USB: xHCI: port remote wakeup implementation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext3 / inode.c
blob5e0faf4cda797800713a335f3c6d3d5d64fcd2c2
1 /*
2 * linux/fs/ext3/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/ext3_jbd.h>
29 #include <linux/jbd.h>
30 #include <linux/highuid.h>
31 #include <linux/pagemap.h>
32 #include <linux/quotaops.h>
33 #include <linux/string.h>
34 #include <linux/buffer_head.h>
35 #include <linux/writeback.h>
36 #include <linux/mpage.h>
37 #include <linux/uio.h>
38 #include <linux/bio.h>
39 #include <linux/fiemap.h>
40 #include <linux/namei.h>
41 #include "xattr.h"
42 #include "acl.h"
44 static int ext3_writepage_trans_blocks(struct inode *inode);
47 * Test whether an inode is a fast symlink.
49 static int ext3_inode_is_fast_symlink(struct inode *inode)
51 int ea_blocks = EXT3_I(inode)->i_file_acl ?
52 (inode->i_sb->s_blocksize >> 9) : 0;
54 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
58 * The ext3 forget function must perform a revoke if we are freeing data
59 * which has been journaled. Metadata (eg. indirect blocks) must be
60 * revoked in all cases.
62 * "bh" may be NULL: a metadata block may have been freed from memory
63 * but there may still be a record of it in the journal, and that record
64 * still needs to be revoked.
66 int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
67 struct buffer_head *bh, ext3_fsblk_t blocknr)
69 int err;
71 might_sleep();
73 BUFFER_TRACE(bh, "enter");
75 jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
76 "data mode %lx\n",
77 bh, is_metadata, inode->i_mode,
78 test_opt(inode->i_sb, DATA_FLAGS));
80 /* Never use the revoke function if we are doing full data
81 * journaling: there is no need to, and a V1 superblock won't
82 * support it. Otherwise, only skip the revoke on un-journaled
83 * data blocks. */
85 if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
86 (!is_metadata && !ext3_should_journal_data(inode))) {
87 if (bh) {
88 BUFFER_TRACE(bh, "call journal_forget");
89 return ext3_journal_forget(handle, bh);
91 return 0;
95 * data!=journal && (is_metadata || should_journal_data(inode))
97 BUFFER_TRACE(bh, "call ext3_journal_revoke");
98 err = ext3_journal_revoke(handle, blocknr, bh);
99 if (err)
100 ext3_abort(inode->i_sb, __func__,
101 "error %d when attempting revoke", err);
102 BUFFER_TRACE(bh, "exit");
103 return err;
107 * Work out how many blocks we need to proceed with the next chunk of a
108 * truncate transaction.
110 static unsigned long blocks_for_truncate(struct inode *inode)
112 unsigned long needed;
114 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
116 /* Give ourselves just enough room to cope with inodes in which
117 * i_blocks is corrupt: we've seen disk corruptions in the past
118 * which resulted in random data in an inode which looked enough
119 * like a regular file for ext3 to try to delete it. Things
120 * will go a bit crazy if that happens, but at least we should
121 * try not to panic the whole kernel. */
122 if (needed < 2)
123 needed = 2;
125 /* But we need to bound the transaction so we don't overflow the
126 * journal. */
127 if (needed > EXT3_MAX_TRANS_DATA)
128 needed = EXT3_MAX_TRANS_DATA;
130 return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
134 * Truncate transactions can be complex and absolutely huge. So we need to
135 * be able to restart the transaction at a conventient checkpoint to make
136 * sure we don't overflow the journal.
138 * start_transaction gets us a new handle for a truncate transaction,
139 * and extend_transaction tries to extend the existing one a bit. If
140 * extend fails, we need to propagate the failure up and restart the
141 * transaction in the top-level truncate loop. --sct
143 static handle_t *start_transaction(struct inode *inode)
145 handle_t *result;
147 result = ext3_journal_start(inode, blocks_for_truncate(inode));
148 if (!IS_ERR(result))
149 return result;
151 ext3_std_error(inode->i_sb, PTR_ERR(result));
152 return result;
156 * Try to extend this transaction for the purposes of truncation.
158 * Returns 0 if we managed to create more room. If we can't create more
159 * room, and the transaction must be restarted we return 1.
161 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
163 if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
164 return 0;
165 if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
166 return 0;
167 return 1;
171 * Restart the transaction associated with *handle. This does a commit,
172 * so before we call here everything must be consistently dirtied against
173 * this transaction.
175 static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
177 int ret;
179 jbd_debug(2, "restarting handle %p\n", handle);
181 * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
182 * At this moment, get_block can be called only for blocks inside
183 * i_size since page cache has been already dropped and writes are
184 * blocked by i_mutex. So we can safely drop the truncate_mutex.
186 mutex_unlock(&EXT3_I(inode)->truncate_mutex);
187 ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
188 mutex_lock(&EXT3_I(inode)->truncate_mutex);
189 return ret;
193 * Called at inode eviction from icache
195 void ext3_evict_inode (struct inode *inode)
197 struct ext3_block_alloc_info *rsv;
198 handle_t *handle;
199 int want_delete = 0;
201 if (!inode->i_nlink && !is_bad_inode(inode)) {
202 dquot_initialize(inode);
203 want_delete = 1;
206 truncate_inode_pages(&inode->i_data, 0);
208 ext3_discard_reservation(inode);
209 rsv = EXT3_I(inode)->i_block_alloc_info;
210 EXT3_I(inode)->i_block_alloc_info = NULL;
211 if (unlikely(rsv))
212 kfree(rsv);
214 if (!want_delete)
215 goto no_delete;
217 handle = start_transaction(inode);
218 if (IS_ERR(handle)) {
220 * If we're going to skip the normal cleanup, we still need to
221 * make sure that the in-core orphan linked list is properly
222 * cleaned up.
224 ext3_orphan_del(NULL, inode);
225 goto no_delete;
228 if (IS_SYNC(inode))
229 handle->h_sync = 1;
230 inode->i_size = 0;
231 if (inode->i_blocks)
232 ext3_truncate(inode);
234 * Kill off the orphan record which ext3_truncate created.
235 * AKPM: I think this can be inside the above `if'.
236 * Note that ext3_orphan_del() has to be able to cope with the
237 * deletion of a non-existent orphan - this is because we don't
238 * know if ext3_truncate() actually created an orphan record.
239 * (Well, we could do this if we need to, but heck - it works)
241 ext3_orphan_del(handle, inode);
242 EXT3_I(inode)->i_dtime = get_seconds();
245 * One subtle ordering requirement: if anything has gone wrong
246 * (transaction abort, IO errors, whatever), then we can still
247 * do these next steps (the fs will already have been marked as
248 * having errors), but we can't free the inode if the mark_dirty
249 * fails.
251 if (ext3_mark_inode_dirty(handle, inode)) {
252 /* If that failed, just dquot_drop() and be done with that */
253 dquot_drop(inode);
254 end_writeback(inode);
255 } else {
256 ext3_xattr_delete_inode(handle, inode);
257 dquot_free_inode(inode);
258 dquot_drop(inode);
259 end_writeback(inode);
260 ext3_free_inode(handle, inode);
262 ext3_journal_stop(handle);
263 return;
264 no_delete:
265 end_writeback(inode);
266 dquot_drop(inode);
269 typedef struct {
270 __le32 *p;
271 __le32 key;
272 struct buffer_head *bh;
273 } Indirect;
275 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
277 p->key = *(p->p = v);
278 p->bh = bh;
281 static int verify_chain(Indirect *from, Indirect *to)
283 while (from <= to && from->key == *from->p)
284 from++;
285 return (from > to);
289 * ext3_block_to_path - parse the block number into array of offsets
290 * @inode: inode in question (we are only interested in its superblock)
291 * @i_block: block number to be parsed
292 * @offsets: array to store the offsets in
293 * @boundary: set this non-zero if the referred-to block is likely to be
294 * followed (on disk) by an indirect block.
296 * To store the locations of file's data ext3 uses a data structure common
297 * for UNIX filesystems - tree of pointers anchored in the inode, with
298 * data blocks at leaves and indirect blocks in intermediate nodes.
299 * This function translates the block number into path in that tree -
300 * return value is the path length and @offsets[n] is the offset of
301 * pointer to (n+1)th node in the nth one. If @block is out of range
302 * (negative or too large) warning is printed and zero returned.
304 * Note: function doesn't find node addresses, so no IO is needed. All
305 * we need to know is the capacity of indirect blocks (taken from the
306 * inode->i_sb).
310 * Portability note: the last comparison (check that we fit into triple
311 * indirect block) is spelled differently, because otherwise on an
312 * architecture with 32-bit longs and 8Kb pages we might get into trouble
313 * if our filesystem had 8Kb blocks. We might use long long, but that would
314 * kill us on x86. Oh, well, at least the sign propagation does not matter -
315 * i_block would have to be negative in the very beginning, so we would not
316 * get there at all.
319 static int ext3_block_to_path(struct inode *inode,
320 long i_block, int offsets[4], int *boundary)
322 int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
323 int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
324 const long direct_blocks = EXT3_NDIR_BLOCKS,
325 indirect_blocks = ptrs,
326 double_blocks = (1 << (ptrs_bits * 2));
327 int n = 0;
328 int final = 0;
330 if (i_block < 0) {
331 ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
332 } else if (i_block < direct_blocks) {
333 offsets[n++] = i_block;
334 final = direct_blocks;
335 } else if ( (i_block -= direct_blocks) < indirect_blocks) {
336 offsets[n++] = EXT3_IND_BLOCK;
337 offsets[n++] = i_block;
338 final = ptrs;
339 } else if ((i_block -= indirect_blocks) < double_blocks) {
340 offsets[n++] = EXT3_DIND_BLOCK;
341 offsets[n++] = i_block >> ptrs_bits;
342 offsets[n++] = i_block & (ptrs - 1);
343 final = ptrs;
344 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
345 offsets[n++] = EXT3_TIND_BLOCK;
346 offsets[n++] = i_block >> (ptrs_bits * 2);
347 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
348 offsets[n++] = i_block & (ptrs - 1);
349 final = ptrs;
350 } else {
351 ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
353 if (boundary)
354 *boundary = final - 1 - (i_block & (ptrs - 1));
355 return n;
359 * ext3_get_branch - read the chain of indirect blocks leading to data
360 * @inode: inode in question
361 * @depth: depth of the chain (1 - direct pointer, etc.)
362 * @offsets: offsets of pointers in inode/indirect blocks
363 * @chain: place to store the result
364 * @err: here we store the error value
366 * Function fills the array of triples <key, p, bh> and returns %NULL
367 * if everything went OK or the pointer to the last filled triple
368 * (incomplete one) otherwise. Upon the return chain[i].key contains
369 * the number of (i+1)-th block in the chain (as it is stored in memory,
370 * i.e. little-endian 32-bit), chain[i].p contains the address of that
371 * number (it points into struct inode for i==0 and into the bh->b_data
372 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
373 * block for i>0 and NULL for i==0. In other words, it holds the block
374 * numbers of the chain, addresses they were taken from (and where we can
375 * verify that chain did not change) and buffer_heads hosting these
376 * numbers.
378 * Function stops when it stumbles upon zero pointer (absent block)
379 * (pointer to last triple returned, *@err == 0)
380 * or when it gets an IO error reading an indirect block
381 * (ditto, *@err == -EIO)
382 * or when it notices that chain had been changed while it was reading
383 * (ditto, *@err == -EAGAIN)
384 * or when it reads all @depth-1 indirect blocks successfully and finds
385 * the whole chain, all way to the data (returns %NULL, *err == 0).
387 static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
388 Indirect chain[4], int *err)
390 struct super_block *sb = inode->i_sb;
391 Indirect *p = chain;
392 struct buffer_head *bh;
394 *err = 0;
395 /* i_data is not going away, no lock needed */
396 add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
397 if (!p->key)
398 goto no_block;
399 while (--depth) {
400 bh = sb_bread(sb, le32_to_cpu(p->key));
401 if (!bh)
402 goto failure;
403 /* Reader: pointers */
404 if (!verify_chain(chain, p))
405 goto changed;
406 add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
407 /* Reader: end */
408 if (!p->key)
409 goto no_block;
411 return NULL;
413 changed:
414 brelse(bh);
415 *err = -EAGAIN;
416 goto no_block;
417 failure:
418 *err = -EIO;
419 no_block:
420 return p;
424 * ext3_find_near - find a place for allocation with sufficient locality
425 * @inode: owner
426 * @ind: descriptor of indirect block.
428 * This function returns the preferred place for block allocation.
429 * It is used when heuristic for sequential allocation fails.
430 * Rules are:
431 * + if there is a block to the left of our position - allocate near it.
432 * + if pointer will live in indirect block - allocate near that block.
433 * + if pointer will live in inode - allocate in the same
434 * cylinder group.
436 * In the latter case we colour the starting block by the callers PID to
437 * prevent it from clashing with concurrent allocations for a different inode
438 * in the same block group. The PID is used here so that functionally related
439 * files will be close-by on-disk.
441 * Caller must make sure that @ind is valid and will stay that way.
443 static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
445 struct ext3_inode_info *ei = EXT3_I(inode);
446 __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
447 __le32 *p;
448 ext3_fsblk_t bg_start;
449 ext3_grpblk_t colour;
451 /* Try to find previous block */
452 for (p = ind->p - 1; p >= start; p--) {
453 if (*p)
454 return le32_to_cpu(*p);
457 /* No such thing, so let's try location of indirect block */
458 if (ind->bh)
459 return ind->bh->b_blocknr;
462 * It is going to be referred to from the inode itself? OK, just put it
463 * into the same cylinder group then.
