ath9k_hw: Remove unnecessary chainmask configuration
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / inode.c
blob13e6255182e3dad59af5463537dbc21abdff4bef
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/statfs.h>
34 #include <linux/compat.h>
35 #include <linux/bit_spinlock.h>
36 #include <linux/xattr.h>
37 #include <linux/posix_acl.h>
38 #include <linux/falloc.h>
39 #include <linux/slab.h>
40 #include <linux/ratelimit.h>
41 #include "compat.h"
42 #include "ctree.h"
43 #include "disk-io.h"
44 #include "transaction.h"
45 #include "btrfs_inode.h"
46 #include "ioctl.h"
47 #include "print-tree.h"
48 #include "volumes.h"
49 #include "ordered-data.h"
50 #include "xattr.h"
51 #include "tree-log.h"
52 #include "compression.h"
53 #include "locking.h"
54 #include "free-space-cache.h"
55 #include "inode-map.h"
57 struct btrfs_iget_args {
58 u64 ino;
59 struct btrfs_root *root;
62 static const struct inode_operations btrfs_dir_inode_operations;
63 static const struct inode_operations btrfs_symlink_inode_operations;
64 static const struct inode_operations btrfs_dir_ro_inode_operations;
65 static const struct inode_operations btrfs_special_inode_operations;
66 static const struct inode_operations btrfs_file_inode_operations;
67 static const struct address_space_operations btrfs_aops;
68 static const struct address_space_operations btrfs_symlink_aops;
69 static const struct file_operations btrfs_dir_file_operations;
70 static struct extent_io_ops btrfs_extent_io_ops;
72 static struct kmem_cache *btrfs_inode_cachep;
73 struct kmem_cache *btrfs_trans_handle_cachep;
74 struct kmem_cache *btrfs_transaction_cachep;
75 struct kmem_cache *btrfs_path_cachep;
76 struct kmem_cache *btrfs_free_space_cachep;
78 #define S_SHIFT 12
79 static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
80 [S_IFREG >> S_SHIFT] = BTRFS_FT_REG_FILE,
81 [S_IFDIR >> S_SHIFT] = BTRFS_FT_DIR,
82 [S_IFCHR >> S_SHIFT] = BTRFS_FT_CHRDEV,
83 [S_IFBLK >> S_SHIFT] = BTRFS_FT_BLKDEV,
84 [S_IFIFO >> S_SHIFT] = BTRFS_FT_FIFO,
85 [S_IFSOCK >> S_SHIFT] = BTRFS_FT_SOCK,
86 [S_IFLNK >> S_SHIFT] = BTRFS_FT_SYMLINK,
89 static int btrfs_setsize(struct inode *inode, loff_t newsize);
90 static int btrfs_truncate(struct inode *inode);
91 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end);
92 static noinline int cow_file_range(struct inode *inode,
93 struct page *locked_page,
94 u64 start, u64 end, int *page_started,
95 unsigned long *nr_written, int unlock);
97 static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
98 struct inode *inode, struct inode *dir,
99 const struct qstr *qstr)
101 int err;
103 err = btrfs_init_acl(trans, inode, dir);
104 if (!err)
105 err = btrfs_xattr_security_init(trans, inode, dir, qstr);
106 return err;
110 * this does all the hard work for inserting an inline extent into
111 * the btree. The caller should have done a btrfs_drop_extents so that
112 * no overlapping inline items exist in the btree
114 static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
115 struct btrfs_root *root, struct inode *inode,
116 u64 start, size_t size, size_t compressed_size,
117 int compress_type,
118 struct page **compressed_pages)
120 struct btrfs_key key;
121 struct btrfs_path *path;
122 struct extent_buffer *leaf;
123 struct page *page = NULL;
124 char *kaddr;
125 unsigned long ptr;
126 struct btrfs_file_extent_item *ei;
127 int err = 0;
128 int ret;
129 size_t cur_size = size;
130 size_t datasize;
131 unsigned long offset;
133 if (compressed_size && compressed_pages)
134 cur_size = compressed_size;
136 path = btrfs_alloc_path();
137 if (!path)
138 return -ENOMEM;
140 path->leave_spinning = 1;
142 key.objectid = btrfs_ino(inode);
143 key.offset = start;
144 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
145 datasize = btrfs_file_extent_calc_inline_size(cur_size);
147 inode_add_bytes(inode, size);
148 ret = btrfs_insert_empty_item(trans, root, path, &key,
149 datasize);
150 BUG_ON(ret);
151 if (ret) {
152 err = ret;
153 goto fail;
155 leaf = path->nodes[0];
156 ei = btrfs_item_ptr(leaf, path->slots[0],
157 struct btrfs_file_extent_item);
158 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
159 btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
160 btrfs_set_file_extent_encryption(leaf, ei, 0);
161 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
162 btrfs_set_file_extent_ram_bytes(leaf, ei, size);
163 ptr = btrfs_file_extent_inline_start(ei);
165 if (compress_type != BTRFS_COMPRESS_NONE) {
166 struct page *cpage;
167 int i = 0;
168 while (compressed_size > 0) {
169 cpage = compressed_pages[i];
170 cur_size = min_t(unsigned long, compressed_size,
171 PAGE_CACHE_SIZE);
173 kaddr = kmap_atomic(cpage, KM_USER0);
174 write_extent_buffer(leaf, kaddr, ptr, cur_size);
175 kunmap_atomic(kaddr, KM_USER0);
177 i++;
178 ptr += cur_size;
179 compressed_size -= cur_size;
181 btrfs_set_file_extent_compression(leaf, ei,
182 compress_type);
183 } else {
184 page = find_get_page(inode->i_mapping,
185 start >> PAGE_CACHE_SHIFT);
186 btrfs_set_file_extent_compression(leaf, ei, 0);
187 kaddr = kmap_atomic(page, KM_USER0);
188 offset = start & (PAGE_CACHE_SIZE - 1);
189 write_extent_buffer(leaf, kaddr + offset, ptr, size);
190 kunmap_atomic(kaddr, KM_USER0);
191 page_cache_release(page);
193 btrfs_mark_buffer_dirty(leaf);
194 btrfs_free_path(path);
197 * we're an inline extent, so nobody can
198 * extend the file past i_size without locking
199 * a page we already have locked.
201 * We must do any isize and inode updates
202 * before we unlock the pages. Otherwise we
203 * could end up racing with unlink.
205 BTRFS_I(inode)->disk_i_size = inode->i_size;
206 btrfs_update_inode(trans, root, inode);
208 return 0;
209 fail:
210 btrfs_free_path(path);
211 return err;
216 * conditionally insert an inline extent into the file. This
217 * does the checks required to make sure the data is small enough
218 * to fit as an inline extent.
220 static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
221 struct btrfs_root *root,
222 struct inode *inode, u64 start, u64 end,
223 size_t compressed_size, int compress_type,
224 struct page **compressed_pages)
226 u64 isize = i_size_read(inode);
227 u64 actual_end = min(end + 1, isize);
228 u64 inline_len = actual_end - start;
229 u64 aligned_end = (end + root->sectorsize - 1) &
230 ~((u64)root->sectorsize - 1);
231 u64 hint_byte;
232 u64 data_len = inline_len;
233 int ret;
235 if (compressed_size)
236 data_len = compressed_size;
238 if (start > 0 ||
239 actual_end >= PAGE_CACHE_SIZE ||
240 data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
241 (!compressed_size &&
242 (actual_end & (root->sectorsize - 1)) == 0) ||
243 end + 1 < isize ||
244 data_len > root->fs_info->max_inline) {
245 return 1;
248 ret = btrfs_drop_extents(trans, inode, start, aligned_end,
249 &hint_byte, 1);
250 BUG_ON(ret);
252 if (isize > actual_end)
253 inline_len = min_t(u64, isize, actual_end);
254 ret = insert_inline_extent(trans, root, inode, start,
255 inline_len, compressed_size,
256 compress_type, compressed_pages);
257 BUG_ON(ret);
258 btrfs_delalloc_release_metadata(inode, end + 1 - start);
259 btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
260 return 0;
263 struct async_extent {
264 u64 start;
265 u64 ram_size;
266 u64 compressed_size;
267 struct page **pages;
268 unsigned long nr_pages;
269 int compress_type;
270 struct list_head list;
273 struct async_cow {
274 struct inode *inode;
275 struct btrfs_root *root;
276 struct page *locked_page;
277 u64 start;
278 u64 end;
279 struct list_head extents;
280 struct btrfs_work work;
283 static noinline int add_async_extent(struct async_cow *cow,
284 u64 start, u64 ram_size,
285 u64 compressed_size,
286 struct page **pages,
287 unsigned long nr_pages,
288 int compress_type)
290 struct async_extent *async_extent;
292 async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
293 BUG_ON(!async_extent);
294 async_extent->start = start;
295 async_extent->ram_size = ram_size;
296 async_extent->compressed_size = compressed_size;
297 async_extent->pages = pages;
298 async_extent->nr_pages = nr_pages;
299 async_extent->compress_type = compress_type;
300 list_add_tail(&async_extent->list, &cow->extents);
301 return 0;
305 * we create compressed extents in two phases. The first
306 * phase compresses a range of pages that have already been
307 * locked (both pages and state bits are locked).
309 * This is done inside an ordered work queue, and the compression
310 * is spread across many cpus. The actual IO submission is step
311 * two, and the ordered work queue takes care of making sure that
312 * happens in the same order things were put onto the queue by
313 * writepages and friends.
315 * If this code finds it can't get good compression, it puts an
316 * entry onto the work queue to write the uncompressed bytes. This
317 * makes sure that both compressed inodes and uncompressed inodes
318 * are written in the same order that pdflush sent them down.
320 static noinline int compress_file_range(struct inode *inode,
321 struct page *locked_page,
322 u64 start, u64 end,
323 struct async_cow *async_cow,
324 int *num_added)
326 struct btrfs_root *root = BTRFS_I(inode)->root;
327 struct btrfs_trans_handle *trans;
328 u64 num_bytes;
329 u64 blocksize = root->sectorsize;
330 u64 actual_end;
331 u64 isize = i_size_read(inode);
332 int ret = 0;
333 struct page **pages = NULL;
334 unsigned long nr_pages;
335 unsigned long nr_pages_ret = 0;
336 unsigned long total_compressed = 0;
337 unsigned long total_in = 0;
338 unsigned long max_compressed = 128 * 1024;
339 unsigned long max_uncompressed = 128 * 1024;
340 int i;
341 int will_compress;
342 int compress_type = root->fs_info->compress_type;
344 /* if this is a small write inside eof, kick off a defragbot */
345 if (end <= BTRFS_I(inode)->disk_i_size && (end - start + 1) < 16 * 1024)
346 btrfs_add_inode_defrag(NULL, inode);
348 actual_end = min_t(u64, isize, end + 1);
349 again:
350 will_compress = 0;
351 nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
352 nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
355 * we don't want to send crud past the end of i_size through
356 * compression, that's just a waste of CPU time. So, if the
357 * end of the file is before the start of our current
358 * requested range of bytes, we bail out to the uncompressed
359 * cleanup code that can deal with all of this.
361 * It isn't really the fastest way to fix things, but this is a
362 * very uncommon corner.
364 if (actual_end <= start)
365 goto cleanup_and_bail_uncompressed;
367 total_compressed = actual_end - start;
369 /* we want to make sure that amount of ram required to uncompress
370 * an extent is reasonable, so we limit the total size in ram
371 * of a compressed extent to 128k. This is a crucial number
372 * because it also controls how easily we can spread reads across
373 * cpus for decompression.
375 * We also want to make sure the amount of IO required to do
376 * a random read is reasonably small, so we limit the size of
377 * a compressed extent to 128k.
379 total_compressed = min(total_compressed, max_uncompressed);
380 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
381 num_bytes = max(blocksize, num_bytes);
382 total_in = 0;
383 ret = 0;
386 * we do compression for mount -o compress and when the
387 * inode has not been flagged as nocompress. This flag can
388 * change at any time if we discover bad compression ratios.
390 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
391 (btrfs_test_opt(root, COMPRESS) ||
392 (BTRFS_I(inode)->force_compress) ||
393 (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
394 WARN_ON(pages);
395 pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
396 BUG_ON(!pages);
398 if (BTRFS_I(inode)->force_compress)
399 compress_type = BTRFS_I(inode)->force_compress;
401 ret = btrfs_compress_pages(compress_type,
402 inode->i_mapping, start,
403 total_compressed, pages,
404 nr_pages, &nr_pages_ret,
405 &total_in,
406 &total_compressed,
407 max_compressed);
409 if (!ret) {
410 unsigned long offset = total_compressed &
411 (PAGE_CACHE_SIZE - 1);
412 struct page *page = pages[nr_pages_ret - 1];
413 char *kaddr;
415 /* zero the tail end of the last page, we might be
416 * sending it down to disk
418 if (offset) {
419 kaddr = kmap_atomic(page, KM_USER0);
420 memset(kaddr + offset, 0,
421 PAGE_CACHE_SIZE - offset);
422 kunmap_atomic(kaddr, KM_USER0);
424 will_compress = 1;
427 if (start == 0) {
428 trans = btrfs_join_transaction(root);
429 BUG_ON(IS_ERR(trans));
430 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
432 /* lets try to make an inline extent */
433 if (ret || total_in < (actual_end - start)) {
434 /* we didn't compress the entire range, try
435 * to make an uncompressed inline extent.
437 ret = cow_file_range_inline(trans, root, inode,
438 start, end, 0, 0, NULL);
439 } else {
440 /* try making a compressed inline extent */
441 ret = cow_file_range_inline(trans, root, inode,
442 start, end,
443 total_compressed,
444 compress_type, pages);
446 if (ret == 0) {
448 * inline extent creation worked, we don't need
449 * to create any more async work items. Unlock
450 * and free up our temp pages.
452 extent_clear_unlock_delalloc(inode,
453 &BTRFS_I(inode)->io_tree,
454 start, end, NULL,
455 EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
456 EXTENT_CLEAR_DELALLOC |
457 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
459 btrfs_end_transaction(trans, root);
460 goto free_pages_out;
462 btrfs_end_transaction(trans, root);
465 if (will_compress) {
467 * we aren't doing an inline extent round the compressed size
468 * up to a block size boundary so the allocator does sane
469 * things
471 total_compressed = (total_compressed + blocksize - 1) &
472 ~(blocksize - 1);
475 * one last check to make sure the compression is really a
476 * win, compare the page count read with the blocks on disk
478 total_in = (total_in + PAGE_CACHE_SIZE - 1) &
479 ~(PAGE_CACHE_SIZE - 1);
480 if (total_compressed >= total_in) {
481 will_compress = 0;
482 } else {
483 num_bytes = total_in;
486 if (!will_compress && pages) {
488 * the compression code ran but failed to make things smaller,
489 * free any pages it allocated and our page pointer array
491 for (i = 0; i < nr_pages_ret; i++) {
492 WARN_ON(pages[i]->mapping);
493 page_cache_release(pages[i]);
495 kfree(pages);
496 pages = NULL;
497 total_compressed = 0;
498 nr_pages_ret = 0;
500 /* flag the file so we don't compress in the future */
501 if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
502 !(BTRFS_I(inode)->force_compress)) {
503 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
506 if (will_compress) {
507 *num_added += 1;
509 /* the async work queues will take care of doing actual
510 * allocation on disk for these compressed pages,
511 * and will submit them to the elevator.
513 add_async_extent(async_cow, start, num_bytes,
514 total_compressed, pages, nr_pages_ret,
515 compress_type);
517 if (start + num_bytes < end) {
518 start += num_bytes;
519 pages = NULL;
520 cond_resched();
521 goto again;
523 } else {
524 cleanup_and_bail_uncompressed:
526 * No compression, but we still need to write the pages in
527 * the file we've been given so far. redirty the locked
528 * page if it corresponds to our extent and set things up
529 * for the async work queue to run cow_file_range to do
530 * the normal delalloc dance
532 if (page_offset(locked_page) >= start &&
533 page_offset(locked_page) <= end) {
534 __set_page_dirty_nobuffers(locked_page);
535 /* unlocked later on in the async handlers */
537 add_async_extent(async_cow, start, end - start + 1,
538 0, NULL, 0, BTRFS_COMPRESS_NONE);
539 *num_added += 1;
542 out:
543 return 0;
545 free_pages_out:
546 for (i = 0; i < nr_pages_ret; i++) {
547 WARN_ON(pages[i]->mapping);
548 page_cache_release(pages[i]);
550 kfree(pages);
552 goto out;
556 * phase two of compressed writeback. This is the ordered portion
557 * of the code, which only gets called in the order the work was
558 * queued. We walk all the async extents created by compress_file_range
559 * and send them down to the disk.
561 static noinline int submit_compressed_extents(struct inode *inode,
562 struct async_cow *async_cow)
564 struct async_extent *async_extent;
565 u64 alloc_hint = 0;
566 struct btrfs_trans_handle *trans;
567 struct btrfs_key ins;
568 struct extent_map *em;
569 struct btrfs_root *root = BTRFS_I(inode)->root;
570 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
571 struct extent_io_tree *io_tree;
572 int ret = 0;
574 if (list_empty(&async_cow->extents))
575 return 0;
578 while (!list_empty(&async_cow->extents)) {
579 async_extent = list_entry(async_cow->extents.next,
580 struct async_extent, list);
581 list_del(&async_extent->list);
583 io_tree = &BTRFS_I(inode)->io_tree;
585 retry:
586 /* did the compression code fall back to uncompressed IO? */
587 if (!async_extent->pages) {
588 int page_started = 0;
589 unsigned long nr_written = 0;
591 lock_extent(io_tree, async_extent->start,
592 async_extent->start +
593 async_extent->ram_size - 1, GFP_NOFS);
595 /* allocate blocks */
596 ret = cow_file_range(inode, async_cow->locked_page,
597 async_extent->start,
598 async_extent->start +
599 async_extent->ram_size - 1,
600 &page_started, &nr_written, 0);
603 * if page_started, cow_file_range inserted an
604 * inline extent and took care of all the unlocking
605 * and IO for us. Otherwise, we need to submit
606 * all those pages down to the drive.
608 if (!page_started && !ret)
609 extent_write_locked_range(io_tree,
610 inode, async_extent->start,
611 async_extent->start +
612 async_extent->ram_size - 1,
613 btrfs_get_extent,
614 WB_SYNC_ALL);
615 kfree(async_extent);
616 cond_resched();
617 continue;
620 lock_extent(io_tree, async_extent->start,
621 async_extent->start + async_extent->ram_size - 1,
622 GFP_NOFS);
624 trans = btrfs_join_transaction(root);
625 BUG_ON(IS_ERR(trans));
626 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
627 ret = btrfs_reserve_extent(trans, root,
628 async_extent->compressed_size,
629 async_extent->compressed_size,
630 0, alloc_hint,
631 (u64)-1, &ins, 1);
632 btrfs_end_transaction(trans, root);
634 if (ret) {
635 int i;
636 for (i = 0; i < async_extent->nr_pages; i++) {
637 WARN_ON(async_extent->pages[i]->mapping);
638 page_cache_release(async_extent->pages[i]);
640 kfree(async_extent->pages);
641 async_extent->nr_pages = 0;
642 async_extent->pages = NULL;
643 unlock_extent(io_tree, async_extent->start,
644 async_extent->start +
645 async_extent->ram_size - 1, GFP_NOFS);
646 goto retry;
650 * here we're doing allocation and writeback of the
651 * compressed pages
653 btrfs_drop_extent_cache(inode, async_extent->start,
654 async_extent->start +
655 async_extent->ram_size - 1, 0);
657 em = alloc_extent_map();
658 BUG_ON(!em);
659 em->start = async_extent->start;
660 em->len = async_extent->ram_size;
661 em->orig_start = em->start;
663 em->block_start = ins.objectid;
664 em->block_len = ins.offset;
665 em->bdev = root->fs_info->fs_devices->latest_bdev;
666 em->compress_type = async_extent->compress_type;
667 set_bit(EXTENT_FLAG_PINNED, &em->flags);
668 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
670 while (1) {
671 write_lock(&em_tree->lock);
672 ret = add_extent_mapping(em_tree, em);
673 write_unlock(&em_tree->lock);
674 if (ret != -EEXIST) {
675 free_extent_map(em);
676 break;
678 btrfs_drop_extent_cache(inode, async_extent->start,
679 async_extent->start +
680 async_extent->ram_size - 1, 0);
683 ret = btrfs_add_ordered_extent_compress(inode,
684 async_extent->start,
685 ins.objectid,
686 async_extent->ram_size,
687 ins.offset,
688 BTRFS_ORDERED_COMPRESSED,
689 async_extent->compress_type);
690 BUG_ON(ret);
693 * clear dirty, set writeback and unlock the pages.
695 extent_clear_unlock_delalloc(inode,
696 &BTRFS_I(inode)->io_tree,
697 async_extent->start,
698 async_extent->start +
699 async_extent->ram_size - 1,
700 NULL, EXTENT_CLEAR_UNLOCK_PAGE |
701 EXTENT_CLEAR_UNLOCK |
702 EXTENT_CLEAR_DELALLOC |
703 EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
705 ret = btrfs_submit_compressed_write(inode,
706 async_extent->start,
707 async_extent->ram_size,
708 ins.objectid,
709 ins.offset, async_extent->pages,
710 async_extent->nr_pages);
712 BUG_ON(ret);
713 alloc_hint = ins.objectid + ins.offset;
714 kfree(async_extent);
715 cond_resched();
718 return 0;
721 static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
722 u64 num_bytes)
724 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
725 struct extent_map *em;
726 u64 alloc_hint = 0;
728 read_lock(&em_tree->lock);
729 em = search_extent_mapping(em_tree, start, num_bytes);
730 if (em) {
732 * if block start isn't an actual block number then find the
733 * first block in this inode and use that as a hint. If that
734 * block is also bogus then just don't worry about it.
736 if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
737 free_extent_map(em);
738 em = search_extent_mapping(em_tree, 0, 0);
739 if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
740 alloc_hint = em->block_start;
741 if (em)
742 free_extent_map(em);
743 } else {
744 alloc_hint = em->block_start;
745 free_extent_map(em);
748 read_unlock(&em_tree->lock);
750 return alloc_hint;
754 * when extent_io.c finds a delayed allocation range in the file,
755 * the call backs end up in this code. The basic idea is to
756 * allocate extents on disk for the range, and create ordered data structs
757 * in ram to track those extents.
759 * locked_page is the page that writepage had locked already. We use
760 * it to make sure we don't do extra locks or unlocks.
762 * *page_started is set to one if we unlock locked_page and do everything
763 * required to start IO on it. It may be clean and already done with
764 * IO when we return.
766 static noinline int cow_file_range(struct inode *inode,
767 struct page *locked_page,
768 u64 start, u64 end, int *page_started,
769 unsigned long *nr_written,
770 int unlock)
772 struct btrfs_root *root = BTRFS_I(inode)->root;
773 struct btrfs_trans_handle *trans;
774 u64 alloc_hint = 0;
775 u64 num_bytes;
776 unsigned long ram_size;
777 u64 disk_num_bytes;
778 u64 cur_alloc_size;
779 u64 blocksize = root->sectorsize;
780 struct btrfs_key ins;
781 struct extent_map *em;
782 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
783 int ret = 0;
785 BUG_ON(btrfs_is_free_space_inode(root, inode));
786 trans = btrfs_join_transaction(root);
787 BUG_ON(IS_ERR(trans));
788 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
790 num_bytes = (end - start + blocksize) & ~(blocksize - 1);
791 num_bytes = max(blocksize, num_bytes);
792 disk_num_bytes = num_bytes;
793 ret = 0;
795 /* if this is a small write inside eof, kick off defrag */
796 if (end <= BTRFS_I(inode)->disk_i_size && num_bytes < 64 * 1024)
797 btrfs_add_inode_defrag(trans, inode);
799 if (start == 0) {
800 /* lets try to make an inline extent */
801 ret = cow_file_range_inline(trans, root, inode,
802 start, end, 0, 0, NULL);
803 if (ret == 0) {
804 extent_clear_unlock_delalloc(inode,
805 &BTRFS_I(inode)->io_tree,
806 start, end, NULL,
807 EXTENT_CLEAR_UNLOCK_PAGE |
808 EXTENT_CLEAR_UNLOCK |
809 EXTENT_CLEAR_DELALLOC |
810 EXTENT_CLEAR_DIRTY |
811 EXTENT_SET_WRITEBACK |
812 EXTENT_END_WRITEBACK);
814 *nr_written = *nr_written +
815 (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
816 *page_started = 1;
817 ret = 0;
818 goto out;
822 BUG_ON(disk_num_bytes >
823 btrfs_super_total_bytes(&root->fs_info->super_copy));
825 alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
826 btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
828 while (disk_num_bytes > 0) {
829 unsigned long op;
831 cur_alloc_size = disk_num_bytes;
832 ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
833 root->sectorsize, 0, alloc_hint,
834 (u64)-1, &ins, 1);
835 BUG_ON(ret);
837 em = alloc_extent_map();
838 BUG_ON(!em);
839 em->start = start;
840 em->orig_start = em->start;
841 ram_size = ins.offset;
842 em->len = ins.offset;
844 em->block_start = ins.objectid;
845 em->block_len = ins.offset;
846 em->bdev = root->fs_info->fs_devices->latest_bdev;
847 set_bit(EXTENT_FLAG_PINNED, &em->flags);
849 while (1) {
850 write_lock(&em_tree->lock);
851 ret = add_extent_mapping(em_tree, em);
852 write_unlock(&em_tree->lock);
853 if (ret != -EEXIST) {
854 free_extent_map(em);
855 break;
857 btrfs_drop_extent_cache(inode, start,
858 start + ram_size - 1, 0);
861 cur_alloc_size = ins.offset;
862 ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
863 ram_size, cur_alloc_size, 0);
864 BUG_ON(ret);
866 if (root->root_key.objectid ==
867 BTRFS_DATA_RELOC_TREE_OBJECTID) {
868 ret = btrfs_reloc_clone_csums(inode, start,
869 cur_alloc_size);
870 BUG_ON(ret);
873 if (disk_num_bytes < cur_alloc_size)
874 break;
876 /* we're not doing compressed IO, don't unlock the first
877 * page (which the caller expects to stay locked), don't
878 * clear any dirty bits and don't set any writeback bits
880 * Do set the Private2 bit so we know this page was properly
881 * setup for writepage
883 op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
884 op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
885 EXTENT_SET_PRIVATE2;
887 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
888 start, start + ram_size - 1,
889 locked_page, op);
890 disk_num_bytes -= cur_alloc_size;
891 num_bytes -= cur_alloc_size;
892 alloc_hint = ins.objectid + ins.offset;
893 start += cur_alloc_size;
895 out:
896 ret = 0;
897 btrfs_end_transaction(trans, root);
899 return ret;
903 * work queue call back to started compression on a file and pages
905 static noinline void async_cow_start(struct btrfs_work *work)
907 struct async_cow *async_cow;
908 int num_added = 0;
909 async_cow = container_of(work, struct async_cow, work);
911 compress_file_range(async_cow->inode, async_cow->locked_page,
912 async_cow->start, async_cow->end, async_cow,
913 &num_added);
914 if (num_added == 0)
915 async_cow->inode = NULL;
919 * work queue call back to submit previously compressed pages
921 static noinline void async_cow_submit(struct btrfs_work *work)
923 struct async_cow *async_cow;
924 struct btrfs_root *root;
925 unsigned long nr_pages;
927 async_cow = container_of(work, struct async_cow, work);
929 root = async_cow->root;
930 nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
931 PAGE_CACHE_SHIFT;
933 atomic_sub(nr_pages, &root->fs_info->async_delalloc_pages);
935 if (atomic_read(&root->fs_info->async_delalloc_pages) <
936 5 * 1042 * 1024 &&
937 waitqueue_active(&root->fs_info->async_submit_wait))
938 wake_up(&root->fs_info->async_submit_wait);
940 if (async_cow->inode)
941 submit_compressed_extents(async_cow->inode, async_cow);
944 static noinline void async_cow_free(struct btrfs_work *work)
946 struct async_cow *async_cow;
947 async_cow = container_of(work, struct async_cow, work);
948 kfree(async_cow);
951 static int cow_file_range_async(struct inode *inode, struct page *locked_page,
952 u64 start, u64 end, int *page_started,
953 unsigned long *nr_written)
955 struct async_cow *async_cow;
956 struct btrfs_root *root = BTRFS_I(inode)->root;
957 unsigned long nr_pages;
958 u64 cur_end;
959 int limit = 10 * 1024 * 1042;
961 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
962 1, 0, NULL, GFP_NOFS);
963 while (start < end) {
964 async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
965 BUG_ON(!async_cow);
966 async_cow->inode = inode;
967 async_cow->root = root;
968 async_cow->locked_page = locked_page;
969 async_cow->start = start;
971 if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
972 cur_end = end;
973 else
974 cur_end = min(end, start + 512 * 1024 - 1);
976 async_cow->end = cur_end;
977 INIT_LIST_HEAD(&async_cow->extents);
979 async_cow->work.func = async_cow_start;
980 async_cow->work.ordered_func = async_cow_submit;
981 async_cow->work.ordered_free = async_cow_free;
982 async_cow->work.flags = 0;
984 nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
985 PAGE_CACHE_SHIFT;
986 atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
988 btrfs_queue_worker(&root->fs_info->delalloc_workers,
989 &async_cow->work);
991 if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
992 wait_event(root->fs_info->async_submit_wait,
993 (atomic_read(&root->fs_info->async_delalloc_pages) <
994 limit));
997 while (atomic_read(&root->fs_info->async_submit_draining) &&
998 atomic_read(&root->fs_info->async_delalloc_pages)) {
999 wait_event(root->fs_info->async_submit_wait,
1000 (atomic_read(&root->fs_info->async_delalloc_pages) ==
1001 0));
1004 *nr_written += nr_pages;
1005 start = cur_end + 1;
1007 *page_started = 1;
1008 return 0;
1011 static noinline int csum_exist_in_range(struct btrfs_root *root,
1012 u64 bytenr, u64 num_bytes)
1014 int ret;
1015 struct btrfs_ordered_sum *sums;
1016 LIST_HEAD(list);
1018 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1019 bytenr + num_bytes - 1, &list, 0);
1020 if (ret == 0 && list_empty(&list))
1021 return 0;
1023 while (!list_empty(&list)) {
1024 sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1025 list_del(&sums->list);
1026 kfree(sums);
1028 return 1;
1032 * when nowcow writeback call back. This checks for snapshots or COW copies
1033 * of the extents that exist in the file, and COWs the file as required.
