drm/i915: Only update i845/i865 CURBASE when disabled (v2)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / xfs / xfs_inode.c
blob68415cb4f23cab39861119c68838b1b099029df2
1 /*
2 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
3 * All Rights Reserved.
5 * This program is free software; you can redistribute it and/or
6 * modify it under the terms of the GNU General Public License as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it would be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write the Free Software Foundation,
16 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 #include <linux/log2.h>
20 #include "xfs.h"
21 #include "xfs_fs.h"
22 #include "xfs_types.h"
23 #include "xfs_bit.h"
24 #include "xfs_log.h"
25 #include "xfs_inum.h"
26 #include "xfs_trans.h"
27 #include "xfs_trans_priv.h"
28 #include "xfs_sb.h"
29 #include "xfs_ag.h"
30 #include "xfs_mount.h"
31 #include "xfs_bmap_btree.h"
32 #include "xfs_alloc_btree.h"
33 #include "xfs_ialloc_btree.h"
34 #include "xfs_attr_sf.h"
35 #include "xfs_dinode.h"
36 #include "xfs_inode.h"
37 #include "xfs_buf_item.h"
38 #include "xfs_inode_item.h"
39 #include "xfs_btree.h"
40 #include "xfs_btree_trace.h"
41 #include "xfs_alloc.h"
42 #include "xfs_ialloc.h"
43 #include "xfs_bmap.h"
44 #include "xfs_error.h"
45 #include "xfs_utils.h"
46 #include "xfs_quota.h"
47 #include "xfs_filestream.h"
48 #include "xfs_vnodeops.h"
49 #include "xfs_trace.h"
51 kmem_zone_t *xfs_ifork_zone;
52 kmem_zone_t *xfs_inode_zone;
55 * Used in xfs_itruncate(). This is the maximum number of extents
56 * freed from a file in a single transaction.
58 #define XFS_ITRUNC_MAX_EXTENTS 2
60 STATIC int xfs_iflush_int(xfs_inode_t *, xfs_buf_t *);
61 STATIC int xfs_iformat_local(xfs_inode_t *, xfs_dinode_t *, int, int);
62 STATIC int xfs_iformat_extents(xfs_inode_t *, xfs_dinode_t *, int);
63 STATIC int xfs_iformat_btree(xfs_inode_t *, xfs_dinode_t *, int);
65 #ifdef DEBUG
67 * Make sure that the extents in the given memory buffer
68 * are valid.
70 STATIC void
71 xfs_validate_extents(
72 xfs_ifork_t *ifp,
73 int nrecs,
74 xfs_exntfmt_t fmt)
76 xfs_bmbt_irec_t irec;
77 xfs_bmbt_rec_host_t rec;
78 int i;
80 for (i = 0; i < nrecs; i++) {
81 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
82 rec.l0 = get_unaligned(&ep->l0);
83 rec.l1 = get_unaligned(&ep->l1);
84 xfs_bmbt_get_all(&rec, &irec);
85 if (fmt == XFS_EXTFMT_NOSTATE)
86 ASSERT(irec.br_state == XFS_EXT_NORM);
89 #else /* DEBUG */
90 #define xfs_validate_extents(ifp, nrecs, fmt)
91 #endif /* DEBUG */
94 * Check that none of the inode's in the buffer have a next
95 * unlinked field of 0.
97 #if defined(DEBUG)
98 void
99 xfs_inobp_check(
100 xfs_mount_t *mp,
101 xfs_buf_t *bp)
103 int i;
104 int j;
105 xfs_dinode_t *dip;
107 j = mp->m_inode_cluster_size >> mp->m_sb.sb_inodelog;
109 for (i = 0; i < j; i++) {
110 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
111 i * mp->m_sb.sb_inodesize);
112 if (!dip->di_next_unlinked) {
113 xfs_fs_cmn_err(CE_ALERT, mp,
114 "Detected a bogus zero next_unlinked field in incore inode buffer 0x%p. About to pop an ASSERT.",
115 bp);
116 ASSERT(dip->di_next_unlinked);
120 #endif
123 * Find the buffer associated with the given inode map
124 * We do basic validation checks on the buffer once it has been
125 * retrieved from disk.
127 STATIC int
128 xfs_imap_to_bp(
129 xfs_mount_t *mp,
130 xfs_trans_t *tp,
131 struct xfs_imap *imap,
132 xfs_buf_t **bpp,
133 uint buf_flags,
134 uint iget_flags)
136 int error;
137 int i;
138 int ni;
139 xfs_buf_t *bp;
141 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, imap->im_blkno,
142 (int)imap->im_len, buf_flags, &bp);
143 if (error) {
144 if (error != EAGAIN) {
145 cmn_err(CE_WARN,
146 "xfs_imap_to_bp: xfs_trans_read_buf()returned "
147 "an error %d on %s. Returning error.",
148 error, mp->m_fsname);
149 } else {
150 ASSERT(buf_flags & XBF_TRYLOCK);
152 return error;
156 * Validate the magic number and version of every inode in the buffer
157 * (if DEBUG kernel) or the first inode in the buffer, otherwise.
159 #ifdef DEBUG
160 ni = BBTOB(imap->im_len) >> mp->m_sb.sb_inodelog;
161 #else /* usual case */
162 ni = 1;
163 #endif
165 for (i = 0; i < ni; i++) {
166 int di_ok;
167 xfs_dinode_t *dip;
169 dip = (xfs_dinode_t *)xfs_buf_offset(bp,
170 (i << mp->m_sb.sb_inodelog));
171 di_ok = be16_to_cpu(dip->di_magic) == XFS_DINODE_MAGIC &&
172 XFS_DINODE_GOOD_VERSION(dip->di_version);
173 if (unlikely(XFS_TEST_ERROR(!di_ok, mp,
174 XFS_ERRTAG_ITOBP_INOTOBP,
175 XFS_RANDOM_ITOBP_INOTOBP))) {
176 if (iget_flags & XFS_IGET_UNTRUSTED) {
177 xfs_trans_brelse(tp, bp);
178 return XFS_ERROR(EINVAL);
180 XFS_CORRUPTION_ERROR("xfs_imap_to_bp",
181 XFS_ERRLEVEL_HIGH, mp, dip);
182 #ifdef DEBUG
183 cmn_err(CE_PANIC,
184 "Device %s - bad inode magic/vsn "
185 "daddr %lld #%d (magic=%x)",
186 XFS_BUFTARG_NAME(mp->m_ddev_targp),
187 (unsigned long long)imap->im_blkno, i,
188 be16_to_cpu(dip->di_magic));
189 #endif
190 xfs_trans_brelse(tp, bp);
191 return XFS_ERROR(EFSCORRUPTED);
195 xfs_inobp_check(mp, bp);
198 * Mark the buffer as an inode buffer now that it looks good
200 XFS_BUF_SET_VTYPE(bp, B_FS_INO);
202 *bpp = bp;
203 return 0;
207 * This routine is called to map an inode number within a file
208 * system to the buffer containing the on-disk version of the
209 * inode. It returns a pointer to the buffer containing the
210 * on-disk inode in the bpp parameter, and in the dip parameter
211 * it returns a pointer to the on-disk inode within that buffer.
213 * If a non-zero error is returned, then the contents of bpp and
214 * dipp are undefined.
216 * Use xfs_imap() to determine the size and location of the
217 * buffer to read from disk.
220 xfs_inotobp(
221 xfs_mount_t *mp,
222 xfs_trans_t *tp,
223 xfs_ino_t ino,
224 xfs_dinode_t **dipp,
225 xfs_buf_t **bpp,
226 int *offset,
227 uint imap_flags)
229 struct xfs_imap imap;
230 xfs_buf_t *bp;
231 int error;
233 imap.im_blkno = 0;
234 error = xfs_imap(mp, tp, ino, &imap, imap_flags);
235 if (error)
236 return error;
238 error = xfs_imap_to_bp(mp, tp, &imap, &bp, XBF_LOCK, imap_flags);
239 if (error)
240 return error;
242 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, imap.im_boffset);
243 *bpp = bp;
244 *offset = imap.im_boffset;
245 return 0;
250 * This routine is called to map an inode to the buffer containing
251 * the on-disk version of the inode. It returns a pointer to the
252 * buffer containing the on-disk inode in the bpp parameter, and in
253 * the dip parameter it returns a pointer to the on-disk inode within
254 * that buffer.
256 * If a non-zero error is returned, then the contents of bpp and
257 * dipp are undefined.
259 * The inode is expected to already been mapped to its buffer and read
260 * in once, thus we can use the mapping information stored in the inode
261 * rather than calling xfs_imap(). This allows us to avoid the overhead
262 * of looking at the inode btree for small block file systems
263 * (see xfs_imap()).