465 bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
466 colour = (current->pid % 16) *
467 (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
468 return bg_start + colour;
472 * ext3_find_goal - find a preferred place for allocation.
473 * @inode: owner
474 * @block: block we want
475 * @partial: pointer to the last triple within a chain
477 * Normally this function find the preferred place for block allocation,
478 * returns it.
481 static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
482 Indirect *partial)
484 struct ext3_block_alloc_info *block_i;
486 block_i = EXT3_I(inode)->i_block_alloc_info;
489 * try the heuristic for sequential allocation,
490 * failing that at least try to get decent locality.
492 if (block_i && (block == block_i->last_alloc_logical_block + 1)
493 && (block_i->last_alloc_physical_block != 0)) {
494 return block_i->last_alloc_physical_block + 1;
497 return ext3_find_near(inode, partial);
501 * ext3_blks_to_allocate: Look up the block map and count the number
502 * of direct blocks need to be allocated for the given branch.
504 * @branch: chain of indirect blocks
505 * @k: number of blocks need for indirect blocks
506 * @blks: number of data blocks to be mapped.
507 * @blocks_to_boundary: the offset in the indirect block
509 * return the total number of blocks to be allocate, including the
510 * direct and indirect blocks.
512 static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
513 int blocks_to_boundary)
515 unsigned long count = 0;
518 * Simple case, [t,d]Indirect block(s) has not allocated yet
519 * then it's clear blocks on that path have not allocated
521 if (k > 0) {
522 /* right now we don't handle cross boundary allocation */
523 if (blks < blocks_to_boundary + 1)
524 count += blks;
525 else
526 count += blocks_to_boundary + 1;
527 return count;
530 count++;
531 while (count < blks && count <= blocks_to_boundary &&
532 le32_to_cpu(*(branch[0].p + count)) == 0) {
533 count++;
535 return count;
539 * ext3_alloc_blocks: multiple allocate blocks needed for a branch
540 * @indirect_blks: the number of blocks need to allocate for indirect
541 * blocks
543 * @new_blocks: on return it will store the new block numbers for
544 * the indirect blocks(if needed) and the first direct block,
545 * @blks: on return it will store the total number of allocated
546 * direct blocks
548 static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
549 ext3_fsblk_t goal, int indirect_blks, int blks,
550 ext3_fsblk_t new_blocks[4], int *err)
552 int target, i;
553 unsigned long count = 0;
554 int index = 0;
555 ext3_fsblk_t current_block = 0;
556 int ret = 0;
559 * Here we try to allocate the requested multiple blocks at once,
560 * on a best-effort basis.
561 * To build a branch, we should allocate blocks for
562 * the indirect blocks(if not allocated yet), and at least
563 * the first direct block of this branch. That's the
564 * minimum number of blocks need to allocate(required)
566 target = blks + indirect_blks;
568 while (1) {
569 count = target;
570 /* allocating blocks for indirect blocks and direct blocks */
571 current_block = ext3_new_blocks(handle,inode,goal,&count,err);
572 if (*err)
573 goto failed_out;
575 target -= count;
576 /* allocate blocks for indirect blocks */
577 while (index < indirect_blks && count) {
578 new_blocks[index++] = current_block++;
579 count--;
582 if (count > 0)
583 break;
586 /* save the new block number for the first direct block */
587 new_blocks[index] = current_block;
589 /* total number of blocks allocated for direct blocks */
590 ret = count;
591 *err = 0;
592 return ret;
593 failed_out:
594 for (i = 0; i <index; i++)
595 ext3_free_blocks(handle, inode, new_blocks[i], 1);
596 return ret;
600 * ext3_alloc_branch - allocate and set up a chain of blocks.
601 * @inode: owner
602 * @indirect_blks: number of allocated indirect blocks
603 * @blks: number of allocated direct blocks
604 * @offsets: offsets (in the blocks) to store the pointers to next.
605 * @branch: place to store the chain in.
607 * This function allocates blocks, zeroes out all but the last one,
608 * links them into chain and (if we are synchronous) writes them to disk.
609 * In other words, it prepares a branch that can be spliced onto the
610 * inode. It stores the information about that chain in the branch[], in
611 * the same format as ext3_get_branch() would do. We are calling it after
612 * we had read the existing part of chain and partial points to the last
613 * triple of that (one with zero ->key). Upon the exit we have the same
614 * picture as after the successful ext3_get_block(), except that in one
615 * place chain is disconnected - *branch->p is still zero (we did not
616 * set the last link), but branch->key contains the number that should
617 * be placed into *branch->p to fill that gap.
619 * If allocation fails we free all blocks we've allocated (and forget
620 * their buffer_heads) and return the error value the from failed
621 * ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
622 * as described above and return 0.
624 static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
625 int indirect_blks, int *blks, ext3_fsblk_t goal,
626 int *offsets, Indirect *branch)
628 int blocksize = inode->i_sb->s_blocksize;
629 int i, n = 0;
630 int err = 0;
631 struct buffer_head *bh;
632 int num;
633 ext3_fsblk_t new_blocks[4];
634 ext3_fsblk_t current_block;
636 num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
637 *blks, new_blocks, &err);
638 if (err)
639 return err;
641 branch[0].key = cpu_to_le32(new_blocks[0]);
643 * metadata blocks and data blocks are allocated.
645 for (n = 1; n <= indirect_blks; n++) {
647 * Get buffer_head for parent block, zero it out
648 * and set the pointer to new one, then send
649 * parent to disk.
651 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
652 branch[n].bh = bh;
653 lock_buffer(bh);
654 BUFFER_TRACE(bh, "call get_create_access");
655 err = ext3_journal_get_create_access(handle, bh);
656 if (err) {
657 unlock_buffer(bh);
658 brelse(bh);
659 goto failed;
662 memset(bh->b_data, 0, blocksize);
663 branch[n].p = (__le32 *) bh->b_data + offsets[n];
664 branch[n].key = cpu_to_le32(new_blocks[n]);
665 *branch[n].p = branch[n].key;
666 if ( n == indirect_blks) {
667 current_block = new_blocks[n];
669 * End of chain, update the last new metablock of
670 * the chain to point to the new allocated
671 * data blocks numbers
673 for (i=1; i < num; i++)
674 *(branch[n].p + i) = cpu_to_le32(++current_block);
676 BUFFER_TRACE(bh, "marking uptodate");
677 set_buffer_uptodate(bh);
678 unlock_buffer(bh);
680 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
681 err = ext3_journal_dirty_metadata(handle, bh);
682 if (err)
683 goto failed;
685 *blks = num;
686 return err;
687 failed:
688 /* Allocation failed, free what we already allocated */
689 for (i = 1; i <= n ; i++) {
690 BUFFER_TRACE(branch[i].bh, "call journal_forget");
691 ext3_journal_forget(handle, branch[i].bh);
693 for (i = 0; i <indirect_blks; i++)
694 ext3_free_blocks(handle, inode, new_blocks[i], 1);
696 ext3_free_blocks(handle, inode, new_blocks[i], num);
698 return err;
702 * ext3_splice_branch - splice the allocated branch onto inode.
703 * @inode: owner
704 * @block: (logical) number of block we are adding
705 * @chain: chain of indirect blocks (with a missing link - see
706 * ext3_alloc_branch)
707 * @where: location of missing link
708 * @num: number of indirect blocks we are adding
709 * @blks: number of direct blocks we are adding
711 * This function fills the missing link and does all housekeeping needed in
712 * inode (->i_blocks, etc.). In case of success we end up with the full
713 * chain to new block and return 0.
715 static int ext3_splice_branch(handle_t *handle, struct inode *inode,
716 long block, Indirect *where, int num, int blks)
718 int i;
719 int err = 0;
720 struct ext3_block_alloc_info *block_i;
721 ext3_fsblk_t current_block;
722 struct ext3_inode_info *ei = EXT3_I(inode);
724 block_i = ei->i_block_alloc_info;
726 * If we're splicing into a [td]indirect block (as opposed to the
727 * inode) then we need to get write access to the [td]indirect block
728 * before the splice.
730 if (where->bh) {
731 BUFFER_TRACE(where->bh, "get_write_access");
732 err = ext3_journal_get_write_access(handle, where->bh);
733 if (err)
734 goto err_out;
736 /* That's it */
738 *where->p = where->key;
741 * Update the host buffer_head or inode to point to more just allocated
742 * direct blocks blocks
744 if (num == 0 && blks > 1) {
745 current_block = le32_to_cpu(where->key) + 1;
746 for (i = 1; i < blks; i++)
747 *(where->p + i ) = cpu_to_le32(current_block++);
751 * update the most recently allocated logical & physical block
752 * in i_block_alloc_info, to assist find the proper goal block for next
753 * allocation
755 if (block_i) {
756 block_i->last_alloc_logical_block = block + blks - 1;
757 block_i->last_alloc_physical_block =
758 le32_to_cpu(where[num].key) + blks - 1;
761 /* We are done with atomic stuff, now do the rest of housekeeping */
763 inode->i_ctime = CURRENT_TIME_SEC;
764 ext3_mark_inode_dirty(handle, inode);
765 /* ext3_mark_inode_dirty already updated i_sync_tid */
766 atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
768 /* had we spliced it onto indirect block? */
769 if (where->bh) {
771 * If we spliced it onto an indirect block, we haven't
772 * altered the inode. Note however that if it is being spliced
773 * onto an indirect block at the very end of the file (the
774 * file is growing) then we *will* alter the inode to reflect
775 * the new i_size. But that is not done here - it is done in
776 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
778 jbd_debug(5, "splicing indirect only\n");
779 BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
780 err = ext3_journal_dirty_metadata(handle, where->bh);
781 if (err)
782 goto err_out;
783 } else {
785 * OK, we spliced it into the inode itself on a direct block.
786 * Inode was dirtied above.
788 jbd_debug(5, "splicing direct\n");
790 return err;
792 err_out:
793 for (i = 1; i <= num; i++) {
794 BUFFER_TRACE(where[i].bh, "call journal_forget");
795 ext3_journal_forget(handle, where[i].bh);
796 ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
798 ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
800 return err;
804 * Allocation strategy is simple: if we have to allocate something, we will
805 * have to go the whole way to leaf. So let's do it before attaching anything
806 * to tree, set linkage between the newborn blocks, write them if sync is
807 * required, recheck the path, free and repeat if check fails, otherwise
808 * set the last missing link (that will protect us from any truncate-generated
809 * removals - all blocks on the path are immune now) and possibly force the
810 * write on the parent block.
811 * That has a nice additional property: no special recovery from the failed
812 * allocations is needed - we simply release blocks and do not touch anything
813 * reachable from inode.
815 * `handle' can be NULL if create == 0.
817 * The BKL may not be held on entry here. Be sure to take it early.
818 * return > 0, # of blocks mapped or allocated.
819 * return = 0, if plain lookup failed.
820 * return < 0, error case.
822 int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
823 sector_t iblock, unsigned long maxblocks,
824 struct buffer_head *bh_result,
825 int create)
827 int err = -EIO;
828 int offsets[4];
829 Indirect chain[4];
830 Indirect *partial;
831 ext3_fsblk_t goal;
832 int indirect_blks;
833 int blocks_to_boundary = 0;
834 int depth;
835 struct ext3_inode_info *ei = EXT3_I(inode);
836 int count = 0;
837 ext3_fsblk_t first_block = 0;
840 J_ASSERT(handle != NULL || create == 0);
841 depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
843 if (depth == 0)
844 goto out;
846 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
848 /* Simplest case - block found, no allocation needed */
849 if (!partial) {
850 first_block = le32_to_cpu(chain[depth - 1].key);
851 clear_buffer_new(bh_result);
852 count++;
853 /*map more blocks*/
854 while (count < maxblocks && count <= blocks_to_boundary) {
855 ext3_fsblk_t blk;
857 if (!verify_chain(chain, chain + depth - 1)) {
859 * Indirect block might be removed by
860 * truncate while we were reading it.
861 * Handling of that case: forget what we've
862 * got now. Flag the err as EAGAIN, so it
863 * will reread.
865 err = -EAGAIN;
866 count = 0;
867 break;
869 blk = le32_to_cpu(*(chain[depth-1].p + count));
871 if (blk == first_block + count)
872 count++;
873 else
874 break;
876 if (err != -EAGAIN)
877 goto got_it;
880 /* Next simple case - plain lookup or failed read of indirect block */
881 if (!create || err == -EIO)
882 goto cleanup;
884 mutex_lock(&ei->truncate_mutex);
887 * If the indirect block is missing while we are reading
888 * the chain(ext3_get_branch() returns -EAGAIN err), or
889 * if the chain has been changed after we grab the semaphore,
890 * (either because another process truncated this branch, or
891 * another get_block allocated this branch) re-grab the chain to see if
892 * the request block has been allocated or not.
894 * Since we already block the truncate/other get_block
895 * at this point, we will have the current copy of the chain when we
896 * splice the branch into the tree.