1035 * If no cow copies or snapshots exist, we write directly to the existing
1036 * blocks on disk
1038 static noinline int run_delalloc_nocow(struct inode *inode,
1039 struct page *locked_page,
1040 u64 start, u64 end, int *page_started, int force,
1041 unsigned long *nr_written)
1043 struct btrfs_root *root = BTRFS_I(inode)->root;
1044 struct btrfs_trans_handle *trans;
1045 struct extent_buffer *leaf;
1046 struct btrfs_path *path;
1047 struct btrfs_file_extent_item *fi;
1048 struct btrfs_key found_key;
1049 u64 cow_start;
1050 u64 cur_offset;
1051 u64 extent_end;
1052 u64 extent_offset;
1053 u64 disk_bytenr;
1054 u64 num_bytes;
1055 int extent_type;
1056 int ret;
1057 int type;
1058 int nocow;
1059 int check_prev = 1;
1060 bool nolock;
1061 u64 ino = btrfs_ino(inode);
1063 path = btrfs_alloc_path();
1064 BUG_ON(!path);
1066 nolock = btrfs_is_free_space_inode(root, inode);
1068 if (nolock)
1069 trans = btrfs_join_transaction_nolock(root);
1070 else
1071 trans = btrfs_join_transaction(root);
1073 BUG_ON(IS_ERR(trans));
1074 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1076 cow_start = (u64)-1;
1077 cur_offset = start;
1078 while (1) {
1079 ret = btrfs_lookup_file_extent(trans, root, path, ino,
1080 cur_offset, 0);
1081 BUG_ON(ret < 0);
1082 if (ret > 0 && path->slots[0] > 0 && check_prev) {
1083 leaf = path->nodes[0];
1084 btrfs_item_key_to_cpu(leaf, &found_key,
1085 path->slots[0] - 1);
1086 if (found_key.objectid == ino &&
1087 found_key.type == BTRFS_EXTENT_DATA_KEY)
1088 path->slots[0]--;
1090 check_prev = 0;
1091 next_slot:
1092 leaf = path->nodes[0];
1093 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1094 ret = btrfs_next_leaf(root, path);
1095 if (ret < 0)
1096 BUG_ON(1);
1097 if (ret > 0)
1098 break;
1099 leaf = path->nodes[0];
1102 nocow = 0;
1103 disk_bytenr = 0;
1104 num_bytes = 0;
1105 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1107 if (found_key.objectid > ino ||
1108 found_key.type > BTRFS_EXTENT_DATA_KEY ||
1109 found_key.offset > end)
1110 break;
1112 if (found_key.offset > cur_offset) {
1113 extent_end = found_key.offset;
1114 extent_type = 0;
1115 goto out_check;
1118 fi = btrfs_item_ptr(leaf, path->slots[0],
1119 struct btrfs_file_extent_item);
1120 extent_type = btrfs_file_extent_type(leaf, fi);
1122 if (extent_type == BTRFS_FILE_EXTENT_REG ||
1123 extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1124 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1125 extent_offset = btrfs_file_extent_offset(leaf, fi);
1126 extent_end = found_key.offset +
1127 btrfs_file_extent_num_bytes(leaf, fi);
1128 if (extent_end <= start) {
1129 path->slots[0]++;
1130 goto next_slot;
1132 if (disk_bytenr == 0)
1133 goto out_check;
1134 if (btrfs_file_extent_compression(leaf, fi) ||
1135 btrfs_file_extent_encryption(leaf, fi) ||
1136 btrfs_file_extent_other_encoding(leaf, fi))
1137 goto out_check;
1138 if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1139 goto out_check;
1140 if (btrfs_extent_readonly(root, disk_bytenr))
1141 goto out_check;
1142 if (btrfs_cross_ref_exist(trans, root, ino,
1143 found_key.offset -
1144 extent_offset, disk_bytenr))
1145 goto out_check;
1146 disk_bytenr += extent_offset;
1147 disk_bytenr += cur_offset - found_key.offset;
1148 num_bytes = min(end + 1, extent_end) - cur_offset;
1150 * force cow if csum exists in the range.
1151 * this ensure that csum for a given extent are
1152 * either valid or do not exist.
1154 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1155 goto out_check;
1156 nocow = 1;
1157 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1158 extent_end = found_key.offset +
1159 btrfs_file_extent_inline_len(leaf, fi);
1160 extent_end = ALIGN(extent_end, root->sectorsize);
1161 } else {
1162 BUG_ON(1);
1164 out_check:
1165 if (extent_end <= start) {
1166 path->slots[0]++;
1167 goto next_slot;
1169 if (!nocow) {
1170 if (cow_start == (u64)-1)
1171 cow_start = cur_offset;
1172 cur_offset = extent_end;
1173 if (cur_offset > end)
1174 break;
1175 path->slots[0]++;
1176 goto next_slot;
1179 btrfs_release_path(path);
1180 if (cow_start != (u64)-1) {
1181 ret = cow_file_range(inode, locked_page, cow_start,
1182 found_key.offset - 1, page_started,
1183 nr_written, 1);
1184 BUG_ON(ret);
1185 cow_start = (u64)-1;
1188 if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1189 struct extent_map *em;
1190 struct extent_map_tree *em_tree;
1191 em_tree = &BTRFS_I(inode)->extent_tree;
1192 em = alloc_extent_map();
1193 BUG_ON(!em);
1194 em->start = cur_offset;
1195 em->orig_start = em->start;
1196 em->len = num_bytes;
1197 em->block_len = num_bytes;
1198 em->block_start = disk_bytenr;
1199 em->bdev = root->fs_info->fs_devices->latest_bdev;
1200 set_bit(EXTENT_FLAG_PINNED, &em->flags);
1201 while (1) {
1202 write_lock(&em_tree->lock);
1203 ret = add_extent_mapping(em_tree, em);
1204 write_unlock(&em_tree->lock);
1205 if (ret != -EEXIST) {
1206 free_extent_map(em);
1207 break;
1209 btrfs_drop_extent_cache(inode, em->start,
1210 em->start + em->len - 1, 0);
1212 type = BTRFS_ORDERED_PREALLOC;
1213 } else {
1214 type = BTRFS_ORDERED_NOCOW;
1217 ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1218 num_bytes, num_bytes, type);
1219 BUG_ON(ret);
1221 if (root->root_key.objectid ==
1222 BTRFS_DATA_RELOC_TREE_OBJECTID) {
1223 ret = btrfs_reloc_clone_csums(inode, cur_offset,
1224 num_bytes);
1225 BUG_ON(ret);
1228 extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1229 cur_offset, cur_offset + num_bytes - 1,
1230 locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1231 EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1232 EXTENT_SET_PRIVATE2);
1233 cur_offset = extent_end;
1234 if (cur_offset > end)
1235 break;
1237 btrfs_release_path(path);
1239 if (cur_offset <= end && cow_start == (u64)-1)
1240 cow_start = cur_offset;
1241 if (cow_start != (u64)-1) {
1242 ret = cow_file_range(inode, locked_page, cow_start, end,
1243 page_started, nr_written, 1);
1244 BUG_ON(ret);
1247 if (nolock) {
1248 ret = btrfs_end_transaction_nolock(trans, root);
1249 BUG_ON(ret);
1250 } else {
1251 ret = btrfs_end_transaction(trans, root);
1252 BUG_ON(ret);
1254 btrfs_free_path(path);
1255 return 0;
1259 * extent_io.c call back to do delayed allocation processing
1261 static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1262 u64 start, u64 end, int *page_started,
1263 unsigned long *nr_written)
1265 int ret;
1266 struct btrfs_root *root = BTRFS_I(inode)->root;
1268 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW)
1269 ret = run_delalloc_nocow(inode, locked_page, start, end,
1270 page_started, 1, nr_written);
1271 else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC)
1272 ret = run_delalloc_nocow(inode, locked_page, start, end,
1273 page_started, 0, nr_written);
1274 else if (!btrfs_test_opt(root, COMPRESS) &&
1275 !(BTRFS_I(inode)->force_compress) &&
1276 !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))
1277 ret = cow_file_range(inode, locked_page, start, end,
1278 page_started, nr_written, 1);
1279 else
1280 ret = cow_file_range_async(inode, locked_page, start, end,
1281 page_started, nr_written);
1282 return ret;
1285 static int btrfs_split_extent_hook(struct inode *inode,
1286 struct extent_state *orig, u64 split)
1288 /* not delalloc, ignore it */
1289 if (!(orig->state & EXTENT_DELALLOC))
1290 return 0;
1292 spin_lock(&BTRFS_I(inode)->lock);
1293 BTRFS_I(inode)->outstanding_extents++;
1294 spin_unlock(&BTRFS_I(inode)->lock);
1295 return 0;
1299 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1300 * extents so we can keep track of new extents that are just merged onto old
1301 * extents, such as when we are doing sequential writes, so we can properly
1302 * account for the metadata space we'll need.
1304 static int btrfs_merge_extent_hook(struct inode *inode,
1305 struct extent_state *new,
1306 struct extent_state *other)
1308 /* not delalloc, ignore it */
1309 if (!(other->state & EXTENT_DELALLOC))
1310 return 0;
1312 spin_lock(&BTRFS_I(inode)->lock);
1313 BTRFS_I(inode)->outstanding_extents--;
1314 spin_unlock(&BTRFS_I(inode)->lock);
1315 return 0;
1319 * extent_io.c set_bit_hook, used to track delayed allocation
1320 * bytes in this file, and to maintain the list of inodes that
1321 * have pending delalloc work to be done.
1323 static int btrfs_set_bit_hook(struct inode *inode,
1324 struct extent_state *state, int *bits)
1328 * set_bit and clear bit hooks normally require _irqsave/restore
1329 * but in this case, we are only testing for the DELALLOC
1330 * bit, which is only set or cleared with irqs on
1332 if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1333 struct btrfs_root *root = BTRFS_I(inode)->root;
1334 u64 len = state->end + 1 - state->start;
1335 bool do_list = !btrfs_is_free_space_inode(root, inode);
1337 if (*bits & EXTENT_FIRST_DELALLOC) {
1338 *bits &= ~EXTENT_FIRST_DELALLOC;
1339 } else {
1340 spin_lock(&BTRFS_I(inode)->lock);
1341 BTRFS_I(inode)->outstanding_extents++;
1342 spin_unlock(&BTRFS_I(inode)->lock);
1345 spin_lock(&root->fs_info->delalloc_lock);
1346 BTRFS_I(inode)->delalloc_bytes += len;
1347 root->fs_info->delalloc_bytes += len;
1348 if (do_list && list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1349 list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1350 &root->fs_info->delalloc_inodes);
1352 spin_unlock(&root->fs_info->delalloc_lock);
1354 return 0;
1358 * extent_io.c clear_bit_hook, see set_bit_hook for why
1360 static int btrfs_clear_bit_hook(struct inode *inode,
1361 struct extent_state *state, int *bits)
1364 * set_bit and clear bit hooks normally require _irqsave/restore
1365 * but in this case, we are only testing for the DELALLOC
1366 * bit, which is only set or cleared with irqs on
1368 if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1369 struct btrfs_root *root = BTRFS_I(inode)->root;
1370 u64 len = state->end + 1 - state->start;
1371 bool do_list = !btrfs_is_free_space_inode(root, inode);
1373 if (*bits & EXTENT_FIRST_DELALLOC) {
1374 *bits &= ~EXTENT_FIRST_DELALLOC;
1375 } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1376 spin_lock(&BTRFS_I(inode)->lock);
1377 BTRFS_I(inode)->outstanding_extents--;
1378 spin_unlock(&BTRFS_I(inode)->lock);
1381 if (*bits & EXTENT_DO_ACCOUNTING)
1382 btrfs_delalloc_release_metadata(inode, len);
1384 if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1385 && do_list)
1386 btrfs_free_reserved_data_space(inode, len);
1388 spin_lock(&root->fs_info->delalloc_lock);
1389 root->fs_info->delalloc_bytes -= len;
1390 BTRFS_I(inode)->delalloc_bytes -= len;
1392 if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1393 !list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1394 list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1396 spin_unlock(&root->fs_info->delalloc_lock);
1398 return 0;
1402 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1403 * we don't create bios that span stripes or chunks
1405 int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
1406 size_t size, struct bio *bio,
1407 unsigned long bio_flags)
1409 struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1410 struct btrfs_mapping_tree *map_tree;
1411 u64 logical = (u64)bio->bi_sector << 9;
1412 u64 length = 0;
1413 u64 map_length;
1414 int ret;
1416 if (bio_flags & EXTENT_BIO_COMPRESSED)
1417 return 0;
1419 length = bio->bi_size;
1420 map_tree = &root->fs_info->mapping_tree;
1421 map_length = length;
1422 ret = btrfs_map_block(map_tree, READ, logical,
1423 &map_length, NULL, 0);
1425 if (map_length < length + size)
1426 return 1;
1427 return ret;
1431 * in order to insert checksums into the metadata in large chunks,
1432 * we wait until bio submission time. All the pages in the bio are
1433 * checksummed and sums are attached onto the ordered extent record.
1435 * At IO completion time the cums attached on the ordered extent record
1436 * are inserted into the btree
1438 static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1439 struct bio *bio, int mirror_num,
1440 unsigned long bio_flags,
1441 u64 bio_offset)
1443 struct btrfs_root *root = BTRFS_I(inode)->root;
1444 int ret = 0;
1446 ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1447 BUG_ON(ret);
1448 return 0;
1452 * in order to insert checksums into the metadata in large chunks,
1453 * we wait until bio submission time. All the pages in the bio are
1454 * checksummed and sums are attached onto the ordered extent record.
1456 * At IO completion time the cums attached on the ordered extent record
1457 * are inserted into the btree
1459 static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1460 int mirror_num, unsigned long bio_flags,
1461 u64 bio_offset)
1463 struct btrfs_root *root = BTRFS_I(inode)->root;
1464 return btrfs_map_bio(root, rw, bio, mirror_num, 1);
1468 * extent_io.c submission hook. This does the right thing for csum calculation
1469 * on write, or reading the csums from the tree before a read
1471 static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1472 int mirror_num, unsigned long bio_flags,
1473 u64 bio_offset)
1475 struct btrfs_root *root = BTRFS_I(inode)->root;
1476 int ret = 0;
1477 int skip_sum;
1479 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1481 if (btrfs_is_free_space_inode(root, inode))
1482 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 2);
1483 else
1484 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
1485 BUG_ON(ret);
1487 if (!(rw & REQ_WRITE)) {
1488 if (bio_flags & EXTENT_BIO_COMPRESSED) {
1489 return btrfs_submit_compressed_read(inode, bio,
1490 mirror_num, bio_flags);
1491 } else if (!skip_sum) {
1492 ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1493 if (ret)
1494 return ret;
1496 goto mapit;
1497 } else if (!skip_sum) {
1498 /* csum items have already been cloned */
1499 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1500 goto mapit;
1501 /* we're doing a write, do the async checksumming */
1502 return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1503 inode, rw, bio, mirror_num,
1504 bio_flags, bio_offset,
1505 __btrfs_submit_bio_start,
1506 __btrfs_submit_bio_done);
1509 mapit:
1510 return btrfs_map_bio(root, rw, bio, mirror_num, 0);
1514 * given a list of ordered sums record them in the inode. This happens
1515 * at IO completion time based on sums calculated at bio submission time.
1517 static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1518 struct inode *inode, u64 file_offset,
1519 struct list_head *list)
1521 struct btrfs_ordered_sum *sum;
1523 list_for_each_entry(sum, list, list) {
1524 btrfs_csum_file_blocks(trans,
1525 BTRFS_I(inode)->root->fs_info->csum_root, sum);
1527 return 0;
1530 int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1531 struct extent_state **cached_state)
1533 if ((end & (PAGE_CACHE_SIZE - 1)) == 0)
1534 WARN_ON(1);
1535 return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1536 cached_state, GFP_NOFS);
1539 /* see btrfs_writepage_start_hook for details on why this is required */
1540 struct btrfs_writepage_fixup {
1541 struct page *page;
1542 struct btrfs_work work;
1545 static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1547 struct btrfs_writepage_fixup *fixup;
1548 struct btrfs_ordered_extent *ordered;
1549 struct extent_state *cached_state = NULL;
1550 struct page *page;
1551 struct inode *inode;
1552 u64 page_start;
1553 u64 page_end;
1555 fixup = container_of(work, struct btrfs_writepage_fixup, work);
1556 page = fixup->page;
1557 again:
1558 lock_page(page);
1559 if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1560 ClearPageChecked(page);
1561 goto out_page;
1564 inode = page->mapping->host;
1565 page_start = page_offset(page);
1566 page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1568 lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1569 &cached_state, GFP_NOFS);
1571 /* already ordered? We're done */
1572 if (PagePrivate2(page))
1573 goto out;
1575 ordered = btrfs_lookup_ordered_extent(inode, page_start);
1576 if (ordered) {
1577 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1578 page_end, &cached_state, GFP_NOFS);
1579 unlock_page(page);
1580 btrfs_start_ordered_extent(inode, ordered, 1);
1581 goto again;
1584 BUG();
1585 btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1586 ClearPageChecked(page);
1587 out:
1588 unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1589 &cached_state, GFP_NOFS);
1590 out_page:
1591 unlock_page(page);
1592 page_cache_release(page);
1593 kfree(fixup);
1597 * There are a few paths in the higher layers of the kernel that directly
1598 * set the page dirty bit without asking the filesystem if it is a
1599 * good idea. This causes problems because we want to make sure COW
1600 * properly happens and the data=ordered rules are followed.
1602 * In our case any range that doesn't have the ORDERED bit set
1603 * hasn't been properly setup for IO. We kick off an async process
1604 * to fix it up. The async helper will wait for ordered extents, set
1605 * the delalloc bit and make it safe to write the page.
1607 static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1609 struct inode *inode = page->mapping->host;
1610 struct btrfs_writepage_fixup *fixup;
1611 struct btrfs_root *root = BTRFS_I(inode)->root;
1613 /* this page is properly in the ordered list */
1614 if (TestClearPagePrivate2(page))
1615 return 0;
1617 if (PageChecked(page))
1618 return -EAGAIN;
1620 fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1621 if (!fixup)
1622 return -EAGAIN;
1624 SetPageChecked(page);
1625 page_cache_get(page);
1626 fixup->work.func = btrfs_writepage_fixup_worker;
1627 fixup->page = page;
1628 btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1629 return -EAGAIN;
1632 static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1633 struct inode *inode, u64 file_pos,
1634 u64 disk_bytenr, u64 disk_num_bytes,
1635 u64 num_bytes, u64 ram_bytes,
1636 u8 compression, u8 encryption,
1637 u16 other_encoding, int extent_type)
1639 struct btrfs_root *root = BTRFS_I(inode)->root;
1640 struct btrfs_file_extent_item *fi;
1641 struct btrfs_path *path;
1642 struct extent_buffer *leaf;
1643 struct btrfs_key ins;
1644 u64 hint;
1645 int ret;
1647 path = btrfs_alloc_path();
1648 BUG_ON(!path);
1650 path->leave_spinning = 1;
1653 * we may be replacing one extent in the tree with another.
1654 * The new extent is pinned in the extent map, and we don't want
1655 * to drop it from the cache until it is completely in the btree.
1657 * So, tell btrfs_drop_extents to leave this extent in the cache.
1658 * the caller is expected to unpin it and allow it to be merged
1659 * with the others.
1661 ret = btrfs_drop_extents(trans, inode, file_pos, file_pos + num_bytes,
1662 &hint, 0);
1663 BUG_ON(ret);
1665 ins.objectid = btrfs_ino(inode);
1666 ins.offset = file_pos;
1667 ins.type = BTRFS_EXTENT_DATA_KEY;
1668 ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1669 BUG_ON(ret);
1670 leaf = path->nodes[0];
1671 fi = btrfs_item_ptr(leaf, path->slots[0],
1672 struct btrfs_file_extent_item);
1673 btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1674 btrfs_set_file_extent_type(leaf, fi, extent_type);
1675 btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1676 btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1677 btrfs_set_file_extent_offset(leaf, fi, 0);
1678 btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1679 btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1680 btrfs_set_file_extent_compression(leaf, fi, compression);
1681 btrfs_set_file_extent_encryption(leaf, fi, encryption);
1682 btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1684 btrfs_unlock_up_safe(path, 1);
1685 btrfs_set_lock_blocking(leaf);
1687 btrfs_mark_buffer_dirty(leaf);
1689 inode_add_bytes(inode, num_bytes);
1691 ins.objectid = disk_bytenr;
1692 ins.offset = disk_num_bytes;
1693 ins.type = BTRFS_EXTENT_ITEM_KEY;
1694 ret = btrfs_alloc_reserved_file_extent(trans, root,
1695 root->root_key.objectid,
1696 btrfs_ino(inode), file_pos, &ins);
1697 BUG_ON(ret);
1698 btrfs_free_path(path);
1700 return 0;
1704 * helper function for btrfs_finish_ordered_io, this
1705 * just reads in some of the csum leaves to prime them into ram
1706 * before we start the transaction. It limits the amount of btree
1707 * reads required while inside the transaction.
1709 /* as ordered data IO finishes, this gets called so we can finish
1710 * an ordered extent if the range of bytes in the file it covers are
1711 * fully written.
1713 static int btrfs_finish_ordered_io(struct inode *inode, u64 start, u64 end)
1715 struct btrfs_root *root = BTRFS_I(inode)->root;
1716 struct btrfs_trans_handle *trans = NULL;
1717 struct btrfs_ordered_extent *ordered_extent = NULL;
1718 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1719 struct extent_state *cached_state = NULL;
1720 int compress_type = 0;
1721 int ret;
1722 bool nolock;
1724 ret = btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
1725 end - start + 1);
1726 if (!ret)
1727 return 0;
1728 BUG_ON(!ordered_extent);
1730 nolock = btrfs_is_free_space_inode(root, inode);
1732 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
1733 BUG_ON(!list_empty(&ordered_extent->list));
1734 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1735 if (!ret) {
1736 if (nolock)
1737 trans = btrfs_join_transaction_nolock(root);
1738 else
1739 trans = btrfs_join_transaction(root);
1740 BUG_ON(IS_ERR(trans));
1741 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1742 ret = btrfs_update_inode(trans, root, inode);
1743 BUG_ON(ret);
1745 goto out;
1748 lock_extent_bits(io_tree, ordered_extent->file_offset,
1749 ordered_extent->file_offset + ordered_extent->len - 1,
1750 0, &cached_state, GFP_NOFS);
1752 if (nolock)
1753 trans = btrfs_join_transaction_nolock(root);
1754 else
1755 trans = btrfs_join_transaction(root);
1756 BUG_ON(IS_ERR(trans));
1757 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1759 if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
1760 compress_type = ordered_extent->compress_type;
1761 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
1762 BUG_ON(compress_type);
1763 ret = btrfs_mark_extent_written(trans, inode,
1764 ordered_extent->file_offset,
1765 ordered_extent->file_offset +
1766 ordered_extent->len);
1767 BUG_ON(ret);
1768 } else {
1769 BUG_ON(root == root->fs_info->tree_root);
1770 ret = insert_reserved_file_extent(trans, inode,
1771 ordered_extent->file_offset,
1772 ordered_extent->start,
1773 ordered_extent->disk_len,
1774 ordered_extent->len,
1775 ordered_extent->len,
1776 compress_type, 0, 0,
1777 BTRFS_FILE_EXTENT_REG);
1778 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
1779 ordered_extent->file_offset,
1780 ordered_extent->len);
1781 BUG_ON(ret);
1783 unlock_extent_cached(io_tree, ordered_extent->file_offset,
1784 ordered_extent->file_offset +
1785 ordered_extent->len - 1, &cached_state, GFP_NOFS);
1787 add_pending_csums(trans, inode, ordered_extent->file_offset,
1788 &ordered_extent->list);
1790 ret = btrfs_ordered_update_i_size(inode, 0, ordered_extent);
1791 if (!ret) {
1792 ret = btrfs_update_inode(trans, root, inode);
1793 BUG_ON(ret);
1795 ret = 0;
1796 out:
1797 if (nolock) {
1798 if (trans)
1799 btrfs_end_transaction_nolock(trans, root);
1800 } else {
1801 btrfs_delalloc_release_metadata(inode, ordered_extent->len);
1802 if (trans)
1803 btrfs_end_transaction(trans, root);
1806 /* once for us */
1807 btrfs_put_ordered_extent(ordered_extent);
1808 /* once for the tree */
1809 btrfs_put_ordered_extent(ordered_extent);
1811 return 0;
1814 static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
1815 struct extent_state *state, int uptodate)
1817 trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
1819 ClearPagePrivate2(page);
1820 return btrfs_finish_ordered_io(page->mapping->host, start, end);
1824 * When IO fails, either with EIO or csum verification fails, we
1825 * try other mirrors that might have a good copy of the data. This
1826 * io_failure_record is used to record state as we go through all the
1827 * mirrors. If another mirror has good data, the page is set up to date
1828 * and things continue. If a good mirror can't be found, the original
1829 * bio end_io callback is called to indicate things have failed.