266 xfs_itobp(
267 xfs_mount_t *mp,
268 xfs_trans_t *tp,
269 xfs_inode_t *ip,
270 xfs_dinode_t **dipp,
271 xfs_buf_t **bpp,
272 uint buf_flags)
274 xfs_buf_t *bp;
275 int error;
277 ASSERT(ip->i_imap.im_blkno != 0);
279 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp, buf_flags, 0);
280 if (error)
281 return error;
283 if (!bp) {
284 ASSERT(buf_flags & XBF_TRYLOCK);
285 ASSERT(tp == NULL);
286 *bpp = NULL;
287 return EAGAIN;
290 *dipp = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
291 *bpp = bp;
292 return 0;
296 * Move inode type and inode format specific information from the
297 * on-disk inode to the in-core inode. For fifos, devs, and sockets
298 * this means set if_rdev to the proper value. For files, directories,
299 * and symlinks this means to bring in the in-line data or extent
300 * pointers. For a file in B-tree format, only the root is immediately
301 * brought in-core. The rest will be in-lined in if_extents when it
302 * is first referenced (see xfs_iread_extents()).
304 STATIC int
305 xfs_iformat(
306 xfs_inode_t *ip,
307 xfs_dinode_t *dip)
309 xfs_attr_shortform_t *atp;
310 int size;
311 int error;
312 xfs_fsize_t di_size;
313 ip->i_df.if_ext_max =
314 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
315 error = 0;
317 if (unlikely(be32_to_cpu(dip->di_nextents) +
318 be16_to_cpu(dip->di_anextents) >
319 be64_to_cpu(dip->di_nblocks))) {
320 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
321 "corrupt dinode %Lu, extent total = %d, nblocks = %Lu.",
322 (unsigned long long)ip->i_ino,
323 (int)(be32_to_cpu(dip->di_nextents) +
324 be16_to_cpu(dip->di_anextents)),
325 (unsigned long long)
326 be64_to_cpu(dip->di_nblocks));
327 XFS_CORRUPTION_ERROR("xfs_iformat(1)", XFS_ERRLEVEL_LOW,
328 ip->i_mount, dip);
329 return XFS_ERROR(EFSCORRUPTED);
332 if (unlikely(dip->di_forkoff > ip->i_mount->m_sb.sb_inodesize)) {
333 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
334 "corrupt dinode %Lu, forkoff = 0x%x.",
335 (unsigned long long)ip->i_ino,
336 dip->di_forkoff);
337 XFS_CORRUPTION_ERROR("xfs_iformat(2)", XFS_ERRLEVEL_LOW,
338 ip->i_mount, dip);
339 return XFS_ERROR(EFSCORRUPTED);
342 if (unlikely((ip->i_d.di_flags & XFS_DIFLAG_REALTIME) &&
343 !ip->i_mount->m_rtdev_targp)) {
344 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
345 "corrupt dinode %Lu, has realtime flag set.",
346 ip->i_ino);
347 XFS_CORRUPTION_ERROR("xfs_iformat(realtime)",
348 XFS_ERRLEVEL_LOW, ip->i_mount, dip);
349 return XFS_ERROR(EFSCORRUPTED);
352 switch (ip->i_d.di_mode & S_IFMT) {
353 case S_IFIFO:
354 case S_IFCHR:
355 case S_IFBLK:
356 case S_IFSOCK:
357 if (unlikely(dip->di_format != XFS_DINODE_FMT_DEV)) {
358 XFS_CORRUPTION_ERROR("xfs_iformat(3)", XFS_ERRLEVEL_LOW,
359 ip->i_mount, dip);
360 return XFS_ERROR(EFSCORRUPTED);
362 ip->i_d.di_size = 0;
363 ip->i_size = 0;
364 ip->i_df.if_u2.if_rdev = xfs_dinode_get_rdev(dip);
365 break;
367 case S_IFREG:
368 case S_IFLNK:
369 case S_IFDIR:
370 switch (dip->di_format) {
371 case XFS_DINODE_FMT_LOCAL:
373 * no local regular files yet
375 if (unlikely((be16_to_cpu(dip->di_mode) & S_IFMT) == S_IFREG)) {
376 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
377 "corrupt inode %Lu "
378 "(local format for regular file).",
379 (unsigned long long) ip->i_ino);
380 XFS_CORRUPTION_ERROR("xfs_iformat(4)",
381 XFS_ERRLEVEL_LOW,
382 ip->i_mount, dip);
383 return XFS_ERROR(EFSCORRUPTED);
386 di_size = be64_to_cpu(dip->di_size);
387 if (unlikely(di_size > XFS_DFORK_DSIZE(dip, ip->i_mount))) {
388 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
389 "corrupt inode %Lu "
390 "(bad size %Ld for local inode).",
391 (unsigned long long) ip->i_ino,
392 (long long) di_size);
393 XFS_CORRUPTION_ERROR("xfs_iformat(5)",
394 XFS_ERRLEVEL_LOW,
395 ip->i_mount, dip);
396 return XFS_ERROR(EFSCORRUPTED);
399 size = (int)di_size;
400 error = xfs_iformat_local(ip, dip, XFS_DATA_FORK, size);
401 break;
402 case XFS_DINODE_FMT_EXTENTS:
403 error = xfs_iformat_extents(ip, dip, XFS_DATA_FORK);
404 break;
405 case XFS_DINODE_FMT_BTREE:
406 error = xfs_iformat_btree(ip, dip, XFS_DATA_FORK);
407 break;
408 default:
409 XFS_ERROR_REPORT("xfs_iformat(6)", XFS_ERRLEVEL_LOW,
410 ip->i_mount);
411 return XFS_ERROR(EFSCORRUPTED);
413 break;
415 default:
416 XFS_ERROR_REPORT("xfs_iformat(7)", XFS_ERRLEVEL_LOW, ip->i_mount);
417 return XFS_ERROR(EFSCORRUPTED);
419 if (error) {
420 return error;
422 if (!XFS_DFORK_Q(dip))
423 return 0;
424 ASSERT(ip->i_afp == NULL);
425 ip->i_afp = kmem_zone_zalloc(xfs_ifork_zone, KM_SLEEP | KM_NOFS);
426 ip->i_afp->if_ext_max =
427 XFS_IFORK_ASIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
428 switch (dip->di_aformat) {
429 case XFS_DINODE_FMT_LOCAL:
430 atp = (xfs_attr_shortform_t *)XFS_DFORK_APTR(dip);
431 size = be16_to_cpu(atp->hdr.totsize);
433 if (unlikely(size < sizeof(struct xfs_attr_sf_hdr))) {
434 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
435 "corrupt inode %Lu "
436 "(bad attr fork size %Ld).",
437 (unsigned long long) ip->i_ino,
438 (long long) size);
439 XFS_CORRUPTION_ERROR("xfs_iformat(8)",
440 XFS_ERRLEVEL_LOW,
441 ip->i_mount, dip);
442 return XFS_ERROR(EFSCORRUPTED);
445 error = xfs_iformat_local(ip, dip, XFS_ATTR_FORK, size);
446 break;
447 case XFS_DINODE_FMT_EXTENTS:
448 error = xfs_iformat_extents(ip, dip, XFS_ATTR_FORK);
449 break;
450 case XFS_DINODE_FMT_BTREE:
451 error = xfs_iformat_btree(ip, dip, XFS_ATTR_FORK);
452 break;
453 default:
454 error = XFS_ERROR(EFSCORRUPTED);
455 break;
457 if (error) {
458 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
459 ip->i_afp = NULL;
460 xfs_idestroy_fork(ip, XFS_DATA_FORK);
462 return error;
466 * The file is in-lined in the on-disk inode.
467 * If it fits into if_inline_data, then copy
468 * it there, otherwise allocate a buffer for it
469 * and copy the data there. Either way, set
470 * if_data to point at the data.
471 * If we allocate a buffer for the data, make
472 * sure that its size is a multiple of 4 and
473 * record the real size in i_real_bytes.
475 STATIC int
476 xfs_iformat_local(
477 xfs_inode_t *ip,
478 xfs_dinode_t *dip,
479 int whichfork,
480 int size)
482 xfs_ifork_t *ifp;
483 int real_size;
486 * If the size is unreasonable, then something
487 * is wrong and we just bail out rather than crash in
488 * kmem_alloc() or memcpy() below.