898 if (err == -EAGAIN || !verify_chain(chain, partial)) {
899 while (partial > chain) {
900 brelse(partial->bh);
901 partial--;
903 partial = ext3_get_branch(inode, depth, offsets, chain, &err);
904 if (!partial) {
905 count++;
906 mutex_unlock(&ei->truncate_mutex);
907 if (err)
908 goto cleanup;
909 clear_buffer_new(bh_result);
910 goto got_it;
915 * Okay, we need to do block allocation. Lazily initialize the block
916 * allocation info here if necessary
918 if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
919 ext3_init_block_alloc_info(inode);
921 goal = ext3_find_goal(inode, iblock, partial);
923 /* the number of blocks need to allocate for [d,t]indirect blocks */
924 indirect_blks = (chain + depth) - partial - 1;
927 * Next look up the indirect map to count the totoal number of
928 * direct blocks to allocate for this branch.
930 count = ext3_blks_to_allocate(partial, indirect_blks,
931 maxblocks, blocks_to_boundary);
933 * Block out ext3_truncate while we alter the tree
935 err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
936 offsets + (partial - chain), partial);
939 * The ext3_splice_branch call will free and forget any buffers
940 * on the new chain if there is a failure, but that risks using
941 * up transaction credits, especially for bitmaps where the
942 * credits cannot be returned. Can we handle this somehow? We
943 * may need to return -EAGAIN upwards in the worst case. --sct
945 if (!err)
946 err = ext3_splice_branch(handle, inode, iblock,
947 partial, indirect_blks, count);
948 mutex_unlock(&ei->truncate_mutex);
949 if (err)
950 goto cleanup;
952 set_buffer_new(bh_result);
953 got_it:
954 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
955 if (count > blocks_to_boundary)
956 set_buffer_boundary(bh_result);
957 err = count;
958 /* Clean up and exit */
959 partial = chain + depth - 1; /* the whole chain */
960 cleanup:
961 while (partial > chain) {
962 BUFFER_TRACE(partial->bh, "call brelse");
963 brelse(partial->bh);
964 partial--;
966 BUFFER_TRACE(bh_result, "returned");
967 out:
968 return err;
971 /* Maximum number of blocks we map for direct IO at once. */
972 #define DIO_MAX_BLOCKS 4096
974 * Number of credits we need for writing DIO_MAX_BLOCKS:
975 * We need sb + group descriptor + bitmap + inode -> 4
976 * For B blocks with A block pointers per block we need:
977 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
978 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
980 #define DIO_CREDITS 25
982 static int ext3_get_block(struct inode *inode, sector_t iblock,
983 struct buffer_head *bh_result, int create)
985 handle_t *handle = ext3_journal_current_handle();
986 int ret = 0, started = 0;
987 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
989 if (create && !handle) { /* Direct IO write... */
990 if (max_blocks > DIO_MAX_BLOCKS)
991 max_blocks = DIO_MAX_BLOCKS;
992 handle = ext3_journal_start(inode, DIO_CREDITS +
993 EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
994 if (IS_ERR(handle)) {
995 ret = PTR_ERR(handle);
996 goto out;
998 started = 1;
1001 ret = ext3_get_blocks_handle(handle, inode, iblock,
1002 max_blocks, bh_result, create);
1003 if (ret > 0) {
1004 bh_result->b_size = (ret << inode->i_blkbits);
1005 ret = 0;
1007 if (started)
1008 ext3_journal_stop(handle);
1009 out:
1010 return ret;
1013 int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1014 u64 start, u64 len)
1016 return generic_block_fiemap(inode, fieinfo, start, len,
1017 ext3_get_block);
1021 * `handle' can be NULL if create is zero
1023 struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1024 long block, int create, int *errp)
1026 struct buffer_head dummy;
1027 int fatal = 0, err;
1029 J_ASSERT(handle != NULL || create == 0);
1031 dummy.b_state = 0;
1032 dummy.b_blocknr = -1000;
1033 buffer_trace_init(&dummy.b_history);
1034 err = ext3_get_blocks_handle(handle, inode, block, 1,
1035 &dummy, create);
1037 * ext3_get_blocks_handle() returns number of blocks
1038 * mapped. 0 in case of a HOLE.
1040 if (err > 0) {
1041 if (err > 1)
1042 WARN_ON(1);
1043 err = 0;
1045 *errp = err;
1046 if (!err && buffer_mapped(&dummy)) {
1047 struct buffer_head *bh;
1048 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1049 if (!bh) {
1050 *errp = -EIO;
1051 goto err;
1053 if (buffer_new(&dummy)) {
1054 J_ASSERT(create != 0);
1055 J_ASSERT(handle != NULL);
1058 * Now that we do not always journal data, we should
1059 * keep in mind whether this should always journal the
1060 * new buffer as metadata. For now, regular file
1061 * writes use ext3_get_block instead, so it's not a
1062 * problem.
1064 lock_buffer(bh);
1065 BUFFER_TRACE(bh, "call get_create_access");
1066 fatal = ext3_journal_get_create_access(handle, bh);
1067 if (!fatal && !buffer_uptodate(bh)) {
1068 memset(bh->b_data,0,inode->i_sb->s_blocksize);
1069 set_buffer_uptodate(bh);
1071 unlock_buffer(bh);
1072 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1073 err = ext3_journal_dirty_metadata(handle, bh);
1074 if (!fatal)
1075 fatal = err;
1076 } else {
1077 BUFFER_TRACE(bh, "not a new buffer");
1079 if (fatal) {
1080 *errp = fatal;
1081 brelse(bh);
1082 bh = NULL;
1084 return bh;
1086 err:
1087 return NULL;
1090 struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1091 int block, int create, int *err)
1093 struct buffer_head * bh;
1095 bh = ext3_getblk(handle, inode, block, create, err);
1096 if (!bh)
1097 return bh;
1098 if (buffer_uptodate(bh))
1099 return bh;
1100 ll_rw_block(READ_META, 1, &bh);
1101 wait_on_buffer(bh);
1102 if (buffer_uptodate(bh))
1103 return bh;
1104 put_bh(bh);
1105 *err = -EIO;
1106 return NULL;
1109 static int walk_page_buffers( handle_t *handle,
1110 struct buffer_head *head,
1111 unsigned from,
1112 unsigned to,
1113 int *partial,
1114 int (*fn)( handle_t *handle,
1115 struct buffer_head *bh))
1117 struct buffer_head *bh;
1118 unsigned block_start, block_end;
1119 unsigned blocksize = head->b_size;
1120 int err, ret = 0;
1121 struct buffer_head *next;
1123 for ( bh = head, block_start = 0;
1124 ret == 0 && (bh != head || !block_start);
1125 block_start = block_end, bh = next)
1127 next = bh->b_this_page;
1128 block_end = block_start + blocksize;
1129 if (block_end <= from || block_start >= to) {
1130 if (partial && !buffer_uptodate(bh))
1131 *partial = 1;
1132 continue;
1134 err = (*fn)(handle, bh);
1135 if (!ret)
1136 ret = err;
1138 return ret;
1142 * To preserve ordering, it is essential that the hole instantiation and
1143 * the data write be encapsulated in a single transaction. We cannot
1144 * close off a transaction and start a new one between the ext3_get_block()
1145 * and the commit_write(). So doing the journal_start at the start of
1146 * prepare_write() is the right place.
1148 * Also, this function can nest inside ext3_writepage() ->
1149 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1150 * has generated enough buffer credits to do the whole page. So we won't
1151 * block on the journal in that case, which is good, because the caller may
1152 * be PF_MEMALLOC.
1154 * By accident, ext3 can be reentered when a transaction is open via
1155 * quota file writes. If we were to commit the transaction while thus
1156 * reentered, there can be a deadlock - we would be holding a quota
1157 * lock, and the commit would never complete if another thread had a
1158 * transaction open and was blocking on the quota lock - a ranking
1159 * violation.
1161 * So what we do is to rely on the fact that journal_stop/journal_start
1162 * will _not_ run commit under these circumstances because handle->h_ref
1163 * is elevated. We'll still have enough credits for the tiny quotafile
1164 * write.
1166 static int do_journal_get_write_access(handle_t *handle,
1167 struct buffer_head *bh)
1169 int dirty = buffer_dirty(bh);
1170 int ret;
1172 if (!buffer_mapped(bh) || buffer_freed(bh))
1173 return 0;
1175 * __block_prepare_write() could have dirtied some buffers. Clean
1176 * the dirty bit as jbd2_journal_get_write_access() could complain
1177 * otherwise about fs integrity issues. Setting of the dirty bit
1178 * by __block_prepare_write() isn't a real problem here as we clear
1179 * the bit before releasing a page lock and thus writeback cannot
1180 * ever write the buffer.
1182 if (dirty)
1183 clear_buffer_dirty(bh);
1184 ret = ext3_journal_get_write_access(handle, bh);
1185 if (!ret && dirty)
1186 ret = ext3_journal_dirty_metadata(handle, bh);
1187 return ret;
1191 * Truncate blocks that were not used by write. We have to truncate the
1192 * pagecache as well so that corresponding buffers get properly unmapped.
1194 static void ext3_truncate_failed_write(struct inode *inode)
1196 truncate_inode_pages(inode->i_mapping, inode->i_size);
1197 ext3_truncate(inode);
1200 static int ext3_write_begin(struct file *file, struct address_space *mapping,
1201 loff_t pos, unsigned len, unsigned flags,
1202 struct page **pagep, void **fsdata)
1204 struct inode *inode = mapping->host;
1205 int ret;
1206 handle_t *handle;
1207 int retries = 0;
1208 struct page *page;
1209 pgoff_t index;
1210 unsigned from, to;
1211 /* Reserve one block more for addition to orphan list in case
1212 * we allocate blocks but write fails for some reason */
1213 int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1215 index = pos >> PAGE_CACHE_SHIFT;
1216 from = pos & (PAGE_CACHE_SIZE - 1);
1217 to = from + len;
1219 retry:
1220 page = grab_cache_page_write_begin(mapping, index, flags);
1221 if (!page)
1222 return -ENOMEM;
1223 *pagep = page;
1225 handle = ext3_journal_start(inode, needed_blocks);
1226 if (IS_ERR(handle)) {
1227 unlock_page(page);
1228 page_cache_release(page);
1229 ret = PTR_ERR(handle);
1230 goto out;
1232 ret = __block_write_begin(page, pos, len, ext3_get_block);
1233 if (ret)
1234 goto write_begin_failed;
1236 if (ext3_should_journal_data(inode)) {
1237 ret = walk_page_buffers(handle, page_buffers(page),
1238 from, to, NULL, do_journal_get_write_access);
1240 write_begin_failed:
1241 if (ret) {
1243 * block_write_begin may have instantiated a few blocks
1244 * outside i_size. Trim these off again. Don't need
1245 * i_size_read because we hold i_mutex.
1247 * Add inode to orphan list in case we crash before truncate
1248 * finishes. Do this only if ext3_can_truncate() agrees so
1249 * that orphan processing code is happy.
1251 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1252 ext3_orphan_add(handle, inode);
1253 ext3_journal_stop(handle);
1254 unlock_page(page);
1255 page_cache_release(page);
1256 if (pos + len > inode->i_size)
1257 ext3_truncate_failed_write(inode);
1259 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1260 goto retry;
1261 out:
1262 return ret;
1266 int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1268 int err = journal_dirty_data(handle, bh);
1269 if (err)
1270 ext3_journal_abort_handle(__func__, __func__,
1271 bh, handle, err);
1272 return err;
1275 /* For ordered writepage and write_end functions */
1276 static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1279 * Write could have mapped the buffer but it didn't copy the data in
1280 * yet. So avoid filing such buffer into a transaction.
1282 if (buffer_mapped(bh) && buffer_uptodate(bh))
1283 return ext3_journal_dirty_data(handle, bh);
1284 return 0;
1287 /* For write_end() in data=journal mode */
1288 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1290 if (!buffer_mapped(bh) || buffer_freed(bh))
1291 return 0;
1292 set_buffer_uptodate(bh);
1293 return ext3_journal_dirty_metadata(handle, bh);
1297 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1298 * for the whole page but later we failed to copy the data in. Update inode
1299 * size according to what we managed to copy. The rest is going to be
1300 * truncated in write_end function.
1302 static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1304 /* What matters to us is i_disksize. We don't write i_size anywhere */
1305 if (pos + copied > inode->i_size)
1306 i_size_write(inode, pos + copied);
1307 if (pos + copied > EXT3_I(inode)->i_disksize) {
1308 EXT3_I(inode)->i_disksize = pos + copied;
1309 mark_inode_dirty(inode);
1314 * We need to pick up the new inode size which generic_commit_write gave us
1315 * `file' can be NULL - eg, when called from page_symlink().
1317 * ext3 never places buffers on inode->i_mapping->private_list. metadata
1318 * buffers are managed internally.
1320 static int ext3_ordered_write_end(struct file *file,
1321 struct address_space *mapping,
1322 loff_t pos, unsigned len, unsigned copied,
1323 struct page *page, void *fsdata)
1325 handle_t *handle = ext3_journal_current_handle();
1326 struct inode *inode = file->f_mapping->host;
1327 unsigned from, to;
1328 int ret = 0, ret2;
1330 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1332 from = pos & (PAGE_CACHE_SIZE - 1);
1333 to = from + copied;
1334 ret = walk_page_buffers(handle, page_buffers(page),
1335 from, to, NULL, journal_dirty_data_fn);
1337 if (ret == 0)
1338 update_file_sizes(inode, pos, copied);
1340 * There may be allocated blocks outside of i_size because
1341 * we failed to copy some data. Prepare for truncate.