1831 struct io_failure_record {
1832 struct page *page;
1833 u64 start;
1834 u64 len;
1835 u64 logical;
1836 unsigned long bio_flags;
1837 int last_mirror;
1840 static int btrfs_io_failed_hook(struct bio *failed_bio,
1841 struct page *page, u64 start, u64 end,
1842 struct extent_state *state)
1844 struct io_failure_record *failrec = NULL;
1845 u64 private;
1846 struct extent_map *em;
1847 struct inode *inode = page->mapping->host;
1848 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1849 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1850 struct bio *bio;
1851 int num_copies;
1852 int ret;
1853 int rw;
1854 u64 logical;
1856 ret = get_state_private(failure_tree, start, &private);
1857 if (ret) {
1858 failrec = kmalloc(sizeof(*failrec), GFP_NOFS);
1859 if (!failrec)
1860 return -ENOMEM;
1861 failrec->start = start;
1862 failrec->len = end - start + 1;
1863 failrec->last_mirror = 0;
1864 failrec->bio_flags = 0;
1866 read_lock(&em_tree->lock);
1867 em = lookup_extent_mapping(em_tree, start, failrec->len);
1868 if (em->start > start || em->start + em->len < start) {
1869 free_extent_map(em);
1870 em = NULL;
1872 read_unlock(&em_tree->lock);
1874 if (IS_ERR_OR_NULL(em)) {
1875 kfree(failrec);
1876 return -EIO;
1878 logical = start - em->start;
1879 logical = em->block_start + logical;
1880 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
1881 logical = em->block_start;
1882 failrec->bio_flags = EXTENT_BIO_COMPRESSED;
1883 extent_set_compress_type(&failrec->bio_flags,
1884 em->compress_type);
1886 failrec->logical = logical;
1887 free_extent_map(em);
1888 set_extent_bits(failure_tree, start, end, EXTENT_LOCKED |
1889 EXTENT_DIRTY, GFP_NOFS);
1890 set_state_private(failure_tree, start,
1891 (u64)(unsigned long)failrec);
1892 } else {
1893 failrec = (struct io_failure_record *)(unsigned long)private;
1895 num_copies = btrfs_num_copies(
1896 &BTRFS_I(inode)->root->fs_info->mapping_tree,
1897 failrec->logical, failrec->len);
1898 failrec->last_mirror++;
1899 if (!state) {
1900 spin_lock(&BTRFS_I(inode)->io_tree.lock);
1901 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
1902 failrec->start,
1903 EXTENT_LOCKED);
1904 if (state && state->start != failrec->start)
1905 state = NULL;
1906 spin_unlock(&BTRFS_I(inode)->io_tree.lock);
1908 if (!state || failrec->last_mirror > num_copies) {
1909 set_state_private(failure_tree, failrec->start, 0);
1910 clear_extent_bits(failure_tree, failrec->start,
1911 failrec->start + failrec->len - 1,
1912 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1913 kfree(failrec);
1914 return -EIO;
1916 bio = bio_alloc(GFP_NOFS, 1);
1917 bio->bi_private = state;
1918 bio->bi_end_io = failed_bio->bi_end_io;
1919 bio->bi_sector = failrec->logical >> 9;
1920 bio->bi_bdev = failed_bio->bi_bdev;
1921 bio->bi_size = 0;
1923 bio_add_page(bio, page, failrec->len, start - page_offset(page));
1924 if (failed_bio->bi_rw & REQ_WRITE)
1925 rw = WRITE;
1926 else
1927 rw = READ;
1929 ret = BTRFS_I(inode)->io_tree.ops->submit_bio_hook(inode, rw, bio,
1930 failrec->last_mirror,
1931 failrec->bio_flags, 0);
1932 return ret;
1936 * each time an IO finishes, we do a fast check in the IO failure tree
1937 * to see if we need to process or clean up an io_failure_record
1939 static int btrfs_clean_io_failures(struct inode *inode, u64 start)
1941 u64 private;
1942 u64 private_failure;
1943 struct io_failure_record *failure;
1944 int ret;
1946 private = 0;
1947 if (count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
1948 (u64)-1, 1, EXTENT_DIRTY, 0)) {
1949 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree,
1950 start, &private_failure);
1951 if (ret == 0) {
1952 failure = (struct io_failure_record *)(unsigned long)
1953 private_failure;
1954 set_state_private(&BTRFS_I(inode)->io_failure_tree,
1955 failure->start, 0);
1956 clear_extent_bits(&BTRFS_I(inode)->io_failure_tree,
1957 failure->start,
1958 failure->start + failure->len - 1,
1959 EXTENT_DIRTY | EXTENT_LOCKED,
1960 GFP_NOFS);
1961 kfree(failure);
1964 return 0;
1968 * when reads are done, we need to check csums to verify the data is correct
1969 * if there's a match, we allow the bio to finish. If not, we go through
1970 * the io_failure_record routines to find good copies
1972 static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
1973 struct extent_state *state)
1975 size_t offset = start - ((u64)page->index << PAGE_CACHE_SHIFT);
1976 struct inode *inode = page->mapping->host;
1977 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1978 char *kaddr;
1979 u64 private = ~(u32)0;
1980 int ret;
1981 struct btrfs_root *root = BTRFS_I(inode)->root;
1982 u32 csum = ~(u32)0;
1984 if (PageChecked(page)) {
1985 ClearPageChecked(page);
1986 goto good;
1989 if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
1990 goto good;
1992 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
1993 test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
1994 clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
1995 GFP_NOFS);
1996 return 0;
1999 if (state && state->start == start) {
2000 private = state->private;
2001 ret = 0;
2002 } else {
2003 ret = get_state_private(io_tree, start, &private);
2005 kaddr = kmap_atomic(page, KM_USER0);
2006 if (ret)
2007 goto zeroit;
2009 csum = btrfs_csum_data(root, kaddr + offset, csum, end - start + 1);
2010 btrfs_csum_final(csum, (char *)&csum);
2011 if (csum != private)
2012 goto zeroit;
2014 kunmap_atomic(kaddr, KM_USER0);
2015 good:
2016 /* if the io failure tree for this inode is non-empty,
2017 * check to see if we've recovered from a failed IO
2019 btrfs_clean_io_failures(inode, start);
2020 return 0;
2022 zeroit:
2023 printk_ratelimited(KERN_INFO "btrfs csum failed ino %llu off %llu csum %u "
2024 "private %llu\n",
2025 (unsigned long long)btrfs_ino(page->mapping->host),
2026 (unsigned long long)start, csum,
2027 (unsigned long long)private);
2028 memset(kaddr + offset, 1, end - start + 1);
2029 flush_dcache_page(page);
2030 kunmap_atomic(kaddr, KM_USER0);
2031 if (private == 0)
2032 return 0;
2033 return -EIO;
2036 struct delayed_iput {
2037 struct list_head list;
2038 struct inode *inode;
2041 void btrfs_add_delayed_iput(struct inode *inode)
2043 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2044 struct delayed_iput *delayed;
2046 if (atomic_add_unless(&inode->i_count, -1, 1))
2047 return;
2049 delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2050 delayed->inode = inode;
2052 spin_lock(&fs_info->delayed_iput_lock);
2053 list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2054 spin_unlock(&fs_info->delayed_iput_lock);
2057 void btrfs_run_delayed_iputs(struct btrfs_root *root)
2059 LIST_HEAD(list);
2060 struct btrfs_fs_info *fs_info = root->fs_info;
2061 struct delayed_iput *delayed;
2062 int empty;
2064 spin_lock(&fs_info->delayed_iput_lock);
2065 empty = list_empty(&fs_info->delayed_iputs);
2066 spin_unlock(&fs_info->delayed_iput_lock);
2067 if (empty)
2068 return;
2070 down_read(&root->fs_info->cleanup_work_sem);
2071 spin_lock(&fs_info->delayed_iput_lock);
2072 list_splice_init(&fs_info->delayed_iputs, &list);
2073 spin_unlock(&fs_info->delayed_iput_lock);
2075 while (!list_empty(&list)) {
2076 delayed = list_entry(list.next, struct delayed_iput, list);
2077 list_del(&delayed->list);
2078 iput(delayed->inode);
2079 kfree(delayed);
2081 up_read(&root->fs_info->cleanup_work_sem);
2085 * calculate extra metadata reservation when snapshotting a subvolume
2086 * contains orphan files.
2088 void btrfs_orphan_pre_snapshot(struct btrfs_trans_handle *trans,
2089 struct btrfs_pending_snapshot *pending,
2090 u64 *bytes_to_reserve)
2092 struct btrfs_root *root;
2093 struct btrfs_block_rsv *block_rsv;
2094 u64 num_bytes;
2095 int index;
2097 root = pending->root;
2098 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2099 return;
2101 block_rsv = root->orphan_block_rsv;
2103 /* orphan block reservation for the snapshot */
2104 num_bytes = block_rsv->size;
2107 * after the snapshot is created, COWing tree blocks may use more
2108 * space than it frees. So we should make sure there is enough
2109 * reserved space.
2111 index = trans->transid & 0x1;
2112 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2113 num_bytes += block_rsv->size -
2114 (block_rsv->reserved + block_rsv->freed[index]);
2117 *bytes_to_reserve += num_bytes;
2120 void btrfs_orphan_post_snapshot(struct btrfs_trans_handle *trans,
2121 struct btrfs_pending_snapshot *pending)
2123 struct btrfs_root *root = pending->root;
2124 struct btrfs_root *snap = pending->snap;
2125 struct btrfs_block_rsv *block_rsv;
2126 u64 num_bytes;
2127 int index;
2128 int ret;
2130 if (!root->orphan_block_rsv || list_empty(&root->orphan_list))
2131 return;
2133 /* refill source subvolume's orphan block reservation */
2134 block_rsv = root->orphan_block_rsv;
2135 index = trans->transid & 0x1;
2136 if (block_rsv->reserved + block_rsv->freed[index] < block_rsv->size) {
2137 num_bytes = block_rsv->size -
2138 (block_rsv->reserved + block_rsv->freed[index]);
2139 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2140 root->orphan_block_rsv,
2141 num_bytes);
2142 BUG_ON(ret);
2145 /* setup orphan block reservation for the snapshot */
2146 block_rsv = btrfs_alloc_block_rsv(snap);
2147 BUG_ON(!block_rsv);
2149 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2150 snap->orphan_block_rsv = block_rsv;
2152 num_bytes = root->orphan_block_rsv->size;
2153 ret = btrfs_block_rsv_migrate(&pending->block_rsv,
2154 block_rsv, num_bytes);
2155 BUG_ON(ret);
2157 #if 0
2158 /* insert orphan item for the snapshot */
2159 WARN_ON(!root->orphan_item_inserted);
2160 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2161 snap->root_key.objectid);
2162 BUG_ON(ret);
2163 snap->orphan_item_inserted = 1;
2164 #endif
2167 enum btrfs_orphan_cleanup_state {
2168 ORPHAN_CLEANUP_STARTED = 1,
2169 ORPHAN_CLEANUP_DONE = 2,
2173 * This is called in transaction commmit time. If there are no orphan
2174 * files in the subvolume, it removes orphan item and frees block_rsv
2175 * structure.
2177 void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2178 struct btrfs_root *root)
2180 int ret;
2182 if (!list_empty(&root->orphan_list) ||
2183 root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2184 return;
2186 if (root->orphan_item_inserted &&
2187 btrfs_root_refs(&root->root_item) > 0) {
2188 ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2189 root->root_key.objectid);
2190 BUG_ON(ret);
2191 root->orphan_item_inserted = 0;
2194 if (root->orphan_block_rsv) {
2195 WARN_ON(root->orphan_block_rsv->size > 0);
2196 btrfs_free_block_rsv(root, root->orphan_block_rsv);
2197 root->orphan_block_rsv = NULL;
2202 * This creates an orphan entry for the given inode in case something goes
2203 * wrong in the middle of an unlink/truncate.
2205 * NOTE: caller of this function should reserve 5 units of metadata for
2206 * this function.
2208 int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2210 struct btrfs_root *root = BTRFS_I(inode)->root;
2211 struct btrfs_block_rsv *block_rsv = NULL;
2212 int reserve = 0;
2213 int insert = 0;
2214 int ret;
2216 if (!root->orphan_block_rsv) {
2217 block_rsv = btrfs_alloc_block_rsv(root);
2218 BUG_ON(!block_rsv);
2221 spin_lock(&root->orphan_lock);
2222 if (!root->orphan_block_rsv) {
2223 root->orphan_block_rsv = block_rsv;
2224 } else if (block_rsv) {
2225 btrfs_free_block_rsv(root, block_rsv);
2226 block_rsv = NULL;
2229 if (list_empty(&BTRFS_I(inode)->i_orphan)) {
2230 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2231 #if 0
2233 * For proper ENOSPC handling, we should do orphan
2234 * cleanup when mounting. But this introduces backward
2235 * compatibility issue.
2237 if (!xchg(&root->orphan_item_inserted, 1))
2238 insert = 2;
2239 else
2240 insert = 1;
2241 #endif
2242 insert = 1;
2245 if (!BTRFS_I(inode)->orphan_meta_reserved) {
2246 BTRFS_I(inode)->orphan_meta_reserved = 1;
2247 reserve = 1;
2249 spin_unlock(&root->orphan_lock);
2251 if (block_rsv)
2252 btrfs_add_durable_block_rsv(root->fs_info, block_rsv);
2254 /* grab metadata reservation from transaction handle */
2255 if (reserve) {
2256 ret = btrfs_orphan_reserve_metadata(trans, inode);
2257 BUG_ON(ret);
2260 /* insert an orphan item to track this unlinked/truncated file */
2261 if (insert >= 1) {
2262 ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
2263 BUG_ON(ret);
2266 /* insert an orphan item to track subvolume contains orphan files */
2267 if (insert >= 2) {
2268 ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
2269 root->root_key.objectid);
2270 BUG_ON(ret);
2272 return 0;
2276 * We have done the truncate/delete so we can go ahead and remove the orphan
2277 * item for this particular inode.
2279 int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode)
2281 struct btrfs_root *root = BTRFS_I(inode)->root;
2282 int delete_item = 0;
2283 int release_rsv = 0;
2284 int ret = 0;
2286 spin_lock(&root->orphan_lock);
2287 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
2288 list_del_init(&BTRFS_I(inode)->i_orphan);
2289 delete_item = 1;
2292 if (BTRFS_I(inode)->orphan_meta_reserved) {
2293 BTRFS_I(inode)->orphan_meta_reserved = 0;
2294 release_rsv = 1;
2296 spin_unlock(&root->orphan_lock);
2298 if (trans && delete_item) {
2299 ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
2300 BUG_ON(ret);
2303 if (release_rsv)
2304 btrfs_orphan_release_metadata(inode);
2306 return 0;
2310 * this cleans up any orphans that may be left on the list from the last use
2311 * of this root.
2313 int btrfs_orphan_cleanup(struct btrfs_root *root)
2315 struct btrfs_path *path;
2316 struct extent_buffer *leaf;
2317 struct btrfs_key key, found_key;
2318 struct btrfs_trans_handle *trans;
2319 struct inode *inode;
2320 int ret = 0, nr_unlink = 0, nr_truncate = 0;
2322 if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
2323 return 0;
2325 path = btrfs_alloc_path();
2326 if (!path) {
2327 ret = -ENOMEM;
2328 goto out;
2330 path->reada = -1;
2332 key.objectid = BTRFS_ORPHAN_OBJECTID;
2333 btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
2334 key.offset = (u64)-1;
2336 while (1) {
2337 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2338 if (ret < 0)
2339 goto out;
2342 * if ret == 0 means we found what we were searching for, which
2343 * is weird, but possible, so only screw with path if we didn't
2344 * find the key and see if we have stuff that matches
2346 if (ret > 0) {
2347 ret = 0;
2348 if (path->slots[0] == 0)
2349 break;
2350 path->slots[0]--;
2353 /* pull out the item */
2354 leaf = path->nodes[0];
2355 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2357 /* make sure the item matches what we want */
2358 if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
2359 break;
2360 if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
2361 break;
2363 /* release the path since we're done with it */
2364 btrfs_release_path(path);
2367 * this is where we are basically btrfs_lookup, without the
2368 * crossing root thing. we store the inode number in the
2369 * offset of the orphan item.
2371 found_key.objectid = found_key.offset;
2372 found_key.type = BTRFS_INODE_ITEM_KEY;
2373 found_key.offset = 0;
2374 inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
2375 if (IS_ERR(inode)) {
2376 ret = PTR_ERR(inode);
2377 goto out;
2381 * add this inode to the orphan list so btrfs_orphan_del does
2382 * the proper thing when we hit it
2384 spin_lock(&root->orphan_lock);
2385 list_add(&BTRFS_I(inode)->i_orphan, &root->orphan_list);
2386 spin_unlock(&root->orphan_lock);
2389 * if this is a bad inode, means we actually succeeded in
2390 * removing the inode, but not the orphan record, which means
2391 * we need to manually delete the orphan since iput will just
2392 * do a destroy_inode
2394 if (is_bad_inode(inode)) {
2395 trans = btrfs_start_transaction(root, 0);
2396 if (IS_ERR(trans)) {
2397 ret = PTR_ERR(trans);
2398 goto out;
2400 btrfs_orphan_del(trans, inode);
2401 btrfs_end_transaction(trans, root);
2402 iput(inode);
2403 continue;
2406 /* if we have links, this was a truncate, lets do that */
2407 if (inode->i_nlink) {
2408 if (!S_ISREG(inode->i_mode)) {
2409 WARN_ON(1);
2410 iput(inode);
2411 continue;
2413 nr_truncate++;
2414 ret = btrfs_truncate(inode);
2415 } else {
2416 nr_unlink++;
2419 /* this will do delete_inode and everything for us */
2420 iput(inode);
2421 if (ret)
2422 goto out;
2424 root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
2426 if (root->orphan_block_rsv)
2427 btrfs_block_rsv_release(root, root->orphan_block_rsv,
2428 (u64)-1);
2430 if (root->orphan_block_rsv || root->orphan_item_inserted) {
2431 trans = btrfs_join_transaction(root);
2432 if (!IS_ERR(trans))
2433 btrfs_end_transaction(trans, root);
2436 if (nr_unlink)
2437 printk(KERN_INFO "btrfs: unlinked %d orphans\n", nr_unlink);
2438 if (nr_truncate)
2439 printk(KERN_INFO "btrfs: truncated %d orphans\n", nr_truncate);
2441 out:
2442 if (ret)
2443 printk(KERN_CRIT "btrfs: could not do orphan cleanup %d\n", ret);
2444 btrfs_free_path(path);
2445 return ret;
2449 * very simple check to peek ahead in the leaf looking for xattrs. If we
2450 * don't find any xattrs, we know there can't be any acls.
2452 * slot is the slot the inode is in, objectid is the objectid of the inode
2454 static noinline int acls_after_inode_item(struct extent_buffer *leaf,
2455 int slot, u64 objectid)
2457 u32 nritems = btrfs_header_nritems(leaf);
2458 struct btrfs_key found_key;
2459 int scanned = 0;
2461 slot++;
2462 while (slot < nritems) {
2463 btrfs_item_key_to_cpu(leaf, &found_key, slot);
2465 /* we found a different objectid, there must not be acls */
2466 if (found_key.objectid != objectid)
2467 return 0;
2469 /* we found an xattr, assume we've got an acl */
2470 if (found_key.type == BTRFS_XATTR_ITEM_KEY)
2471 return 1;
2474 * we found a key greater than an xattr key, there can't
2475 * be any acls later on
2477 if (found_key.type > BTRFS_XATTR_ITEM_KEY)
2478 return 0;
2480 slot++;
2481 scanned++;
2484 * it goes inode, inode backrefs, xattrs, extents,
2485 * so if there are a ton of hard links to an inode there can
2486 * be a lot of backrefs. Don't waste time searching too hard,
2487 * this is just an optimization
2489 if (scanned >= 8)
2490 break;
2492 /* we hit the end of the leaf before we found an xattr or
2493 * something larger than an xattr. We have to assume the inode
2494 * has acls
2496 return 1;
2500 * read an inode from the btree into the in-memory inode
2502 static void btrfs_read_locked_inode(struct inode *inode)
2504 struct btrfs_path *path;
2505 struct extent_buffer *leaf;
2506 struct btrfs_inode_item *inode_item;
2507 struct btrfs_timespec *tspec;
2508 struct btrfs_root *root = BTRFS_I(inode)->root;
2509 struct btrfs_key location;
2510 int maybe_acls;
2511 u32 rdev;
2512 int ret;
2513 bool filled = false;
2515 ret = btrfs_fill_inode(inode, &rdev);
2516 if (!ret)
2517 filled = true;
2519 path = btrfs_alloc_path();
2520 BUG_ON(!path);
2521 path->leave_spinning = 1;
2522 memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
2524 ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
2525 if (ret)
2526 goto make_bad;
2528 leaf = path->nodes[0];
2530 if (filled)
2531 goto cache_acl;
2533 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2534 struct btrfs_inode_item);
2535 inode->i_mode = btrfs_inode_mode(leaf, inode_item);
2536 inode->i_nlink = btrfs_inode_nlink(leaf, inode_item);
2537 inode->i_uid = btrfs_inode_uid(leaf, inode_item);
2538 inode->i_gid = btrfs_inode_gid(leaf, inode_item);
2539 btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
2541 tspec = btrfs_inode_atime(inode_item);
2542 inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2543 inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2545 tspec = btrfs_inode_mtime(inode_item);
2546 inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2547 inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2549 tspec = btrfs_inode_ctime(inode_item);
2550 inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
2551 inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
2553 inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
2554 BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
2555 BTRFS_I(inode)->sequence = btrfs_inode_sequence(leaf, inode_item);
2556 inode->i_generation = BTRFS_I(inode)->generation;
2557 inode->i_rdev = 0;
2558 rdev = btrfs_inode_rdev(leaf, inode_item);
2560 BTRFS_I(inode)->index_cnt = (u64)-1;
2561 BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
2562 cache_acl:
2564 * try to precache a NULL acl entry for files that don't have
2565 * any xattrs or acls
2567 maybe_acls = acls_after_inode_item(leaf, path->slots[0],
2568 btrfs_ino(inode));
2569 if (!maybe_acls)
2570 cache_no_acl(inode);
2572 btrfs_free_path(path);
2574 switch (inode->i_mode & S_IFMT) {
2575 case S_IFREG:
2576 inode->i_mapping->a_ops = &btrfs_aops;
2577 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2578 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
2579 inode->i_fop = &btrfs_file_operations;
2580 inode->i_op = &btrfs_file_inode_operations;
2581 break;
2582 case S_IFDIR:
2583 inode->i_fop = &btrfs_dir_file_operations;
2584 if (root == root->fs_info->tree_root)
2585 inode->i_op = &btrfs_dir_ro_inode_operations;
2586 else
2587 inode->i_op = &btrfs_dir_inode_operations;
2588 break;
2589 case S_IFLNK:
2590 inode->i_op = &btrfs_symlink_inode_operations;
2591 inode->i_mapping->a_ops = &btrfs_symlink_aops;
2592 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
2593 break;
2594 default:
2595 inode->i_op = &btrfs_special_inode_operations;
2596 init_special_inode(inode, inode->i_mode, rdev);
2597 break;
2600 btrfs_update_iflags(inode);
2601 return;
2603 make_bad:
2604 btrfs_free_path(path);
2605 make_bad_inode(inode);
2609 * given a leaf and an inode, copy the inode fields into the leaf
2611 static void fill_inode_item(struct btrfs_trans_handle *trans,
2612 struct extent_buffer *leaf,
2613 struct btrfs_inode_item *item,
2614 struct inode *inode)
2616 btrfs_set_inode_uid(leaf, item, inode->i_uid);
2617 btrfs_set_inode_gid(leaf, item, inode->i_gid);
2618 btrfs_set_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size);
2619 btrfs_set_inode_mode(leaf, item, inode->i_mode);
2620 btrfs_set_inode_nlink(leaf, item, inode->i_nlink);
2622 btrfs_set_timespec_sec(leaf, btrfs_inode_atime(item),
2623 inode->i_atime.tv_sec);
2624 btrfs_set_timespec_nsec(leaf, btrfs_inode_atime(item),
2625 inode->i_atime.tv_nsec);
2627 btrfs_set_timespec_sec(leaf, btrfs_inode_mtime(item),
2628 inode->i_mtime.tv_sec);
2629 btrfs_set_timespec_nsec(leaf, btrfs_inode_mtime(item),
2630 inode->i_mtime.tv_nsec);
2632 btrfs_set_timespec_sec(leaf, btrfs_inode_ctime(item),
2633 inode->i_ctime.tv_sec);
2634 btrfs_set_timespec_nsec(leaf, btrfs_inode_ctime(item),
2635 inode->i_ctime.tv_nsec);
2637 btrfs_set_inode_nbytes(leaf, item, inode_get_bytes(inode));
2638 btrfs_set_inode_generation(leaf, item, BTRFS_I(inode)->generation);
2639 btrfs_set_inode_sequence(leaf, item, BTRFS_I(inode)->sequence);
2640 btrfs_set_inode_transid(leaf, item, trans->transid);
2641 btrfs_set_inode_rdev(leaf, item, inode->i_rdev);
2642 btrfs_set_inode_flags(leaf, item, BTRFS_I(inode)->flags);
2643 btrfs_set_inode_block_group(leaf, item, 0);
2647 * copy everything in the in-memory inode into the btree.
2649 noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
2650 struct btrfs_root *root, struct inode *inode)
2652 struct btrfs_inode_item *inode_item;
2653 struct btrfs_path *path;
2654 struct extent_buffer *leaf;
2655 int ret;
2658 * If the inode is a free space inode, we can deadlock during commit
2659 * if we put it into the delayed code.
2661 * The data relocation inode should also be directly updated
2662 * without delay
2664 if (!btrfs_is_free_space_inode(root, inode)
2665 && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
2666 ret = btrfs_delayed_update_inode(trans, root, inode);
2667 if (!ret)
2668 btrfs_set_inode_last_trans(trans, inode);
2669 return ret;
2672 path = btrfs_alloc_path();
2673 if (!path)
2674 return -ENOMEM;
2676 path->leave_spinning = 1;
2677 ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
2679 if (ret) {
2680 if (ret > 0)
2681 ret = -ENOENT;
2682 goto failed;
2685 btrfs_unlock_up_safe(path, 1);
2686 leaf = path->nodes[0];
2687 inode_item = btrfs_item_ptr(leaf, path->slots[0],
2688 struct btrfs_inode_item);
2690 fill_inode_item(trans, leaf, inode_item, inode);
2691 btrfs_mark_buffer_dirty(leaf);
2692 btrfs_set_inode_last_trans(trans, inode);
2693 ret = 0;
2694 failed:
2695 btrfs_free_path(path);
2696 return ret;
2700 * unlink helper that gets used here in inode.c and in the tree logging
2701 * recovery code. It remove a link in a directory with a given name, and
2702 * also drops the back refs in the inode to the directory
2704 static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2705 struct btrfs_root *root,
2706 struct inode *dir, struct inode *inode,
2707 const char *name, int name_len)
2709 struct btrfs_path *path;
2710 int ret = 0;
2711 struct extent_buffer *leaf;
2712 struct btrfs_dir_item *di;
2713 struct btrfs_key key;
2714 u64 index;
2715 u64 ino = btrfs_ino(inode);
2716 u64 dir_ino = btrfs_ino(dir);
2718 path = btrfs_alloc_path();
2719 if (!path) {
2720 ret = -ENOMEM;
2721 goto out;
2724 path->leave_spinning = 1;
2725 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2726 name, name_len, -1);
2727 if (IS_ERR(di)) {
2728 ret = PTR_ERR(di);
2729 goto err;
2731 if (!di) {
2732 ret = -ENOENT;
2733 goto err;
2735 leaf = path->nodes[0];
2736 btrfs_dir_item_key_to_cpu(leaf, di, &key);
2737 ret = btrfs_delete_one_dir_name(trans, root, path, di);
2738 if (ret)
2739 goto err;
2740 btrfs_release_path(path);
2742 ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
2743 dir_ino, &index);
2744 if (ret) {
2745 printk(KERN_INFO "btrfs failed to delete reference to %.*s, "
2746 "inode %llu parent %llu\n", name_len, name,
2747 (unsigned long long)ino, (unsigned long long)dir_ino);
2748 goto err;
2751 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
2752 if (ret)
2753 goto err;
2755 ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
2756 inode, dir_ino);
2757 BUG_ON(ret != 0 && ret != -ENOENT);
2759 ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
2760 dir, index);
2761 if (ret == -ENOENT)
2762 ret = 0;
2763 err:
2764 btrfs_free_path(path);
2765 if (ret)
2766 goto out;
2768 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
2769 inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
2770 btrfs_update_inode(trans, root, dir);
2771 out:
2772 return ret;
2775 int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2776 struct btrfs_root *root,
2777 struct inode *dir, struct inode *inode,
2778 const char *name, int name_len)
2780 int ret;
2781 ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
2782 if (!ret) {
2783 btrfs_drop_nlink(inode);
2784 ret = btrfs_update_inode(trans, root, inode);
2786 return ret;
2790 /* helper to check if there is any shared block in the path */
2791 static int check_path_shared(struct btrfs_root *root,
2792 struct btrfs_path *path)
2794 struct extent_buffer *eb;
2795 int level;
2796 u64 refs = 1;
2798 for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2799 int ret;
2801 if (!path->nodes[level])
2802 break;
2803 eb = path->nodes[level];
2804 if (!btrfs_block_can_be_shared(root, eb))
2805 continue;
2806 ret = btrfs_lookup_extent_info(NULL, root, eb->start, eb->len,
2807 &refs, NULL);
2808 if (refs > 1)
2809 return 1;
2811 return 0;
2815 * helper to start transaction for unlink and rmdir.