490 if (unlikely(size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
491 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
492 "corrupt inode %Lu "
493 "(bad size %d for local fork, size = %d).",
494 (unsigned long long) ip->i_ino, size,
495 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork));
496 XFS_CORRUPTION_ERROR("xfs_iformat_local", XFS_ERRLEVEL_LOW,
497 ip->i_mount, dip);
498 return XFS_ERROR(EFSCORRUPTED);
500 ifp = XFS_IFORK_PTR(ip, whichfork);
501 real_size = 0;
502 if (size == 0)
503 ifp->if_u1.if_data = NULL;
504 else if (size <= sizeof(ifp->if_u2.if_inline_data))
505 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
506 else {
507 real_size = roundup(size, 4);
508 ifp->if_u1.if_data = kmem_alloc(real_size, KM_SLEEP | KM_NOFS);
510 ifp->if_bytes = size;
511 ifp->if_real_bytes = real_size;
512 if (size)
513 memcpy(ifp->if_u1.if_data, XFS_DFORK_PTR(dip, whichfork), size);
514 ifp->if_flags &= ~XFS_IFEXTENTS;
515 ifp->if_flags |= XFS_IFINLINE;
516 return 0;
520 * The file consists of a set of extents all
521 * of which fit into the on-disk inode.
522 * If there are few enough extents to fit into
523 * the if_inline_ext, then copy them there.
524 * Otherwise allocate a buffer for them and copy
525 * them into it. Either way, set if_extents
526 * to point at the extents.
528 STATIC int
529 xfs_iformat_extents(
530 xfs_inode_t *ip,
531 xfs_dinode_t *dip,
532 int whichfork)
534 xfs_bmbt_rec_t *dp;
535 xfs_ifork_t *ifp;
536 int nex;
537 int size;
538 int i;
540 ifp = XFS_IFORK_PTR(ip, whichfork);
541 nex = XFS_DFORK_NEXTENTS(dip, whichfork);
542 size = nex * (uint)sizeof(xfs_bmbt_rec_t);
545 * If the number of extents is unreasonable, then something
546 * is wrong and we just bail out rather than crash in
547 * kmem_alloc() or memcpy() below.
549 if (unlikely(size < 0 || size > XFS_DFORK_SIZE(dip, ip->i_mount, whichfork))) {
550 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
551 "corrupt inode %Lu ((a)extents = %d).",
552 (unsigned long long) ip->i_ino, nex);
553 XFS_CORRUPTION_ERROR("xfs_iformat_extents(1)", XFS_ERRLEVEL_LOW,
554 ip->i_mount, dip);
555 return XFS_ERROR(EFSCORRUPTED);
558 ifp->if_real_bytes = 0;
559 if (nex == 0)
560 ifp->if_u1.if_extents = NULL;
561 else if (nex <= XFS_INLINE_EXTS)
562 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
563 else
564 xfs_iext_add(ifp, 0, nex);
566 ifp->if_bytes = size;
567 if (size) {
568 dp = (xfs_bmbt_rec_t *) XFS_DFORK_PTR(dip, whichfork);
569 xfs_validate_extents(ifp, nex, XFS_EXTFMT_INODE(ip));
570 for (i = 0; i < nex; i++, dp++) {
571 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
572 ep->l0 = get_unaligned_be64(&dp->l0);
573 ep->l1 = get_unaligned_be64(&dp->l1);
575 XFS_BMAP_TRACE_EXLIST(ip, nex, whichfork);
576 if (whichfork != XFS_DATA_FORK ||
577 XFS_EXTFMT_INODE(ip) == XFS_EXTFMT_NOSTATE)
578 if (unlikely(xfs_check_nostate_extents(
579 ifp, 0, nex))) {
580 XFS_ERROR_REPORT("xfs_iformat_extents(2)",
581 XFS_ERRLEVEL_LOW,
582 ip->i_mount);
583 return XFS_ERROR(EFSCORRUPTED);
586 ifp->if_flags |= XFS_IFEXTENTS;
587 return 0;
591 * The file has too many extents to fit into
592 * the inode, so they are in B-tree format.
593 * Allocate a buffer for the root of the B-tree
594 * and copy the root into it. The i_extents
595 * field will remain NULL until all of the
596 * extents are read in (when they are needed).
598 STATIC int
599 xfs_iformat_btree(
600 xfs_inode_t *ip,
601 xfs_dinode_t *dip,
602 int whichfork)
604 xfs_bmdr_block_t *dfp;
605 xfs_ifork_t *ifp;
606 /* REFERENCED */
607 int nrecs;
608 int size;
610 ifp = XFS_IFORK_PTR(ip, whichfork);
611 dfp = (xfs_bmdr_block_t *)XFS_DFORK_PTR(dip, whichfork);
612 size = XFS_BMAP_BROOT_SPACE(dfp);
613 nrecs = be16_to_cpu(dfp->bb_numrecs);
616 * blow out if -- fork has less extents than can fit in
617 * fork (fork shouldn't be a btree format), root btree
618 * block has more records than can fit into the fork,
619 * or the number of extents is greater than the number of
620 * blocks.
622 if (unlikely(XFS_IFORK_NEXTENTS(ip, whichfork) <= ifp->if_ext_max
623 || XFS_BMDR_SPACE_CALC(nrecs) >
624 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork)
625 || XFS_IFORK_NEXTENTS(ip, whichfork) > ip->i_d.di_nblocks)) {
626 xfs_fs_repair_cmn_err(CE_WARN, ip->i_mount,
627 "corrupt inode %Lu (btree).",
628 (unsigned long long) ip->i_ino);
629 XFS_ERROR_REPORT("xfs_iformat_btree", XFS_ERRLEVEL_LOW,
630 ip->i_mount);
631 return XFS_ERROR(EFSCORRUPTED);
634 ifp->if_broot_bytes = size;
635 ifp->if_broot = kmem_alloc(size, KM_SLEEP | KM_NOFS);
636 ASSERT(ifp->if_broot != NULL);
638 * Copy and convert from the on-disk structure
639 * to the in-memory structure.
641 xfs_bmdr_to_bmbt(ip->i_mount, dfp,
642 XFS_DFORK_SIZE(dip, ip->i_mount, whichfork),
643 ifp->if_broot, size);
644 ifp->if_flags &= ~XFS_IFEXTENTS;
645 ifp->if_flags |= XFS_IFBROOT;
647 return 0;
650 STATIC void
651 xfs_dinode_from_disk(
652 xfs_icdinode_t *to,
653 xfs_dinode_t *from)
655 to->di_magic = be16_to_cpu(from->di_magic);
656 to->di_mode = be16_to_cpu(from->di_mode);
657 to->di_version = from ->di_version;
658 to->di_format = from->di_format;
659 to->di_onlink = be16_to_cpu(from->di_onlink);
660 to->di_uid = be32_to_cpu(from->di_uid);
661 to->di_gid = be32_to_cpu(from->di_gid);
662 to->di_nlink = be32_to_cpu(from->di_nlink);
663 to->di_projid = be16_to_cpu(from->di_projid);
664 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
665 to->di_flushiter = be16_to_cpu(from->di_flushiter);
666 to->di_atime.t_sec = be32_to_cpu(from->di_atime.t_sec);
667 to->di_atime.t_nsec = be32_to_cpu(from->di_atime.t_nsec);
668 to->di_mtime.t_sec = be32_to_cpu(from->di_mtime.t_sec);
669 to->di_mtime.t_nsec = be32_to_cpu(from->di_mtime.t_nsec);
670 to->di_ctime.t_sec = be32_to_cpu(from->di_ctime.t_sec);
671 to->di_ctime.t_nsec = be32_to_cpu(from->di_ctime.t_nsec);
672 to->di_size = be64_to_cpu(from->di_size);
673 to->di_nblocks = be64_to_cpu(from->di_nblocks);
674 to->di_extsize = be32_to_cpu(from->di_extsize);
675 to->di_nextents = be32_to_cpu(from->di_nextents);
676 to->di_anextents = be16_to_cpu(from->di_anextents);
677 to->di_forkoff = from->di_forkoff;
678 to->di_aformat = from->di_aformat;
679 to->di_dmevmask = be32_to_cpu(from->di_dmevmask);
680 to->di_dmstate = be16_to_cpu(from->di_dmstate);
681 to->di_flags = be16_to_cpu(from->di_flags);
682 to->di_gen = be32_to_cpu(from->di_gen);
685 void
686 xfs_dinode_to_disk(
687 xfs_dinode_t *to,
688 xfs_icdinode_t *from)
690 to->di_magic = cpu_to_be16(from->di_magic);
691 to->di_mode = cpu_to_be16(from->di_mode);
692 to->di_version = from ->di_version;
693 to->di_format = from->di_format;
694 to->di_onlink = cpu_to_be16(from->di_onlink);
695 to->di_uid = cpu_to_be32(from->di_uid);
696 to->di_gid = cpu_to_be32(from->di_gid);