1343 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1344 ext3_orphan_add(handle, inode);
1345 ret2 = ext3_journal_stop(handle);
1346 if (!ret)
1347 ret = ret2;
1348 unlock_page(page);
1349 page_cache_release(page);
1351 if (pos + len > inode->i_size)
1352 ext3_truncate_failed_write(inode);
1353 return ret ? ret : copied;
1356 static int ext3_writeback_write_end(struct file *file,
1357 struct address_space *mapping,
1358 loff_t pos, unsigned len, unsigned copied,
1359 struct page *page, void *fsdata)
1361 handle_t *handle = ext3_journal_current_handle();
1362 struct inode *inode = file->f_mapping->host;
1363 int ret;
1365 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1366 update_file_sizes(inode, pos, copied);
1368 * There may be allocated blocks outside of i_size because
1369 * we failed to copy some data. Prepare for truncate.
1371 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1372 ext3_orphan_add(handle, inode);
1373 ret = ext3_journal_stop(handle);
1374 unlock_page(page);
1375 page_cache_release(page);
1377 if (pos + len > inode->i_size)
1378 ext3_truncate_failed_write(inode);
1379 return ret ? ret : copied;
1382 static int ext3_journalled_write_end(struct file *file,
1383 struct address_space *mapping,
1384 loff_t pos, unsigned len, unsigned copied,
1385 struct page *page, void *fsdata)
1387 handle_t *handle = ext3_journal_current_handle();
1388 struct inode *inode = mapping->host;
1389 int ret = 0, ret2;
1390 int partial = 0;
1391 unsigned from, to;
1393 from = pos & (PAGE_CACHE_SIZE - 1);
1394 to = from + len;
1396 if (copied < len) {
1397 if (!PageUptodate(page))
1398 copied = 0;
1399 page_zero_new_buffers(page, from + copied, to);
1400 to = from + copied;
1403 ret = walk_page_buffers(handle, page_buffers(page), from,
1404 to, &partial, write_end_fn);
1405 if (!partial)
1406 SetPageUptodate(page);
1408 if (pos + copied > inode->i_size)
1409 i_size_write(inode, pos + copied);
1411 * There may be allocated blocks outside of i_size because
1412 * we failed to copy some data. Prepare for truncate.
1414 if (pos + len > inode->i_size && ext3_can_truncate(inode))
1415 ext3_orphan_add(handle, inode);
1416 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1417 if (inode->i_size > EXT3_I(inode)->i_disksize) {
1418 EXT3_I(inode)->i_disksize = inode->i_size;
1419 ret2 = ext3_mark_inode_dirty(handle, inode);
1420 if (!ret)
1421 ret = ret2;
1424 ret2 = ext3_journal_stop(handle);
1425 if (!ret)
1426 ret = ret2;
1427 unlock_page(page);
1428 page_cache_release(page);
1430 if (pos + len > inode->i_size)
1431 ext3_truncate_failed_write(inode);
1432 return ret ? ret : copied;
1436 * bmap() is special. It gets used by applications such as lilo and by
1437 * the swapper to find the on-disk block of a specific piece of data.
1439 * Naturally, this is dangerous if the block concerned is still in the
1440 * journal. If somebody makes a swapfile on an ext3 data-journaling
1441 * filesystem and enables swap, then they may get a nasty shock when the
1442 * data getting swapped to that swapfile suddenly gets overwritten by
1443 * the original zero's written out previously to the journal and
1444 * awaiting writeback in the kernel's buffer cache.
1446 * So, if we see any bmap calls here on a modified, data-journaled file,
1447 * take extra steps to flush any blocks which might be in the cache.
1449 static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1451 struct inode *inode = mapping->host;
1452 journal_t *journal;
1453 int err;
1455 if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1457 * This is a REALLY heavyweight approach, but the use of
1458 * bmap on dirty files is expected to be extremely rare:
1459 * only if we run lilo or swapon on a freshly made file
1460 * do we expect this to happen.
1462 * (bmap requires CAP_SYS_RAWIO so this does not
1463 * represent an unprivileged user DOS attack --- we'd be
1464 * in trouble if mortal users could trigger this path at
1465 * will.)
1467 * NB. EXT3_STATE_JDATA is not set on files other than
1468 * regular files. If somebody wants to bmap a directory
1469 * or symlink and gets confused because the buffer
1470 * hasn't yet been flushed to disk, they deserve
1471 * everything they get.
1474 ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1475 journal = EXT3_JOURNAL(inode);
1476 journal_lock_updates(journal);
1477 err = journal_flush(journal);
1478 journal_unlock_updates(journal);
1480 if (err)
1481 return 0;
1484 return generic_block_bmap(mapping,block,ext3_get_block);
1487 static int bget_one(handle_t *handle, struct buffer_head *bh)
1489 get_bh(bh);
1490 return 0;
1493 static int bput_one(handle_t *handle, struct buffer_head *bh)
1495 put_bh(bh);
1496 return 0;
1499 static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1501 return !buffer_mapped(bh);
1505 * Note that we always start a transaction even if we're not journalling
1506 * data. This is to preserve ordering: any hole instantiation within
1507 * __block_write_full_page -> ext3_get_block() should be journalled
1508 * along with the data so we don't crash and then get metadata which
1509 * refers to old data.
1511 * In all journalling modes block_write_full_page() will start the I/O.
1513 * Problem:
1515 * ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1516 * ext3_writepage()
1518 * Similar for:
1520 * ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1522 * Same applies to ext3_get_block(). We will deadlock on various things like
1523 * lock_journal and i_truncate_mutex.
1525 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1526 * allocations fail.
1528 * 16May01: If we're reentered then journal_current_handle() will be
1529 * non-zero. We simply *return*.
1531 * 1 July 2001: @@@ FIXME:
1532 * In journalled data mode, a data buffer may be metadata against the
1533 * current transaction. But the same file is part of a shared mapping
1534 * and someone does a writepage() on it.
1536 * We will move the buffer onto the async_data list, but *after* it has
1537 * been dirtied. So there's a small window where we have dirty data on
1538 * BJ_Metadata.
1540 * Note that this only applies to the last partial page in the file. The
1541 * bit which block_write_full_page() uses prepare/commit for. (That's
1542 * broken code anyway: it's wrong for msync()).
1544 * It's a rare case: affects the final partial page, for journalled data
1545 * where the file is subject to bith write() and writepage() in the same
1546 * transction. To fix it we'll need a custom block_write_full_page().
1547 * We'll probably need that anyway for journalling writepage() output.
1549 * We don't honour synchronous mounts for writepage(). That would be
1550 * disastrous. Any write() or metadata operation will sync the fs for
1551 * us.
1553 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1554 * we don't need to open a transaction here.
1556 static int ext3_ordered_writepage(struct page *page,
1557 struct writeback_control *wbc)
1559 struct inode *inode = page->mapping->host;
1560 struct buffer_head *page_bufs;
1561 handle_t *handle = NULL;
1562 int ret = 0;
1563 int err;
1565 J_ASSERT(PageLocked(page));
1566 WARN_ON_ONCE(IS_RDONLY(inode));
1569 * We give up here if we're reentered, because it might be for a
1570 * different filesystem.
1572 if (ext3_journal_current_handle())
1573 goto out_fail;
1575 if (!page_has_buffers(page)) {
1576 create_empty_buffers(page, inode->i_sb->s_blocksize,
1577 (1 << BH_Dirty)|(1 << BH_Uptodate));
1578 page_bufs = page_buffers(page);
1579 } else {
1580 page_bufs = page_buffers(page);
1581 if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1582 NULL, buffer_unmapped)) {
1583 /* Provide NULL get_block() to catch bugs if buffers
1584 * weren't really mapped */
1585 return block_write_full_page(page, NULL, wbc);
1588 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1590 if (IS_ERR(handle)) {
1591 ret = PTR_ERR(handle);
1592 goto out_fail;
1595 walk_page_buffers(handle, page_bufs, 0,
1596 PAGE_CACHE_SIZE, NULL, bget_one);
1598 ret = block_write_full_page(page, ext3_get_block, wbc);
1601 * The page can become unlocked at any point now, and
1602 * truncate can then come in and change things. So we
1603 * can't touch *page from now on. But *page_bufs is
1604 * safe due to elevated refcount.
1608 * And attach them to the current transaction. But only if
1609 * block_write_full_page() succeeded. Otherwise they are unmapped,
1610 * and generally junk.
1612 if (ret == 0) {
1613 err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1614 NULL, journal_dirty_data_fn);
1615 if (!ret)
1616 ret = err;
1618 walk_page_buffers(handle, page_bufs, 0,
1619 PAGE_CACHE_SIZE, NULL, bput_one);
1620 err = ext3_journal_stop(handle);
1621 if (!ret)
1622 ret = err;
1623 return ret;
1625 out_fail:
1626 redirty_page_for_writepage(wbc, page);
1627 unlock_page(page);
1628 return ret;
1631 static int ext3_writeback_writepage(struct page *page,
1632 struct writeback_control *wbc)
1634 struct inode *inode = page->mapping->host;
1635 handle_t *handle = NULL;
1636 int ret = 0;
1637 int err;
1639 J_ASSERT(PageLocked(page));
1640 WARN_ON_ONCE(IS_RDONLY(inode));
1642 if (ext3_journal_current_handle())
1643 goto out_fail;
1645 if (page_has_buffers(page)) {
1646 if (!walk_page_buffers(NULL, page_buffers(page), 0,
1647 PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1648 /* Provide NULL get_block() to catch bugs if buffers
1649 * weren't really mapped */
1650 return block_write_full_page(page, NULL, wbc);
1654 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1655 if (IS_ERR(handle)) {
1656 ret = PTR_ERR(handle);
1657 goto out_fail;
1660 ret = block_write_full_page(page, ext3_get_block, wbc);
1662 err = ext3_journal_stop(handle);
1663 if (!ret)
1664 ret = err;
1665 return ret;
1667 out_fail:
1668 redirty_page_for_writepage(wbc, page);
1669 unlock_page(page);
1670 return ret;
1673 static int ext3_journalled_writepage(struct page *page,
1674 struct writeback_control *wbc)
1676 struct inode *inode = page->mapping->host;
1677 handle_t *handle = NULL;
1678 int ret = 0;
1679 int err;
1681 J_ASSERT(PageLocked(page));
1682 WARN_ON_ONCE(IS_RDONLY(inode));
1684 if (ext3_journal_current_handle())
1685 goto no_write;
1687 handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1688 if (IS_ERR(handle)) {
1689 ret = PTR_ERR(handle);
1690 goto no_write;
1693 if (!page_has_buffers(page) || PageChecked(page)) {
1695 * It's mmapped pagecache. Add buffers and journal it. There
1696 * doesn't seem much point in redirtying the page here.
1698 ClearPageChecked(page);
1699 ret = block_prepare_write(page, 0, PAGE_CACHE_SIZE,
1700 ext3_get_block);
1701 if (ret != 0) {
1702 ext3_journal_stop(handle);
1703 goto out_unlock;
1705 ret = walk_page_buffers(handle, page_buffers(page), 0,
1706 PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1708 err = walk_page_buffers(handle, page_buffers(page), 0,
1709 PAGE_CACHE_SIZE, NULL, write_end_fn);
1710 if (ret == 0)
1711 ret = err;
1712 ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1713 unlock_page(page);
1714 } else {
1716 * It may be a page full of checkpoint-mode buffers. We don't
1717 * really know unless we go poke around in the buffer_heads.
1718 * But block_write_full_page will do the right thing.
1720 ret = block_write_full_page(page, ext3_get_block, wbc);
1722 err = ext3_journal_stop(handle);
1723 if (!ret)
1724 ret = err;
1725 out:
1726 return ret;
1728 no_write:
1729 redirty_page_for_writepage(wbc, page);
1730 out_unlock:
1731 unlock_page(page);
1732 goto out;
1735 static int ext3_readpage(struct file *file, struct page *page)
1737 return mpage_readpage(page, ext3_get_block);
1740 static int
1741 ext3_readpages(struct file *file, struct address_space *mapping,
1742 struct list_head *pages, unsigned nr_pages)
1744 return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1747 static void ext3_invalidatepage(struct page *page, unsigned long offset)
1749 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1752 * If it's a full truncate we just forget about the pending dirtying
1754 if (offset == 0)
1755 ClearPageChecked(page);
1757 journal_invalidatepage(journal, page, offset);
1760 static int ext3_releasepage(struct page *page, gfp_t wait)
1762 journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1764 WARN_ON(PageChecked(page));
1765 if (!page_has_buffers(page))
1766 return 0;
1767 return journal_try_to_free_buffers(journal, page, wait);
1771 * If the O_DIRECT write will extend the file then add this inode to the
1772 * orphan list. So recovery will truncate it back to the original size
1773 * if the machine crashes during the write.
1775 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1776 * crashes then stale disk data _may_ be exposed inside the file. But current
1777 * VFS code falls back into buffered path in that case so we are safe.
1779 static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1780 const struct iovec *iov, loff_t offset,
1781 unsigned long nr_segs)
1783 struct file *file = iocb->ki_filp;
1784 struct inode *inode = file->f_mapping->host;
1785 struct ext3_inode_info *ei = EXT3_I(inode);
1786 handle_t *handle;
1787 ssize_t ret;
1788 int orphan = 0;
1789 size_t count = iov_length(iov, nr_segs);
1790 int retries = 0;
1792 if (rw == WRITE) {
1793 loff_t final_size = offset + count;
1795 if (final_size > inode->i_size) {
1796 /* Credits for sb + inode write */
1797 handle = ext3_journal_start(inode, 2);
1798 if (IS_ERR(handle)) {
1799 ret = PTR_ERR(handle);
1800 goto out;
1802 ret = ext3_orphan_add(handle, inode);
1803 if (ret) {
1804 ext3_journal_stop(handle);
1805 goto out;
1807 orphan = 1;
1808 ei->i_disksize = inode->i_size;
1809 ext3_journal_stop(handle);
1813 retry:
1814 ret = blockdev_direct_IO(rw, iocb, inode, inode->i_sb->s_bdev, iov,
1815 offset, nr_segs,
1816 ext3_get_block, NULL);
1818 * In case of error extending write may have instantiated a few
1819 * blocks outside i_size. Trim these off again.