2817 * unlink and rmdir are special in btrfs, they do not always free space.
2818 * so in enospc case, we should make sure they will free space before
2819 * allowing them to use the global metadata reservation.
2821 static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
2822 struct dentry *dentry)
2824 struct btrfs_trans_handle *trans;
2825 struct btrfs_root *root = BTRFS_I(dir)->root;
2826 struct btrfs_path *path;
2827 struct btrfs_inode_ref *ref;
2828 struct btrfs_dir_item *di;
2829 struct inode *inode = dentry->d_inode;
2830 u64 index;
2831 int check_link = 1;
2832 int err = -ENOSPC;
2833 int ret;
2834 u64 ino = btrfs_ino(inode);
2835 u64 dir_ino = btrfs_ino(dir);
2837 trans = btrfs_start_transaction(root, 10);
2838 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
2839 return trans;
2841 if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
2842 return ERR_PTR(-ENOSPC);
2844 /* check if there is someone else holds reference */
2845 if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
2846 return ERR_PTR(-ENOSPC);
2848 if (atomic_read(&inode->i_count) > 2)
2849 return ERR_PTR(-ENOSPC);
2851 if (xchg(&root->fs_info->enospc_unlink, 1))
2852 return ERR_PTR(-ENOSPC);
2854 path = btrfs_alloc_path();
2855 if (!path) {
2856 root->fs_info->enospc_unlink = 0;
2857 return ERR_PTR(-ENOMEM);
2860 trans = btrfs_start_transaction(root, 0);
2861 if (IS_ERR(trans)) {
2862 btrfs_free_path(path);
2863 root->fs_info->enospc_unlink = 0;
2864 return trans;
2867 path->skip_locking = 1;
2868 path->search_commit_root = 1;
2870 ret = btrfs_lookup_inode(trans, root, path,
2871 &BTRFS_I(dir)->location, 0);
2872 if (ret < 0) {
2873 err = ret;
2874 goto out;
2876 if (ret == 0) {
2877 if (check_path_shared(root, path))
2878 goto out;
2879 } else {
2880 check_link = 0;
2882 btrfs_release_path(path);
2884 ret = btrfs_lookup_inode(trans, root, path,
2885 &BTRFS_I(inode)->location, 0);
2886 if (ret < 0) {
2887 err = ret;
2888 goto out;
2890 if (ret == 0) {
2891 if (check_path_shared(root, path))
2892 goto out;
2893 } else {
2894 check_link = 0;
2896 btrfs_release_path(path);
2898 if (ret == 0 && S_ISREG(inode->i_mode)) {
2899 ret = btrfs_lookup_file_extent(trans, root, path,
2900 ino, (u64)-1, 0);
2901 if (ret < 0) {
2902 err = ret;
2903 goto out;
2905 BUG_ON(ret == 0);
2906 if (check_path_shared(root, path))
2907 goto out;
2908 btrfs_release_path(path);
2911 if (!check_link) {
2912 err = 0;
2913 goto out;
2916 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
2917 dentry->d_name.name, dentry->d_name.len, 0);
2918 if (IS_ERR(di)) {
2919 err = PTR_ERR(di);
2920 goto out;
2922 if (di) {
2923 if (check_path_shared(root, path))
2924 goto out;
2925 } else {
2926 err = 0;
2927 goto out;
2929 btrfs_release_path(path);
2931 ref = btrfs_lookup_inode_ref(trans, root, path,
2932 dentry->d_name.name, dentry->d_name.len,
2933 ino, dir_ino, 0);
2934 if (IS_ERR(ref)) {
2935 err = PTR_ERR(ref);
2936 goto out;
2938 BUG_ON(!ref);
2939 if (check_path_shared(root, path))
2940 goto out;
2941 index = btrfs_inode_ref_index(path->nodes[0], ref);
2942 btrfs_release_path(path);
2945 * This is a commit root search, if we can lookup inode item and other
2946 * relative items in the commit root, it means the transaction of
2947 * dir/file creation has been committed, and the dir index item that we
2948 * delay to insert has also been inserted into the commit root. So
2949 * we needn't worry about the delayed insertion of the dir index item
2950 * here.
2952 di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
2953 dentry->d_name.name, dentry->d_name.len, 0);
2954 if (IS_ERR(di)) {
2955 err = PTR_ERR(di);
2956 goto out;
2958 BUG_ON(ret == -ENOENT);
2959 if (check_path_shared(root, path))
2960 goto out;
2962 err = 0;
2963 out:
2964 btrfs_free_path(path);
2965 if (err) {
2966 btrfs_end_transaction(trans, root);
2967 root->fs_info->enospc_unlink = 0;
2968 return ERR_PTR(err);
2971 trans->block_rsv = &root->fs_info->global_block_rsv;
2972 return trans;
2975 static void __unlink_end_trans(struct btrfs_trans_handle *trans,
2976 struct btrfs_root *root)
2978 if (trans->block_rsv == &root->fs_info->global_block_rsv) {
2979 BUG_ON(!root->fs_info->enospc_unlink);
2980 root->fs_info->enospc_unlink = 0;
2982 btrfs_end_transaction_throttle(trans, root);
2985 static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
2987 struct btrfs_root *root = BTRFS_I(dir)->root;
2988 struct btrfs_trans_handle *trans;
2989 struct inode *inode = dentry->d_inode;
2990 int ret;
2991 unsigned long nr = 0;
2993 trans = __unlink_start_trans(dir, dentry);
2994 if (IS_ERR(trans))
2995 return PTR_ERR(trans);
2997 btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
2999 ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3000 dentry->d_name.name, dentry->d_name.len);
3001 BUG_ON(ret);
3003 if (inode->i_nlink == 0) {
3004 ret = btrfs_orphan_add(trans, inode);
3005 BUG_ON(ret);
3008 nr = trans->blocks_used;
3009 __unlink_end_trans(trans, root);
3010 btrfs_btree_balance_dirty(root, nr);
3011 return ret;
3014 int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3015 struct btrfs_root *root,
3016 struct inode *dir, u64 objectid,
3017 const char *name, int name_len)
3019 struct btrfs_path *path;
3020 struct extent_buffer *leaf;
3021 struct btrfs_dir_item *di;
3022 struct btrfs_key key;
3023 u64 index;
3024 int ret;
3025 u64 dir_ino = btrfs_ino(dir);
3027 path = btrfs_alloc_path();
3028 if (!path)
3029 return -ENOMEM;
3031 di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3032 name, name_len, -1);
3033 BUG_ON(IS_ERR_OR_NULL(di));
3035 leaf = path->nodes[0];
3036 btrfs_dir_item_key_to_cpu(leaf, di, &key);
3037 WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3038 ret = btrfs_delete_one_dir_name(trans, root, path, di);
3039 BUG_ON(ret);
3040 btrfs_release_path(path);
3042 ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3043 objectid, root->root_key.objectid,
3044 dir_ino, &index, name, name_len);
3045 if (ret < 0) {
3046 BUG_ON(ret != -ENOENT);
3047 di = btrfs_search_dir_index_item(root, path, dir_ino,
3048 name, name_len);
3049 BUG_ON(IS_ERR_OR_NULL(di));
3051 leaf = path->nodes[0];
3052 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3053 btrfs_release_path(path);
3054 index = key.offset;
3056 btrfs_release_path(path);
3058 ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3059 BUG_ON(ret);
3061 btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3062 dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3063 ret = btrfs_update_inode(trans, root, dir);
3064 BUG_ON(ret);
3066 btrfs_free_path(path);
3067 return 0;
3070 static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3072 struct inode *inode = dentry->d_inode;
3073 int err = 0;
3074 struct btrfs_root *root = BTRFS_I(dir)->root;
3075 struct btrfs_trans_handle *trans;
3076 unsigned long nr = 0;
3078 if (inode->i_size > BTRFS_EMPTY_DIR_SIZE ||
3079 btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3080 return -ENOTEMPTY;
3082 trans = __unlink_start_trans(dir, dentry);
3083 if (IS_ERR(trans))
3084 return PTR_ERR(trans);
3086 if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
3087 err = btrfs_unlink_subvol(trans, root, dir,
3088 BTRFS_I(inode)->location.objectid,
3089 dentry->d_name.name,
3090 dentry->d_name.len);
3091 goto out;
3094 err = btrfs_orphan_add(trans, inode);
3095 if (err)
3096 goto out;
3098 /* now the directory is empty */
3099 err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3100 dentry->d_name.name, dentry->d_name.len);
3101 if (!err)
3102 btrfs_i_size_write(inode, 0);
3103 out:
3104 nr = trans->blocks_used;
3105 __unlink_end_trans(trans, root);
3106 btrfs_btree_balance_dirty(root, nr);
3108 return err;
3112 * this can truncate away extent items, csum items and directory items.
3113 * It starts at a high offset and removes keys until it can't find
3114 * any higher than new_size
3116 * csum items that cross the new i_size are truncated to the new size
3117 * as well.
3119 * min_type is the minimum key type to truncate down to. If set to 0, this
3120 * will kill all the items on this inode, including the INODE_ITEM_KEY.
3122 int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3123 struct btrfs_root *root,
3124 struct inode *inode,
3125 u64 new_size, u32 min_type)
3127 struct btrfs_path *path;
3128 struct extent_buffer *leaf;
3129 struct btrfs_file_extent_item *fi;
3130 struct btrfs_key key;
3131 struct btrfs_key found_key;
3132 u64 extent_start = 0;
3133 u64 extent_num_bytes = 0;
3134 u64 extent_offset = 0;
3135 u64 item_end = 0;
3136 u64 mask = root->sectorsize - 1;
3137 u32 found_type = (u8)-1;
3138 int found_extent;
3139 int del_item;
3140 int pending_del_nr = 0;
3141 int pending_del_slot = 0;
3142 int extent_type = -1;
3143 int encoding;
3144 int ret;
3145 int err = 0;
3146 u64 ino = btrfs_ino(inode);
3148 BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
3150 if (root->ref_cows || root == root->fs_info->tree_root)
3151 btrfs_drop_extent_cache(inode, new_size & (~mask), (u64)-1, 0);
3154 * This function is also used to drop the items in the log tree before
3155 * we relog the inode, so if root != BTRFS_I(inode)->root, it means
3156 * it is used to drop the loged items. So we shouldn't kill the delayed
3157 * items.
3159 if (min_type == 0 && root == BTRFS_I(inode)->root)
3160 btrfs_kill_delayed_inode_items(inode);
3162 path = btrfs_alloc_path();
3163 BUG_ON(!path);
3164 path->reada = -1;
3166 key.objectid = ino;
3167 key.offset = (u64)-1;
3168 key.type = (u8)-1;
3170 search_again:
3171 path->leave_spinning = 1;
3172 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
3173 if (ret < 0) {
3174 err = ret;
3175 goto out;
3178 if (ret > 0) {
3179 /* there are no items in the tree for us to truncate, we're
3180 * done
3182 if (path->slots[0] == 0)
3183 goto out;
3184 path->slots[0]--;
3187 while (1) {
3188 fi = NULL;
3189 leaf = path->nodes[0];
3190 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3191 found_type = btrfs_key_type(&found_key);
3192 encoding = 0;
3194 if (found_key.objectid != ino)
3195 break;
3197 if (found_type < min_type)
3198 break;
3200 item_end = found_key.offset;
3201 if (found_type == BTRFS_EXTENT_DATA_KEY) {
3202 fi = btrfs_item_ptr(leaf, path->slots[0],
3203 struct btrfs_file_extent_item);
3204 extent_type = btrfs_file_extent_type(leaf, fi);
3205 encoding = btrfs_file_extent_compression(leaf, fi);
3206 encoding |= btrfs_file_extent_encryption(leaf, fi);
3207 encoding |= btrfs_file_extent_other_encoding(leaf, fi);
3209 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3210 item_end +=
3211 btrfs_file_extent_num_bytes(leaf, fi);
3212 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3213 item_end += btrfs_file_extent_inline_len(leaf,
3214 fi);
3216 item_end--;
3218 if (found_type > min_type) {
3219 del_item = 1;
3220 } else {
3221 if (item_end < new_size)
3222 break;
3223 if (found_key.offset >= new_size)
3224 del_item = 1;
3225 else
3226 del_item = 0;
3228 found_extent = 0;
3229 /* FIXME, shrink the extent if the ref count is only 1 */
3230 if (found_type != BTRFS_EXTENT_DATA_KEY)
3231 goto delete;
3233 if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
3234 u64 num_dec;
3235 extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
3236 if (!del_item && !encoding) {
3237 u64 orig_num_bytes =
3238 btrfs_file_extent_num_bytes(leaf, fi);
3239 extent_num_bytes = new_size -
3240 found_key.offset + root->sectorsize - 1;
3241 extent_num_bytes = extent_num_bytes &
3242 ~((u64)root->sectorsize - 1);
3243 btrfs_set_file_extent_num_bytes(leaf, fi,
3244 extent_num_bytes);
3245 num_dec = (orig_num_bytes -
3246 extent_num_bytes);
3247 if (root->ref_cows && extent_start != 0)
3248 inode_sub_bytes(inode, num_dec);
3249 btrfs_mark_buffer_dirty(leaf);
3250 } else {
3251 extent_num_bytes =
3252 btrfs_file_extent_disk_num_bytes(leaf,
3253 fi);
3254 extent_offset = found_key.offset -
3255 btrfs_file_extent_offset(leaf, fi);
3257 /* FIXME blocksize != 4096 */
3258 num_dec = btrfs_file_extent_num_bytes(leaf, fi);
3259 if (extent_start != 0) {
3260 found_extent = 1;
3261 if (root->ref_cows)
3262 inode_sub_bytes(inode, num_dec);
3265 } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
3267 * we can't truncate inline items that have had
3268 * special encodings
3270 if (!del_item &&
3271 btrfs_file_extent_compression(leaf, fi) == 0 &&
3272 btrfs_file_extent_encryption(leaf, fi) == 0 &&
3273 btrfs_file_extent_other_encoding(leaf, fi) == 0) {
3274 u32 size = new_size - found_key.offset;
3276 if (root->ref_cows) {
3277 inode_sub_bytes(inode, item_end + 1 -
3278 new_size);
3280 size =
3281 btrfs_file_extent_calc_inline_size(size);
3282 ret = btrfs_truncate_item(trans, root, path,
3283 size, 1);
3284 } else if (root->ref_cows) {
3285 inode_sub_bytes(inode, item_end + 1 -
3286 found_key.offset);
3289 delete:
3290 if (del_item) {
3291 if (!pending_del_nr) {
3292 /* no pending yet, add ourselves */
3293 pending_del_slot = path->slots[0];
3294 pending_del_nr = 1;
3295 } else if (pending_del_nr &&
3296 path->slots[0] + 1 == pending_del_slot) {
3297 /* hop on the pending chunk */
3298 pending_del_nr++;
3299 pending_del_slot = path->slots[0];
3300 } else {
3301 BUG();
3303 } else {
3304 break;
3306 if (found_extent && (root->ref_cows ||
3307 root == root->fs_info->tree_root)) {
3308 btrfs_set_path_blocking(path);
3309 ret = btrfs_free_extent(trans, root, extent_start,
3310 extent_num_bytes, 0,
3311 btrfs_header_owner(leaf),
3312 ino, extent_offset);
3313 BUG_ON(ret);
3316 if (found_type == BTRFS_INODE_ITEM_KEY)
3317 break;
3319 if (path->slots[0] == 0 ||
3320 path->slots[0] != pending_del_slot) {
3321 if (root->ref_cows &&
3322 BTRFS_I(inode)->location.objectid !=
3323 BTRFS_FREE_INO_OBJECTID) {
3324 err = -EAGAIN;
3325 goto out;
3327 if (pending_del_nr) {
3328 ret = btrfs_del_items(trans, root, path,
3329 pending_del_slot,
3330 pending_del_nr);
3331 BUG_ON(ret);
3332 pending_del_nr = 0;
3334 btrfs_release_path(path);
3335 goto search_again;
3336 } else {
3337 path->slots[0]--;
3340 out:
3341 if (pending_del_nr) {
3342 ret = btrfs_del_items(trans, root, path, pending_del_slot,
3343 pending_del_nr);
3344 BUG_ON(ret);
3346 btrfs_free_path(path);
3347 return err;
3351 * taken from block_truncate_page, but does cow as it zeros out
3352 * any bytes left in the last page in the file.
3354 static int btrfs_truncate_page(struct address_space *mapping, loff_t from)
3356 struct inode *inode = mapping->host;
3357 struct btrfs_root *root = BTRFS_I(inode)->root;
3358 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3359 struct btrfs_ordered_extent *ordered;
3360 struct extent_state *cached_state = NULL;
3361 char *kaddr;
3362 u32 blocksize = root->sectorsize;
3363 pgoff_t index = from >> PAGE_CACHE_SHIFT;
3364 unsigned offset = from & (PAGE_CACHE_SIZE-1);
3365 struct page *page;
3366 int ret = 0;
3367 u64 page_start;
3368 u64 page_end;
3370 if ((offset & (blocksize - 1)) == 0)
3371 goto out;
3372 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
3373 if (ret)
3374 goto out;
3376 ret = -ENOMEM;
3377 again:
3378 page = find_or_create_page(mapping, index, GFP_NOFS);
3379 if (!page) {
3380 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3381 goto out;
3384 page_start = page_offset(page);
3385 page_end = page_start + PAGE_CACHE_SIZE - 1;
3387 if (!PageUptodate(page)) {
3388 ret = btrfs_readpage(NULL, page);
3389 lock_page(page);
3390 if (page->mapping != mapping) {
3391 unlock_page(page);
3392 page_cache_release(page);
3393 goto again;
3395 if (!PageUptodate(page)) {
3396 ret = -EIO;
3397 goto out_unlock;
3400 wait_on_page_writeback(page);
3402 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
3403 GFP_NOFS);
3404 set_page_extent_mapped(page);
3406 ordered = btrfs_lookup_ordered_extent(inode, page_start);
3407 if (ordered) {
3408 unlock_extent_cached(io_tree, page_start, page_end,
3409 &cached_state, GFP_NOFS);
3410 unlock_page(page);
3411 page_cache_release(page);
3412 btrfs_start_ordered_extent(inode, ordered, 1);
3413 btrfs_put_ordered_extent(ordered);
3414 goto again;
3417 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
3418 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
3419 0, 0, &cached_state, GFP_NOFS);
3421 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
3422 &cached_state);
3423 if (ret) {
3424 unlock_extent_cached(io_tree, page_start, page_end,
3425 &cached_state, GFP_NOFS);
3426 goto out_unlock;
3429 ret = 0;
3430 if (offset != PAGE_CACHE_SIZE) {
3431 kaddr = kmap(page);
3432 memset(kaddr + offset, 0, PAGE_CACHE_SIZE - offset);
3433 flush_dcache_page(page);
3434 kunmap(page);
3436 ClearPageChecked(page);
3437 set_page_dirty(page);
3438 unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
3439 GFP_NOFS);
3441 out_unlock:
3442 if (ret)
3443 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
3444 unlock_page(page);
3445 page_cache_release(page);
3446 out:
3447 return ret;
3451 * This function puts in dummy file extents for the area we're creating a hole
3452 * for. So if we are truncating this file to a larger size we need to insert
3453 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
3454 * the range between oldsize and size
3456 int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
3458 struct btrfs_trans_handle *trans;
3459 struct btrfs_root *root = BTRFS_I(inode)->root;
3460 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
3461 struct extent_map *em = NULL;
3462 struct extent_state *cached_state = NULL;
3463 u64 mask = root->sectorsize - 1;
3464 u64 hole_start = (oldsize + mask) & ~mask;
3465 u64 block_end = (size + mask) & ~mask;
3466 u64 last_byte;
3467 u64 cur_offset;
3468 u64 hole_size;
3469 int err = 0;
3471 if (size <= hole_start)
3472 return 0;
3474 while (1) {
3475 struct btrfs_ordered_extent *ordered;
3476 btrfs_wait_ordered_range(inode, hole_start,
3477 block_end - hole_start);
3478 lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
3479 &cached_state, GFP_NOFS);
3480 ordered = btrfs_lookup_ordered_extent(inode, hole_start);
3481 if (!ordered)
3482 break;
3483 unlock_extent_cached(io_tree, hole_start, block_end - 1,
3484 &cached_state, GFP_NOFS);
3485 btrfs_put_ordered_extent(ordered);
3488 cur_offset = hole_start;
3489 while (1) {
3490 em = btrfs_get_extent(inode, NULL, 0, cur_offset,
3491 block_end - cur_offset, 0);
3492 BUG_ON(IS_ERR_OR_NULL(em));
3493 last_byte = min(extent_map_end(em), block_end);
3494 last_byte = (last_byte + mask) & ~mask;
3495 if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
3496 u64 hint_byte = 0;
3497 hole_size = last_byte - cur_offset;
3499 trans = btrfs_start_transaction(root, 2);
3500 if (IS_ERR(trans)) {
3501 err = PTR_ERR(trans);
3502 break;
3505 err = btrfs_drop_extents(trans, inode, cur_offset,
3506 cur_offset + hole_size,
3507 &hint_byte, 1);
3508 if (err)
3509 break;
3511 err = btrfs_insert_file_extent(trans, root,
3512 btrfs_ino(inode), cur_offset, 0,
3513 0, hole_size, 0, hole_size,
3514 0, 0, 0);
3515 if (err)
3516 break;
3518 btrfs_drop_extent_cache(inode, hole_start,
3519 last_byte - 1, 0);
3521 btrfs_end_transaction(trans, root);
3523 free_extent_map(em);
3524 em = NULL;
3525 cur_offset = last_byte;
3526 if (cur_offset >= block_end)
3527 break;
3530 free_extent_map(em);
3531 unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
3532 GFP_NOFS);
3533 return err;
3536 static int btrfs_setsize(struct inode *inode, loff_t newsize)
3538 loff_t oldsize = i_size_read(inode);
3539 int ret;
3541 if (newsize == oldsize)
3542 return 0;
3544 if (newsize > oldsize) {
3545 i_size_write(inode, newsize);
3546 btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
3547 truncate_pagecache(inode, oldsize, newsize);
3548 ret = btrfs_cont_expand(inode, oldsize, newsize);
3549 if (ret) {
3550 btrfs_setsize(inode, oldsize);
3551 return ret;
3554 mark_inode_dirty(inode);
3555 } else {
3558 * We're truncating a file that used to have good data down to
3559 * zero. Make sure it gets into the ordered flush list so that
3560 * any new writes get down to disk quickly.
3562 if (newsize == 0)
3563 BTRFS_I(inode)->ordered_data_close = 1;
3565 /* we don't support swapfiles, so vmtruncate shouldn't fail */
3566 truncate_setsize(inode, newsize);
3567 ret = btrfs_truncate(inode);
3570 return ret;
3573 static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
3575 struct inode *inode = dentry->d_inode;
3576 struct btrfs_root *root = BTRFS_I(inode)->root;
3577 int err;
3579 if (btrfs_root_readonly(root))
3580 return -EROFS;
3582 err = inode_change_ok(inode, attr);
3583 if (err)
3584 return err;
3586 if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
3587 err = btrfs_setsize(inode, attr->ia_size);
3588 if (err)
3589 return err;
3592 if (attr->ia_valid) {
3593 setattr_copy(inode, attr);
3594 mark_inode_dirty(inode);
3596 if (attr->ia_valid & ATTR_MODE)
3597 err = btrfs_acl_chmod(inode);
3600 return err;
3603 void btrfs_evict_inode(struct inode *inode)
3605 struct btrfs_trans_handle *trans;
3606 struct btrfs_root *root = BTRFS_I(inode)->root;
3607 unsigned long nr;
3608 int ret;
3610 trace_btrfs_inode_evict(inode);
3612 truncate_inode_pages(&inode->i_data, 0);
3613 if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
3614 btrfs_is_free_space_inode(root, inode)))
3615 goto no_delete;
3617 if (is_bad_inode(inode)) {
3618 btrfs_orphan_del(NULL, inode);
3619 goto no_delete;
3621 /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
3622 btrfs_wait_ordered_range(inode, 0, (u64)-1);
3624 if (root->fs_info->log_root_recovering) {
3625 BUG_ON(!list_empty(&BTRFS_I(inode)->i_orphan));
3626 goto no_delete;
3629 if (inode->i_nlink > 0) {
3630 BUG_ON(btrfs_root_refs(&root->root_item) != 0);
3631 goto no_delete;
3634 btrfs_i_size_write(inode, 0);
3636 while (1) {
3637 trans = btrfs_join_transaction(root);
3638 BUG_ON(IS_ERR(trans));
3639 trans->block_rsv = root->orphan_block_rsv;
3641 ret = btrfs_block_rsv_check(trans, root,
3642 root->orphan_block_rsv, 0, 5);
3643 if (ret) {
3644 BUG_ON(ret != -EAGAIN);
3645 ret = btrfs_commit_transaction(trans, root);
3646 BUG_ON(ret);
3647 continue;
3650 ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
3651 if (ret != -EAGAIN)
3652 break;
3654 nr = trans->blocks_used;
3655 btrfs_end_transaction(trans, root);
3656 trans = NULL;
3657 btrfs_btree_balance_dirty(root, nr);
3661 if (ret == 0) {
3662 ret = btrfs_orphan_del(trans, inode);
3663 BUG_ON(ret);
3666 if (!(root == root->fs_info->tree_root ||
3667 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
3668 btrfs_return_ino(root, btrfs_ino(inode));
3670 nr = trans->blocks_used;
3671 btrfs_end_transaction(trans, root);
3672 btrfs_btree_balance_dirty(root, nr);
3673 no_delete:
3674 end_writeback(inode);
3675 return;
3679 * this returns the key found in the dir entry in the location pointer.
3680 * If no dir entries were found, location->objectid is 0.
3682 static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
3683 struct btrfs_key *location)
3685 const char *name = dentry->d_name.name;
3686 int namelen = dentry->d_name.len;
3687 struct btrfs_dir_item *di;
3688 struct btrfs_path *path;
3689 struct btrfs_root *root = BTRFS_I(dir)->root;
3690 int ret = 0;
3692 path = btrfs_alloc_path();
3693 BUG_ON(!path);
3695 di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
3696 namelen, 0);
3697 if (IS_ERR(di))
3698 ret = PTR_ERR(di);
3700 if (IS_ERR_OR_NULL(di))
3701 goto out_err;
3703 btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
3704 out:
3705 btrfs_free_path(path);
3706 return ret;
3707 out_err:
3708 location->objectid = 0;
3709 goto out;
3713 * when we hit a tree root in a directory, the btrfs part of the inode
3714 * needs to be changed to reflect the root directory of the tree root. This
3715 * is kind of like crossing a mount point.