697 to->di_nlink = cpu_to_be32(from->di_nlink);
698 to->di_projid = cpu_to_be16(from->di_projid);
699 memcpy(to->di_pad, from->di_pad, sizeof(to->di_pad));
700 to->di_flushiter = cpu_to_be16(from->di_flushiter);
701 to->di_atime.t_sec = cpu_to_be32(from->di_atime.t_sec);
702 to->di_atime.t_nsec = cpu_to_be32(from->di_atime.t_nsec);
703 to->di_mtime.t_sec = cpu_to_be32(from->di_mtime.t_sec);
704 to->di_mtime.t_nsec = cpu_to_be32(from->di_mtime.t_nsec);
705 to->di_ctime.t_sec = cpu_to_be32(from->di_ctime.t_sec);
706 to->di_ctime.t_nsec = cpu_to_be32(from->di_ctime.t_nsec);
707 to->di_size = cpu_to_be64(from->di_size);
708 to->di_nblocks = cpu_to_be64(from->di_nblocks);
709 to->di_extsize = cpu_to_be32(from->di_extsize);
710 to->di_nextents = cpu_to_be32(from->di_nextents);
711 to->di_anextents = cpu_to_be16(from->di_anextents);
712 to->di_forkoff = from->di_forkoff;
713 to->di_aformat = from->di_aformat;
714 to->di_dmevmask = cpu_to_be32(from->di_dmevmask);
715 to->di_dmstate = cpu_to_be16(from->di_dmstate);
716 to->di_flags = cpu_to_be16(from->di_flags);
717 to->di_gen = cpu_to_be32(from->di_gen);
720 STATIC uint
721 _xfs_dic2xflags(
722 __uint16_t di_flags)
724 uint flags = 0;
726 if (di_flags & XFS_DIFLAG_ANY) {
727 if (di_flags & XFS_DIFLAG_REALTIME)
728 flags |= XFS_XFLAG_REALTIME;
729 if (di_flags & XFS_DIFLAG_PREALLOC)
730 flags |= XFS_XFLAG_PREALLOC;
731 if (di_flags & XFS_DIFLAG_IMMUTABLE)
732 flags |= XFS_XFLAG_IMMUTABLE;
733 if (di_flags & XFS_DIFLAG_APPEND)
734 flags |= XFS_XFLAG_APPEND;
735 if (di_flags & XFS_DIFLAG_SYNC)
736 flags |= XFS_XFLAG_SYNC;
737 if (di_flags & XFS_DIFLAG_NOATIME)
738 flags |= XFS_XFLAG_NOATIME;
739 if (di_flags & XFS_DIFLAG_NODUMP)
740 flags |= XFS_XFLAG_NODUMP;
741 if (di_flags & XFS_DIFLAG_RTINHERIT)
742 flags |= XFS_XFLAG_RTINHERIT;
743 if (di_flags & XFS_DIFLAG_PROJINHERIT)
744 flags |= XFS_XFLAG_PROJINHERIT;
745 if (di_flags & XFS_DIFLAG_NOSYMLINKS)
746 flags |= XFS_XFLAG_NOSYMLINKS;
747 if (di_flags & XFS_DIFLAG_EXTSIZE)
748 flags |= XFS_XFLAG_EXTSIZE;
749 if (di_flags & XFS_DIFLAG_EXTSZINHERIT)
750 flags |= XFS_XFLAG_EXTSZINHERIT;
751 if (di_flags & XFS_DIFLAG_NODEFRAG)
752 flags |= XFS_XFLAG_NODEFRAG;
753 if (di_flags & XFS_DIFLAG_FILESTREAM)
754 flags |= XFS_XFLAG_FILESTREAM;
757 return flags;
760 uint
761 xfs_ip2xflags(
762 xfs_inode_t *ip)
764 xfs_icdinode_t *dic = &ip->i_d;
766 return _xfs_dic2xflags(dic->di_flags) |
767 (XFS_IFORK_Q(ip) ? XFS_XFLAG_HASATTR : 0);
770 uint
771 xfs_dic2xflags(
772 xfs_dinode_t *dip)
774 return _xfs_dic2xflags(be16_to_cpu(dip->di_flags)) |
775 (XFS_DFORK_Q(dip) ? XFS_XFLAG_HASATTR : 0);
779 * Read the disk inode attributes into the in-core inode structure.
782 xfs_iread(
783 xfs_mount_t *mp,
784 xfs_trans_t *tp,
785 xfs_inode_t *ip,
786 uint iget_flags)
788 xfs_buf_t *bp;
789 xfs_dinode_t *dip;
790 int error;
793 * Fill in the location information in the in-core inode.
795 error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, iget_flags);
796 if (error)
797 return error;
800 * Get pointers to the on-disk inode and the buffer containing it.
802 error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &bp,
803 XBF_LOCK, iget_flags);
804 if (error)
805 return error;
806 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
809 * If we got something that isn't an inode it means someone
810 * (nfs or dmi) has a stale handle.
812 if (be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC) {
813 #ifdef DEBUG
814 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
815 "dip->di_magic (0x%x) != "
816 "XFS_DINODE_MAGIC (0x%x)",
817 be16_to_cpu(dip->di_magic),
818 XFS_DINODE_MAGIC);
819 #endif /* DEBUG */
820 error = XFS_ERROR(EINVAL);
821 goto out_brelse;
825 * If the on-disk inode is already linked to a directory
826 * entry, copy all of the inode into the in-core inode.
827 * xfs_iformat() handles copying in the inode format
828 * specific information.
829 * Otherwise, just get the truly permanent information.
831 if (dip->di_mode) {
832 xfs_dinode_from_disk(&ip->i_d, dip);
833 error = xfs_iformat(ip, dip);
834 if (error) {
835 #ifdef DEBUG
836 xfs_fs_cmn_err(CE_ALERT, mp, "xfs_iread: "
837 "xfs_iformat() returned error %d",
838 error);
839 #endif /* DEBUG */
840 goto out_brelse;
842 } else {
843 ip->i_d.di_magic = be16_to_cpu(dip->di_magic);
844 ip->i_d.di_version = dip->di_version;
845 ip->i_d.di_gen = be32_to_cpu(dip->di_gen);
846 ip->i_d.di_flushiter = be16_to_cpu(dip->di_flushiter);
848 * Make sure to pull in the mode here as well in
849 * case the inode is released without being used.
850 * This ensures that xfs_inactive() will see that
851 * the inode is already free and not try to mess
852 * with the uninitialized part of it.
854 ip->i_d.di_mode = 0;
856 * Initialize the per-fork minima and maxima for a new
857 * inode here. xfs_iformat will do it for old inodes.
859 ip->i_df.if_ext_max =
860 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
864 * The inode format changed when we moved the link count and
865 * made it 32 bits long. If this is an old format inode,
866 * convert it in memory to look like a new one. If it gets
867 * flushed to disk we will convert back before flushing or
868 * logging it. We zero out the new projid field and the old link
869 * count field. We'll handle clearing the pad field (the remains
870 * of the old uuid field) when we actually convert the inode to
871 * the new format. We don't change the version number so that we
872 * can distinguish this from a real new format inode.
874 if (ip->i_d.di_version == 1) {
875 ip->i_d.di_nlink = ip->i_d.di_onlink;
876 ip->i_d.di_onlink = 0;
877 ip->i_d.di_projid = 0;
880 ip->i_delayed_blks = 0;
881 ip->i_size = ip->i_d.di_size;
884 * Mark the buffer containing the inode as something to keep
885 * around for a while. This helps to keep recently accessed
886 * meta-data in-core longer.
888 XFS_BUF_SET_REF(bp, XFS_INO_REF);
891 * Use xfs_trans_brelse() to release the buffer containing the
892 * on-disk inode, because it was acquired with xfs_trans_read_buf()
893 * in xfs_itobp() above. If tp is NULL, this is just a normal
894 * brelse(). If we're within a transaction, then xfs_trans_brelse()
895 * will only release the buffer if it is not dirty within the
896 * transaction. It will be OK to release the buffer in this case,
897 * because inodes on disk are never destroyed and we will be
898 * locking the new in-core inode before putting it in the hash
899 * table where other processes can find it. Thus we don't have
900 * to worry about the inode being changed just because we released
901 * the buffer.
903 out_brelse:
904 xfs_trans_brelse(tp, bp);
905 return error;
909 * Read in extents from a btree-format inode.
910 * Allocate and fill in if_extents. Real work is done in xfs_bmap.c.