1821 if (unlikely((rw & WRITE) && ret < 0)) {
1822 loff_t isize = i_size_read(inode);
1823 loff_t end = offset + iov_length(iov, nr_segs);
1825 if (end > isize)
1826 vmtruncate(inode, isize);
1828 if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1829 goto retry;
1831 if (orphan) {
1832 int err;
1834 /* Credits for sb + inode write */
1835 handle = ext3_journal_start(inode, 2);
1836 if (IS_ERR(handle)) {
1837 /* This is really bad luck. We've written the data
1838 * but cannot extend i_size. Truncate allocated blocks
1839 * and pretend the write failed... */
1840 ext3_truncate(inode);
1841 ret = PTR_ERR(handle);
1842 goto out;
1844 if (inode->i_nlink)
1845 ext3_orphan_del(handle, inode);
1846 if (ret > 0) {
1847 loff_t end = offset + ret;
1848 if (end > inode->i_size) {
1849 ei->i_disksize = end;
1850 i_size_write(inode, end);
1852 * We're going to return a positive `ret'
1853 * here due to non-zero-length I/O, so there's
1854 * no way of reporting error returns from
1855 * ext3_mark_inode_dirty() to userspace. So
1856 * ignore it.
1858 ext3_mark_inode_dirty(handle, inode);
1861 err = ext3_journal_stop(handle);
1862 if (ret == 0)
1863 ret = err;
1865 out:
1866 return ret;
1870 * Pages can be marked dirty completely asynchronously from ext3's journalling
1871 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
1872 * much here because ->set_page_dirty is called under VFS locks. The page is
1873 * not necessarily locked.
1875 * We cannot just dirty the page and leave attached buffers clean, because the
1876 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
1877 * or jbddirty because all the journalling code will explode.
1879 * So what we do is to mark the page "pending dirty" and next time writepage
1880 * is called, propagate that into the buffers appropriately.
1882 static int ext3_journalled_set_page_dirty(struct page *page)
1884 SetPageChecked(page);
1885 return __set_page_dirty_nobuffers(page);
1888 static const struct address_space_operations ext3_ordered_aops = {
1889 .readpage = ext3_readpage,
1890 .readpages = ext3_readpages,
1891 .writepage = ext3_ordered_writepage,
1892 .sync_page = block_sync_page,
1893 .write_begin = ext3_write_begin,
1894 .write_end = ext3_ordered_write_end,
1895 .bmap = ext3_bmap,
1896 .invalidatepage = ext3_invalidatepage,
1897 .releasepage = ext3_releasepage,
1898 .direct_IO = ext3_direct_IO,
1899 .migratepage = buffer_migrate_page,
1900 .is_partially_uptodate = block_is_partially_uptodate,
1901 .error_remove_page = generic_error_remove_page,
1904 static const struct address_space_operations ext3_writeback_aops = {
1905 .readpage = ext3_readpage,
1906 .readpages = ext3_readpages,
1907 .writepage = ext3_writeback_writepage,
1908 .sync_page = block_sync_page,
1909 .write_begin = ext3_write_begin,
1910 .write_end = ext3_writeback_write_end,
1911 .bmap = ext3_bmap,
1912 .invalidatepage = ext3_invalidatepage,
1913 .releasepage = ext3_releasepage,
1914 .direct_IO = ext3_direct_IO,
1915 .migratepage = buffer_migrate_page,
1916 .is_partially_uptodate = block_is_partially_uptodate,
1917 .error_remove_page = generic_error_remove_page,
1920 static const struct address_space_operations ext3_journalled_aops = {
1921 .readpage = ext3_readpage,
1922 .readpages = ext3_readpages,
1923 .writepage = ext3_journalled_writepage,
1924 .sync_page = block_sync_page,
1925 .write_begin = ext3_write_begin,
1926 .write_end = ext3_journalled_write_end,
1927 .set_page_dirty = ext3_journalled_set_page_dirty,
1928 .bmap = ext3_bmap,
1929 .invalidatepage = ext3_invalidatepage,
1930 .releasepage = ext3_releasepage,
1931 .is_partially_uptodate = block_is_partially_uptodate,
1932 .error_remove_page = generic_error_remove_page,
1935 void ext3_set_aops(struct inode *inode)
1937 if (ext3_should_order_data(inode))
1938 inode->i_mapping->a_ops = &ext3_ordered_aops;
1939 else if (ext3_should_writeback_data(inode))
1940 inode->i_mapping->a_ops = &ext3_writeback_aops;
1941 else
1942 inode->i_mapping->a_ops = &ext3_journalled_aops;
1946 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
1947 * up to the end of the block which corresponds to `from'.
1948 * This required during truncate. We need to physically zero the tail end
1949 * of that block so it doesn't yield old data if the file is later grown.
1951 static int ext3_block_truncate_page(handle_t *handle, struct page *page,
1952 struct address_space *mapping, loff_t from)
1954 ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
1955 unsigned offset = from & (PAGE_CACHE_SIZE-1);
1956 unsigned blocksize, iblock, length, pos;
1957 struct inode *inode = mapping->host;
1958 struct buffer_head *bh;
1959 int err = 0;
1961 blocksize = inode->i_sb->s_blocksize;
1962 length = blocksize - (offset & (blocksize - 1));
1963 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
1965 if (!page_has_buffers(page))
1966 create_empty_buffers(page, blocksize, 0);
1968 /* Find the buffer that contains "offset" */
1969 bh = page_buffers(page);
1970 pos = blocksize;
1971 while (offset >= pos) {
1972 bh = bh->b_this_page;
1973 iblock++;
1974 pos += blocksize;
1977 err = 0;
1978 if (buffer_freed(bh)) {
1979 BUFFER_TRACE(bh, "freed: skip");
1980 goto unlock;
1983 if (!buffer_mapped(bh)) {
1984 BUFFER_TRACE(bh, "unmapped");
1985 ext3_get_block(inode, iblock, bh, 0);
1986 /* unmapped? It's a hole - nothing to do */
1987 if (!buffer_mapped(bh)) {
1988 BUFFER_TRACE(bh, "still unmapped");
1989 goto unlock;
1993 /* Ok, it's mapped. Make sure it's up-to-date */
1994 if (PageUptodate(page))
1995 set_buffer_uptodate(bh);
1997 if (!buffer_uptodate(bh)) {
1998 err = -EIO;
1999 ll_rw_block(READ, 1, &bh);
2000 wait_on_buffer(bh);
2001 /* Uhhuh. Read error. Complain and punt. */
2002 if (!buffer_uptodate(bh))
2003 goto unlock;
2006 if (ext3_should_journal_data(inode)) {
2007 BUFFER_TRACE(bh, "get write access");
2008 err = ext3_journal_get_write_access(handle, bh);
2009 if (err)
2010 goto unlock;
2013 zero_user(page, offset, length);
2014 BUFFER_TRACE(bh, "zeroed end of block");
2016 err = 0;
2017 if (ext3_should_journal_data(inode)) {
2018 err = ext3_journal_dirty_metadata(handle, bh);
2019 } else {
2020 if (ext3_should_order_data(inode))
2021 err = ext3_journal_dirty_data(handle, bh);
2022 mark_buffer_dirty(bh);
2025 unlock:
2026 unlock_page(page);
2027 page_cache_release(page);
2028 return err;
2032 * Probably it should be a library function... search for first non-zero word
2033 * or memcmp with zero_page, whatever is better for particular architecture.
2034 * Linus?
2036 static inline int all_zeroes(__le32 *p, __le32 *q)
2038 while (p < q)
2039 if (*p++)
2040 return 0;
2041 return 1;
2045 * ext3_find_shared - find the indirect blocks for partial truncation.
2046 * @inode: inode in question
2047 * @depth: depth of the affected branch
2048 * @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2049 * @chain: place to store the pointers to partial indirect blocks
2050 * @top: place to the (detached) top of branch
2052 * This is a helper function used by ext3_truncate().
2054 * When we do truncate() we may have to clean the ends of several
2055 * indirect blocks but leave the blocks themselves alive. Block is
2056 * partially truncated if some data below the new i_size is refered
2057 * from it (and it is on the path to the first completely truncated
2058 * data block, indeed). We have to free the top of that path along
2059 * with everything to the right of the path. Since no allocation
2060 * past the truncation point is possible until ext3_truncate()
2061 * finishes, we may safely do the latter, but top of branch may
2062 * require special attention - pageout below the truncation point
2063 * might try to populate it.
2065 * We atomically detach the top of branch from the tree, store the
2066 * block number of its root in *@top, pointers to buffer_heads of
2067 * partially truncated blocks - in @chain[].bh and pointers to
2068 * their last elements that should not be removed - in
2069 * @chain[].p. Return value is the pointer to last filled element
2070 * of @chain.
2072 * The work left to caller to do the actual freeing of subtrees:
2073 * a) free the subtree starting from *@top
2074 * b) free the subtrees whose roots are stored in
2075 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2076 * c) free the subtrees growing from the inode past the @chain[0].
2077 * (no partially truncated stuff there). */
2079 static Indirect *ext3_find_shared(struct inode *inode, int depth,
2080 int offsets[4], Indirect chain[4], __le32 *top)
2082 Indirect *partial, *p;
2083 int k, err;
2085 *top = 0;
2086 /* Make k index the deepest non-null offset + 1 */
2087 for (k = depth; k > 1 && !offsets[k-1]; k--)
2089 partial = ext3_get_branch(inode, k, offsets, chain, &err);
2090 /* Writer: pointers */
2091 if (!partial)
2092 partial = chain + k-1;
2094 * If the branch acquired continuation since we've looked at it -
2095 * fine, it should all survive and (new) top doesn't belong to us.
2097 if (!partial->key && *partial->p)
2098 /* Writer: end */
2099 goto no_top;
2100 for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2103 * OK, we've found the last block that must survive. The rest of our
2104 * branch should be detached before unlocking. However, if that rest
2105 * of branch is all ours and does not grow immediately from the inode
2106 * it's easier to cheat and just decrement partial->p.
2108 if (p == chain + k - 1 && p > chain) {
2109 p->p--;
2110 } else {
2111 *top = *p->p;
2112 /* Nope, don't do this in ext3. Must leave the tree intact */
2113 #if 0
2114 *p->p = 0;
2115 #endif
2117 /* Writer: end */
2119 while(partial > p) {
2120 brelse(partial->bh);
2121 partial--;
2123 no_top:
2124 return partial;
2128 * Zero a number of block pointers in either an inode or an indirect block.
2129 * If we restart the transaction we must again get write access to the
2130 * indirect block for further modification.
2132 * We release `count' blocks on disk, but (last - first) may be greater
2133 * than `count' because there can be holes in there.
2135 static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2136 struct buffer_head *bh, ext3_fsblk_t block_to_free,
2137 unsigned long count, __le32 *first, __le32 *last)
2139 __le32 *p;
2140 if (try_to_extend_transaction(handle, inode)) {
2141 if (bh) {
2142 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2143 ext3_journal_dirty_metadata(handle, bh);
2145 ext3_mark_inode_dirty(handle, inode);
2146 truncate_restart_transaction(handle, inode);
2147 if (bh) {
2148 BUFFER_TRACE(bh, "retaking write access");
2149 ext3_journal_get_write_access(handle, bh);
2154 * Any buffers which are on the journal will be in memory. We find
2155 * them on the hash table so journal_revoke() will run journal_forget()
2156 * on them. We've already detached each block from the file, so
2157 * bforget() in journal_forget() should be safe.
2159 * AKPM: turn on bforget in journal_forget()!!!
2161 for (p = first; p < last; p++) {
2162 u32 nr = le32_to_cpu(*p);
2163 if (nr) {
2164 struct buffer_head *bh;
2166 *p = 0;
2167 bh = sb_find_get_block(inode->i_sb, nr);
2168 ext3_forget(handle, 0, inode, bh, nr);
2172 ext3_free_blocks(handle, inode, block_to_free, count);
2176 * ext3_free_data - free a list of data blocks
2177 * @handle: handle for this transaction
2178 * @inode: inode we are dealing with
2179 * @this_bh: indirect buffer_head which contains *@first and *@last
2180 * @first: array of block numbers
2181 * @last: points immediately past the end of array
2183 * We are freeing all blocks refered from that array (numbers are stored as
2184 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2186 * We accumulate contiguous runs of blocks to free. Conveniently, if these
2187 * blocks are contiguous then releasing them at one time will only affect one
2188 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2189 * actually use a lot of journal space.
2191 * @this_bh will be %NULL if @first and @last point into the inode's direct
2192 * block pointers.