3717 static int fixup_tree_root_location(struct btrfs_root *root,
3718 struct inode *dir,
3719 struct dentry *dentry,
3720 struct btrfs_key *location,
3721 struct btrfs_root **sub_root)
3723 struct btrfs_path *path;
3724 struct btrfs_root *new_root;
3725 struct btrfs_root_ref *ref;
3726 struct extent_buffer *leaf;
3727 int ret;
3728 int err = 0;
3730 path = btrfs_alloc_path();
3731 if (!path) {
3732 err = -ENOMEM;
3733 goto out;
3736 err = -ENOENT;
3737 ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
3738 BTRFS_I(dir)->root->root_key.objectid,
3739 location->objectid);
3740 if (ret) {
3741 if (ret < 0)
3742 err = ret;
3743 goto out;
3746 leaf = path->nodes[0];
3747 ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
3748 if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
3749 btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
3750 goto out;
3752 ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
3753 (unsigned long)(ref + 1),
3754 dentry->d_name.len);
3755 if (ret)
3756 goto out;
3758 btrfs_release_path(path);
3760 new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
3761 if (IS_ERR(new_root)) {
3762 err = PTR_ERR(new_root);
3763 goto out;
3766 if (btrfs_root_refs(&new_root->root_item) == 0) {
3767 err = -ENOENT;
3768 goto out;
3771 *sub_root = new_root;
3772 location->objectid = btrfs_root_dirid(&new_root->root_item);
3773 location->type = BTRFS_INODE_ITEM_KEY;
3774 location->offset = 0;
3775 err = 0;
3776 out:
3777 btrfs_free_path(path);
3778 return err;
3781 static void inode_tree_add(struct inode *inode)
3783 struct btrfs_root *root = BTRFS_I(inode)->root;
3784 struct btrfs_inode *entry;
3785 struct rb_node **p;
3786 struct rb_node *parent;
3787 u64 ino = btrfs_ino(inode);
3788 again:
3789 p = &root->inode_tree.rb_node;
3790 parent = NULL;
3792 if (inode_unhashed(inode))
3793 return;
3795 spin_lock(&root->inode_lock);
3796 while (*p) {
3797 parent = *p;
3798 entry = rb_entry(parent, struct btrfs_inode, rb_node);
3800 if (ino < btrfs_ino(&entry->vfs_inode))
3801 p = &parent->rb_left;
3802 else if (ino > btrfs_ino(&entry->vfs_inode))
3803 p = &parent->rb_right;
3804 else {
3805 WARN_ON(!(entry->vfs_inode.i_state &
3806 (I_WILL_FREE | I_FREEING)));
3807 rb_erase(parent, &root->inode_tree);
3808 RB_CLEAR_NODE(parent);
3809 spin_unlock(&root->inode_lock);
3810 goto again;
3813 rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
3814 rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3815 spin_unlock(&root->inode_lock);
3818 static void inode_tree_del(struct inode *inode)
3820 struct btrfs_root *root = BTRFS_I(inode)->root;
3821 int empty = 0;
3823 spin_lock(&root->inode_lock);
3824 if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
3825 rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
3826 RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
3827 empty = RB_EMPTY_ROOT(&root->inode_tree);
3829 spin_unlock(&root->inode_lock);
3832 * Free space cache has inodes in the tree root, but the tree root has a
3833 * root_refs of 0, so this could end up dropping the tree root as a
3834 * snapshot, so we need the extra !root->fs_info->tree_root check to
3835 * make sure we don't drop it.
3837 if (empty && btrfs_root_refs(&root->root_item) == 0 &&
3838 root != root->fs_info->tree_root) {
3839 synchronize_srcu(&root->fs_info->subvol_srcu);
3840 spin_lock(&root->inode_lock);
3841 empty = RB_EMPTY_ROOT(&root->inode_tree);
3842 spin_unlock(&root->inode_lock);
3843 if (empty)
3844 btrfs_add_dead_root(root);
3848 int btrfs_invalidate_inodes(struct btrfs_root *root)
3850 struct rb_node *node;
3851 struct rb_node *prev;
3852 struct btrfs_inode *entry;
3853 struct inode *inode;
3854 u64 objectid = 0;
3856 WARN_ON(btrfs_root_refs(&root->root_item) != 0);
3858 spin_lock(&root->inode_lock);
3859 again:
3860 node = root->inode_tree.rb_node;
3861 prev = NULL;
3862 while (node) {
3863 prev = node;
3864 entry = rb_entry(node, struct btrfs_inode, rb_node);
3866 if (objectid < btrfs_ino(&entry->vfs_inode))
3867 node = node->rb_left;
3868 else if (objectid > btrfs_ino(&entry->vfs_inode))
3869 node = node->rb_right;
3870 else
3871 break;
3873 if (!node) {
3874 while (prev) {
3875 entry = rb_entry(prev, struct btrfs_inode, rb_node);
3876 if (objectid <= btrfs_ino(&entry->vfs_inode)) {
3877 node = prev;
3878 break;
3880 prev = rb_next(prev);
3883 while (node) {
3884 entry = rb_entry(node, struct btrfs_inode, rb_node);
3885 objectid = btrfs_ino(&entry->vfs_inode) + 1;
3886 inode = igrab(&entry->vfs_inode);
3887 if (inode) {
3888 spin_unlock(&root->inode_lock);
3889 if (atomic_read(&inode->i_count) > 1)
3890 d_prune_aliases(inode);
3892 * btrfs_drop_inode will have it removed from
3893 * the inode cache when its usage count
3894 * hits zero.
3896 iput(inode);
3897 cond_resched();
3898 spin_lock(&root->inode_lock);
3899 goto again;
3902 if (cond_resched_lock(&root->inode_lock))
3903 goto again;
3905 node = rb_next(node);
3907 spin_unlock(&root->inode_lock);
3908 return 0;
3911 static int btrfs_init_locked_inode(struct inode *inode, void *p)
3913 struct btrfs_iget_args *args = p;
3914 inode->i_ino = args->ino;
3915 BTRFS_I(inode)->root = args->root;
3916 btrfs_set_inode_space_info(args->root, inode);
3917 return 0;
3920 static int btrfs_find_actor(struct inode *inode, void *opaque)
3922 struct btrfs_iget_args *args = opaque;
3923 return args->ino == btrfs_ino(inode) &&
3924 args->root == BTRFS_I(inode)->root;
3927 static struct inode *btrfs_iget_locked(struct super_block *s,
3928 u64 objectid,
3929 struct btrfs_root *root)
3931 struct inode *inode;
3932 struct btrfs_iget_args args;
3933 args.ino = objectid;
3934 args.root = root;
3936 inode = iget5_locked(s, objectid, btrfs_find_actor,
3937 btrfs_init_locked_inode,
3938 (void *)&args);
3939 return inode;
3942 /* Get an inode object given its location and corresponding root.
3943 * Returns in *is_new if the inode was read from disk
3945 struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3946 struct btrfs_root *root, int *new)
3948 struct inode *inode;
3950 inode = btrfs_iget_locked(s, location->objectid, root);
3951 if (!inode)
3952 return ERR_PTR(-ENOMEM);
3954 if (inode->i_state & I_NEW) {
3955 BTRFS_I(inode)->root = root;
3956 memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
3957 btrfs_read_locked_inode(inode);
3958 inode_tree_add(inode);
3959 unlock_new_inode(inode);
3960 if (new)
3961 *new = 1;
3964 return inode;
3967 static struct inode *new_simple_dir(struct super_block *s,
3968 struct btrfs_key *key,
3969 struct btrfs_root *root)
3971 struct inode *inode = new_inode(s);
3973 if (!inode)
3974 return ERR_PTR(-ENOMEM);
3976 BTRFS_I(inode)->root = root;
3977 memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
3978 BTRFS_I(inode)->dummy_inode = 1;
3980 inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
3981 inode->i_op = &simple_dir_inode_operations;
3982 inode->i_fop = &simple_dir_operations;
3983 inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
3984 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
3986 return inode;
3989 struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
3991 struct inode *inode;
3992 struct btrfs_root *root = BTRFS_I(dir)->root;
3993 struct btrfs_root *sub_root = root;
3994 struct btrfs_key location;
3995 int index;
3996 int ret;
3998 if (dentry->d_name.len > BTRFS_NAME_LEN)
3999 return ERR_PTR(-ENAMETOOLONG);
4001 ret = btrfs_inode_by_name(dir, dentry, &location);
4003 if (ret < 0)
4004 return ERR_PTR(ret);
4006 if (location.objectid == 0)
4007 return NULL;
4009 if (location.type == BTRFS_INODE_ITEM_KEY) {
4010 inode = btrfs_iget(dir->i_sb, &location, root, NULL);
4011 return inode;
4014 BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
4016 index = srcu_read_lock(&root->fs_info->subvol_srcu);
4017 ret = fixup_tree_root_location(root, dir, dentry,
4018 &location, &sub_root);
4019 if (ret < 0) {
4020 if (ret != -ENOENT)
4021 inode = ERR_PTR(ret);
4022 else
4023 inode = new_simple_dir(dir->i_sb, &location, sub_root);
4024 } else {
4025 inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
4027 srcu_read_unlock(&root->fs_info->subvol_srcu, index);
4029 if (!IS_ERR(inode) && root != sub_root) {
4030 down_read(&root->fs_info->cleanup_work_sem);
4031 if (!(inode->i_sb->s_flags & MS_RDONLY))
4032 ret = btrfs_orphan_cleanup(sub_root);
4033 up_read(&root->fs_info->cleanup_work_sem);
4034 if (ret)
4035 inode = ERR_PTR(ret);
4038 return inode;
4041 static int btrfs_dentry_delete(const struct dentry *dentry)
4043 struct btrfs_root *root;
4045 if (!dentry->d_inode && !IS_ROOT(dentry))
4046 dentry = dentry->d_parent;
4048 if (dentry->d_inode) {
4049 root = BTRFS_I(dentry->d_inode)->root;
4050 if (btrfs_root_refs(&root->root_item) == 0)
4051 return 1;
4053 return 0;
4056 static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
4057 struct nameidata *nd)
4059 return d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
4062 unsigned char btrfs_filetype_table[] = {
4063 DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
4066 static int btrfs_real_readdir(struct file *filp, void *dirent,
4067 filldir_t filldir)
4069 struct inode *inode = filp->f_dentry->d_inode;
4070 struct btrfs_root *root = BTRFS_I(inode)->root;
4071 struct btrfs_item *item;
4072 struct btrfs_dir_item *di;
4073 struct btrfs_key key;
4074 struct btrfs_key found_key;
4075 struct btrfs_path *path;
4076 struct list_head ins_list;
4077 struct list_head del_list;
4078 int ret;
4079 struct extent_buffer *leaf;
4080 int slot;
4081 unsigned char d_type;
4082 int over = 0;
4083 u32 di_cur;
4084 u32 di_total;
4085 u32 di_len;
4086 int key_type = BTRFS_DIR_INDEX_KEY;
4087 char tmp_name[32];
4088 char *name_ptr;
4089 int name_len;
4090 int is_curr = 0; /* filp->f_pos points to the current index? */
4092 /* FIXME, use a real flag for deciding about the key type */
4093 if (root->fs_info->tree_root == root)
4094 key_type = BTRFS_DIR_ITEM_KEY;
4096 /* special case for "." */
4097 if (filp->f_pos == 0) {
4098 over = filldir(dirent, ".", 1, 1, btrfs_ino(inode), DT_DIR);
4099 if (over)
4100 return 0;
4101 filp->f_pos = 1;
4103 /* special case for .., just use the back ref */
4104 if (filp->f_pos == 1) {
4105 u64 pino = parent_ino(filp->f_path.dentry);
4106 over = filldir(dirent, "..", 2,
4107 2, pino, DT_DIR);
4108 if (over)
4109 return 0;
4110 filp->f_pos = 2;
4112 path = btrfs_alloc_path();
4113 if (!path)
4114 return -ENOMEM;
4116 path->reada = 1;
4118 if (key_type == BTRFS_DIR_INDEX_KEY) {
4119 INIT_LIST_HEAD(&ins_list);
4120 INIT_LIST_HEAD(&del_list);
4121 btrfs_get_delayed_items(inode, &ins_list, &del_list);
4124 btrfs_set_key_type(&key, key_type);
4125 key.offset = filp->f_pos;
4126 key.objectid = btrfs_ino(inode);
4128 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4129 if (ret < 0)
4130 goto err;
4132 while (1) {
4133 leaf = path->nodes[0];
4134 slot = path->slots[0];
4135 if (slot >= btrfs_header_nritems(leaf)) {
4136 ret = btrfs_next_leaf(root, path);
4137 if (ret < 0)
4138 goto err;
4139 else if (ret > 0)
4140 break;
4141 continue;
4144 item = btrfs_item_nr(leaf, slot);
4145 btrfs_item_key_to_cpu(leaf, &found_key, slot);
4147 if (found_key.objectid != key.objectid)
4148 break;
4149 if (btrfs_key_type(&found_key) != key_type)
4150 break;
4151 if (found_key.offset < filp->f_pos)
4152 goto next;
4153 if (key_type == BTRFS_DIR_INDEX_KEY &&
4154 btrfs_should_delete_dir_index(&del_list,
4155 found_key.offset))
4156 goto next;
4158 filp->f_pos = found_key.offset;
4159 is_curr = 1;
4161 di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
4162 di_cur = 0;
4163 di_total = btrfs_item_size(leaf, item);
4165 while (di_cur < di_total) {
4166 struct btrfs_key location;
4168 if (verify_dir_item(root, leaf, di))
4169 break;
4171 name_len = btrfs_dir_name_len(leaf, di);
4172 if (name_len <= sizeof(tmp_name)) {
4173 name_ptr = tmp_name;
4174 } else {
4175 name_ptr = kmalloc(name_len, GFP_NOFS);
4176 if (!name_ptr) {
4177 ret = -ENOMEM;
4178 goto err;
4181 read_extent_buffer(leaf, name_ptr,
4182 (unsigned long)(di + 1), name_len);
4184 d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
4185 btrfs_dir_item_key_to_cpu(leaf, di, &location);
4187 /* is this a reference to our own snapshot? If so
4188 * skip it
4190 if (location.type == BTRFS_ROOT_ITEM_KEY &&
4191 location.objectid == root->root_key.objectid) {
4192 over = 0;
4193 goto skip;
4195 over = filldir(dirent, name_ptr, name_len,
4196 found_key.offset, location.objectid,
4197 d_type);
4199 skip:
4200 if (name_ptr != tmp_name)
4201 kfree(name_ptr);
4203 if (over)
4204 goto nopos;
4205 di_len = btrfs_dir_name_len(leaf, di) +
4206 btrfs_dir_data_len(leaf, di) + sizeof(*di);
4207 di_cur += di_len;
4208 di = (struct btrfs_dir_item *)((char *)di + di_len);
4210 next:
4211 path->slots[0]++;
4214 if (key_type == BTRFS_DIR_INDEX_KEY) {
4215 if (is_curr)
4216 filp->f_pos++;
4217 ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
4218 &ins_list);
4219 if (ret)
4220 goto nopos;
4223 /* Reached end of directory/root. Bump pos past the last item. */
4224 if (key_type == BTRFS_DIR_INDEX_KEY)
4226 * 32-bit glibc will use getdents64, but then strtol -
4227 * so the last number we can serve is this.
4229 filp->f_pos = 0x7fffffff;
4230 else
4231 filp->f_pos++;
4232 nopos:
4233 ret = 0;
4234 err:
4235 if (key_type == BTRFS_DIR_INDEX_KEY)
4236 btrfs_put_delayed_items(&ins_list, &del_list);
4237 btrfs_free_path(path);
4238 return ret;
4241 int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
4243 struct btrfs_root *root = BTRFS_I(inode)->root;
4244 struct btrfs_trans_handle *trans;
4245 int ret = 0;
4246 bool nolock = false;
4248 if (BTRFS_I(inode)->dummy_inode)
4249 return 0;
4251 if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(root, inode))
4252 nolock = true;
4254 if (wbc->sync_mode == WB_SYNC_ALL) {
4255 if (nolock)
4256 trans = btrfs_join_transaction_nolock(root);
4257 else
4258 trans = btrfs_join_transaction(root);
4259 if (IS_ERR(trans))
4260 return PTR_ERR(trans);
4261 if (nolock)
4262 ret = btrfs_end_transaction_nolock(trans, root);
4263 else
4264 ret = btrfs_commit_transaction(trans, root);
4266 return ret;
4270 * This is somewhat expensive, updating the tree every time the
4271 * inode changes. But, it is most likely to find the inode in cache.
4272 * FIXME, needs more benchmarking...there are no reasons other than performance
4273 * to keep or drop this code.
4275 void btrfs_dirty_inode(struct inode *inode, int flags)
4277 struct btrfs_root *root = BTRFS_I(inode)->root;
4278 struct btrfs_trans_handle *trans;
4279 int ret;
4281 if (BTRFS_I(inode)->dummy_inode)
4282 return;
4284 trans = btrfs_join_transaction(root);
4285 BUG_ON(IS_ERR(trans));
4287 ret = btrfs_update_inode(trans, root, inode);
4288 if (ret && ret == -ENOSPC) {
4289 /* whoops, lets try again with the full transaction */
4290 btrfs_end_transaction(trans, root);
4291 trans = btrfs_start_transaction(root, 1);
4292 if (IS_ERR(trans)) {
4293 printk_ratelimited(KERN_ERR "btrfs: fail to "
4294 "dirty inode %llu error %ld\n",
4295 (unsigned long long)btrfs_ino(inode),
4296 PTR_ERR(trans));
4297 return;
4300 ret = btrfs_update_inode(trans, root, inode);
4301 if (ret) {
4302 printk_ratelimited(KERN_ERR "btrfs: fail to "
4303 "dirty inode %llu error %d\n",
4304 (unsigned long long)btrfs_ino(inode),
4305 ret);
4308 btrfs_end_transaction(trans, root);
4309 if (BTRFS_I(inode)->delayed_node)
4310 btrfs_balance_delayed_items(root);
4314 * find the highest existing sequence number in a directory
4315 * and then set the in-memory index_cnt variable to reflect
4316 * free sequence numbers
4318 static int btrfs_set_inode_index_count(struct inode *inode)
4320 struct btrfs_root *root = BTRFS_I(inode)->root;
4321 struct btrfs_key key, found_key;
4322 struct btrfs_path *path;
4323 struct extent_buffer *leaf;
4324 int ret;
4326 key.objectid = btrfs_ino(inode);
4327 btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
4328 key.offset = (u64)-1;
4330 path = btrfs_alloc_path();
4331 if (!path)
4332 return -ENOMEM;
4334 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
4335 if (ret < 0)
4336 goto out;
4337 /* FIXME: we should be able to handle this */
4338 if (ret == 0)
4339 goto out;
4340 ret = 0;
4343 * MAGIC NUMBER EXPLANATION:
4344 * since we search a directory based on f_pos we have to start at 2
4345 * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
4346 * else has to start at 2
4348 if (path->slots[0] == 0) {
4349 BTRFS_I(inode)->index_cnt = 2;
4350 goto out;
4353 path->slots[0]--;
4355 leaf = path->nodes[0];
4356 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4358 if (found_key.objectid != btrfs_ino(inode) ||
4359 btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
4360 BTRFS_I(inode)->index_cnt = 2;
4361 goto out;
4364 BTRFS_I(inode)->index_cnt = found_key.offset + 1;
4365 out:
4366 btrfs_free_path(path);
4367 return ret;
4371 * helper to find a free sequence number in a given directory. This current
4372 * code is very simple, later versions will do smarter things in the btree
4374 int btrfs_set_inode_index(struct inode *dir, u64 *index)
4376 int ret = 0;
4378 if (BTRFS_I(dir)->index_cnt == (u64)-1) {
4379 ret = btrfs_inode_delayed_dir_index_count(dir);
4380 if (ret) {
4381 ret = btrfs_set_inode_index_count(dir);
4382 if (ret)
4383 return ret;
4387 *index = BTRFS_I(dir)->index_cnt;
4388 BTRFS_I(dir)->index_cnt++;
4390 return ret;
4393 static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
4394 struct btrfs_root *root,
4395 struct inode *dir,
4396 const char *name, int name_len,
4397 u64 ref_objectid, u64 objectid, int mode,
4398 u64 *index)
4400 struct inode *inode;
4401 struct btrfs_inode_item *inode_item;
4402 struct btrfs_key *location;
4403 struct btrfs_path *path;
4404 struct btrfs_inode_ref *ref;
4405 struct btrfs_key key[2];
4406 u32 sizes[2];
4407 unsigned long ptr;
4408 int ret;
4409 int owner;
4411 path = btrfs_alloc_path();
4412 BUG_ON(!path);
4414 inode = new_inode(root->fs_info->sb);
4415 if (!inode) {
4416 btrfs_free_path(path);
4417 return ERR_PTR(-ENOMEM);
4421 * we have to initialize this early, so we can reclaim the inode
4422 * number if we fail afterwards in this function.
4424 inode->i_ino = objectid;
4426 if (dir) {
4427 trace_btrfs_inode_request(dir);
4429 ret = btrfs_set_inode_index(dir, index);
4430 if (ret) {
4431 btrfs_free_path(path);
4432 iput(inode);
4433 return ERR_PTR(ret);
4437 * index_cnt is ignored for everything but a dir,
4438 * btrfs_get_inode_index_count has an explanation for the magic
4439 * number
4441 BTRFS_I(inode)->index_cnt = 2;
4442 BTRFS_I(inode)->root = root;
4443 BTRFS_I(inode)->generation = trans->transid;
4444 inode->i_generation = BTRFS_I(inode)->generation;
4445 btrfs_set_inode_space_info(root, inode);
4447 if (S_ISDIR(mode))
4448 owner = 0;
4449 else
4450 owner = 1;
4452 key[0].objectid = objectid;
4453 btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
4454 key[0].offset = 0;
4456 key[1].objectid = objectid;
4457 btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
4458 key[1].offset = ref_objectid;
4460 sizes[0] = sizeof(struct btrfs_inode_item);
4461 sizes[1] = name_len + sizeof(*ref);
4463 path->leave_spinning = 1;
4464 ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
4465 if (ret != 0)
4466 goto fail;
4468 inode_init_owner(inode, dir, mode);
4469 inode_set_bytes(inode, 0);
4470 inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
4471 inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
4472 struct btrfs_inode_item);
4473 fill_inode_item(trans, path->nodes[0], inode_item, inode);
4475 ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
4476 struct btrfs_inode_ref);
4477 btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
4478 btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
4479 ptr = (unsigned long)(ref + 1);
4480 write_extent_buffer(path->nodes[0], name, ptr, name_len);
4482 btrfs_mark_buffer_dirty(path->nodes[0]);
4483 btrfs_free_path(path);
4485 location = &BTRFS_I(inode)->location;
4486 location->objectid = objectid;
4487 location->offset = 0;
4488 btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
4490 btrfs_inherit_iflags(inode, dir);
4492 if (S_ISREG(mode)) {
4493 if (btrfs_test_opt(root, NODATASUM))
4494 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
4495 if (btrfs_test_opt(root, NODATACOW) ||
4496 (BTRFS_I(dir)->flags & BTRFS_INODE_NODATACOW))
4497 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
4500 insert_inode_hash(inode);
4501 inode_tree_add(inode);
4503 trace_btrfs_inode_new(inode);
4504 btrfs_set_inode_last_trans(trans, inode);
4506 return inode;
4507 fail:
4508 if (dir)
4509 BTRFS_I(dir)->index_cnt--;
4510 btrfs_free_path(path);
4511 iput(inode);
4512 return ERR_PTR(ret);
4515 static inline u8 btrfs_inode_type(struct inode *inode)
4517 return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
4521 * utility function to add 'inode' into 'parent_inode' with
4522 * a give name and a given sequence number.
4523 * if 'add_backref' is true, also insert a backref from the
4524 * inode to the parent directory.
4526 int btrfs_add_link(struct btrfs_trans_handle *trans,
4527 struct inode *parent_inode, struct inode *inode,
4528 const char *name, int name_len, int add_backref, u64 index)
4530 int ret = 0;
4531 struct btrfs_key key;
4532 struct btrfs_root *root = BTRFS_I(parent_inode)->root;
4533 u64 ino = btrfs_ino(inode);
4534 u64 parent_ino = btrfs_ino(parent_inode);
4536 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4537 memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
4538 } else {
4539 key.objectid = ino;
4540 btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
4541 key.offset = 0;
4544 if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
4545 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
4546 key.objectid, root->root_key.objectid,
4547 parent_ino, index, name, name_len);
4548 } else if (add_backref) {
4549 ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
4550 parent_ino, index);
4553 if (ret == 0) {
4554 ret = btrfs_insert_dir_item(trans, root, name, name_len,
4555 parent_inode, &key,
4556 btrfs_inode_type(inode), index);
4557 BUG_ON(ret);
4559 btrfs_i_size_write(parent_inode, parent_inode->i_size +
4560 name_len * 2);
4561 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
4562 ret = btrfs_update_inode(trans, root, parent_inode);
4564 return ret;
4567 static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
4568 struct inode *dir, struct dentry *dentry,
4569 struct inode *inode, int backref, u64 index)
4571 int err = btrfs_add_link(trans, dir, inode,
4572 dentry->d_name.name, dentry->d_name.len,
4573 backref, index);
4574 if (!err) {
4575 d_instantiate(dentry, inode);
4576 return 0;
4578 if (err > 0)
4579 err = -EEXIST;
4580 return err;
4583 static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
4584 int mode, dev_t rdev)
4586 struct btrfs_trans_handle *trans;
4587 struct btrfs_root *root = BTRFS_I(dir)->root;
4588 struct inode *inode = NULL;
4589 int err;
4590 int drop_inode = 0;
4591 u64 objectid;
4592 unsigned long nr = 0;
4593 u64 index = 0;
4595 if (!new_valid_dev(rdev))
4596 return -EINVAL;
4599 * 2 for inode item and ref
4600 * 2 for dir items
4601 * 1 for xattr if selinux is on
4603 trans = btrfs_start_transaction(root, 5);
4604 if (IS_ERR(trans))
4605 return PTR_ERR(trans);
4607 err = btrfs_find_free_ino(root, &objectid);
4608 if (err)
4609 goto out_unlock;
4611 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4612 dentry->d_name.len, btrfs_ino(dir), objectid,
4613 mode, &index);
4614 if (IS_ERR(inode)) {
4615 err = PTR_ERR(inode);
4616 goto out_unlock;
4619 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4620 if (err) {
4621 drop_inode = 1;
4622 goto out_unlock;
4625 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4626 if (err)
4627 drop_inode = 1;
4628 else {
4629 inode->i_op = &btrfs_special_inode_operations;
4630 init_special_inode(inode, inode->i_mode, rdev);
4631 btrfs_update_inode(trans, root, inode);
4633 out_unlock:
4634 nr = trans->blocks_used;
4635 btrfs_end_transaction_throttle(trans, root);
4636 btrfs_btree_balance_dirty(root, nr);
4637 if (drop_inode) {
4638 inode_dec_link_count(inode);
4639 iput(inode);
4641 return err;
4644 static int btrfs_create(struct inode *dir, struct dentry *dentry,
4645 int mode, struct nameidata *nd)
4647 struct btrfs_trans_handle *trans;
4648 struct btrfs_root *root = BTRFS_I(dir)->root;
4649 struct inode *inode = NULL;
4650 int drop_inode = 0;
4651 int err;
4652 unsigned long nr = 0;
4653 u64 objectid;
4654 u64 index = 0;
4657 * 2 for inode item and ref
4658 * 2 for dir items
4659 * 1 for xattr if selinux is on
4661 trans = btrfs_start_transaction(root, 5);
4662 if (IS_ERR(trans))
4663 return PTR_ERR(trans);
4665 err = btrfs_find_free_ino(root, &objectid);
4666 if (err)
4667 goto out_unlock;
4669 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4670 dentry->d_name.len, btrfs_ino(dir), objectid,
4671 mode, &index);
4672 if (IS_ERR(inode)) {
4673 err = PTR_ERR(inode);
4674 goto out_unlock;
4677 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4678 if (err) {
4679 drop_inode = 1;
4680 goto out_unlock;
4683 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
4684 if (err)
4685 drop_inode = 1;
4686 else {
4687 inode->i_mapping->a_ops = &btrfs_aops;
4688 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
4689 inode->i_fop = &btrfs_file_operations;
4690 inode->i_op = &btrfs_file_inode_operations;
4691 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
4693 out_unlock:
4694 nr = trans->blocks_used;
4695 btrfs_end_transaction_throttle(trans, root);
4696 if (drop_inode) {
4697 inode_dec_link_count(inode);
4698 iput(inode);
4700 btrfs_btree_balance_dirty(root, nr);
4701 return err;
4704 static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
4705 struct dentry *dentry)
4707 struct btrfs_trans_handle *trans;
4708 struct btrfs_root *root = BTRFS_I(dir)->root;
4709 struct inode *inode = old_dentry->d_inode;
4710 u64 index;
4711 unsigned long nr = 0;
4712 int err;
4713 int drop_inode = 0;
4715 /* do not allow sys_link's with other subvols of the same device */
4716 if (root->objectid != BTRFS_I(inode)->root->objectid)
4717 return -EXDEV;
4719 if (inode->i_nlink == ~0U)
4720 return -EMLINK;
4722 err = btrfs_set_inode_index(dir, &index);
4723 if (err)
4724 goto fail;
4727 * 2 items for inode and inode ref
4728 * 2 items for dir items
4729 * 1 item for parent inode
4731 trans = btrfs_start_transaction(root, 5);
4732 if (IS_ERR(trans)) {
4733 err = PTR_ERR(trans);
4734 goto fail;
4737 btrfs_inc_nlink(inode);
4738 inode->i_ctime = CURRENT_TIME;
4739 ihold(inode);
4741 err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
4743 if (err) {
4744 drop_inode = 1;
4745 } else {
4746 struct dentry *parent = dentry->d_parent;
4747 err = btrfs_update_inode(trans, root, inode);
4748 BUG_ON(err);
4749 btrfs_log_new_name(trans, inode, NULL, parent);
4752 nr = trans->blocks_used;
4753 btrfs_end_transaction_throttle(trans, root);
4754 fail:
4755 if (drop_inode) {
4756 inode_dec_link_count(inode);
4757 iput(inode);
4759 btrfs_btree_balance_dirty(root, nr);
4760 return err;
4763 static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
4765 struct inode *inode = NULL;
4766 struct btrfs_trans_handle *trans;
4767 struct btrfs_root *root = BTRFS_I(dir)->root;
4768 int err = 0;
4769 int drop_on_err = 0;
4770 u64 objectid = 0;
4771 u64 index = 0;
4772 unsigned long nr = 1;
4775 * 2 items for inode and ref
4776 * 2 items for dir items
4777 * 1 for xattr if selinux is on
4779 trans = btrfs_start_transaction(root, 5);
4780 if (IS_ERR(trans))
4781 return PTR_ERR(trans);
4783 err = btrfs_find_free_ino(root, &objectid);
4784 if (err)
4785 goto out_fail;
4787 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
4788 dentry->d_name.len, btrfs_ino(dir), objectid,
4789 S_IFDIR | mode, &index);
4790 if (IS_ERR(inode)) {
4791 err = PTR_ERR(inode);
4792 goto out_fail;
4795 drop_on_err = 1;
4797 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
4798 if (err)
4799 goto out_fail;
4801 inode->i_op = &btrfs_dir_inode_operations;
4802 inode->i_fop = &btrfs_dir_file_operations;
4804 btrfs_i_size_write(inode, 0);
4805 err = btrfs_update_inode(trans, root, inode);
4806 if (err)
4807 goto out_fail;
4809 err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
4810 dentry->d_name.len, 0, index);
4811 if (err)
4812 goto out_fail;
4814 d_instantiate(dentry, inode);
4815 drop_on_err = 0;
4817 out_fail:
4818 nr = trans->blocks_used;
4819 btrfs_end_transaction_throttle(trans, root);
4820 if (drop_on_err)
4821 iput(inode);
4822 btrfs_btree_balance_dirty(root, nr);
4823 return err;
4826 /* helper for btfs_get_extent. Given an existing extent in the tree,
4827 * and an extent that you want to insert, deal with overlap and insert
4828 * the new extent into the tree.