913 xfs_iread_extents(
914 xfs_trans_t *tp,
915 xfs_inode_t *ip,
916 int whichfork)
918 int error;
919 xfs_ifork_t *ifp;
920 xfs_extnum_t nextents;
922 if (unlikely(XFS_IFORK_FORMAT(ip, whichfork) != XFS_DINODE_FMT_BTREE)) {
923 XFS_ERROR_REPORT("xfs_iread_extents", XFS_ERRLEVEL_LOW,
924 ip->i_mount);
925 return XFS_ERROR(EFSCORRUPTED);
927 nextents = XFS_IFORK_NEXTENTS(ip, whichfork);
928 ifp = XFS_IFORK_PTR(ip, whichfork);
931 * We know that the size is valid (it's checked in iformat_btree)
933 ifp->if_lastex = NULLEXTNUM;
934 ifp->if_bytes = ifp->if_real_bytes = 0;
935 ifp->if_flags |= XFS_IFEXTENTS;
936 xfs_iext_add(ifp, 0, nextents);
937 error = xfs_bmap_read_extents(tp, ip, whichfork);
938 if (error) {
939 xfs_iext_destroy(ifp);
940 ifp->if_flags &= ~XFS_IFEXTENTS;
941 return error;
943 xfs_validate_extents(ifp, nextents, XFS_EXTFMT_INODE(ip));
944 return 0;
948 * Allocate an inode on disk and return a copy of its in-core version.
949 * The in-core inode is locked exclusively. Set mode, nlink, and rdev
950 * appropriately within the inode. The uid and gid for the inode are
951 * set according to the contents of the given cred structure.
953 * Use xfs_dialloc() to allocate the on-disk inode. If xfs_dialloc()
954 * has a free inode available, call xfs_iget()
955 * to obtain the in-core version of the allocated inode. Finally,
956 * fill in the inode and log its initial contents. In this case,
957 * ialloc_context would be set to NULL and call_again set to false.
959 * If xfs_dialloc() does not have an available inode,
960 * it will replenish its supply by doing an allocation. Since we can
961 * only do one allocation within a transaction without deadlocks, we
962 * must commit the current transaction before returning the inode itself.
963 * In this case, therefore, we will set call_again to true and return.
964 * The caller should then commit the current transaction, start a new
965 * transaction, and call xfs_ialloc() again to actually get the inode.
967 * To ensure that some other process does not grab the inode that
968 * was allocated during the first call to xfs_ialloc(), this routine
969 * also returns the [locked] bp pointing to the head of the freelist
970 * as ialloc_context. The caller should hold this buffer across
971 * the commit and pass it back into this routine on the second call.
973 * If we are allocating quota inodes, we do not have a parent inode
974 * to attach to or associate with (i.e. pip == NULL) because they
975 * are not linked into the directory structure - they are attached
976 * directly to the superblock - and so have no parent.
979 xfs_ialloc(
980 xfs_trans_t *tp,
981 xfs_inode_t *pip,
982 mode_t mode,
983 xfs_nlink_t nlink,
984 xfs_dev_t rdev,
985 cred_t *cr,
986 xfs_prid_t prid,
987 int okalloc,
988 xfs_buf_t **ialloc_context,
989 boolean_t *call_again,
990 xfs_inode_t **ipp)
992 xfs_ino_t ino;
993 xfs_inode_t *ip;
994 uint flags;
995 int error;
996 timespec_t tv;
997 int filestreams = 0;
1000 * Call the space management code to pick
1001 * the on-disk inode to be allocated.
1003 error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
1004 ialloc_context, call_again, &ino);
1005 if (error)
1006 return error;
1007 if (*call_again || ino == NULLFSINO) {
1008 *ipp = NULL;
1009 return 0;
1011 ASSERT(*ialloc_context == NULL);
1014 * Get the in-core inode with the lock held exclusively.
1015 * This is because we're setting fields here we need
1016 * to prevent others from looking at until we're done.
1018 error = xfs_trans_iget(tp->t_mountp, tp, ino,
1019 XFS_IGET_CREATE, XFS_ILOCK_EXCL, &ip);
1020 if (error)
1021 return error;
1022 ASSERT(ip != NULL);
1024 ip->i_d.di_mode = (__uint16_t)mode;
1025 ip->i_d.di_onlink = 0;
1026 ip->i_d.di_nlink = nlink;
1027 ASSERT(ip->i_d.di_nlink == nlink);
1028 ip->i_d.di_uid = current_fsuid();
1029 ip->i_d.di_gid = current_fsgid();
1030 ip->i_d.di_projid = prid;
1031 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
1034 * If the superblock version is up to where we support new format
1035 * inodes and this is currently an old format inode, then change
1036 * the inode version number now. This way we only do the conversion
1037 * here rather than here and in the flush/logging code.
1039 if (xfs_sb_version_hasnlink(&tp->t_mountp->m_sb) &&
1040 ip->i_d.di_version == 1) {
1041 ip->i_d.di_version = 2;
1043 * We've already zeroed the old link count, the projid field,
1044 * and the pad field.
1049 * Project ids won't be stored on disk if we are using a version 1 inode.
1051 if ((prid != 0) && (ip->i_d.di_version == 1))
1052 xfs_bump_ino_vers2(tp, ip);
1054 if (pip && XFS_INHERIT_GID(pip)) {
1055 ip->i_d.di_gid = pip->i_d.di_gid;
1056 if ((pip->i_d.di_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR) {
1057 ip->i_d.di_mode |= S_ISGID;
1062 * If the group ID of the new file does not match the effective group
1063 * ID or one of the supplementary group IDs, the S_ISGID bit is cleared
1064 * (and only if the irix_sgid_inherit compatibility variable is set).
1066 if ((irix_sgid_inherit) &&
1067 (ip->i_d.di_mode & S_ISGID) &&
1068 (!in_group_p((gid_t)ip->i_d.di_gid))) {
1069 ip->i_d.di_mode &= ~S_ISGID;
1072 ip->i_d.di_size = 0;
1073 ip->i_size = 0;
1074 ip->i_d.di_nextents = 0;
1075 ASSERT(ip->i_d.di_nblocks == 0);
1077 nanotime(&tv);
1078 ip->i_d.di_mtime.t_sec = (__int32_t)tv.tv_sec;
1079 ip->i_d.di_mtime.t_nsec = (__int32_t)tv.tv_nsec;
1080 ip->i_d.di_atime = ip->i_d.di_mtime;
1081 ip->i_d.di_ctime = ip->i_d.di_mtime;
1084 * di_gen will have been taken care of in xfs_iread.
1086 ip->i_d.di_extsize = 0;
1087 ip->i_d.di_dmevmask = 0;
1088 ip->i_d.di_dmstate = 0;
1089 ip->i_d.di_flags = 0;
1090 flags = XFS_ILOG_CORE;
1091 switch (mode & S_IFMT) {
1092 case S_IFIFO:
1093 case S_IFCHR:
1094 case S_IFBLK:
1095 case S_IFSOCK:
1096 ip->i_d.di_format = XFS_DINODE_FMT_DEV;
1097 ip->i_df.if_u2.if_rdev = rdev;
1098 ip->i_df.if_flags = 0;
1099 flags |= XFS_ILOG_DEV;
1100 break;
1101 case S_IFREG:
1103 * we can't set up filestreams until after the VFS inode
1104 * is set up properly.
1106 if (pip && xfs_inode_is_filestream(pip))
1107 filestreams = 1;
1108 /* fall through */
1109 case S_IFDIR:
1110 if (pip && (pip->i_d.di_flags & XFS_DIFLAG_ANY)) {
1111 uint di_flags = 0;
1113 if ((mode & S_IFMT) == S_IFDIR) {
1114 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1115 di_flags |= XFS_DIFLAG_RTINHERIT;
1116 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1117 di_flags |= XFS_DIFLAG_EXTSZINHERIT;
1118 ip->i_d.di_extsize = pip->i_d.di_extsize;
1120 } else if ((mode & S_IFMT) == S_IFREG) {
1121 if (pip->i_d.di_flags & XFS_DIFLAG_RTINHERIT)
1122 di_flags |= XFS_DIFLAG_REALTIME;
1123 if (pip->i_d.di_flags & XFS_DIFLAG_EXTSZINHERIT) {
1124 di_flags |= XFS_DIFLAG_EXTSIZE;
1125 ip->i_d.di_extsize = pip->i_d.di_extsize;
1128 if ((pip->i_d.di_flags & XFS_DIFLAG_NOATIME) &&
1129 xfs_inherit_noatime)
1130 di_flags |= XFS_DIFLAG_NOATIME;
1131 if ((pip->i_d.di_flags & XFS_DIFLAG_NODUMP) &&
1132 xfs_inherit_nodump)
1133 di_flags |= XFS_DIFLAG_NODUMP;
1134 if ((pip->i_d.di_flags & XFS_DIFLAG_SYNC) &&
1135 xfs_inherit_sync)
1136 di_flags |= XFS_DIFLAG_SYNC;
1137 if ((pip->i_d.di_flags & XFS_DIFLAG_NOSYMLINKS) &&
1138 xfs_inherit_nosymlinks)
1139 di_flags |= XFS_DIFLAG_NOSYMLINKS;
1140 if (pip->i_d.di_flags & XFS_DIFLAG_PROJINHERIT)
1141 di_flags |= XFS_DIFLAG_PROJINHERIT;
1142 if ((pip->i_d.di_flags & XFS_DIFLAG_NODEFRAG) &&
1143 xfs_inherit_nodefrag)
1144 di_flags |= XFS_DIFLAG_NODEFRAG;
1145 if (pip->i_d.di_flags & XFS_DIFLAG_FILESTREAM)
1146 di_flags |= XFS_DIFLAG_FILESTREAM;
1147 ip->i_d.di_flags |= di_flags;
1149 /* FALLTHROUGH */
1150 case S_IFLNK:
1151 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
1152 ip->i_df.if_flags = XFS_IFEXTENTS;
1153 ip->i_df.if_bytes = ip->i_df.if_real_bytes = 0;
1154 ip->i_df.if_u1.if_extents = NULL;
1155 break;
1156 default:
1157 ASSERT(0);
1160 * Attribute fork settings for new inode.