2194 static void ext3_free_data(handle_t *handle, struct inode *inode,
2195 struct buffer_head *this_bh,
2196 __le32 *first, __le32 *last)
2198 ext3_fsblk_t block_to_free = 0; /* Starting block # of a run */
2199 unsigned long count = 0; /* Number of blocks in the run */
2200 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
2201 corresponding to
2202 block_to_free */
2203 ext3_fsblk_t nr; /* Current block # */
2204 __le32 *p; /* Pointer into inode/ind
2205 for current block */
2206 int err;
2208 if (this_bh) { /* For indirect block */
2209 BUFFER_TRACE(this_bh, "get_write_access");
2210 err = ext3_journal_get_write_access(handle, this_bh);
2211 /* Important: if we can't update the indirect pointers
2212 * to the blocks, we can't free them. */
2213 if (err)
2214 return;
2217 for (p = first; p < last; p++) {
2218 nr = le32_to_cpu(*p);
2219 if (nr) {
2220 /* accumulate blocks to free if they're contiguous */
2221 if (count == 0) {
2222 block_to_free = nr;
2223 block_to_free_p = p;
2224 count = 1;
2225 } else if (nr == block_to_free + count) {
2226 count++;
2227 } else {
2228 ext3_clear_blocks(handle, inode, this_bh,
2229 block_to_free,
2230 count, block_to_free_p, p);
2231 block_to_free = nr;
2232 block_to_free_p = p;
2233 count = 1;
2238 if (count > 0)
2239 ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2240 count, block_to_free_p, p);
2242 if (this_bh) {
2243 BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2246 * The buffer head should have an attached journal head at this
2247 * point. However, if the data is corrupted and an indirect
2248 * block pointed to itself, it would have been detached when
2249 * the block was cleared. Check for this instead of OOPSing.
2251 if (bh2jh(this_bh))
2252 ext3_journal_dirty_metadata(handle, this_bh);
2253 else
2254 ext3_error(inode->i_sb, "ext3_free_data",
2255 "circular indirect block detected, "
2256 "inode=%lu, block=%llu",
2257 inode->i_ino,
2258 (unsigned long long)this_bh->b_blocknr);
2263 * ext3_free_branches - free an array of branches
2264 * @handle: JBD handle for this transaction
2265 * @inode: inode we are dealing with
2266 * @parent_bh: the buffer_head which contains *@first and *@last
2267 * @first: array of block numbers
2268 * @last: pointer immediately past the end of array
2269 * @depth: depth of the branches to free
2271 * We are freeing all blocks refered from these branches (numbers are
2272 * stored as little-endian 32-bit) and updating @inode->i_blocks
2273 * appropriately.
2275 static void ext3_free_branches(handle_t *handle, struct inode *inode,
2276 struct buffer_head *parent_bh,
2277 __le32 *first, __le32 *last, int depth)
2279 ext3_fsblk_t nr;
2280 __le32 *p;
2282 if (is_handle_aborted(handle))
2283 return;
2285 if (depth--) {
2286 struct buffer_head *bh;
2287 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2288 p = last;
2289 while (--p >= first) {
2290 nr = le32_to_cpu(*p);
2291 if (!nr)
2292 continue; /* A hole */
2294 /* Go read the buffer for the next level down */
2295 bh = sb_bread(inode->i_sb, nr);
2298 * A read failure? Report error and clear slot
2299 * (should be rare).
2301 if (!bh) {
2302 ext3_error(inode->i_sb, "ext3_free_branches",
2303 "Read failure, inode=%lu, block="E3FSBLK,
2304 inode->i_ino, nr);
2305 continue;
2308 /* This zaps the entire block. Bottom up. */
2309 BUFFER_TRACE(bh, "free child branches");
2310 ext3_free_branches(handle, inode, bh,
2311 (__le32*)bh->b_data,
2312 (__le32*)bh->b_data + addr_per_block,
2313 depth);
2316 * Everything below this this pointer has been
2317 * released. Now let this top-of-subtree go.
2319 * We want the freeing of this indirect block to be
2320 * atomic in the journal with the updating of the
2321 * bitmap block which owns it. So make some room in
2322 * the journal.
2324 * We zero the parent pointer *after* freeing its
2325 * pointee in the bitmaps, so if extend_transaction()
2326 * for some reason fails to put the bitmap changes and
2327 * the release into the same transaction, recovery
2328 * will merely complain about releasing a free block,
2329 * rather than leaking blocks.
2331 if (is_handle_aborted(handle))
2332 return;
2333 if (try_to_extend_transaction(handle, inode)) {
2334 ext3_mark_inode_dirty(handle, inode);
2335 truncate_restart_transaction(handle, inode);
2339 * We've probably journalled the indirect block several
2340 * times during the truncate. But it's no longer
2341 * needed and we now drop it from the transaction via
2342 * journal_revoke().
2344 * That's easy if it's exclusively part of this
2345 * transaction. But if it's part of the committing
2346 * transaction then journal_forget() will simply
2347 * brelse() it. That means that if the underlying
2348 * block is reallocated in ext3_get_block(),
2349 * unmap_underlying_metadata() will find this block
2350 * and will try to get rid of it. damn, damn. Thus
2351 * we don't allow a block to be reallocated until
2352 * a transaction freeing it has fully committed.
2354 * We also have to make sure journal replay after a
2355 * crash does not overwrite non-journaled data blocks
2356 * with old metadata when the block got reallocated for
2357 * data. Thus we have to store a revoke record for a
2358 * block in the same transaction in which we free the
2359 * block.
2361 ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2363 ext3_free_blocks(handle, inode, nr, 1);
2365 if (parent_bh) {
2367 * The block which we have just freed is
2368 * pointed to by an indirect block: journal it
2370 BUFFER_TRACE(parent_bh, "get_write_access");
2371 if (!ext3_journal_get_write_access(handle,
2372 parent_bh)){
2373 *p = 0;
2374 BUFFER_TRACE(parent_bh,
2375 "call ext3_journal_dirty_metadata");
2376 ext3_journal_dirty_metadata(handle,
2377 parent_bh);
2381 } else {
2382 /* We have reached the bottom of the tree. */
2383 BUFFER_TRACE(parent_bh, "free data blocks");
2384 ext3_free_data(handle, inode, parent_bh, first, last);
2388 int ext3_can_truncate(struct inode *inode)
2390 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2391 return 0;
2392 if (S_ISREG(inode->i_mode))
2393 return 1;
2394 if (S_ISDIR(inode->i_mode))
2395 return 1;
2396 if (S_ISLNK(inode->i_mode))
2397 return !ext3_inode_is_fast_symlink(inode);
2398 return 0;
2402 * ext3_truncate()
2404 * We block out ext3_get_block() block instantiations across the entire
2405 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2406 * simultaneously on behalf of the same inode.
2408 * As we work through the truncate and commmit bits of it to the journal there
2409 * is one core, guiding principle: the file's tree must always be consistent on
2410 * disk. We must be able to restart the truncate after a crash.
2412 * The file's tree may be transiently inconsistent in memory (although it
2413 * probably isn't), but whenever we close off and commit a journal transaction,
2414 * the contents of (the filesystem + the journal) must be consistent and
2415 * restartable. It's pretty simple, really: bottom up, right to left (although
2416 * left-to-right works OK too).
2418 * Note that at recovery time, journal replay occurs *before* the restart of
2419 * truncate against the orphan inode list.
2421 * The committed inode has the new, desired i_size (which is the same as
2422 * i_disksize in this case). After a crash, ext3_orphan_cleanup() will see
2423 * that this inode's truncate did not complete and it will again call
2424 * ext3_truncate() to have another go. So there will be instantiated blocks
2425 * to the right of the truncation point in a crashed ext3 filesystem. But
2426 * that's fine - as long as they are linked from the inode, the post-crash
2427 * ext3_truncate() run will find them and release them.
2429 void ext3_truncate(struct inode *inode)
2431 handle_t *handle;
2432 struct ext3_inode_info *ei = EXT3_I(inode);
2433 __le32 *i_data = ei->i_data;
2434 int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2435 struct address_space *mapping = inode->i_mapping;
2436 int offsets[4];
2437 Indirect chain[4];
2438 Indirect *partial;
2439 __le32 nr = 0;
2440 int n;
2441 long last_block;
2442 unsigned blocksize = inode->i_sb->s_blocksize;
2443 struct page *page;
2445 if (!ext3_can_truncate(inode))
2446 goto out_notrans;
2448 if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2449 ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2452 * We have to lock the EOF page here, because lock_page() nests
2453 * outside journal_start().
2455 if ((inode->i_size & (blocksize - 1)) == 0) {
2456 /* Block boundary? Nothing to do */
2457 page = NULL;
2458 } else {
2459 page = grab_cache_page(mapping,
2460 inode->i_size >> PAGE_CACHE_SHIFT);
2461 if (!page)
2462 goto out_notrans;
2465 handle = start_transaction(inode);
2466 if (IS_ERR(handle)) {
2467 if (page) {
2468 clear_highpage(page);
2469 flush_dcache_page(page);
2470 unlock_page(page);
2471 page_cache_release(page);
2473 goto out_notrans;
2476 last_block = (inode->i_size + blocksize-1)
2477 >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2479 if (page)
2480 ext3_block_truncate_page(handle, page, mapping, inode->i_size);
2482 n = ext3_block_to_path(inode, last_block, offsets, NULL);
2483 if (n == 0)
2484 goto out_stop; /* error */
2487 * OK. This truncate is going to happen. We add the inode to the
2488 * orphan list, so that if this truncate spans multiple transactions,
2489 * and we crash, we will resume the truncate when the filesystem
2490 * recovers. It also marks the inode dirty, to catch the new size.
2492 * Implication: the file must always be in a sane, consistent
2493 * truncatable state while each transaction commits.
2495 if (ext3_orphan_add(handle, inode))
2496 goto out_stop;
2499 * The orphan list entry will now protect us from any crash which
2500 * occurs before the truncate completes, so it is now safe to propagate
2501 * the new, shorter inode size (held for now in i_size) into the
2502 * on-disk inode. We do this via i_disksize, which is the value which
2503 * ext3 *really* writes onto the disk inode.
2505 ei->i_disksize = inode->i_size;
2508 * From here we block out all ext3_get_block() callers who want to
2509 * modify the block allocation tree.
2511 mutex_lock(&ei->truncate_mutex);
2513 if (n == 1) { /* direct blocks */
2514 ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2515 i_data + EXT3_NDIR_BLOCKS);
2516 goto do_indirects;
2519 partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2520 /* Kill the top of shared branch (not detached) */
2521 if (nr) {
2522 if (partial == chain) {
2523 /* Shared branch grows from the inode */
2524 ext3_free_branches(handle, inode, NULL,
2525 &nr, &nr+1, (chain+n-1) - partial);
2526 *partial->p = 0;
2528 * We mark the inode dirty prior to restart,
2529 * and prior to stop. No need for it here.
2531 } else {
2532 /* Shared branch grows from an indirect block */
2533 BUFFER_TRACE(partial->bh, "get_write_access");
2534 ext3_free_branches(handle, inode, partial->bh,
2535 partial->p,
2536 partial->p+1, (chain+n-1) - partial);
2539 /* Clear the ends of indirect blocks on the shared branch */
2540 while (partial > chain) {
2541 ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2542 (__le32*)partial->bh->b_data+addr_per_block,
2543 (chain+n-1) - partial);
2544 BUFFER_TRACE(partial->bh, "call brelse");
2545 brelse (partial->bh);
2546 partial--;
2548 do_indirects:
2549 /* Kill the remaining (whole) subtrees */
2550 switch (offsets[0]) {
2551 default:
2552 nr = i_data[EXT3_IND_BLOCK];
2553 if (nr) {
2554 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2555 i_data[EXT3_IND_BLOCK] = 0;
2557 case EXT3_IND_BLOCK:
2558 nr = i_data[EXT3_DIND_BLOCK];
2559 if (nr) {
2560 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2561 i_data[EXT3_DIND_BLOCK] = 0;
2563 case EXT3_DIND_BLOCK:
2564 nr = i_data[EXT3_TIND_BLOCK];
2565 if (nr) {
2566 ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2567 i_data[EXT3_TIND_BLOCK] = 0;
2569 case EXT3_TIND_BLOCK:
2573 ext3_discard_reservation(inode);
2575 mutex_unlock(&ei->truncate_mutex);
2576 inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2577 ext3_mark_inode_dirty(handle, inode);
2580 * In a multi-transaction truncate, we only make the final transaction
2581 * synchronous
2583 if (IS_SYNC(inode))
2584 handle->h_sync = 1;
2585 out_stop:
2587 * If this was a simple ftruncate(), and the file will remain alive
2588 * then we need to clear up the orphan record which we created above.
2589 * However, if this was a real unlink then we were called by
2590 * ext3_evict_inode(), and we allow that function to clean up the
2591 * orphan info for us.
2593 if (inode->i_nlink)
2594 ext3_orphan_del(handle, inode);
2596 ext3_journal_stop(handle);
2597 return;
2598 out_notrans:
2600 * Delete the inode from orphan list so that it doesn't stay there
2601 * forever and trigger assertion on umount.
2603 if (inode->i_nlink)
2604 ext3_orphan_del(NULL, inode);
2607 static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2608 unsigned long ino, struct ext3_iloc *iloc)
2610 unsigned long block_group;
2611 unsigned long offset;
2612 ext3_fsblk_t block;
2613 struct ext3_group_desc *gdp;
2615 if (!ext3_valid_inum(sb, ino)) {
2617 * This error is already checked for in namei.c unless we are
2618 * looking at an NFS filehandle, in which case no error
2619 * report is needed
2621 return 0;
2624 block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2625 gdp = ext3_get_group_desc(sb, block_group, NULL);
2626 if (!gdp)
2627 return 0;
2629 * Figure out the offset within the block group inode table
2631 offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2632 EXT3_INODE_SIZE(sb);
2633 block = le32_to_cpu(gdp->bg_inode_table) +
2634 (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2636 iloc->block_group = block_group;
2637 iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2638 return block;
2642 * ext3_get_inode_loc returns with an extra refcount against the inode's
2643 * underlying buffer_head on success. If 'in_mem' is true, we have all
2644 * data in memory that is needed to recreate the on-disk version of this
2645 * inode.