4830 static int merge_extent_mapping(struct extent_map_tree *em_tree,
4831 struct extent_map *existing,
4832 struct extent_map *em,
4833 u64 map_start, u64 map_len)
4835 u64 start_diff;
4837 BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
4838 start_diff = map_start - em->start;
4839 em->start = map_start;
4840 em->len = map_len;
4841 if (em->block_start < EXTENT_MAP_LAST_BYTE &&
4842 !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
4843 em->block_start += start_diff;
4844 em->block_len -= start_diff;
4846 return add_extent_mapping(em_tree, em);
4849 static noinline int uncompress_inline(struct btrfs_path *path,
4850 struct inode *inode, struct page *page,
4851 size_t pg_offset, u64 extent_offset,
4852 struct btrfs_file_extent_item *item)
4854 int ret;
4855 struct extent_buffer *leaf = path->nodes[0];
4856 char *tmp;
4857 size_t max_size;
4858 unsigned long inline_size;
4859 unsigned long ptr;
4860 int compress_type;
4862 WARN_ON(pg_offset != 0);
4863 compress_type = btrfs_file_extent_compression(leaf, item);
4864 max_size = btrfs_file_extent_ram_bytes(leaf, item);
4865 inline_size = btrfs_file_extent_inline_item_len(leaf,
4866 btrfs_item_nr(leaf, path->slots[0]));
4867 tmp = kmalloc(inline_size, GFP_NOFS);
4868 if (!tmp)
4869 return -ENOMEM;
4870 ptr = btrfs_file_extent_inline_start(item);
4872 read_extent_buffer(leaf, tmp, ptr, inline_size);
4874 max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
4875 ret = btrfs_decompress(compress_type, tmp, page,
4876 extent_offset, inline_size, max_size);
4877 if (ret) {
4878 char *kaddr = kmap_atomic(page, KM_USER0);
4879 unsigned long copy_size = min_t(u64,
4880 PAGE_CACHE_SIZE - pg_offset,
4881 max_size - extent_offset);
4882 memset(kaddr + pg_offset, 0, copy_size);
4883 kunmap_atomic(kaddr, KM_USER0);
4885 kfree(tmp);
4886 return 0;
4890 * a bit scary, this does extent mapping from logical file offset to the disk.
4891 * the ugly parts come from merging extents from the disk with the in-ram
4892 * representation. This gets more complex because of the data=ordered code,
4893 * where the in-ram extents might be locked pending data=ordered completion.
4895 * This also copies inline extents directly into the page.
4898 struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
4899 size_t pg_offset, u64 start, u64 len,
4900 int create)
4902 int ret;
4903 int err = 0;
4904 u64 bytenr;
4905 u64 extent_start = 0;
4906 u64 extent_end = 0;
4907 u64 objectid = btrfs_ino(inode);
4908 u32 found_type;
4909 struct btrfs_path *path = NULL;
4910 struct btrfs_root *root = BTRFS_I(inode)->root;
4911 struct btrfs_file_extent_item *item;
4912 struct extent_buffer *leaf;
4913 struct btrfs_key found_key;
4914 struct extent_map *em = NULL;
4915 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4916 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4917 struct btrfs_trans_handle *trans = NULL;
4918 int compress_type;
4920 again:
4921 read_lock(&em_tree->lock);
4922 em = lookup_extent_mapping(em_tree, start, len);
4923 if (em)
4924 em->bdev = root->fs_info->fs_devices->latest_bdev;
4925 read_unlock(&em_tree->lock);
4927 if (em) {
4928 if (em->start > start || em->start + em->len <= start)
4929 free_extent_map(em);
4930 else if (em->block_start == EXTENT_MAP_INLINE && page)
4931 free_extent_map(em);
4932 else
4933 goto out;
4935 em = alloc_extent_map();
4936 if (!em) {
4937 err = -ENOMEM;
4938 goto out;
4940 em->bdev = root->fs_info->fs_devices->latest_bdev;
4941 em->start = EXTENT_MAP_HOLE;
4942 em->orig_start = EXTENT_MAP_HOLE;
4943 em->len = (u64)-1;
4944 em->block_len = (u64)-1;
4946 if (!path) {
4947 path = btrfs_alloc_path();
4948 if (!path) {
4949 err = -ENOMEM;
4950 goto out;
4953 * Chances are we'll be called again, so go ahead and do
4954 * readahead
4956 path->reada = 1;
4959 ret = btrfs_lookup_file_extent(trans, root, path,
4960 objectid, start, trans != NULL);
4961 if (ret < 0) {
4962 err = ret;
4963 goto out;
4966 if (ret != 0) {
4967 if (path->slots[0] == 0)
4968 goto not_found;
4969 path->slots[0]--;
4972 leaf = path->nodes[0];
4973 item = btrfs_item_ptr(leaf, path->slots[0],
4974 struct btrfs_file_extent_item);
4975 /* are we inside the extent that was found? */
4976 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4977 found_type = btrfs_key_type(&found_key);
4978 if (found_key.objectid != objectid ||
4979 found_type != BTRFS_EXTENT_DATA_KEY) {
4980 goto not_found;
4983 found_type = btrfs_file_extent_type(leaf, item);
4984 extent_start = found_key.offset;
4985 compress_type = btrfs_file_extent_compression(leaf, item);
4986 if (found_type == BTRFS_FILE_EXTENT_REG ||
4987 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
4988 extent_end = extent_start +
4989 btrfs_file_extent_num_bytes(leaf, item);
4990 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
4991 size_t size;
4992 size = btrfs_file_extent_inline_len(leaf, item);
4993 extent_end = (extent_start + size + root->sectorsize - 1) &
4994 ~((u64)root->sectorsize - 1);
4997 if (start >= extent_end) {
4998 path->slots[0]++;
4999 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
5000 ret = btrfs_next_leaf(root, path);
5001 if (ret < 0) {
5002 err = ret;
5003 goto out;
5005 if (ret > 0)
5006 goto not_found;
5007 leaf = path->nodes[0];
5009 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5010 if (found_key.objectid != objectid ||
5011 found_key.type != BTRFS_EXTENT_DATA_KEY)
5012 goto not_found;
5013 if (start + len <= found_key.offset)
5014 goto not_found;
5015 em->start = start;
5016 em->len = found_key.offset - start;
5017 goto not_found_em;
5020 if (found_type == BTRFS_FILE_EXTENT_REG ||
5021 found_type == BTRFS_FILE_EXTENT_PREALLOC) {
5022 em->start = extent_start;
5023 em->len = extent_end - extent_start;
5024 em->orig_start = extent_start -
5025 btrfs_file_extent_offset(leaf, item);
5026 bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
5027 if (bytenr == 0) {
5028 em->block_start = EXTENT_MAP_HOLE;
5029 goto insert;
5031 if (compress_type != BTRFS_COMPRESS_NONE) {
5032 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5033 em->compress_type = compress_type;
5034 em->block_start = bytenr;
5035 em->block_len = btrfs_file_extent_disk_num_bytes(leaf,
5036 item);
5037 } else {
5038 bytenr += btrfs_file_extent_offset(leaf, item);
5039 em->block_start = bytenr;
5040 em->block_len = em->len;
5041 if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
5042 set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
5044 goto insert;
5045 } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
5046 unsigned long ptr;
5047 char *map;
5048 size_t size;
5049 size_t extent_offset;
5050 size_t copy_size;
5052 em->block_start = EXTENT_MAP_INLINE;
5053 if (!page || create) {
5054 em->start = extent_start;
5055 em->len = extent_end - extent_start;
5056 goto out;
5059 size = btrfs_file_extent_inline_len(leaf, item);
5060 extent_offset = page_offset(page) + pg_offset - extent_start;
5061 copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
5062 size - extent_offset);
5063 em->start = extent_start + extent_offset;
5064 em->len = (copy_size + root->sectorsize - 1) &
5065 ~((u64)root->sectorsize - 1);
5066 em->orig_start = EXTENT_MAP_INLINE;
5067 if (compress_type) {
5068 set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
5069 em->compress_type = compress_type;
5071 ptr = btrfs_file_extent_inline_start(item) + extent_offset;
5072 if (create == 0 && !PageUptodate(page)) {
5073 if (btrfs_file_extent_compression(leaf, item) !=
5074 BTRFS_COMPRESS_NONE) {
5075 ret = uncompress_inline(path, inode, page,
5076 pg_offset,
5077 extent_offset, item);
5078 BUG_ON(ret);
5079 } else {
5080 map = kmap(page);
5081 read_extent_buffer(leaf, map + pg_offset, ptr,
5082 copy_size);
5083 if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
5084 memset(map + pg_offset + copy_size, 0,
5085 PAGE_CACHE_SIZE - pg_offset -
5086 copy_size);
5088 kunmap(page);
5090 flush_dcache_page(page);
5091 } else if (create && PageUptodate(page)) {
5092 WARN_ON(1);
5093 if (!trans) {
5094 kunmap(page);
5095 free_extent_map(em);
5096 em = NULL;
5098 btrfs_release_path(path);
5099 trans = btrfs_join_transaction(root);
5101 if (IS_ERR(trans))
5102 return ERR_CAST(trans);
5103 goto again;
5105 map = kmap(page);
5106 write_extent_buffer(leaf, map + pg_offset, ptr,
5107 copy_size);
5108 kunmap(page);
5109 btrfs_mark_buffer_dirty(leaf);
5111 set_extent_uptodate(io_tree, em->start,
5112 extent_map_end(em) - 1, NULL, GFP_NOFS);
5113 goto insert;
5114 } else {
5115 printk(KERN_ERR "btrfs unknown found_type %d\n", found_type);
5116 WARN_ON(1);
5118 not_found:
5119 em->start = start;
5120 em->len = len;
5121 not_found_em:
5122 em->block_start = EXTENT_MAP_HOLE;
5123 set_bit(EXTENT_FLAG_VACANCY, &em->flags);
5124 insert:
5125 btrfs_release_path(path);
5126 if (em->start > start || extent_map_end(em) <= start) {
5127 printk(KERN_ERR "Btrfs: bad extent! em: [%llu %llu] passed "
5128 "[%llu %llu]\n", (unsigned long long)em->start,
5129 (unsigned long long)em->len,
5130 (unsigned long long)start,
5131 (unsigned long long)len);
5132 err = -EIO;
5133 goto out;
5136 err = 0;
5137 write_lock(&em_tree->lock);
5138 ret = add_extent_mapping(em_tree, em);
5139 /* it is possible that someone inserted the extent into the tree
5140 * while we had the lock dropped. It is also possible that
5141 * an overlapping map exists in the tree
5143 if (ret == -EEXIST) {
5144 struct extent_map *existing;
5146 ret = 0;
5148 existing = lookup_extent_mapping(em_tree, start, len);
5149 if (existing && (existing->start > start ||
5150 existing->start + existing->len <= start)) {
5151 free_extent_map(existing);
5152 existing = NULL;
5154 if (!existing) {
5155 existing = lookup_extent_mapping(em_tree, em->start,
5156 em->len);
5157 if (existing) {
5158 err = merge_extent_mapping(em_tree, existing,
5159 em, start,
5160 root->sectorsize);
5161 free_extent_map(existing);
5162 if (err) {
5163 free_extent_map(em);
5164 em = NULL;
5166 } else {
5167 err = -EIO;
5168 free_extent_map(em);
5169 em = NULL;
5171 } else {
5172 free_extent_map(em);
5173 em = existing;
5174 err = 0;
5177 write_unlock(&em_tree->lock);
5178 out:
5180 trace_btrfs_get_extent(root, em);
5182 if (path)
5183 btrfs_free_path(path);
5184 if (trans) {
5185 ret = btrfs_end_transaction(trans, root);
5186 if (!err)
5187 err = ret;
5189 if (err) {
5190 free_extent_map(em);
5191 return ERR_PTR(err);
5193 return em;
5196 struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
5197 size_t pg_offset, u64 start, u64 len,
5198 int create)
5200 struct extent_map *em;
5201 struct extent_map *hole_em = NULL;
5202 u64 range_start = start;
5203 u64 end;
5204 u64 found;
5205 u64 found_end;
5206 int err = 0;
5208 em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
5209 if (IS_ERR(em))
5210 return em;
5211 if (em) {
5213 * if our em maps to a hole, there might
5214 * actually be delalloc bytes behind it
5216 if (em->block_start != EXTENT_MAP_HOLE)
5217 return em;
5218 else
5219 hole_em = em;
5222 /* check to see if we've wrapped (len == -1 or similar) */
5223 end = start + len;
5224 if (end < start)
5225 end = (u64)-1;
5226 else
5227 end -= 1;
5229 em = NULL;
5231 /* ok, we didn't find anything, lets look for delalloc */
5232 found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
5233 end, len, EXTENT_DELALLOC, 1);
5234 found_end = range_start + found;
5235 if (found_end < range_start)
5236 found_end = (u64)-1;
5239 * we didn't find anything useful, return
5240 * the original results from get_extent()
5242 if (range_start > end || found_end <= start) {
5243 em = hole_em;
5244 hole_em = NULL;
5245 goto out;
5248 /* adjust the range_start to make sure it doesn't
5249 * go backwards from the start they passed in
5251 range_start = max(start,range_start);
5252 found = found_end - range_start;
5254 if (found > 0) {
5255 u64 hole_start = start;
5256 u64 hole_len = len;
5258 em = alloc_extent_map();
5259 if (!em) {
5260 err = -ENOMEM;
5261 goto out;
5264 * when btrfs_get_extent can't find anything it
5265 * returns one huge hole
5267 * make sure what it found really fits our range, and
5268 * adjust to make sure it is based on the start from
5269 * the caller
5271 if (hole_em) {
5272 u64 calc_end = extent_map_end(hole_em);
5274 if (calc_end <= start || (hole_em->start > end)) {
5275 free_extent_map(hole_em);
5276 hole_em = NULL;
5277 } else {
5278 hole_start = max(hole_em->start, start);
5279 hole_len = calc_end - hole_start;
5282 em->bdev = NULL;
5283 if (hole_em && range_start > hole_start) {
5284 /* our hole starts before our delalloc, so we
5285 * have to return just the parts of the hole
5286 * that go until the delalloc starts
5288 em->len = min(hole_len,
5289 range_start - hole_start);
5290 em->start = hole_start;
5291 em->orig_start = hole_start;
5293 * don't adjust block start at all,
5294 * it is fixed at EXTENT_MAP_HOLE
5296 em->block_start = hole_em->block_start;
5297 em->block_len = hole_len;
5298 } else {
5299 em->start = range_start;
5300 em->len = found;
5301 em->orig_start = range_start;
5302 em->block_start = EXTENT_MAP_DELALLOC;
5303 em->block_len = found;
5305 } else if (hole_em) {
5306 return hole_em;
5308 out:
5310 free_extent_map(hole_em);
5311 if (err) {
5312 free_extent_map(em);
5313 return ERR_PTR(err);
5315 return em;
5318 static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
5319 struct extent_map *em,
5320 u64 start, u64 len)
5322 struct btrfs_root *root = BTRFS_I(inode)->root;
5323 struct btrfs_trans_handle *trans;
5324 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
5325 struct btrfs_key ins;
5326 u64 alloc_hint;
5327 int ret;
5328 bool insert = false;
5331 * Ok if the extent map we looked up is a hole and is for the exact
5332 * range we want, there is no reason to allocate a new one, however if
5333 * it is not right then we need to free this one and drop the cache for
5334 * our range.
5336 if (em->block_start != EXTENT_MAP_HOLE || em->start != start ||
5337 em->len != len) {
5338 free_extent_map(em);
5339 em = NULL;
5340 insert = true;
5341 btrfs_drop_extent_cache(inode, start, start + len - 1, 0);
5344 trans = btrfs_join_transaction(root);
5345 if (IS_ERR(trans))
5346 return ERR_CAST(trans);
5348 if (start <= BTRFS_I(inode)->disk_i_size && len < 64 * 1024)
5349 btrfs_add_inode_defrag(trans, inode);
5351 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5353 alloc_hint = get_extent_allocation_hint(inode, start, len);
5354 ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
5355 alloc_hint, (u64)-1, &ins, 1);
5356 if (ret) {
5357 em = ERR_PTR(ret);
5358 goto out;
5361 if (!em) {
5362 em = alloc_extent_map();
5363 if (!em) {
5364 em = ERR_PTR(-ENOMEM);
5365 goto out;
5369 em->start = start;
5370 em->orig_start = em->start;
5371 em->len = ins.offset;
5373 em->block_start = ins.objectid;
5374 em->block_len = ins.offset;
5375 em->bdev = root->fs_info->fs_devices->latest_bdev;
5378 * We need to do this because if we're using the original em we searched
5379 * for, we could have EXTENT_FLAG_VACANCY set, and we don't want that.
5381 em->flags = 0;
5382 set_bit(EXTENT_FLAG_PINNED, &em->flags);
5384 while (insert) {
5385 write_lock(&em_tree->lock);
5386 ret = add_extent_mapping(em_tree, em);
5387 write_unlock(&em_tree->lock);
5388 if (ret != -EEXIST)
5389 break;
5390 btrfs_drop_extent_cache(inode, start, start + em->len - 1, 0);
5393 ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
5394 ins.offset, ins.offset, 0);
5395 if (ret) {
5396 btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
5397 em = ERR_PTR(ret);
5399 out:
5400 btrfs_end_transaction(trans, root);
5401 return em;
5405 * returns 1 when the nocow is safe, < 1 on error, 0 if the
5406 * block must be cow'd
5408 static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
5409 struct inode *inode, u64 offset, u64 len)
5411 struct btrfs_path *path;
5412 int ret;
5413 struct extent_buffer *leaf;
5414 struct btrfs_root *root = BTRFS_I(inode)->root;
5415 struct btrfs_file_extent_item *fi;
5416 struct btrfs_key key;
5417 u64 disk_bytenr;
5418 u64 backref_offset;
5419 u64 extent_end;
5420 u64 num_bytes;
5421 int slot;
5422 int found_type;
5424 path = btrfs_alloc_path();
5425 if (!path)
5426 return -ENOMEM;
5428 ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
5429 offset, 0);
5430 if (ret < 0)
5431 goto out;
5433 slot = path->slots[0];
5434 if (ret == 1) {
5435 if (slot == 0) {
5436 /* can't find the item, must cow */
5437 ret = 0;
5438 goto out;
5440 slot--;
5442 ret = 0;
5443 leaf = path->nodes[0];
5444 btrfs_item_key_to_cpu(leaf, &key, slot);
5445 if (key.objectid != btrfs_ino(inode) ||
5446 key.type != BTRFS_EXTENT_DATA_KEY) {
5447 /* not our file or wrong item type, must cow */
5448 goto out;
5451 if (key.offset > offset) {
5452 /* Wrong offset, must cow */
5453 goto out;
5456 fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
5457 found_type = btrfs_file_extent_type(leaf, fi);
5458 if (found_type != BTRFS_FILE_EXTENT_REG &&
5459 found_type != BTRFS_FILE_EXTENT_PREALLOC) {
5460 /* not a regular extent, must cow */
5461 goto out;
5463 disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
5464 backref_offset = btrfs_file_extent_offset(leaf, fi);
5466 extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
5467 if (extent_end < offset + len) {
5468 /* extent doesn't include our full range, must cow */
5469 goto out;
5472 if (btrfs_extent_readonly(root, disk_bytenr))
5473 goto out;
5476 * look for other files referencing this extent, if we
5477 * find any we must cow
5479 if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
5480 key.offset - backref_offset, disk_bytenr))
5481 goto out;
5484 * adjust disk_bytenr and num_bytes to cover just the bytes
5485 * in this extent we are about to write. If there
5486 * are any csums in that range we have to cow in order
5487 * to keep the csums correct
5489 disk_bytenr += backref_offset;
5490 disk_bytenr += offset - key.offset;
5491 num_bytes = min(offset + len, extent_end) - offset;
5492 if (csum_exist_in_range(root, disk_bytenr, num_bytes))
5493 goto out;
5495 * all of the above have passed, it is safe to overwrite this extent
5496 * without cow
5498 ret = 1;
5499 out:
5500 btrfs_free_path(path);
5501 return ret;
5504 static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
5505 struct buffer_head *bh_result, int create)
5507 struct extent_map *em;
5508 struct btrfs_root *root = BTRFS_I(inode)->root;
5509 u64 start = iblock << inode->i_blkbits;
5510 u64 len = bh_result->b_size;
5511 struct btrfs_trans_handle *trans;
5513 em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
5514 if (IS_ERR(em))
5515 return PTR_ERR(em);
5518 * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
5519 * io. INLINE is special, and we could probably kludge it in here, but
5520 * it's still buffered so for safety lets just fall back to the generic
5521 * buffered path.
5523 * For COMPRESSED we _have_ to read the entire extent in so we can
5524 * decompress it, so there will be buffering required no matter what we
5525 * do, so go ahead and fallback to buffered.
5527 * We return -ENOTBLK because thats what makes DIO go ahead and go back
5528 * to buffered IO. Don't blame me, this is the price we pay for using
5529 * the generic code.
5531 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
5532 em->block_start == EXTENT_MAP_INLINE) {
5533 free_extent_map(em);
5534 return -ENOTBLK;
5537 /* Just a good old fashioned hole, return */
5538 if (!create && (em->block_start == EXTENT_MAP_HOLE ||
5539 test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
5540 free_extent_map(em);
5541 /* DIO will do one hole at a time, so just unlock a sector */
5542 unlock_extent(&BTRFS_I(inode)->io_tree, start,
5543 start + root->sectorsize - 1, GFP_NOFS);
5544 return 0;
5548 * We don't allocate a new extent in the following cases
5550 * 1) The inode is marked as NODATACOW. In this case we'll just use the
5551 * existing extent.
5552 * 2) The extent is marked as PREALLOC. We're good to go here and can
5553 * just use the extent.