1162 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
1163 ip->i_d.di_anextents = 0;
1166 * Log the new values stuffed into the inode.
1168 xfs_trans_log_inode(tp, ip, flags);
1170 /* now that we have an i_mode we can setup inode ops and unlock */
1171 xfs_setup_inode(ip);
1173 /* now we have set up the vfs inode we can associate the filestream */
1174 if (filestreams) {
1175 error = xfs_filestream_associate(pip, ip);
1176 if (error < 0)
1177 return -error;
1178 if (!error)
1179 xfs_iflags_set(ip, XFS_IFILESTREAM);
1182 *ipp = ip;
1183 return 0;
1187 * Check to make sure that there are no blocks allocated to the
1188 * file beyond the size of the file. We don't check this for
1189 * files with fixed size extents or real time extents, but we
1190 * at least do it for regular files.
1192 #ifdef DEBUG
1193 void
1194 xfs_isize_check(
1195 xfs_mount_t *mp,
1196 xfs_inode_t *ip,
1197 xfs_fsize_t isize)
1199 xfs_fileoff_t map_first;
1200 int nimaps;
1201 xfs_bmbt_irec_t imaps[2];
1203 if ((ip->i_d.di_mode & S_IFMT) != S_IFREG)
1204 return;
1206 if (XFS_IS_REALTIME_INODE(ip))
1207 return;
1209 if (ip->i_d.di_flags & XFS_DIFLAG_EXTSIZE)
1210 return;
1212 nimaps = 2;
1213 map_first = XFS_B_TO_FSB(mp, (xfs_ufsize_t)isize);
1215 * The filesystem could be shutting down, so bmapi may return
1216 * an error.
1218 if (xfs_bmapi(NULL, ip, map_first,
1219 (XFS_B_TO_FSB(mp,
1220 (xfs_ufsize_t)XFS_MAXIOFFSET(mp)) -
1221 map_first),
1222 XFS_BMAPI_ENTIRE, NULL, 0, imaps, &nimaps,
1223 NULL))
1224 return;
1225 ASSERT(nimaps == 1);
1226 ASSERT(imaps[0].br_startblock == HOLESTARTBLOCK);
1228 #endif /* DEBUG */
1231 * Calculate the last possible buffered byte in a file. This must
1232 * include data that was buffered beyond the EOF by the write code.
1233 * This also needs to deal with overflowing the xfs_fsize_t type
1234 * which can happen for sizes near the limit.
1236 * We also need to take into account any blocks beyond the EOF. It
1237 * may be the case that they were buffered by a write which failed.
1238 * In that case the pages will still be in memory, but the inode size
1239 * will never have been updated.
1241 STATIC xfs_fsize_t
1242 xfs_file_last_byte(
1243 xfs_inode_t *ip)
1245 xfs_mount_t *mp;
1246 xfs_fsize_t last_byte;
1247 xfs_fileoff_t last_block;
1248 xfs_fileoff_t size_last_block;
1249 int error;
1251 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL|XFS_IOLOCK_SHARED));
1253 mp = ip->i_mount;
1255 * Only check for blocks beyond the EOF if the extents have
1256 * been read in. This eliminates the need for the inode lock,
1257 * and it also saves us from looking when it really isn't
1258 * necessary.
1260 if (ip->i_df.if_flags & XFS_IFEXTENTS) {
1261 xfs_ilock(ip, XFS_ILOCK_SHARED);
1262 error = xfs_bmap_last_offset(NULL, ip, &last_block,
1263 XFS_DATA_FORK);
1264 xfs_iunlock(ip, XFS_ILOCK_SHARED);
1265 if (error) {
1266 last_block = 0;
1268 } else {
1269 last_block = 0;
1271 size_last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)ip->i_size);
1272 last_block = XFS_FILEOFF_MAX(last_block, size_last_block);
1274 last_byte = XFS_FSB_TO_B(mp, last_block);
1275 if (last_byte < 0) {
1276 return XFS_MAXIOFFSET(mp);
1278 last_byte += (1 << mp->m_writeio_log);
1279 if (last_byte < 0) {
1280 return XFS_MAXIOFFSET(mp);
1282 return last_byte;
1286 * Start the truncation of the file to new_size. The new size
1287 * must be smaller than the current size. This routine will
1288 * clear the buffer and page caches of file data in the removed
1289 * range, and xfs_itruncate_finish() will remove the underlying
1290 * disk blocks.
1292 * The inode must have its I/O lock locked EXCLUSIVELY, and it
1293 * must NOT have the inode lock held at all. This is because we're
1294 * calling into the buffer/page cache code and we can't hold the
1295 * inode lock when we do so.
1297 * We need to wait for any direct I/Os in flight to complete before we
1298 * proceed with the truncate. This is needed to prevent the extents
1299 * being read or written by the direct I/Os from being removed while the
1300 * I/O is in flight as there is no other method of synchronising
1301 * direct I/O with the truncate operation. Also, because we hold
1302 * the IOLOCK in exclusive mode, we prevent new direct I/Os from being
1303 * started until the truncate completes and drops the lock. Essentially,
1304 * the xfs_ioend_wait() call forms an I/O barrier that provides strict
1305 * ordering between direct I/Os and the truncate operation.
1307 * The flags parameter can have either the value XFS_ITRUNC_DEFINITE
1308 * or XFS_ITRUNC_MAYBE. The XFS_ITRUNC_MAYBE value should be used
1309 * in the case that the caller is locking things out of order and
1310 * may not be able to call xfs_itruncate_finish() with the inode lock
1311 * held without dropping the I/O lock. If the caller must drop the
1312 * I/O lock before calling xfs_itruncate_finish(), then xfs_itruncate_start()
1313 * must be called again with all the same restrictions as the initial
1314 * call.
1317 xfs_itruncate_start(
1318 xfs_inode_t *ip,
1319 uint flags,
1320 xfs_fsize_t new_size)
1322 xfs_fsize_t last_byte;
1323 xfs_off_t toss_start;
1324 xfs_mount_t *mp;
1325 int error = 0;
1327 ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
1328 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1329 ASSERT((flags == XFS_ITRUNC_DEFINITE) ||
1330 (flags == XFS_ITRUNC_MAYBE));
1332 mp = ip->i_mount;
1334 /* wait for the completion of any pending DIOs */
1335 if (new_size == 0 || new_size < ip->i_size)
1336 xfs_ioend_wait(ip);
1339 * Call toss_pages or flushinval_pages to get rid of pages
1340 * overlapping the region being removed. We have to use
1341 * the less efficient flushinval_pages in the case that the
1342 * caller may not be able to finish the truncate without
1343 * dropping the inode's I/O lock. Make sure
1344 * to catch any pages brought in by buffers overlapping
1345 * the EOF by searching out beyond the isize by our
1346 * block size. We round new_size up to a block boundary
1347 * so that we don't toss things on the same block as
1348 * new_size but before it.
1350 * Before calling toss_page or flushinval_pages, make sure to
1351 * call remapf() over the same region if the file is mapped.
1352 * This frees up mapped file references to the pages in the
1353 * given range and for the flushinval_pages case it ensures
1354 * that we get the latest mapped changes flushed out.
1356 toss_start = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1357 toss_start = XFS_FSB_TO_B(mp, toss_start);
1358 if (toss_start < 0) {
1360 * The place to start tossing is beyond our maximum
1361 * file size, so there is no way that the data extended
1362 * out there.