2647 static int __ext3_get_inode_loc(struct inode *inode,
2648 struct ext3_iloc *iloc, int in_mem)
2650 ext3_fsblk_t block;
2651 struct buffer_head *bh;
2653 block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2654 if (!block)
2655 return -EIO;
2657 bh = sb_getblk(inode->i_sb, block);
2658 if (!bh) {
2659 ext3_error (inode->i_sb, "ext3_get_inode_loc",
2660 "unable to read inode block - "
2661 "inode=%lu, block="E3FSBLK,
2662 inode->i_ino, block);
2663 return -EIO;
2665 if (!buffer_uptodate(bh)) {
2666 lock_buffer(bh);
2669 * If the buffer has the write error flag, we have failed
2670 * to write out another inode in the same block. In this
2671 * case, we don't have to read the block because we may
2672 * read the old inode data successfully.
2674 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2675 set_buffer_uptodate(bh);
2677 if (buffer_uptodate(bh)) {
2678 /* someone brought it uptodate while we waited */
2679 unlock_buffer(bh);
2680 goto has_buffer;
2684 * If we have all information of the inode in memory and this
2685 * is the only valid inode in the block, we need not read the
2686 * block.
2688 if (in_mem) {
2689 struct buffer_head *bitmap_bh;
2690 struct ext3_group_desc *desc;
2691 int inodes_per_buffer;
2692 int inode_offset, i;
2693 int block_group;
2694 int start;
2696 block_group = (inode->i_ino - 1) /
2697 EXT3_INODES_PER_GROUP(inode->i_sb);
2698 inodes_per_buffer = bh->b_size /
2699 EXT3_INODE_SIZE(inode->i_sb);
2700 inode_offset = ((inode->i_ino - 1) %
2701 EXT3_INODES_PER_GROUP(inode->i_sb));
2702 start = inode_offset & ~(inodes_per_buffer - 1);
2704 /* Is the inode bitmap in cache? */
2705 desc = ext3_get_group_desc(inode->i_sb,
2706 block_group, NULL);
2707 if (!desc)
2708 goto make_io;
2710 bitmap_bh = sb_getblk(inode->i_sb,
2711 le32_to_cpu(desc->bg_inode_bitmap));
2712 if (!bitmap_bh)
2713 goto make_io;
2716 * If the inode bitmap isn't in cache then the
2717 * optimisation may end up performing two reads instead
2718 * of one, so skip it.
2720 if (!buffer_uptodate(bitmap_bh)) {
2721 brelse(bitmap_bh);
2722 goto make_io;
2724 for (i = start; i < start + inodes_per_buffer; i++) {
2725 if (i == inode_offset)
2726 continue;
2727 if (ext3_test_bit(i, bitmap_bh->b_data))
2728 break;
2730 brelse(bitmap_bh);
2731 if (i == start + inodes_per_buffer) {
2732 /* all other inodes are free, so skip I/O */
2733 memset(bh->b_data, 0, bh->b_size);
2734 set_buffer_uptodate(bh);
2735 unlock_buffer(bh);
2736 goto has_buffer;
2740 make_io:
2742 * There are other valid inodes in the buffer, this inode
2743 * has in-inode xattrs, or we don't have this inode in memory.
2744 * Read the block from disk.
2746 get_bh(bh);
2747 bh->b_end_io = end_buffer_read_sync;
2748 submit_bh(READ_META, bh);
2749 wait_on_buffer(bh);
2750 if (!buffer_uptodate(bh)) {
2751 ext3_error(inode->i_sb, "ext3_get_inode_loc",
2752 "unable to read inode block - "
2753 "inode=%lu, block="E3FSBLK,
2754 inode->i_ino, block);
2755 brelse(bh);
2756 return -EIO;
2759 has_buffer:
2760 iloc->bh = bh;
2761 return 0;
2764 int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2766 /* We have all inode data except xattrs in memory here. */
2767 return __ext3_get_inode_loc(inode, iloc,
2768 !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2771 void ext3_set_inode_flags(struct inode *inode)
2773 unsigned int flags = EXT3_I(inode)->i_flags;
2775 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2776 if (flags & EXT3_SYNC_FL)
2777 inode->i_flags |= S_SYNC;
2778 if (flags & EXT3_APPEND_FL)
2779 inode->i_flags |= S_APPEND;
2780 if (flags & EXT3_IMMUTABLE_FL)
2781 inode->i_flags |= S_IMMUTABLE;
2782 if (flags & EXT3_NOATIME_FL)
2783 inode->i_flags |= S_NOATIME;
2784 if (flags & EXT3_DIRSYNC_FL)
2785 inode->i_flags |= S_DIRSYNC;
2788 /* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2789 void ext3_get_inode_flags(struct ext3_inode_info *ei)
2791 unsigned int flags = ei->vfs_inode.i_flags;
2793 ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2794 EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2795 if (flags & S_SYNC)
2796 ei->i_flags |= EXT3_SYNC_FL;
2797 if (flags & S_APPEND)
2798 ei->i_flags |= EXT3_APPEND_FL;
2799 if (flags & S_IMMUTABLE)
2800 ei->i_flags |= EXT3_IMMUTABLE_FL;
2801 if (flags & S_NOATIME)
2802 ei->i_flags |= EXT3_NOATIME_FL;
2803 if (flags & S_DIRSYNC)
2804 ei->i_flags |= EXT3_DIRSYNC_FL;
2807 struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2809 struct ext3_iloc iloc;
2810 struct ext3_inode *raw_inode;
2811 struct ext3_inode_info *ei;
2812 struct buffer_head *bh;
2813 struct inode *inode;
2814 journal_t *journal = EXT3_SB(sb)->s_journal;
2815 transaction_t *transaction;
2816 long ret;
2817 int block;
2819 inode = iget_locked(sb, ino);
2820 if (!inode)
2821 return ERR_PTR(-ENOMEM);
2822 if (!(inode->i_state & I_NEW))
2823 return inode;
2825 ei = EXT3_I(inode);
2826 ei->i_block_alloc_info = NULL;
2828 ret = __ext3_get_inode_loc(inode, &iloc, 0);
2829 if (ret < 0)
2830 goto bad_inode;
2831 bh = iloc.bh;
2832 raw_inode = ext3_raw_inode(&iloc);
2833 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2834 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2835 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2836 if(!(test_opt (inode->i_sb, NO_UID32))) {
2837 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2838 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2840 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2841 inode->i_size = le32_to_cpu(raw_inode->i_size);
2842 inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2843 inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2844 inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2845 inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2847 ei->i_state_flags = 0;
2848 ei->i_dir_start_lookup = 0;
2849 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2850 /* We now have enough fields to check if the inode was active or not.
2851 * This is needed because nfsd might try to access dead inodes
2852 * the test is that same one that e2fsck uses
2853 * NeilBrown 1999oct15
2855 if (inode->i_nlink == 0) {
2856 if (inode->i_mode == 0 ||
2857 !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2858 /* this inode is deleted */
2859 brelse (bh);
2860 ret = -ESTALE;
2861 goto bad_inode;
2863 /* The only unlinked inodes we let through here have
2864 * valid i_mode and are being read by the orphan
2865 * recovery code: that's fine, we're about to complete
2866 * the process of deleting those. */
2868 inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2869 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2870 #ifdef EXT3_FRAGMENTS
2871 ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2872 ei->i_frag_no = raw_inode->i_frag;
2873 ei->i_frag_size = raw_inode->i_fsize;
2874 #endif
2875 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2876 if (!S_ISREG(inode->i_mode)) {
2877 ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2878 } else {
2879 inode->i_size |=
2880 ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2882 ei->i_disksize = inode->i_size;
2883 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2884 ei->i_block_group = iloc.block_group;
2886 * NOTE! The in-memory inode i_data array is in little-endian order
2887 * even on big-endian machines: we do NOT byteswap the block numbers!
2889 for (block = 0; block < EXT3_N_BLOCKS; block++)
2890 ei->i_data[block] = raw_inode->i_block[block];
2891 INIT_LIST_HEAD(&ei->i_orphan);
2894 * Set transaction id's of transactions that have to be committed
2895 * to finish f[data]sync. We set them to currently running transaction
2896 * as we cannot be sure that the inode or some of its metadata isn't
2897 * part of the transaction - the inode could have been reclaimed and
2898 * now it is reread from disk.
2900 if (journal) {
2901 tid_t tid;
2903 spin_lock(&journal->j_state_lock);
2904 if (journal->j_running_transaction)
2905 transaction = journal->j_running_transaction;
2906 else
2907 transaction = journal->j_committing_transaction;
2908 if (transaction)
2909 tid = transaction->t_tid;
2910 else
2911 tid = journal->j_commit_sequence;
2912 spin_unlock(&journal->j_state_lock);
2913 atomic_set(&ei->i_sync_tid, tid);
2914 atomic_set(&ei->i_datasync_tid, tid);
2917 if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2918 EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2920 * When mke2fs creates big inodes it does not zero out
2921 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2922 * so ignore those first few inodes.
2924 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2925 if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2926 EXT3_INODE_SIZE(inode->i_sb)) {
2927 brelse (bh);
2928 ret = -EIO;
2929 goto bad_inode;
2931 if (ei->i_extra_isize == 0) {
2932 /* The extra space is currently unused. Use it. */
2933 ei->i_extra_isize = sizeof(struct ext3_inode) -
2934 EXT3_GOOD_OLD_INODE_SIZE;
2935 } else {
2936 __le32 *magic = (void *)raw_inode +
2937 EXT3_GOOD_OLD_INODE_SIZE +
2938 ei->i_extra_isize;
2939 if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
2940 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
2942 } else
2943 ei->i_extra_isize = 0;
2945 if (S_ISREG(inode->i_mode)) {
2946 inode->i_op = &ext3_file_inode_operations;
2947 inode->i_fop = &ext3_file_operations;
2948 ext3_set_aops(inode);
2949 } else if (S_ISDIR(inode->i_mode)) {
2950 inode->i_op = &ext3_dir_inode_operations;
2951 inode->i_fop = &ext3_dir_operations;
2952 } else if (S_ISLNK(inode->i_mode)) {
2953 if (ext3_inode_is_fast_symlink(inode)) {
2954 inode->i_op = &ext3_fast_symlink_inode_operations;
2955 nd_terminate_link(ei->i_data, inode->i_size,
2956 sizeof(ei->i_data) - 1);
2957 } else {
2958 inode->i_op = &ext3_symlink_inode_operations;
2959 ext3_set_aops(inode);
2961 } else {
2962 inode->i_op = &ext3_special_inode_operations;
2963 if (raw_inode->i_block[0])
2964 init_special_inode(inode, inode->i_mode,
2965 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
2966 else
2967 init_special_inode(inode, inode->i_mode,
2968 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
2970 brelse (iloc.bh);
2971 ext3_set_inode_flags(inode);
2972 unlock_new_inode(inode);
2973 return inode;
2975 bad_inode:
2976 iget_failed(inode);
2977 return ERR_PTR(ret);
2981 * Post the struct inode info into an on-disk inode location in the
2982 * buffer-cache. This gobbles the caller's reference to the
2983 * buffer_head in the inode location struct.
2985 * The caller must have write access to iloc->bh.
2987 static int ext3_do_update_inode(handle_t *handle,
2988 struct inode *inode,
2989 struct ext3_iloc *iloc)
2991 struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
2992 struct ext3_inode_info *ei = EXT3_I(inode);
2993 struct buffer_head *bh = iloc->bh;
2994 int err = 0, rc, block;
2996 again:
2997 /* we can't allow multiple procs in here at once, its a bit racey */
2998 lock_buffer(bh);
3000 /* For fields not not tracking in the in-memory inode,
3001 * initialise them to zero for new inodes. */
3002 if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3003 memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3005 ext3_get_inode_flags(ei);
3006 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3007 if(!(test_opt(inode->i_sb, NO_UID32))) {
3008 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3009 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3011 * Fix up interoperability with old kernels. Otherwise, old inodes get
3012 * re-used with the upper 16 bits of the uid/gid intact
3014 if(!ei->i_dtime) {
3015 raw_inode->i_uid_high =
3016 cpu_to_le16(high_16_bits(inode->i_uid));
3017 raw_inode->i_gid_high =
3018 cpu_to_le16(high_16_bits(inode->i_gid));
3019 } else {
3020 raw_inode->i_uid_high = 0;
3021 raw_inode->i_gid_high = 0;
3023 } else {
3024 raw_inode->i_uid_low =
3025 cpu_to_le16(fs_high2lowuid(inode->i_uid));
3026 raw_inode->i_gid_low =
3027 cpu_to_le16(fs_high2lowgid(inode->i_gid));
3028 raw_inode->i_uid_high = 0;
3029 raw_inode->i_gid_high = 0;
3031 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3032 raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3033 raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3034 raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3035 raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3036 raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3037 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3038 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3039 #ifdef EXT3_FRAGMENTS
3040 raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3041 raw_inode->i_frag = ei->i_frag_no;
3042 raw_inode->i_fsize = ei->i_frag_size;
3043 #endif
3044 raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3045 if (!S_ISREG(inode->i_mode)) {
3046 raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3047 } else {
3048 raw_inode->i_size_high =
3049 cpu_to_le32(ei->i_disksize >> 32);
3050 if (ei->i_disksize > 0x7fffffffULL) {
3051 struct super_block *sb = inode->i_sb;
3052 if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3053 EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3054 EXT3_SB(sb)->s_es->s_rev_level ==
3055 cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3056 /* If this is the first large file
3057 * created, add a flag to the superblock.