5556 if (!create) {
5557 len = em->len - (start - em->start);
5558 goto map;
5561 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
5562 ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
5563 em->block_start != EXTENT_MAP_HOLE)) {
5564 int type;
5565 int ret;
5566 u64 block_start;
5568 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5569 type = BTRFS_ORDERED_PREALLOC;
5570 else
5571 type = BTRFS_ORDERED_NOCOW;
5572 len = min(len, em->len - (start - em->start));
5573 block_start = em->block_start + (start - em->start);
5576 * we're not going to log anything, but we do need
5577 * to make sure the current transaction stays open
5578 * while we look for nocow cross refs
5580 trans = btrfs_join_transaction(root);
5581 if (IS_ERR(trans))
5582 goto must_cow;
5584 if (can_nocow_odirect(trans, inode, start, len) == 1) {
5585 ret = btrfs_add_ordered_extent_dio(inode, start,
5586 block_start, len, len, type);
5587 btrfs_end_transaction(trans, root);
5588 if (ret) {
5589 free_extent_map(em);
5590 return ret;
5592 goto unlock;
5594 btrfs_end_transaction(trans, root);
5596 must_cow:
5598 * this will cow the extent, reset the len in case we changed
5599 * it above
5601 len = bh_result->b_size;
5602 em = btrfs_new_extent_direct(inode, em, start, len);
5603 if (IS_ERR(em))
5604 return PTR_ERR(em);
5605 len = min(len, em->len - (start - em->start));
5606 unlock:
5607 clear_extent_bit(&BTRFS_I(inode)->io_tree, start, start + len - 1,
5608 EXTENT_LOCKED | EXTENT_DELALLOC | EXTENT_DIRTY, 1,
5609 0, NULL, GFP_NOFS);
5610 map:
5611 bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
5612 inode->i_blkbits;
5613 bh_result->b_size = len;
5614 bh_result->b_bdev = em->bdev;
5615 set_buffer_mapped(bh_result);
5616 if (create && !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
5617 set_buffer_new(bh_result);
5619 free_extent_map(em);
5621 return 0;
5624 struct btrfs_dio_private {
5625 struct inode *inode;
5626 u64 logical_offset;
5627 u64 disk_bytenr;
5628 u64 bytes;
5629 u32 *csums;
5630 void *private;
5632 /* number of bios pending for this dio */
5633 atomic_t pending_bios;
5635 /* IO errors */
5636 int errors;
5638 struct bio *orig_bio;
5641 static void btrfs_endio_direct_read(struct bio *bio, int err)
5643 struct btrfs_dio_private *dip = bio->bi_private;
5644 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
5645 struct bio_vec *bvec = bio->bi_io_vec;
5646 struct inode *inode = dip->inode;
5647 struct btrfs_root *root = BTRFS_I(inode)->root;
5648 u64 start;
5649 u32 *private = dip->csums;
5651 start = dip->logical_offset;
5652 do {
5653 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
5654 struct page *page = bvec->bv_page;
5655 char *kaddr;
5656 u32 csum = ~(u32)0;
5657 unsigned long flags;
5659 local_irq_save(flags);
5660 kaddr = kmap_atomic(page, KM_IRQ0);
5661 csum = btrfs_csum_data(root, kaddr + bvec->bv_offset,
5662 csum, bvec->bv_len);
5663 btrfs_csum_final(csum, (char *)&csum);
5664 kunmap_atomic(kaddr, KM_IRQ0);
5665 local_irq_restore(flags);
5667 flush_dcache_page(bvec->bv_page);
5668 if (csum != *private) {
5669 printk(KERN_ERR "btrfs csum failed ino %llu off"
5670 " %llu csum %u private %u\n",
5671 (unsigned long long)btrfs_ino(inode),
5672 (unsigned long long)start,
5673 csum, *private);
5674 err = -EIO;
5678 start += bvec->bv_len;
5679 private++;
5680 bvec++;
5681 } while (bvec <= bvec_end);
5683 unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
5684 dip->logical_offset + dip->bytes - 1, GFP_NOFS);
5685 bio->bi_private = dip->private;
5687 kfree(dip->csums);
5688 kfree(dip);
5690 /* If we had a csum failure make sure to clear the uptodate flag */
5691 if (err)
5692 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5693 dio_end_io(bio, err);
5696 static void btrfs_endio_direct_write(struct bio *bio, int err)
5698 struct btrfs_dio_private *dip = bio->bi_private;
5699 struct inode *inode = dip->inode;
5700 struct btrfs_root *root = BTRFS_I(inode)->root;
5701 struct btrfs_trans_handle *trans;
5702 struct btrfs_ordered_extent *ordered = NULL;
5703 struct extent_state *cached_state = NULL;
5704 u64 ordered_offset = dip->logical_offset;
5705 u64 ordered_bytes = dip->bytes;
5706 int ret;
5708 if (err)
5709 goto out_done;
5710 again:
5711 ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
5712 &ordered_offset,
5713 ordered_bytes);
5714 if (!ret)
5715 goto out_test;
5717 BUG_ON(!ordered);
5719 trans = btrfs_join_transaction(root);
5720 if (IS_ERR(trans)) {
5721 err = -ENOMEM;
5722 goto out;
5724 trans->block_rsv = &root->fs_info->delalloc_block_rsv;
5726 if (test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags)) {
5727 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5728 if (!ret)
5729 ret = btrfs_update_inode(trans, root, inode);
5730 err = ret;
5731 goto out;
5734 lock_extent_bits(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5735 ordered->file_offset + ordered->len - 1, 0,
5736 &cached_state, GFP_NOFS);
5738 if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags)) {
5739 ret = btrfs_mark_extent_written(trans, inode,
5740 ordered->file_offset,
5741 ordered->file_offset +
5742 ordered->len);
5743 if (ret) {
5744 err = ret;
5745 goto out_unlock;
5747 } else {
5748 ret = insert_reserved_file_extent(trans, inode,
5749 ordered->file_offset,
5750 ordered->start,
5751 ordered->disk_len,
5752 ordered->len,
5753 ordered->len,
5754 0, 0, 0,
5755 BTRFS_FILE_EXTENT_REG);
5756 unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
5757 ordered->file_offset, ordered->len);
5758 if (ret) {
5759 err = ret;
5760 WARN_ON(1);
5761 goto out_unlock;
5765 add_pending_csums(trans, inode, ordered->file_offset, &ordered->list);
5766 ret = btrfs_ordered_update_i_size(inode, 0, ordered);
5767 if (!ret)
5768 btrfs_update_inode(trans, root, inode);
5769 ret = 0;
5770 out_unlock:
5771 unlock_extent_cached(&BTRFS_I(inode)->io_tree, ordered->file_offset,
5772 ordered->file_offset + ordered->len - 1,
5773 &cached_state, GFP_NOFS);
5774 out:
5775 btrfs_delalloc_release_metadata(inode, ordered->len);
5776 btrfs_end_transaction(trans, root);
5777 ordered_offset = ordered->file_offset + ordered->len;
5778 btrfs_put_ordered_extent(ordered);
5779 btrfs_put_ordered_extent(ordered);
5781 out_test:
5783 * our bio might span multiple ordered extents. If we haven't
5784 * completed the accounting for the whole dio, go back and try again
5786 if (ordered_offset < dip->logical_offset + dip->bytes) {
5787 ordered_bytes = dip->logical_offset + dip->bytes -
5788 ordered_offset;
5789 goto again;
5791 out_done:
5792 bio->bi_private = dip->private;
5794 kfree(dip->csums);
5795 kfree(dip);
5797 /* If we had an error make sure to clear the uptodate flag */
5798 if (err)
5799 clear_bit(BIO_UPTODATE, &bio->bi_flags);
5800 dio_end_io(bio, err);
5803 static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
5804 struct bio *bio, int mirror_num,
5805 unsigned long bio_flags, u64 offset)
5807 int ret;
5808 struct btrfs_root *root = BTRFS_I(inode)->root;
5809 ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
5810 BUG_ON(ret);
5811 return 0;
5814 static void btrfs_end_dio_bio(struct bio *bio, int err)
5816 struct btrfs_dio_private *dip = bio->bi_private;
5818 if (err) {
5819 printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
5820 "sector %#Lx len %u err no %d\n",
5821 (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
5822 (unsigned long long)bio->bi_sector, bio->bi_size, err);
5823 dip->errors = 1;
5826 * before atomic variable goto zero, we must make sure
5827 * dip->errors is perceived to be set.
5829 smp_mb__before_atomic_dec();
5832 /* if there are more bios still pending for this dio, just exit */
5833 if (!atomic_dec_and_test(&dip->pending_bios))
5834 goto out;
5836 if (dip->errors)
5837 bio_io_error(dip->orig_bio);
5838 else {
5839 set_bit(BIO_UPTODATE, &dip->orig_bio->bi_flags);
5840 bio_endio(dip->orig_bio, 0);
5842 out:
5843 bio_put(bio);
5846 static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
5847 u64 first_sector, gfp_t gfp_flags)
5849 int nr_vecs = bio_get_nr_vecs(bdev);
5850 return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
5853 static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
5854 int rw, u64 file_offset, int skip_sum,
5855 u32 *csums, int async_submit)
5857 int write = rw & REQ_WRITE;
5858 struct btrfs_root *root = BTRFS_I(inode)->root;
5859 int ret;
5861 bio_get(bio);
5862 ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
5863 if (ret)
5864 goto err;
5866 if (skip_sum)
5867 goto map;
5869 if (write && async_submit) {
5870 ret = btrfs_wq_submit_bio(root->fs_info,
5871 inode, rw, bio, 0, 0,
5872 file_offset,
5873 __btrfs_submit_bio_start_direct_io,
5874 __btrfs_submit_bio_done);
5875 goto err;
5876 } else if (write) {
5878 * If we aren't doing async submit, calculate the csum of the
5879 * bio now.
5881 ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
5882 if (ret)
5883 goto err;
5884 } else if (!skip_sum) {
5885 ret = btrfs_lookup_bio_sums_dio(root, inode, bio,
5886 file_offset, csums);
5887 if (ret)
5888 goto err;
5891 map:
5892 ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
5893 err:
5894 bio_put(bio);
5895 return ret;
5898 static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
5899 int skip_sum)
5901 struct inode *inode = dip->inode;
5902 struct btrfs_root *root = BTRFS_I(inode)->root;
5903 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5904 struct bio *bio;
5905 struct bio *orig_bio = dip->orig_bio;
5906 struct bio_vec *bvec = orig_bio->bi_io_vec;
5907 u64 start_sector = orig_bio->bi_sector;
5908 u64 file_offset = dip->logical_offset;
5909 u64 submit_len = 0;
5910 u64 map_length;
5911 int nr_pages = 0;
5912 u32 *csums = dip->csums;
5913 int ret = 0;
5914 int async_submit = 0;
5915 int write = rw & REQ_WRITE;
5917 map_length = orig_bio->bi_size;
5918 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5919 &map_length, NULL, 0);
5920 if (ret) {
5921 bio_put(orig_bio);
5922 return -EIO;
5925 if (map_length >= orig_bio->bi_size) {
5926 bio = orig_bio;
5927 goto submit;
5930 async_submit = 1;
5931 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
5932 if (!bio)
5933 return -ENOMEM;
5934 bio->bi_private = dip;
5935 bio->bi_end_io = btrfs_end_dio_bio;
5936 atomic_inc(&dip->pending_bios);
5938 while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
5939 if (unlikely(map_length < submit_len + bvec->bv_len ||
5940 bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5941 bvec->bv_offset) < bvec->bv_len)) {
5943 * inc the count before we submit the bio so
5944 * we know the end IO handler won't happen before
5945 * we inc the count. Otherwise, the dip might get freed
5946 * before we're done setting it up
5948 atomic_inc(&dip->pending_bios);
5949 ret = __btrfs_submit_dio_bio(bio, inode, rw,
5950 file_offset, skip_sum,
5951 csums, async_submit);
5952 if (ret) {
5953 bio_put(bio);
5954 atomic_dec(&dip->pending_bios);
5955 goto out_err;
5958 /* Write's use the ordered csums */
5959 if (!write && !skip_sum)
5960 csums = csums + nr_pages;
5961 start_sector += submit_len >> 9;
5962 file_offset += submit_len;
5964 submit_len = 0;
5965 nr_pages = 0;
5967 bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
5968 start_sector, GFP_NOFS);
5969 if (!bio)
5970 goto out_err;
5971 bio->bi_private = dip;
5972 bio->bi_end_io = btrfs_end_dio_bio;
5974 map_length = orig_bio->bi_size;
5975 ret = btrfs_map_block(map_tree, READ, start_sector << 9,
5976 &map_length, NULL, 0);
5977 if (ret) {
5978 bio_put(bio);
5979 goto out_err;
5981 } else {
5982 submit_len += bvec->bv_len;
5983 nr_pages ++;
5984 bvec++;
5988 submit:
5989 ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
5990 csums, async_submit);
5991 if (!ret)
5992 return 0;
5994 bio_put(bio);
5995 out_err:
5996 dip->errors = 1;
5998 * before atomic variable goto zero, we must
5999 * make sure dip->errors is perceived to be set.
6001 smp_mb__before_atomic_dec();
6002 if (atomic_dec_and_test(&dip->pending_bios))
6003 bio_io_error(dip->orig_bio);
6005 /* bio_end_io() will handle error, so we needn't return it */
6006 return 0;
6009 static void btrfs_submit_direct(int rw, struct bio *bio, struct inode *inode,
6010 loff_t file_offset)
6012 struct btrfs_root *root = BTRFS_I(inode)->root;
6013 struct btrfs_dio_private *dip;
6014 struct bio_vec *bvec = bio->bi_io_vec;
6015 int skip_sum;
6016 int write = rw & REQ_WRITE;
6017 int ret = 0;
6019 skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
6021 dip = kmalloc(sizeof(*dip), GFP_NOFS);
6022 if (!dip) {
6023 ret = -ENOMEM;
6024 goto free_ordered;
6026 dip->csums = NULL;
6028 /* Write's use the ordered csum stuff, so we don't need dip->csums */
6029 if (!write && !skip_sum) {
6030 dip->csums = kmalloc(sizeof(u32) * bio->bi_vcnt, GFP_NOFS);
6031 if (!dip->csums) {
6032 kfree(dip);
6033 ret = -ENOMEM;
6034 goto free_ordered;
6038 dip->private = bio->bi_private;
6039 dip->inode = inode;
6040 dip->logical_offset = file_offset;
6042 dip->bytes = 0;
6043 do {
6044 dip->bytes += bvec->bv_len;
6045 bvec++;
6046 } while (bvec <= (bio->bi_io_vec + bio->bi_vcnt - 1));
6048 dip->disk_bytenr = (u64)bio->bi_sector << 9;
6049 bio->bi_private = dip;
6050 dip->errors = 0;
6051 dip->orig_bio = bio;
6052 atomic_set(&dip->pending_bios, 0);
6054 if (write)
6055 bio->bi_end_io = btrfs_endio_direct_write;
6056 else
6057 bio->bi_end_io = btrfs_endio_direct_read;
6059 ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
6060 if (!ret)
6061 return;
6062 free_ordered:
6064 * If this is a write, we need to clean up the reserved space and kill
6065 * the ordered extent.
6067 if (write) {
6068 struct btrfs_ordered_extent *ordered;
6069 ordered = btrfs_lookup_ordered_extent(inode, file_offset);
6070 if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
6071 !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
6072 btrfs_free_reserved_extent(root, ordered->start,
6073 ordered->disk_len);
6074 btrfs_put_ordered_extent(ordered);
6075 btrfs_put_ordered_extent(ordered);
6077 bio_endio(bio, ret);
6080 static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
6081 const struct iovec *iov, loff_t offset,
6082 unsigned long nr_segs)
6084 int seg;
6085 int i;
6086 size_t size;
6087 unsigned long addr;
6088 unsigned blocksize_mask = root->sectorsize - 1;
6089 ssize_t retval = -EINVAL;
6090 loff_t end = offset;
6092 if (offset & blocksize_mask)
6093 goto out;
6095 /* Check the memory alignment. Blocks cannot straddle pages */
6096 for (seg = 0; seg < nr_segs; seg++) {
6097 addr = (unsigned long)iov[seg].iov_base;
6098 size = iov[seg].iov_len;
6099 end += size;
6100 if ((addr & blocksize_mask) || (size & blocksize_mask))
6101 goto out;
6103 /* If this is a write we don't need to check anymore */
6104 if (rw & WRITE)
6105 continue;
6108 * Check to make sure we don't have duplicate iov_base's in this
6109 * iovec, if so return EINVAL, otherwise we'll get csum errors
6110 * when reading back.
6112 for (i = seg + 1; i < nr_segs; i++) {
6113 if (iov[seg].iov_base == iov[i].iov_base)
6114 goto out;
6117 retval = 0;
6118 out:
6119 return retval;
6121 static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
6122 const struct iovec *iov, loff_t offset,
6123 unsigned long nr_segs)
6125 struct file *file = iocb->ki_filp;
6126 struct inode *inode = file->f_mapping->host;
6127 struct btrfs_ordered_extent *ordered;
6128 struct extent_state *cached_state = NULL;
6129 u64 lockstart, lockend;
6130 ssize_t ret;
6131 int writing = rw & WRITE;
6132 int write_bits = 0;
6133 size_t count = iov_length(iov, nr_segs);
6135 if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
6136 offset, nr_segs)) {
6137 return 0;
6140 lockstart = offset;
6141 lockend = offset + count - 1;
6143 if (writing) {
6144 ret = btrfs_delalloc_reserve_space(inode, count);
6145 if (ret)
6146 goto out;
6149 while (1) {
6150 lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6151 0, &cached_state, GFP_NOFS);
6153 * We're concerned with the entire range that we're going to be
6154 * doing DIO to, so we need to make sure theres no ordered
6155 * extents in this range.
6157 ordered = btrfs_lookup_ordered_range(inode, lockstart,
6158 lockend - lockstart + 1);
6159 if (!ordered)
6160 break;
6161 unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6162 &cached_state, GFP_NOFS);
6163 btrfs_start_ordered_extent(inode, ordered, 1);
6164 btrfs_put_ordered_extent(ordered);
6165 cond_resched();
6169 * we don't use btrfs_set_extent_delalloc because we don't want
6170 * the dirty or uptodate bits
6172 if (writing) {
6173 write_bits = EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING;
6174 ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6175 EXTENT_DELALLOC, 0, NULL, &cached_state,
6176 GFP_NOFS);
6177 if (ret) {
6178 clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6179 lockend, EXTENT_LOCKED | write_bits,
6180 1, 0, &cached_state, GFP_NOFS);
6181 goto out;
6185 free_extent_state(cached_state);
6186 cached_state = NULL;
6188 ret = __blockdev_direct_IO(rw, iocb, inode,
6189 BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
6190 iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
6191 btrfs_submit_direct, 0);
6193 if (ret < 0 && ret != -EIOCBQUEUED) {
6194 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset,
6195 offset + iov_length(iov, nr_segs) - 1,
6196 EXTENT_LOCKED | write_bits, 1, 0,
6197 &cached_state, GFP_NOFS);
6198 } else if (ret >= 0 && ret < iov_length(iov, nr_segs)) {
6200 * We're falling back to buffered, unlock the section we didn't
6201 * do IO on.
6203 clear_extent_bit(&BTRFS_I(inode)->io_tree, offset + ret,
6204 offset + iov_length(iov, nr_segs) - 1,
6205 EXTENT_LOCKED | write_bits, 1, 0,
6206 &cached_state, GFP_NOFS);
6208 out:
6209 free_extent_state(cached_state);
6210 return ret;
6213 static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
6214 __u64 start, __u64 len)
6216 return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
6219 int btrfs_readpage(struct file *file, struct page *page)
6221 struct extent_io_tree *tree;
6222 tree = &BTRFS_I(page->mapping->host)->io_tree;
6223 return extent_read_full_page(tree, page, btrfs_get_extent);
6226 static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
6228 struct extent_io_tree *tree;
6231 if (current->flags & PF_MEMALLOC) {
6232 redirty_page_for_writepage(wbc, page);
6233 unlock_page(page);
6234 return 0;
6236 tree = &BTRFS_I(page->mapping->host)->io_tree;
6237 return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
6240 int btrfs_writepages(struct address_space *mapping,
6241 struct writeback_control *wbc)
6243 struct extent_io_tree *tree;
6245 tree = &BTRFS_I(mapping->host)->io_tree;
6246 return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
6249 static int
6250 btrfs_readpages(struct file *file, struct address_space *mapping,
6251 struct list_head *pages, unsigned nr_pages)
6253 struct extent_io_tree *tree;
6254 tree = &BTRFS_I(mapping->host)->io_tree;
6255 return extent_readpages(tree, mapping, pages, nr_pages,
6256 btrfs_get_extent);
6258 static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6260 struct extent_io_tree *tree;
6261 struct extent_map_tree *map;
6262 int ret;
6264 tree = &BTRFS_I(page->mapping->host)->io_tree;
6265 map = &BTRFS_I(page->mapping->host)->extent_tree;
6266 ret = try_release_extent_mapping(map, tree, page, gfp_flags);
6267 if (ret == 1) {
6268 ClearPagePrivate(page);
6269 set_page_private(page, 0);
6270 page_cache_release(page);
6272 return ret;
6275 static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
6277 if (PageWriteback(page) || PageDirty(page))
6278 return 0;
6279 return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
6282 static void btrfs_invalidatepage(struct page *page, unsigned long offset)
6284 struct extent_io_tree *tree;
6285 struct btrfs_ordered_extent *ordered;
6286 struct extent_state *cached_state = NULL;
6287 u64 page_start = page_offset(page);
6288 u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
6292 * we have the page locked, so new writeback can't start,
6293 * and the dirty bit won't be cleared while we are here.
6295 * Wait for IO on this page so that we can safely clear
6296 * the PagePrivate2 bit and do ordered accounting
6298 wait_on_page_writeback(page);
6300 tree = &BTRFS_I(page->mapping->host)->io_tree;
6301 if (offset) {
6302 btrfs_releasepage(page, GFP_NOFS);
6303 return;
6305 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6306 GFP_NOFS);
6307 ordered = btrfs_lookup_ordered_extent(page->mapping->host,
6308 page_offset(page));
6309 if (ordered) {
6311 * IO on this page will never be started, so we need
6312 * to account for any ordered extents now
6314 clear_extent_bit(tree, page_start, page_end,
6315 EXTENT_DIRTY | EXTENT_DELALLOC |
6316 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING, 1, 0,
6317 &cached_state, GFP_NOFS);
6319 * whoever cleared the private bit is responsible
6320 * for the finish_ordered_io
6322 if (TestClearPagePrivate2(page)) {
6323 btrfs_finish_ordered_io(page->mapping->host,
6324 page_start, page_end);
6326 btrfs_put_ordered_extent(ordered);
6327 cached_state = NULL;
6328 lock_extent_bits(tree, page_start, page_end, 0, &cached_state,
6329 GFP_NOFS);
6331 clear_extent_bit(tree, page_start, page_end,
6332 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
6333 EXTENT_DO_ACCOUNTING, 1, 1, &cached_state, GFP_NOFS);
6334 __btrfs_releasepage(page, GFP_NOFS);
6336 ClearPageChecked(page);
6337 if (PagePrivate(page)) {
6338 ClearPagePrivate(page);
6339 set_page_private(page, 0);
6340 page_cache_release(page);
6345 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
6346 * called from a page fault handler when a page is first dirtied. Hence we must
6347 * be careful to check for EOF conditions here. We set the page up correctly
6348 * for a written page which means we get ENOSPC checking when writing into
6349 * holes and correct delalloc and unwritten extent mapping on filesystems that
6350 * support these features.
6352 * We are not allowed to take the i_mutex here so we have to play games to
6353 * protect against truncate races as the page could now be beyond EOF. Because
6354 * vmtruncate() writes the inode size before removing pages, once we have the
6355 * page lock we can determine safely if the page is beyond EOF. If it is not
6356 * beyond EOF, then the page is guaranteed safe against truncation until we
6357 * unlock the page.
6359 int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
6361 struct page *page = vmf->page;
6362 struct inode *inode = fdentry(vma->vm_file)->d_inode;
6363 struct btrfs_root *root = BTRFS_I(inode)->root;
6364 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6365 struct btrfs_ordered_extent *ordered;
6366 struct extent_state *cached_state = NULL;
6367 char *kaddr;
6368 unsigned long zero_start;
6369 loff_t size;
6370 int ret;
6371 u64 page_start;
6372 u64 page_end;
6374 ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
6375 if (ret) {
6376 if (ret == -ENOMEM)
6377 ret = VM_FAULT_OOM;
6378 else /* -ENOSPC, -EIO, etc */
6379 ret = VM_FAULT_SIGBUS;
6380 goto out;
6383 ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
6384 again:
6385 lock_page(page);
6386 size = i_size_read(inode);
6387 page_start = page_offset(page);
6388 page_end = page_start + PAGE_CACHE_SIZE - 1;
6390 if ((page->mapping != inode->i_mapping) ||
6391 (page_start >= size)) {
6392 /* page got truncated out from underneath us */
6393 goto out_unlock;
6395 wait_on_page_writeback(page);
6397 lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state,
6398 GFP_NOFS);
6399 set_page_extent_mapped(page);
6402 * we can't set the delalloc bits if there are pending ordered
6403 * extents. Drop our locks and wait for them to finish
6405 ordered = btrfs_lookup_ordered_extent(inode, page_start);
6406 if (ordered) {
6407 unlock_extent_cached(io_tree, page_start, page_end,
6408 &cached_state, GFP_NOFS);
6409 unlock_page(page);
6410 btrfs_start_ordered_extent(inode, ordered, 1);
6411 btrfs_put_ordered_extent(ordered);
6412 goto again;
6416 * XXX - page_mkwrite gets called every time the page is dirtied, even
6417 * if it was already dirty, so for space accounting reasons we need to
6418 * clear any delalloc bits for the range we are fixing to save. There
6419 * is probably a better way to do this, but for now keep consistent with
6420 * prepare_pages in the normal write path.
6422 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
6423 EXTENT_DIRTY | EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING,
6424 0, 0, &cached_state, GFP_NOFS);
6426 ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
6427 &cached_state);
6428 if (ret) {
6429 unlock_extent_cached(io_tree, page_start, page_end,
6430 &cached_state, GFP_NOFS);
6431 ret = VM_FAULT_SIGBUS;
6432 goto out_unlock;
6434 ret = 0;
6436 /* page is wholly or partially inside EOF */
6437 if (page_start + PAGE_CACHE_SIZE > size)
6438 zero_start = size & ~PAGE_CACHE_MASK;
6439 else
6440 zero_start = PAGE_CACHE_SIZE;
6442 if (zero_start != PAGE_CACHE_SIZE) {
6443 kaddr = kmap(page);
6444 memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
6445 flush_dcache_page(page);
6446 kunmap(page);
6448 ClearPageChecked(page);
6449 set_page_dirty(page);
6450 SetPageUptodate(page);
6452 BTRFS_I(inode)->last_trans = root->fs_info->generation;
6453 BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
6455 unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
6457 out_unlock:
6458 if (!ret)
6459 return VM_FAULT_LOCKED;
6460 unlock_page(page);
6461 btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
6462 out:
6463 return ret;
6466 static int btrfs_truncate(struct inode *inode)
6468 struct btrfs_root *root = BTRFS_I(inode)->root;
6469 struct btrfs_block_rsv *rsv;
6470 int ret;
6471 int err = 0;
6472 struct btrfs_trans_handle *trans;
6473 unsigned long nr;
6474 u64 mask = root->sectorsize - 1;
6476 ret = btrfs_truncate_page(inode->i_mapping, inode->i_size);
6477 if (ret)
6478 return ret;
6480 btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
6481 btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
6484 * Yes ladies and gentelment, this is indeed ugly. The fact is we have
6485 * 3 things going on here
6487 * 1) We need to reserve space for our orphan item and the space to
6488 * delete our orphan item. Lord knows we don't want to have a dangling
6489 * orphan item because we didn't reserve space to remove it.
6491 * 2) We need to reserve space to update our inode.
6493 * 3) We need to have something to cache all the space that is going to
6494 * be free'd up by the truncate operation, but also have some slack
6495 * space reserved in case it uses space during the truncate (thank you
6496 * very much snapshotting).
6498 * And we need these to all be seperate. The fact is we can use alot of
6499 * space doing the truncate, and we have no earthly idea how much space
6500 * we will use, so we need the truncate reservation to be seperate so it
6501 * doesn't end up using space reserved for updating the inode or
6502 * removing the orphan item. We also need to be able to stop the
6503 * transaction and start a new one, which means we need to be able to
6504 * update the inode several times, and we have no idea of knowing how
6505 * many times that will be, so we can't just reserve 1 item for the
6506 * entirety of the opration, so that has to be done seperately as well.
6507 * Then there is the orphan item, which does indeed need to be held on
6508 * to for the whole operation, and we need nobody to touch this reserved
6509 * space except the orphan code.
6511 * So that leaves us with
6513 * 1) root->orphan_block_rsv - for the orphan deletion.
6514 * 2) rsv - for the truncate reservation, which we will steal from the
6515 * transaction reservation.
6516 * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
6517 * updating the inode.
6519 rsv = btrfs_alloc_block_rsv(root);
6520 if (!rsv)
6521 return -ENOMEM;
6522 btrfs_add_durable_block_rsv(root->fs_info, rsv);
6524 trans = btrfs_start_transaction(root, 4);
6525 if (IS_ERR(trans)) {
6526 err = PTR_ERR(trans);
6527 goto out;
6531 * Reserve space for the truncate process. Truncate should be adding
6532 * space, but if there are snapshots it may end up using space.
6534 ret = btrfs_truncate_reserve_metadata(trans, root, rsv);
6535 BUG_ON(ret);
6537 ret = btrfs_orphan_add(trans, inode);
6538 if (ret) {
6539 btrfs_end_transaction(trans, root);
6540 goto out;
6543 nr = trans->blocks_used;
6544 btrfs_end_transaction(trans, root);
6545 btrfs_btree_balance_dirty(root, nr);
6548 * Ok so we've already migrated our bytes over for the truncate, so here
6549 * just reserve the one slot we need for updating the inode.
6551 trans = btrfs_start_transaction(root, 1);
6552 if (IS_ERR(trans)) {
6553 err = PTR_ERR(trans);
6554 goto out;
6556 trans->block_rsv = rsv;
6559 * setattr is responsible for setting the ordered_data_close flag,
6560 * but that is only tested during the last file release. That
6561 * could happen well after the next commit, leaving a great big
6562 * window where new writes may get lost if someone chooses to write
6563 * to this file after truncating to zero
6565 * The inode doesn't have any dirty data here, and so if we commit
6566 * this is a noop. If someone immediately starts writing to the inode
6567 * it is very likely we'll catch some of their writes in this
6568 * transaction, and the commit will find this file on the ordered
6569 * data list with good things to send down.
6571 * This is a best effort solution, there is still a window where
6572 * using truncate to replace the contents of the file will
6573 * end up with a zero length file after a crash.
6575 if (inode->i_size == 0 && BTRFS_I(inode)->ordered_data_close)
6576 btrfs_add_ordered_operation(trans, root, inode);
6578 while (1) {
6579 if (!trans) {
6580 trans = btrfs_start_transaction(root, 3);
6581 if (IS_ERR(trans)) {
6582 err = PTR_ERR(trans);
6583 goto out;
6586 ret = btrfs_truncate_reserve_metadata(trans, root,
6587 rsv);
6588 BUG_ON(ret);
6590 trans->block_rsv = rsv;
6593 ret = btrfs_truncate_inode_items(trans, root, inode,
6594 inode->i_size,
6595 BTRFS_EXTENT_DATA_KEY);
6596 if (ret != -EAGAIN) {
6597 err = ret;
6598 break;
6601 trans->block_rsv = &root->fs_info->trans_block_rsv;
6602 ret = btrfs_update_inode(trans, root, inode);
6603 if (ret) {
6604 err = ret;
6605 break;
6608 nr = trans->blocks_used;
6609 btrfs_end_transaction(trans, root);
6610 trans = NULL;
6611 btrfs_btree_balance_dirty(root, nr);
6614 if (ret == 0 && inode->i_nlink > 0) {
6615 trans->block_rsv = root->orphan_block_rsv;
6616 ret = btrfs_orphan_del(trans, inode);
6617 if (ret)
6618 err = ret;
6619 } else if (ret && inode->i_nlink > 0) {
6621 * Failed to do the truncate, remove us from the in memory
6622 * orphan list.
