "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
952 smp_processor_id(), word1, MAGIC);
953 goto done;
955 ret = 0;
957 done:
958 gru_free_cpu_resources(cb, dsr);
959 return ret;
962 #define ALIGNUP(p, q) ((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
964 static int quicktest1(unsigned long arg)
966 struct gru_message_queue_desc mqd;
967 void *p, *mq;
968 unsigned long *dw;
969 int i, ret = -EIO;
970 char mes[GRU_CACHE_LINE_BYTES], *m;
972 /* Need 1K cacheline aligned that does not cross page boundary */
973 p = kmalloc(4096, 0);
974 if (p == NULL)
975 return -ENOMEM;
976 mq = ALIGNUP(p, 1024);
977 memset(mes, 0xee, sizeof(mes));
978 dw = mq;
980 gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
981 for (i = 0; i < 6; i++) {
982 mes[8] = i;
983 do {
984 ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
985 } while (ret == MQE_CONGESTION);
986 if (ret)
987 break;
989 if (ret != MQE_QUEUE_FULL || i != 4) {
990 printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
991 smp_processor_id(), ret, i);
992 goto done;
995 for (i = 0; i < 6; i++) {
996 m = gru_get_next_message(&mqd);
997 if (!m || m[8] != i)
998 break;
999 gru_free_message(&mqd, m);
1001 if (i != 4) {
1002 printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1003 smp_processor_id(), i, m, m ? m[8] : -1);
1004 goto done;
1006 ret = 0;
1008 done:
1009 kfree(p);
1010 return ret;
1013 static int quicktest2(unsigned long arg)
1015 static DECLARE_COMPLETION(cmp);
1016 unsigned long han;
1017 int blade_id = 0;
1018 int numcb = 4;
1019 int ret = 0;
1020 unsigned long *buf;
1021 void *cb0, *cb;
1022 struct gru_control_block_status *gen;
1023 int i, k, istatus, bytes;
1025 bytes = numcb * 4 * 8;
1026 buf = kmalloc(bytes, GFP_KERNEL);
1027 if (!buf)
1028 return -ENOMEM;
1030 ret = -EBUSY;
1031 han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1032 if (!han)
1033 goto done;
1035 gru_lock_async_resource(han, &cb0, NULL);
1036 memset(buf, 0xee, bytes);
1037 for (i = 0; i < numcb; i++)
1038 gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1039 XTYPE_DW, 4, 1, IMA_INTERRUPT);
1041 ret = 0;
1042 k = numcb;
1043 do {
1044 gru_wait_async_cbr(han);
1045 for (i = 0; i < numcb; i++) {
1046 cb = cb0 + i * GRU_HANDLE_STRIDE;
1047 istatus = gru_check_status(cb);
1048 if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1049 break;
1051 if (i == numcb)
1052 continue;
1053 if (istatus != CBS_IDLE) {
1054 printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1055 ret = -EFAULT;
1056 } else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1057 buf[4 * i + 3]) {
1058 printk(KERN_DEBUG "GRU:%d quicktest2:cb %d, buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1059 smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1060 ret = -EIO;
1062 k--;
1063 gen = cb;
1064 gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1065 } while (k);
1066 BUG_ON(cmp.done);
1068 gru_unlock_async_resource(han);
1069 gru_release_async_resources(han);
1070 done:
1071 kfree(buf);
1072 return ret;
1075 #define BUFSIZE 200
1076 static int quicktest3(unsigned long arg)
1078 char buf1[BUFSIZE], buf2[BUFSIZE];
1079 int ret = 0;
1081 memset(buf2, 0, sizeof(buf2));
1082 memset(buf1, get_cycles() & 255, sizeof(buf1));
1083 gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1084 if (memcmp(buf1, buf2, BUFSIZE)) {
1085 printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1086 ret = -EIO;
1088 return ret;
1092 * Debugging only. User hook for various kernel tests
1093 * of driver & gru.
1095 int gru_ktest(unsigned long arg)
1097 int ret = -EINVAL;
1099 switch (arg & 0xff) {
1100 case 0:
1101 ret = quicktest0(arg);
1102 break;
1103 case 1:
1104 ret = quicktest1(arg);
1105 break;
1106 case 2:
1107 ret = quicktest2(arg);
1108 break;
1109 case 3:
1110 ret = quicktest3(arg);
1111 break;
1112 case 99:
1113 ret = gru_free_kernel_contexts();
1114 break;
1116 return ret;
1120 int gru_kservices_init(void)
1122 return 0;
1125 void gru_kservices_exit(void)
1127 if (gru_free_kernel_contexts())
1128 BUG();