3059 unlock_buffer(bh);
3060 err = ext3_journal_get_write_access(handle,
3061 EXT3_SB(sb)->s_sbh);
3062 if (err)
3063 goto out_brelse;
3065 ext3_update_dynamic_rev(sb);
3066 EXT3_SET_RO_COMPAT_FEATURE(sb,
3067 EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3068 handle->h_sync = 1;
3069 err = ext3_journal_dirty_metadata(handle,
3070 EXT3_SB(sb)->s_sbh);
3071 /* get our lock and start over */
3072 goto again;
3076 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3077 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3078 if (old_valid_dev(inode->i_rdev)) {
3079 raw_inode->i_block[0] =
3080 cpu_to_le32(old_encode_dev(inode->i_rdev));
3081 raw_inode->i_block[1] = 0;
3082 } else {
3083 raw_inode->i_block[0] = 0;
3084 raw_inode->i_block[1] =
3085 cpu_to_le32(new_encode_dev(inode->i_rdev));
3086 raw_inode->i_block[2] = 0;
3088 } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3089 raw_inode->i_block[block] = ei->i_data[block];
3091 if (ei->i_extra_isize)
3092 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3094 BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3095 unlock_buffer(bh);
3096 rc = ext3_journal_dirty_metadata(handle, bh);
3097 if (!err)
3098 err = rc;
3099 ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3101 atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3102 out_brelse:
3103 brelse (bh);
3104 ext3_std_error(inode->i_sb, err);
3105 return err;
3109 * ext3_write_inode()
3111 * We are called from a few places:
3113 * - Within generic_file_write() for O_SYNC files.
3114 * Here, there will be no transaction running. We wait for any running
3115 * trasnaction to commit.
3117 * - Within sys_sync(), kupdate and such.
3118 * We wait on commit, if tol to.
3120 * - Within prune_icache() (PF_MEMALLOC == true)
3121 * Here we simply return. We can't afford to block kswapd on the
3122 * journal commit.
3124 * In all cases it is actually safe for us to return without doing anything,
3125 * because the inode has been copied into a raw inode buffer in
3126 * ext3_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
3127 * knfsd.
3129 * Note that we are absolutely dependent upon all inode dirtiers doing the
3130 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3131 * which we are interested.
3133 * It would be a bug for them to not do this. The code:
3135 * mark_inode_dirty(inode)
3136 * stuff();
3137 * inode->i_size = expr;
3139 * is in error because a kswapd-driven write_inode() could occur while
3140 * `stuff()' is running, and the new i_size will be lost. Plus the inode
3141 * will no longer be on the superblock's dirty inode list.
3143 int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3145 if (current->flags & PF_MEMALLOC)
3146 return 0;
3148 if (ext3_journal_current_handle()) {
3149 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3150 dump_stack();
3151 return -EIO;
3154 if (wbc->sync_mode != WB_SYNC_ALL)
3155 return 0;
3157 return ext3_force_commit(inode->i_sb);
3161 * ext3_setattr()
3163 * Called from notify_change.
3165 * We want to trap VFS attempts to truncate the file as soon as
3166 * possible. In particular, we want to make sure that when the VFS
3167 * shrinks i_size, we put the inode on the orphan list and modify
3168 * i_disksize immediately, so that during the subsequent flushing of
3169 * dirty pages and freeing of disk blocks, we can guarantee that any
3170 * commit will leave the blocks being flushed in an unused state on
3171 * disk. (On recovery, the inode will get truncated and the blocks will
3172 * be freed, so we have a strong guarantee that no future commit will
3173 * leave these blocks visible to the user.)
3175 * Called with inode->sem down.
3177 int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3179 struct inode *inode = dentry->d_inode;
3180 int error, rc = 0;
3181 const unsigned int ia_valid = attr->ia_valid;
3183 error = inode_change_ok(inode, attr);
3184 if (error)
3185 return error;
3187 if (is_quota_modification(inode, attr))
3188 dquot_initialize(inode);
3189 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3190 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3191 handle_t *handle;
3193 /* (user+group)*(old+new) structure, inode write (sb,
3194 * inode block, ? - but truncate inode update has it) */
3195 handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3196 EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3197 if (IS_ERR(handle)) {
3198 error = PTR_ERR(handle);
3199 goto err_out;
3201 error = dquot_transfer(inode, attr);
3202 if (error) {
3203 ext3_journal_stop(handle);
3204 return error;
3206 /* Update corresponding info in inode so that everything is in
3207 * one transaction */
3208 if (attr->ia_valid & ATTR_UID)
3209 inode->i_uid = attr->ia_uid;
3210 if (attr->ia_valid & ATTR_GID)
3211 inode->i_gid = attr->ia_gid;
3212 error = ext3_mark_inode_dirty(handle, inode);
3213 ext3_journal_stop(handle);
3216 if (S_ISREG(inode->i_mode) &&
3217 attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3218 handle_t *handle;
3220 handle = ext3_journal_start(inode, 3);
3221 if (IS_ERR(handle)) {
3222 error = PTR_ERR(handle);
3223 goto err_out;
3226 error = ext3_orphan_add(handle, inode);
3227 EXT3_I(inode)->i_disksize = attr->ia_size;
3228 rc = ext3_mark_inode_dirty(handle, inode);
3229 if (!error)
3230 error = rc;
3231 ext3_journal_stop(handle);
3234 if ((attr->ia_valid & ATTR_SIZE) &&
3235 attr->ia_size != i_size_read(inode)) {
3236 rc = vmtruncate(inode, attr->ia_size);
3237 if (rc)
3238 goto err_out;
3241 setattr_copy(inode, attr);
3242 mark_inode_dirty(inode);
3244 if (ia_valid & ATTR_MODE)
3245 rc = ext3_acl_chmod(inode);
3247 err_out:
3248 ext3_std_error(inode->i_sb, error);
3249 if (!error)
3250 error = rc;
3251 return error;
3256 * How many blocks doth make a writepage()?
3258 * With N blocks per page, it may be:
3259 * N data blocks
3260 * 2 indirect block
3261 * 2 dindirect
3262 * 1 tindirect
3263 * N+5 bitmap blocks (from the above)
3264 * N+5 group descriptor summary blocks
3265 * 1 inode block
3266 * 1 superblock.
3267 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3269 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3271 * With ordered or writeback data it's the same, less the N data blocks.
3273 * If the inode's direct blocks can hold an integral number of pages then a
3274 * page cannot straddle two indirect blocks, and we can only touch one indirect
3275 * and dindirect block, and the "5" above becomes "3".
3277 * This still overestimates under most circumstances. If we were to pass the
3278 * start and end offsets in here as well we could do block_to_path() on each
3279 * block and work out the exact number of indirects which are touched. Pah.
3282 static int ext3_writepage_trans_blocks(struct inode *inode)
3284 int bpp = ext3_journal_blocks_per_page(inode);
3285 int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3286 int ret;
3288 if (ext3_should_journal_data(inode))
3289 ret = 3 * (bpp + indirects) + 2;
3290 else
3291 ret = 2 * (bpp + indirects) + 2;
3293 #ifdef CONFIG_QUOTA
3294 /* We know that structure was already allocated during dquot_initialize so
3295 * we will be updating only the data blocks + inodes */
3296 ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3297 #endif
3299 return ret;
3303 * The caller must have previously called ext3_reserve_inode_write().
3304 * Give this, we know that the caller already has write access to iloc->bh.
3306 int ext3_mark_iloc_dirty(handle_t *handle,
3307 struct inode *inode, struct ext3_iloc *iloc)
3309 int err = 0;
3311 /* the do_update_inode consumes one bh->b_count */
3312 get_bh(iloc->bh);
3314 /* ext3_do_update_inode() does journal_dirty_metadata */
3315 err = ext3_do_update_inode(handle, inode, iloc);
3316 put_bh(iloc->bh);
3317 return err;
3321 * On success, We end up with an outstanding reference count against
3322 * iloc->bh. This _must_ be cleaned up later.
3326 ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3327 struct ext3_iloc *iloc)
3329 int err = 0;
3330 if (handle) {
3331 err = ext3_get_inode_loc(inode, iloc);
3332 if (!err) {
3333 BUFFER_TRACE(iloc->bh, "get_write_access");
3334 err = ext3_journal_get_write_access(handle, iloc->bh);
3335 if (err) {
3336 brelse(iloc->bh);
3337 iloc->bh = NULL;
3341 ext3_std_error(inode->i_sb, err);
3342 return err;
3346 * What we do here is to mark the in-core inode as clean with respect to inode
3347 * dirtiness (it may still be data-dirty).
3348 * This means that the in-core inode may be reaped by prune_icache
3349 * without having to perform any I/O. This is a very good thing,
3350 * because *any* task may call prune_icache - even ones which
3351 * have a transaction open against a different journal.
3353 * Is this cheating? Not really. Sure, we haven't written the
3354 * inode out, but prune_icache isn't a user-visible syncing function.
3355 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3356 * we start and wait on commits.
3358 * Is this efficient/effective? Well, we're being nice to the system
3359 * by cleaning up our inodes proactively so they can be reaped
3360 * without I/O. But we are potentially leaving up to five seconds'
3361 * worth of inodes floating about which prune_icache wants us to
3362 * write out. One way to fix that would be to get prune_icache()
3363 * to do a write_super() to free up some memory. It has the desired
3364 * effect.
3366 int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3368 struct ext3_iloc iloc;
3369 int err;
3371 might_sleep();
3372 err = ext3_reserve_inode_write(handle, inode, &iloc);
3373 if (!err)
3374 err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3375 return err;
3379 * ext3_dirty_inode() is called from __mark_inode_dirty()
3381 * We're really interested in the case where a file is being extended.
3382 * i_size has been changed by generic_commit_write() and we thus need
3383 * to include the updated inode in the current transaction.
3385 * Also, dquot_alloc_space() will always dirty the inode when blocks
3386 * are allocated to the file.
3388 * If the inode is marked synchronous, we don't honour that here - doing
3389 * so would cause a commit on atime updates, which we don't bother doing.
3390 * We handle synchronous inodes at the highest possible level.
3392 void ext3_dirty_inode(struct inode *inode)
3394 handle_t *current_handle = ext3_journal_current_handle();
3395 handle_t *handle;
3397 handle = ext3_journal_start(inode, 2);
3398 if (IS_ERR(handle))
3399 goto out;
3400 if (current_handle &&
3401 current_handle->h_transaction != handle->h_transaction) {
3402 /* This task has a transaction open against a different fs */
3403 printk(KERN_EMERG "%s: transactions do not match!\n",
3404 __func__);
3405 } else {
3406 jbd_debug(5, "marking dirty. outer handle=%p\n",
3407 current_handle);
3408 ext3_mark_inode_dirty(handle, inode);
3410 ext3_journal_stop(handle);
3411 out:
3412 return;
3415 #if 0
3417 * Bind an inode's backing buffer_head into this transaction, to prevent
3418 * it from being flushed to disk early. Unlike
3419 * ext3_reserve_inode_write, this leaves behind no bh reference and
3420 * returns no iloc structure, so the caller needs to repeat the iloc
3421 * lookup to mark the inode dirty later.
3423 static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3425 struct ext3_iloc iloc;
3427 int err = 0;
3428 if (handle) {
3429 err = ext3_get_inode_loc(inode, &iloc);
3430 if (!err) {
3431 BUFFER_TRACE(iloc.bh, "get_write_access");
3432 err = journal_get_write_access(handle, iloc.bh);
3433 if (!err)
3434 err = ext3_journal_dirty_metadata(handle,
3435 iloc.bh);
3436 brelse(iloc.bh);
3439 ext3_std_error(inode->i_sb, err);
3440 return err;
3442 #endif
3444 int ext3_change_inode_journal_flag(struct inode *inode, int val)
3446 journal_t *journal;
3447 handle_t *handle;
3448 int err;
3451 * We have to be very careful here: changing a data block's
3452 * journaling status dynamically is dangerous. If we write a
3453 * data block to the journal, change the status and then delete
3454 * that block, we risk forgetting to revoke the old log record
3455 * from the journal and so a subsequent replay can corrupt data.
3456 * So, first we make sure that the journal is empty and that
3457 * nobody is changing anything.
3460 journal = EXT3_JOURNAL(inode);
3461 if (is_journal_aborted(journal))
3462 return -EROFS;
3464 journal_lock_updates(journal);
3465 journal_flush(journal);
3468 * OK, there are no updates running now, and all cached data is
3469 * synced to disk. We are now in a completely consistent state
3470 * which doesn't have anything in the journal, and we know that
3471 * no filesystem updates are running, so it is safe to modify
3472 * the inode's in-core data-journaling state flag now.
3475 if (val)
3476 EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3477 else
3478 EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3479 ext3_set_aops(inode);
3481 journal_unlock_updates(journal);
3483 /* Finally we can mark the inode as dirty. */
3485 handle = ext3_journal_start(inode, 1);
3486 if (IS_ERR(handle))
3487 return PTR_ERR(handle);
3489 err = ext3_mark_inode_dirty(handle, inode);
3490 handle->h_sync = 1;
3491 ext3_journal_stop(handle);
3492 ext3_std_error(inode->i_sb, err);
3494 return err;