6624 ret = btrfs_orphan_del(NULL, inode);
6627 trans->block_rsv = &root->fs_info->trans_block_rsv;
6628 ret = btrfs_update_inode(trans, root, inode);
6629 if (ret && !err)
6630 err = ret;
6632 nr = trans->blocks_used;
6633 ret = btrfs_end_transaction_throttle(trans, root);
6634 btrfs_btree_balance_dirty(root, nr);
6636 out:
6637 btrfs_free_block_rsv(root, rsv);
6639 if (ret && !err)
6640 err = ret;
6642 return err;
6646 * create a new subvolume directory/inode (helper for the ioctl).
6648 int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
6649 struct btrfs_root *new_root, u64 new_dirid)
6651 struct inode *inode;
6652 int err;
6653 u64 index = 0;
6655 inode = btrfs_new_inode(trans, new_root, NULL, "..", 2, new_dirid,
6656 new_dirid, S_IFDIR | 0700, &index);
6657 if (IS_ERR(inode))
6658 return PTR_ERR(inode);
6659 inode->i_op = &btrfs_dir_inode_operations;
6660 inode->i_fop = &btrfs_dir_file_operations;
6662 inode->i_nlink = 1;
6663 btrfs_i_size_write(inode, 0);
6665 err = btrfs_update_inode(trans, new_root, inode);
6666 BUG_ON(err);
6668 iput(inode);
6669 return 0;
6672 /* helper function for file defrag and space balancing. This
6673 * forces readahead on a given range of bytes in an inode
6675 unsigned long btrfs_force_ra(struct address_space *mapping,
6676 struct file_ra_state *ra, struct file *file,
6677 pgoff_t offset, pgoff_t last_index)
6679 pgoff_t req_size = last_index - offset + 1;
6681 page_cache_sync_readahead(mapping, ra, file, offset, req_size);
6682 return offset + req_size;
6685 struct inode *btrfs_alloc_inode(struct super_block *sb)
6687 struct btrfs_inode *ei;
6688 struct inode *inode;
6690 ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
6691 if (!ei)
6692 return NULL;
6694 ei->root = NULL;
6695 ei->space_info = NULL;
6696 ei->generation = 0;
6697 ei->sequence = 0;
6698 ei->last_trans = 0;
6699 ei->last_sub_trans = 0;
6700 ei->logged_trans = 0;
6701 ei->delalloc_bytes = 0;
6702 ei->reserved_bytes = 0;
6703 ei->disk_i_size = 0;
6704 ei->flags = 0;
6705 ei->index_cnt = (u64)-1;
6706 ei->last_unlink_trans = 0;
6708 spin_lock_init(&ei->lock);
6709 ei->outstanding_extents = 0;
6710 ei->reserved_extents = 0;
6712 ei->ordered_data_close = 0;
6713 ei->orphan_meta_reserved = 0;
6714 ei->dummy_inode = 0;
6715 ei->in_defrag = 0;
6716 ei->force_compress = BTRFS_COMPRESS_NONE;
6718 ei->delayed_node = NULL;
6720 inode = &ei->vfs_inode;
6721 extent_map_tree_init(&ei->extent_tree);
6722 extent_io_tree_init(&ei->io_tree, &inode->i_data);
6723 extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
6724 mutex_init(&ei->log_mutex);
6725 btrfs_ordered_inode_tree_init(&ei->ordered_tree);
6726 INIT_LIST_HEAD(&ei->i_orphan);
6727 INIT_LIST_HEAD(&ei->delalloc_inodes);
6728 INIT_LIST_HEAD(&ei->ordered_operations);
6729 RB_CLEAR_NODE(&ei->rb_node);
6731 return inode;
6734 static void btrfs_i_callback(struct rcu_head *head)
6736 struct inode *inode = container_of(head, struct inode, i_rcu);
6737 INIT_LIST_HEAD(&inode->i_dentry);
6738 kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
6741 void btrfs_destroy_inode(struct inode *inode)
6743 struct btrfs_ordered_extent *ordered;
6744 struct btrfs_root *root = BTRFS_I(inode)->root;
6746 WARN_ON(!list_empty(&inode->i_dentry));
6747 WARN_ON(inode->i_data.nrpages);
6748 WARN_ON(BTRFS_I(inode)->outstanding_extents);
6749 WARN_ON(BTRFS_I(inode)->reserved_extents);
6752 * This can happen where we create an inode, but somebody else also
6753 * created the same inode and we need to destroy the one we already
6754 * created.
6756 if (!root)
6757 goto free;
6760 * Make sure we're properly removed from the ordered operation
6761 * lists.
6763 smp_mb();
6764 if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
6765 spin_lock(&root->fs_info->ordered_extent_lock);
6766 list_del_init(&BTRFS_I(inode)->ordered_operations);
6767 spin_unlock(&root->fs_info->ordered_extent_lock);
6770 spin_lock(&root->orphan_lock);
6771 if (!list_empty(&BTRFS_I(inode)->i_orphan)) {
6772 printk(KERN_INFO "BTRFS: inode %llu still on the orphan list\n",
6773 (unsigned long long)btrfs_ino(inode));
6774 list_del_init(&BTRFS_I(inode)->i_orphan);
6776 spin_unlock(&root->orphan_lock);
6778 while (1) {
6779 ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
6780 if (!ordered)
6781 break;
6782 else {
6783 printk(KERN_ERR "btrfs found ordered "
6784 "extent %llu %llu on inode cleanup\n",
6785 (unsigned long long)ordered->file_offset,
6786 (unsigned long long)ordered->len);
6787 btrfs_remove_ordered_extent(inode, ordered);
6788 btrfs_put_ordered_extent(ordered);
6789 btrfs_put_ordered_extent(ordered);
6792 inode_tree_del(inode);
6793 btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
6794 free:
6795 btrfs_remove_delayed_node(inode);
6796 call_rcu(&inode->i_rcu, btrfs_i_callback);
6799 int btrfs_drop_inode(struct inode *inode)
6801 struct btrfs_root *root = BTRFS_I(inode)->root;
6803 if (btrfs_root_refs(&root->root_item) == 0 &&
6804 !btrfs_is_free_space_inode(root, inode))
6805 return 1;
6806 else
6807 return generic_drop_inode(inode);
6810 static void init_once(void *foo)
6812 struct btrfs_inode *ei = (struct btrfs_inode *) foo;
6814 inode_init_once(&ei->vfs_inode);
6817 void btrfs_destroy_cachep(void)
6819 if (btrfs_inode_cachep)
6820 kmem_cache_destroy(btrfs_inode_cachep);
6821 if (btrfs_trans_handle_cachep)
6822 kmem_cache_destroy(btrfs_trans_handle_cachep);
6823 if (btrfs_transaction_cachep)
6824 kmem_cache_destroy(btrfs_transaction_cachep);
6825 if (btrfs_path_cachep)
6826 kmem_cache_destroy(btrfs_path_cachep);
6827 if (btrfs_free_space_cachep)
6828 kmem_cache_destroy(btrfs_free_space_cachep);
6831 int btrfs_init_cachep(void)
6833 btrfs_inode_cachep = kmem_cache_create("btrfs_inode_cache",
6834 sizeof(struct btrfs_inode), 0,
6835 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
6836 if (!btrfs_inode_cachep)
6837 goto fail;
6839 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle_cache",
6840 sizeof(struct btrfs_trans_handle), 0,
6841 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6842 if (!btrfs_trans_handle_cachep)
6843 goto fail;
6845 btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction_cache",
6846 sizeof(struct btrfs_transaction), 0,
6847 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6848 if (!btrfs_transaction_cachep)
6849 goto fail;
6851 btrfs_path_cachep = kmem_cache_create("btrfs_path_cache",
6852 sizeof(struct btrfs_path), 0,
6853 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6854 if (!btrfs_path_cachep)
6855 goto fail;
6857 btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space_cache",
6858 sizeof(struct btrfs_free_space), 0,
6859 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
6860 if (!btrfs_free_space_cachep)
6861 goto fail;
6863 return 0;
6864 fail:
6865 btrfs_destroy_cachep();
6866 return -ENOMEM;
6869 static int btrfs_getattr(struct vfsmount *mnt,
6870 struct dentry *dentry, struct kstat *stat)
6872 struct inode *inode = dentry->d_inode;
6873 generic_fillattr(inode, stat);
6874 stat->dev = BTRFS_I(inode)->root->anon_dev;
6875 stat->blksize = PAGE_CACHE_SIZE;
6876 stat->blocks = (inode_get_bytes(inode) +
6877 BTRFS_I(inode)->delalloc_bytes) >> 9;
6878 return 0;
6882 * If a file is moved, it will inherit the cow and compression flags of the new
6883 * directory.
6885 static void fixup_inode_flags(struct inode *dir, struct inode *inode)
6887 struct btrfs_inode *b_dir = BTRFS_I(dir);
6888 struct btrfs_inode *b_inode = BTRFS_I(inode);
6890 if (b_dir->flags & BTRFS_INODE_NODATACOW)
6891 b_inode->flags |= BTRFS_INODE_NODATACOW;
6892 else
6893 b_inode->flags &= ~BTRFS_INODE_NODATACOW;
6895 if (b_dir->flags & BTRFS_INODE_COMPRESS)
6896 b_inode->flags |= BTRFS_INODE_COMPRESS;
6897 else
6898 b_inode->flags &= ~BTRFS_INODE_COMPRESS;
6901 static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
6902 struct inode *new_dir, struct dentry *new_dentry)
6904 struct btrfs_trans_handle *trans;
6905 struct btrfs_root *root = BTRFS_I(old_dir)->root;
6906 struct btrfs_root *dest = BTRFS_I(new_dir)->root;
6907 struct inode *new_inode = new_dentry->d_inode;
6908 struct inode *old_inode = old_dentry->d_inode;
6909 struct timespec ctime = CURRENT_TIME;
6910 u64 index = 0;
6911 u64 root_objectid;
6912 int ret;
6913 u64 old_ino = btrfs_ino(old_inode);
6915 if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
6916 return -EPERM;
6918 /* we only allow rename subvolume link between subvolumes */
6919 if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
6920 return -EXDEV;
6922 if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
6923 (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
6924 return -ENOTEMPTY;
6926 if (S_ISDIR(old_inode->i_mode) && new_inode &&
6927 new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
6928 return -ENOTEMPTY;
6930 * we're using rename to replace one file with another.
6931 * and the replacement file is large. Start IO on it now so
6932 * we don't add too much work to the end of the transaction
6934 if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
6935 old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
6936 filemap_flush(old_inode->i_mapping);
6938 /* close the racy window with snapshot create/destroy ioctl */
6939 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
6940 down_read(&root->fs_info->subvol_sem);
6942 * We want to reserve the absolute worst case amount of items. So if
6943 * both inodes are subvols and we need to unlink them then that would
6944 * require 4 item modifications, but if they are both normal inodes it
6945 * would require 5 item modifications, so we'll assume their normal
6946 * inodes. So 5 * 2 is 10, plus 1 for the new link, so 11 total items
6947 * should cover the worst case number of items we'll modify.
6949 trans = btrfs_start_transaction(root, 20);
6950 if (IS_ERR(trans)) {
6951 ret = PTR_ERR(trans);
6952 goto out_notrans;
6955 if (dest != root)
6956 btrfs_record_root_in_trans(trans, dest);
6958 ret = btrfs_set_inode_index(new_dir, &index);
6959 if (ret)
6960 goto out_fail;
6962 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6963 /* force full log commit if subvolume involved. */
6964 root->fs_info->last_trans_log_full_commit = trans->transid;
6965 } else {
6966 ret = btrfs_insert_inode_ref(trans, dest,
6967 new_dentry->d_name.name,
6968 new_dentry->d_name.len,
6969 old_ino,
6970 btrfs_ino(new_dir), index);
6971 if (ret)
6972 goto out_fail;
6974 * this is an ugly little race, but the rename is required
6975 * to make sure that if we crash, the inode is either at the
6976 * old name or the new one. pinning the log transaction lets
6977 * us make sure we don't allow a log commit to come in after
6978 * we unlink the name but before we add the new name back in.
6980 btrfs_pin_log_trans(root);
6983 * make sure the inode gets flushed if it is replacing
6984 * something.
6986 if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
6987 btrfs_add_ordered_operation(trans, root, old_inode);
6989 old_dir->i_ctime = old_dir->i_mtime = ctime;
6990 new_dir->i_ctime = new_dir->i_mtime = ctime;
6991 old_inode->i_ctime = ctime;
6993 if (old_dentry->d_parent != new_dentry->d_parent)
6994 btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
6996 if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
6997 root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
6998 ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
6999 old_dentry->d_name.name,
7000 old_dentry->d_name.len);
7001 } else {
7002 ret = __btrfs_unlink_inode(trans, root, old_dir,
7003 old_dentry->d_inode,
7004 old_dentry->d_name.name,
7005 old_dentry->d_name.len);
7006 if (!ret)
7007 ret = btrfs_update_inode(trans, root, old_inode);
7009 BUG_ON(ret);
7011 if (new_inode) {
7012 new_inode->i_ctime = CURRENT_TIME;
7013 if (unlikely(btrfs_ino(new_inode) ==
7014 BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
7015 root_objectid = BTRFS_I(new_inode)->location.objectid;
7016 ret = btrfs_unlink_subvol(trans, dest, new_dir,
7017 root_objectid,
7018 new_dentry->d_name.name,
7019 new_dentry->d_name.len);
7020 BUG_ON(new_inode->i_nlink == 0);
7021 } else {
7022 ret = btrfs_unlink_inode(trans, dest, new_dir,
7023 new_dentry->d_inode,
7024 new_dentry->d_name.name,
7025 new_dentry->d_name.len);
7027 BUG_ON(ret);
7028 if (new_inode->i_nlink == 0) {
7029 ret = btrfs_orphan_add(trans, new_dentry->d_inode);
7030 BUG_ON(ret);
7034 fixup_inode_flags(new_dir, old_inode);
7036 ret = btrfs_add_link(trans, new_dir, old_inode,
7037 new_dentry->d_name.name,
7038 new_dentry->d_name.len, 0, index);
7039 BUG_ON(ret);
7041 if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
7042 struct dentry *parent = new_dentry->d_parent;
7043 btrfs_log_new_name(trans, old_inode, old_dir, parent);
7044 btrfs_end_log_trans(root);
7046 out_fail:
7047 btrfs_end_transaction_throttle(trans, root);
7048 out_notrans:
7049 if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
7050 up_read(&root->fs_info->subvol_sem);
7052 return ret;
7056 * some fairly slow code that needs optimization. This walks the list
7057 * of all the inodes with pending delalloc and forces them to disk.
7059 int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
7061 struct list_head *head = &root->fs_info->delalloc_inodes;
7062 struct btrfs_inode *binode;
7063 struct inode *inode;
7065 if (root->fs_info->sb->s_flags & MS_RDONLY)
7066 return -EROFS;
7068 spin_lock(&root->fs_info->delalloc_lock);
7069 while (!list_empty(head)) {
7070 binode = list_entry(head->next, struct btrfs_inode,
7071 delalloc_inodes);
7072 inode = igrab(&binode->vfs_inode);
7073 if (!inode)
7074 list_del_init(&binode->delalloc_inodes);
7075 spin_unlock(&root->fs_info->delalloc_lock);
7076 if (inode) {
7077 filemap_flush(inode->i_mapping);
7078 if (delay_iput)
7079 btrfs_add_delayed_iput(inode);
7080 else
7081 iput(inode);
7083 cond_resched();
7084 spin_lock(&root->fs_info->delalloc_lock);
7086 spin_unlock(&root->fs_info->delalloc_lock);
7088 /* the filemap_flush will queue IO into the worker threads, but
7089 * we have to make sure the IO is actually started and that
7090 * ordered extents get created before we return
7092 atomic_inc(&root->fs_info->async_submit_draining);
7093 while (atomic_read(&root->fs_info->nr_async_submits) ||
7094 atomic_read(&root->fs_info->async_delalloc_pages)) {
7095 wait_event(root->fs_info->async_submit_wait,
7096 (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
7097 atomic_read(&root->fs_info->async_delalloc_pages) == 0));
7099 atomic_dec(&root->fs_info->async_submit_draining);
7100 return 0;
7103 static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
7104 const char *symname)
7106 struct btrfs_trans_handle *trans;
7107 struct btrfs_root *root = BTRFS_I(dir)->root;
7108 struct btrfs_path *path;
7109 struct btrfs_key key;
7110 struct inode *inode = NULL;
7111 int err;
7112 int drop_inode = 0;
7113 u64 objectid;
7114 u64 index = 0 ;
7115 int name_len;
7116 int datasize;
7117 unsigned long ptr;
7118 struct btrfs_file_extent_item *ei;
7119 struct extent_buffer *leaf;
7120 unsigned long nr = 0;
7122 name_len = strlen(symname) + 1;
7123 if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
7124 return -ENAMETOOLONG;
7127 * 2 items for inode item and ref
7128 * 2 items for dir items
7129 * 1 item for xattr if selinux is on
7131 trans = btrfs_start_transaction(root, 5);
7132 if (IS_ERR(trans))
7133 return PTR_ERR(trans);
7135 err = btrfs_find_free_ino(root, &objectid);
7136 if (err)
7137 goto out_unlock;
7139 inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
7140 dentry->d_name.len, btrfs_ino(dir), objectid,
7141 S_IFLNK|S_IRWXUGO, &index);
7142 if (IS_ERR(inode)) {
7143 err = PTR_ERR(inode);
7144 goto out_unlock;
7147 err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
7148 if (err) {
7149 drop_inode = 1;
7150 goto out_unlock;
7153 err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
7154 if (err)
7155 drop_inode = 1;
7156 else {
7157 inode->i_mapping->a_ops = &btrfs_aops;
7158 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7159 inode->i_fop = &btrfs_file_operations;
7160 inode->i_op = &btrfs_file_inode_operations;
7161 BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
7163 if (drop_inode)
7164 goto out_unlock;
7166 path = btrfs_alloc_path();
7167 BUG_ON(!path);
7168 key.objectid = btrfs_ino(inode);
7169 key.offset = 0;
7170 btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
7171 datasize = btrfs_file_extent_calc_inline_size(name_len);
7172 err = btrfs_insert_empty_item(trans, root, path, &key,
7173 datasize);
7174 if (err) {
7175 drop_inode = 1;
7176 btrfs_free_path(path);
7177 goto out_unlock;
7179 leaf = path->nodes[0];
7180 ei = btrfs_item_ptr(leaf, path->slots[0],
7181 struct btrfs_file_extent_item);
7182 btrfs_set_file_extent_generation(leaf, ei, trans->transid);
7183 btrfs_set_file_extent_type(leaf, ei,
7184 BTRFS_FILE_EXTENT_INLINE);
7185 btrfs_set_file_extent_encryption(leaf, ei, 0);
7186 btrfs_set_file_extent_compression(leaf, ei, 0);
7187 btrfs_set_file_extent_other_encoding(leaf, ei, 0);
7188 btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
7190 ptr = btrfs_file_extent_inline_start(ei);
7191 write_extent_buffer(leaf, symname, ptr, name_len);
7192 btrfs_mark_buffer_dirty(leaf);
7193 btrfs_free_path(path);
7195 inode->i_op = &btrfs_symlink_inode_operations;
7196 inode->i_mapping->a_ops = &btrfs_symlink_aops;
7197 inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
7198 inode_set_bytes(inode, name_len);
7199 btrfs_i_size_write(inode, name_len - 1);
7200 err = btrfs_update_inode(trans, root, inode);
7201 if (err)
7202 drop_inode = 1;
7204 out_unlock:
7205 nr = trans->blocks_used;
7206 btrfs_end_transaction_throttle(trans, root);
7207 if (drop_inode) {
7208 inode_dec_link_count(inode);
7209 iput(inode);
7211 btrfs_btree_balance_dirty(root, nr);
7212 return err;
7215 static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
7216 u64 start, u64 num_bytes, u64 min_size,
7217 loff_t actual_len, u64 *alloc_hint,
7218 struct btrfs_trans_handle *trans)
7220 struct btrfs_root *root = BTRFS_I(inode)->root;
7221 struct btrfs_key ins;
7222 u64 cur_offset = start;
7223 u64 i_size;
7224 int ret = 0;
7225 bool own_trans = true;
7227 if (trans)
7228 own_trans = false;
7229 while (num_bytes > 0) {
7230 if (own_trans) {
7231 trans = btrfs_start_transaction(root, 3);
7232 if (IS_ERR(trans)) {
7233 ret = PTR_ERR(trans);
7234 break;
7238 ret = btrfs_reserve_extent(trans, root, num_bytes, min_size,
7239 0, *alloc_hint, (u64)-1, &ins, 1);
7240 if (ret) {
7241 if (own_trans)
7242 btrfs_end_transaction(trans, root);
7243 break;
7246 ret = insert_reserved_file_extent(trans, inode,
7247 cur_offset, ins.objectid,
7248 ins.offset, ins.offset,
7249 ins.offset, 0, 0, 0,
7250 BTRFS_FILE_EXTENT_PREALLOC);
7251 BUG_ON(ret);
7252 btrfs_drop_extent_cache(inode, cur_offset,
7253 cur_offset + ins.offset -1, 0);
7255 num_bytes -= ins.offset;
7256 cur_offset += ins.offset;
7257 *alloc_hint = ins.objectid + ins.offset;
7259 inode->i_ctime = CURRENT_TIME;
7260 BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
7261 if (!(mode & FALLOC_FL_KEEP_SIZE) &&
7262 (actual_len > inode->i_size) &&
7263 (cur_offset > inode->i_size)) {
7264 if (cur_offset > actual_len)
7265 i_size = actual_len;
7266 else
7267 i_size = cur_offset;
7268 i_size_write(inode, i_size);
7269 btrfs_ordered_update_i_size(inode, i_size, NULL);
7272 ret = btrfs_update_inode(trans, root, inode);
7273 BUG_ON(ret);
7275 if (own_trans)
7276 btrfs_end_transaction(trans, root);
7278 return ret;
7281 int btrfs_prealloc_file_range(struct inode *inode, int mode,
7282 u64 start, u64 num_bytes, u64 min_size,
7283 loff_t actual_len, u64 *alloc_hint)
7285 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7286 min_size, actual_len, alloc_hint,
7287 NULL);
7290 int btrfs_prealloc_file_range_trans(struct inode *inode,
7291 struct btrfs_trans_handle *trans, int mode,
7292 u64 start, u64 num_bytes, u64 min_size,
7293 loff_t actual_len, u64 *alloc_hint)
7295 return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
7296 min_size, actual_len, alloc_hint, trans);
7299 static int btrfs_set_page_dirty(struct page *page)
7301 return __set_page_dirty_nobuffers(page);
7304 static int btrfs_permission(struct inode *inode, int mask)
7306 struct btrfs_root *root = BTRFS_I(inode)->root;
7308 if (btrfs_root_readonly(root) && (mask & MAY_WRITE))
7309 return -EROFS;
7310 if ((BTRFS_I(inode)->flags & BTRFS_INODE_READONLY) && (mask & MAY_WRITE))
7311 return -EACCES;
7312 return generic_permission(inode, mask);
7315 static const struct inode_operations btrfs_dir_inode_operations = {
7316 .getattr = btrfs_getattr,
7317 .lookup = btrfs_lookup,
7318 .create = btrfs_create,
7319 .unlink = btrfs_unlink,
7320 .link = btrfs_link,
7321 .mkdir = btrfs_mkdir,
7322 .rmdir = btrfs_rmdir,
7323 .rename = btrfs_rename,
7324 .symlink = btrfs_symlink,
7325 .setattr = btrfs_setattr,
7326 .mknod = btrfs_mknod,
7327 .setxattr = btrfs_setxattr,
7328 .getxattr = btrfs_getxattr,
7329 .listxattr = btrfs_listxattr,
7330 .removexattr = btrfs_removexattr,
7331 .permission = btrfs_permission,
7332 .get_acl = btrfs_get_acl,
7334 static const struct inode_operations btrfs_dir_ro_inode_operations = {
7335 .lookup = btrfs_lookup,
7336 .permission = btrfs_permission,
7337 .get_acl = btrfs_get_acl,
7340 static const struct file_operations btrfs_dir_file_operations = {
7341 .llseek = generic_file_llseek,
7342 .read = generic_read_dir,
7343 .readdir = btrfs_real_readdir,
7344 .unlocked_ioctl = btrfs_ioctl,
7345 #ifdef CONFIG_COMPAT
7346 .compat_ioctl = btrfs_ioctl,
7347 #endif
7348 .release = btrfs_release_file,
7349 .fsync = btrfs_sync_file,
7352 static struct extent_io_ops btrfs_extent_io_ops = {
7353 .fill_delalloc = run_delalloc_range,
7354 .submit_bio_hook = btrfs_submit_bio_hook,
7355 .merge_bio_hook = btrfs_merge_bio_hook,
7356 .readpage_end_io_hook = btrfs_readpage_end_io_hook,
7357 .writepage_end_io_hook = btrfs_writepage_end_io_hook,
7358 .writepage_start_hook = btrfs_writepage_start_hook,
7359 .readpage_io_failed_hook = btrfs_io_failed_hook,
7360 .set_bit_hook = btrfs_set_bit_hook,
7361 .clear_bit_hook = btrfs_clear_bit_hook,
7362 .merge_extent_hook = btrfs_merge_extent_hook,
7363 .split_extent_hook = btrfs_split_extent_hook,
7367 * btrfs doesn't support the bmap operation because swapfiles
7368 * use bmap to make a mapping of extents in the file. They assume
7369 * these extents won't change over the life of the file and they
7370 * use the bmap result to do IO directly to the drive.
7372 * the btrfs bmap call would return logical addresses that aren't
7373 * suitable for IO and they also will change frequently as COW
7374 * operations happen. So, swapfile + btrfs == corruption.
7376 * For now we're avoiding this by dropping bmap.
7378 static const struct address_space_operations btrfs_aops = {
7379 .readpage = btrfs_readpage,
7380 .writepage = btrfs_writepage,
7381 .writepages = btrfs_writepages,
7382 .readpages = btrfs_readpages,
7383 .direct_IO = btrfs_direct_IO,
7384 .invalidatepage = btrfs_invalidatepage,
7385 .releasepage = btrfs_releasepage,
7386 .set_page_dirty = btrfs_set_page_dirty,
7387 .error_remove_page = generic_error_remove_page,
7390 static const struct address_space_operations btrfs_symlink_aops = {
7391 .readpage = btrfs_readpage,
7392 .writepage = btrfs_writepage,
7393 .invalidatepage = btrfs_invalidatepage,
7394 .releasepage = btrfs_releasepage,
7397 static const struct inode_operations btrfs_file_inode_operations = {
7398 .getattr = btrfs_getattr,
7399 .setattr = btrfs_setattr,
7400 .setxattr = btrfs_setxattr,
7401 .getxattr = btrfs_getxattr,
7402 .listxattr = btrfs_listxattr,
7403 .removexattr = btrfs_removexattr,
7404 .permission = btrfs_permission,
7405 .fiemap = btrfs_fiemap,
7406 .get_acl = btrfs_get_acl,
7408 static const struct inode_operations btrfs_special_inode_operations = {
7409 .getattr = btrfs_getattr,
7410 .setattr = btrfs_setattr,
7411 .permission = btrfs_permission,
7412 .setxattr = btrfs_setxattr,
7413 .getxattr = btrfs_getxattr,
7414 .listxattr = btrfs_listxattr,
7415 .removexattr = btrfs_removexattr,
7416 .get_acl = btrfs_get_acl,
7418 static const struct inode_operations btrfs_symlink_inode_operations = {
7419 .readlink = generic_readlink,
7420 .follow_link = page_follow_link_light,
7421 .put_link = page_put_link,
7422 .getattr = btrfs_getattr,
7423 .permission = btrfs_permission,
7424 .setxattr = btrfs_setxattr,
7425 .getxattr = btrfs_getxattr,
7426 .listxattr = btrfs_listxattr,
7427 .removexattr = btrfs_removexattr,
7428 .get_acl = btrfs_get_acl,
7431 const struct dentry_operations btrfs_dentry_operations = {
7432 .d_delete = btrfs_dentry_delete,