1364 return 0;
1366 last_byte = xfs_file_last_byte(ip);
1367 trace_xfs_itruncate_start(ip, flags, new_size, toss_start, last_byte);
1368 if (last_byte > toss_start) {
1369 if (flags & XFS_ITRUNC_DEFINITE) {
1370 xfs_tosspages(ip, toss_start,
1371 -1, FI_REMAPF_LOCKED);
1372 } else {
1373 error = xfs_flushinval_pages(ip, toss_start,
1374 -1, FI_REMAPF_LOCKED);
1378 #ifdef DEBUG
1379 if (new_size == 0) {
1380 ASSERT(VN_CACHED(VFS_I(ip)) == 0);
1382 #endif
1383 return error;
1387 * Shrink the file to the given new_size. The new size must be smaller than
1388 * the current size. This will free up the underlying blocks in the removed
1389 * range after a call to xfs_itruncate_start() or xfs_atruncate_start().
1391 * The transaction passed to this routine must have made a permanent log
1392 * reservation of at least XFS_ITRUNCATE_LOG_RES. This routine may commit the
1393 * given transaction and start new ones, so make sure everything involved in
1394 * the transaction is tidy before calling here. Some transaction will be
1395 * returned to the caller to be committed. The incoming transaction must
1396 * already include the inode, and both inode locks must be held exclusively.
1397 * The inode must also be "held" within the transaction. On return the inode
1398 * will be "held" within the returned transaction. This routine does NOT
1399 * require any disk space to be reserved for it within the transaction.
1401 * The fork parameter must be either xfs_attr_fork or xfs_data_fork, and it
1402 * indicates the fork which is to be truncated. For the attribute fork we only
1403 * support truncation to size 0.
1405 * We use the sync parameter to indicate whether or not the first transaction
1406 * we perform might have to be synchronous. For the attr fork, it needs to be
1407 * so if the unlink of the inode is not yet known to be permanent in the log.
1408 * This keeps us from freeing and reusing the blocks of the attribute fork
1409 * before the unlink of the inode becomes permanent.
1411 * For the data fork, we normally have to run synchronously if we're being
1412 * called out of the inactive path or we're being called out of the create path
1413 * where we're truncating an existing file. Either way, the truncate needs to
1414 * be sync so blocks don't reappear in the file with altered data in case of a
1415 * crash. wsync filesystems can run the first case async because anything that
1416 * shrinks the inode has to run sync so by the time we're called here from
1417 * inactive, the inode size is permanently set to 0.
1419 * Calls from the truncate path always need to be sync unless we're in a wsync
1420 * filesystem and the file has already been unlinked.
1422 * The caller is responsible for correctly setting the sync parameter. It gets
1423 * too hard for us to guess here which path we're being called out of just
1424 * based on inode state.
1426 * If we get an error, we must return with the inode locked and linked into the
1427 * current transaction. This keeps things simple for the higher level code,
1428 * because it always knows that the inode is locked and held in the transaction
1429 * that returns to it whether errors occur or not. We don't mark the inode
1430 * dirty on error so that transactions can be easily aborted if possible.
1433 xfs_itruncate_finish(
1434 xfs_trans_t **tp,
1435 xfs_inode_t *ip,
1436 xfs_fsize_t new_size,
1437 int fork,
1438 int sync)
1440 xfs_fsblock_t first_block;
1441 xfs_fileoff_t first_unmap_block;
1442 xfs_fileoff_t last_block;
1443 xfs_filblks_t unmap_len=0;
1444 xfs_mount_t *mp;
1445 xfs_trans_t *ntp;
1446 int done;
1447 int committed;
1448 xfs_bmap_free_t free_list;
1449 int error;
1451 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_IOLOCK_EXCL));
1452 ASSERT((new_size == 0) || (new_size <= ip->i_size));
1453 ASSERT(*tp != NULL);
1454 ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
1455 ASSERT(ip->i_transp == *tp);
1456 ASSERT(ip->i_itemp != NULL);
1457 ASSERT(ip->i_itemp->ili_lock_flags == 0);
1460 ntp = *tp;
1461 mp = (ntp)->t_mountp;
1462 ASSERT(! XFS_NOT_DQATTACHED(mp, ip));
1465 * We only support truncating the entire attribute fork.
1467 if (fork == XFS_ATTR_FORK) {
1468 new_size = 0LL;
1470 first_unmap_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)new_size);
1471 trace_xfs_itruncate_finish_start(ip, new_size);
1474 * The first thing we do is set the size to new_size permanently
1475 * on disk. This way we don't have to worry about anyone ever
1476 * being able to look at the data being freed even in the face
1477 * of a crash. What we're getting around here is the case where
1478 * we free a block, it is allocated to another file, it is written
1479 * to, and then we crash. If the new data gets written to the
1480 * file but the log buffers containing the free and reallocation
1481 * don't, then we'd end up with garbage in the blocks being freed.
1482 * As long as we make the new_size permanent before actually
1483 * freeing any blocks it doesn't matter if they get writtten to.
1485 * The callers must signal into us whether or not the size
1486 * setting here must be synchronous. There are a few cases
1487 * where it doesn't have to be synchronous. Those cases
1488 * occur if the file is unlinked and we know the unlink is
1489 * permanent or if the blocks being truncated are guaranteed
1490 * to be beyond the inode eof (regardless of the link count)
1491 * and the eof value is permanent. Both of these cases occur
1492 * only on wsync-mounted filesystems. In those cases, we're
1493 * guaranteed that no user will ever see the data in the blocks
1494 * that are being truncated so the truncate can run async.
1495 * In the free beyond eof case, the file may wind up with
1496 * more blocks allocated to it than it needs if we crash
1497 * and that won't get fixed until the next time the file
1498 * is re-opened and closed but that's ok as that shouldn't
1499 * be too many blocks.
1501 * However, we can't just make all wsync xactions run async
1502 * because there's one call out of the create path that needs
1503 * to run sync where it's truncating an existing file to size
1504 * 0 whose size is > 0.
1506 * It's probably possible to come up with a test in this
1507 * routine that would correctly distinguish all the above
1508 * cases from the values of the function parameters and the
1509 * inode state but for sanity's sake, I've decided to let the
1510 * layers above just tell us. It's simpler to correctly figure
1511 * out in the layer above exactly under what conditions we
1512 * can run async and I think it's easier for others read and
1513 * follow the logic in case something has to be changed.
1514 * cscope is your friend -- rcc.
1516 * The attribute fork is much simpler.
1518 * For the attribute fork we allow the caller to tell us whether
1519 * the unlink of the inode that led to this call is yet permanent
1520 * in the on disk log. If it is not and we will be freeing extents
1521 * in this inode then we make the first transaction synchronous
1522 * to make sure that the unlink is permanent by the time we free
1523 * the blocks.
1525 if (fork == XFS_DATA_FORK) {
1526 if (ip->i_d.di_nextents > 0) {
1528 * If we are not changing the file size then do
1529 * not update the on-disk file size - we may be
1530 * called from xfs_inactive_free_eofblocks(). If we
1531 * update the on-disk file size and then the system
1532 * crashes before the contents of the file are
1533 * flushed to disk then the files may be full of
1534 * holes (ie NULL files bug).
1536 if (ip->i_size != new_size) {
1537 ip->i_d.di_size = new_size;
1538 ip->i_size = new_size;
1539 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1542 } else if (sync) {
1543 ASSERT(!(mp->m_flags & XFS_MOUNT_WSYNC));
1544 if (ip->i_d.di_anextents > 0)
1545 xfs_trans_set_sync(ntp);
1547 ASSERT(fork == XFS_DATA_FORK ||
1548 (fork == XFS_ATTR_FORK &&
1549 ((sync && !(mp->m_flags & XFS_MOUNT_WSYNC)) ||
1550 (sync == 0 && (mp->m_flags & XFS_MOUNT_WSYNC)))));
1553 * Since it is possible for space to become allocated beyond
1554 * the end of the file (in a crash where the space is allocated
1555 * but the inode size is not yet updated), simply remove any
1556 * blocks which show up between the new EOF and the maximum
1557 * possible file size. If the first block to be removed is
1558 * beyond the maximum file size (ie it is the same as last_block),
1559 * then there is nothing to do.
1561 last_block = XFS_B_TO_FSB(mp, (xfs_ufsize_t)XFS_MAXIOFFSET(mp));
1562 ASSERT(first_unmap_block <= last_block);
1563 done = 0;
1564 if (last_block == first_unmap_block) {
1565 done = 1;
1566 } else {
1567 unmap_len = last_block - first_unmap_block + 1;
1569 while (!done) {
1571 * Free up up to XFS_ITRUNC_MAX_EXTENTS. xfs_bunmapi()
1572 * will tell us whether it freed the entire range or
1573 * not. If this is a synchronous mount (wsync),
1574 * then we can tell bunmapi to keep all the
1575 * transactions asynchronous since the unlink
1576 * transaction that made this inode inactive has
1577 * already hit the disk. There's no danger of
1578 * the freed blocks being reused, there being a
1579 * crash, and the reused blocks suddenly reappearing
1580 * in this file with garbage in them once recovery
1581 * runs.
1583 xfs_bmap_init(&free_list, &first_block);
1584 error = xfs_bunmapi(ntp, ip,
1585 first_unmap_block, unmap_len,
1586 xfs_bmapi_aflag(fork),
1587 XFS_ITRUNC_MAX_EXTENTS,
1588 &first_block, &free_list,
1589 &done);
1590 if (error) {
1592 * If the bunmapi call encounters an error,
1593 * return to the caller where the transaction
1594 * can be properly aborted. We just need to
1595 * make sure we're not holding any resources
1596 * that we were not when we came in.
1598 xfs_bmap_cancel(&free_list);
1599 return error;
1603 * Duplicate the transaction that has the permanent
1604 * reservation and commit the old transaction.
1606 error = xfs_bmap_finish(tp, &free_list, &committed);
1607 ntp = *tp;
1608 if (committed)
1609 xfs_trans_ijoin(ntp, ip);
1611 if (error) {
1613 * If the bmap finish call encounters an error, return
1614 * to the caller where the transaction can be properly
1615 * aborted. We just need to make sure we're not
1616 * holding any resources that we were not when we came
1617 * in.
1619 * Aborting from this point might lose some blocks in
1620 * the file system, but oh well.
1622 xfs_bmap_cancel(&free_list);
1623 return error;
1626 if (committed) {
1628 * Mark the inode dirty so it will be logged and
1629 * moved forward in the log as part of every commit.
1631 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1634 ntp = xfs_trans_dup(ntp);
1635 error = xfs_trans_commit(*tp, 0);
1636 *tp = ntp;
1638 xfs_trans_ijoin(ntp, ip);
1640 if (error)
1641 return error;
1643 * transaction commit worked ok so we can drop the extra ticket
1644 * reference that we gained in xfs_trans_dup()
1646 xfs_log_ticket_put(ntp->t_ticket);
1647 error = xfs_trans_reserve(ntp, 0,
1648 XFS_ITRUNCATE_LOG_RES(mp), 0,
1649 XFS_TRANS_PERM_LOG_RES,
1650 XFS_ITRUNCATE_LOG_COUNT);
1651 if (error)
1652 return error;
1655 * Only update the size in the case of the data fork, but
1656 * always re-log the inode so that our permanent transaction
1657 * can keep on rolling it forward in the log.
1659 if (fork == XFS_DATA_FORK) {
1660 xfs_isize_check(mp, ip, new_size);
1662 * If we are not changing the file size then do
1663 * not update the on-disk file size - we may be
1664 * called from xfs_inactive_free_eofblocks(). If we
1665 * update the on-disk file size and then the system
1666 * crashes before the contents of the file are
1667 * flushed to disk then the files may be full of
1668 * holes (ie NULL files bug).
1670 if (ip->i_size != new_size) {
1671 ip->i_d.di_size = new_size;
1672 ip->i_size = new_size;
1675 xfs_trans_log_inode(ntp, ip, XFS_ILOG_CORE);
1676 ASSERT((new_size != 0) ||
1677 (fork == XFS_ATTR_FORK) ||
1678 (ip->i_delayed_blks == 0));
1679 ASSERT((new_size != 0) ||
1680 (fork == XFS_ATTR_FORK) ||
1681 (ip->i_d.di_nextents == 0));
1682 trace_xfs_itruncate_finish_end(ip, new_size);
1683 return 0;
1687 * This is called when the inode's link count goes to 0.
1688 * We place the on-disk inode on a list in the AGI. It
1689 * will be pulled from this list when the inode is freed.
1692 xfs_iunlink(
1693 xfs_trans_t *tp,
1694 xfs_inode_t *ip)
1696 xfs_mount_t *mp;
1697 xfs_agi_t *agi;
1698 xfs_dinode_t *dip;
1699 xfs_buf_t *agibp;
1700 xfs_buf_t *ibp;
1701 xfs_agino_t agino;
1702 short bucket_index;
1703 int offset;
1704 int error;
1706 ASSERT(ip->i_d.di_nlink == 0);
1707 ASSERT(ip->i_d.di_mode != 0);
1708 ASSERT(ip->i_transp == tp);
1710 mp = tp->t_mountp;
1713 * Get the agi buffer first. It ensures lock ordering
1714 * on the list.
1716 error = xfs_read_agi(mp, tp, XFS_INO_TO_AGNO(mp, ip->i_ino), &agibp);
1717 if (error)
1718 return error;
1719 agi = XFS_BUF_TO_AGI(agibp);
1722 * Get the index into the agi hash table for the
1723 * list this inode will go on.
1725 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1726 ASSERT(agino != 0);
1727 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1728 ASSERT(agi->agi_unlinked[bucket_index]);
1729 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != agino);
1731 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO) {
1733 * There is already another inode in the bucket we need
1734 * to add ourselves to. Add us at the front of the list.
1735 * Here we put the head pointer into our next pointer,
1736 * and then we fall through to point the head at us.
1738 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1739 if (error)
1740 return error;
1742 ASSERT(be32_to_cpu(dip->di_next_unlinked) == NULLAGINO);
1743 /* both on-disk, don't endian flip twice */
1744 dip->di_next_unlinked = agi->agi_unlinked[bucket_index];
1745 offset = ip->i_imap.im_boffset +
1746 offsetof(xfs_dinode_t, di_next_unlinked);
1747 xfs_trans_inode_buf(tp, ibp);
1748 xfs_trans_log_buf(tp, ibp, offset,
1749 (offset + sizeof(xfs_agino_t) - 1));
1750 xfs_inobp_check(mp, ibp);
1754 * Point the bucket head pointer at the inode being inserted.
1756 ASSERT(agino != 0);
1757 agi->agi_unlinked[bucket_index] = cpu_to_be32(agino);
1758 offset = offsetof(xfs_agi_t, agi_unlinked) +
1759 (sizeof(xfs_agino_t) * bucket_index);
1760 xfs_trans_log_buf(tp, agibp, offset,
1761 (offset + sizeof(xfs_agino_t) - 1));
1762 return 0;
1766 * Pull the on-disk inode from the AGI unlinked list.
1768 STATIC int
1769 xfs_iunlink_remove(
1770 xfs_trans_t *tp,
1771 xfs_inode_t *ip)
1773 xfs_ino_t next_ino;
1774 xfs_mount_t *mp;
1775 xfs_agi_t *agi;
1776 xfs_dinode_t *dip;
1777 xfs_buf_t *agibp;
1778 xfs_buf_t *ibp;
1779 xfs_agnumber_t agno;
1780 xfs_agino_t agino;
1781 xfs_agino_t next_agino;
1782 xfs_buf_t *last_ibp;
1783 xfs_dinode_t *last_dip = NULL;
1784 short bucket_index;
1785 int offset, last_offset = 0;
1786 int error;
1788 mp = tp->t_mountp;
1789 agno = XFS_INO_TO_AGNO(mp, ip->i_ino);
1792 * Get the agi buffer first. It ensures lock ordering
1793 * on the list.
1795 error = xfs_read_agi(mp, tp, agno, &agibp);
1796 if (error)
1797 return error;
1799 agi = XFS_BUF_TO_AGI(agibp);
1802 * Get the index into the agi hash table for the
1803 * list this inode will go on.
1805 agino = XFS_INO_TO_AGINO(mp, ip->i_ino);
1806 ASSERT(agino != 0);
1807 bucket_index = agino % XFS_AGI_UNLINKED_BUCKETS;
1808 ASSERT(be32_to_cpu(agi->agi_unlinked[bucket_index]) != NULLAGINO);
1809 ASSERT(agi->agi_unlinked[bucket_index]);
1811 if (be32_to_cpu(agi->agi_unlinked[bucket_index]) == agino) {
1813 * We're at the head of the list. Get the inode's
1814 * on-disk buffer to see if there is anyone after us
1815 * on the list. Only modify our next pointer if it
1816 * is not already NULLAGINO. This saves us the overhead
1817 * of dealing with the buffer when there is no need to
1818 * change it.
1820 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1821 if (error) {
1822 cmn_err(CE_WARN,
1823 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1824 error, mp->m_fsname);
1825 return error;
1827 next_agino = be32_to_cpu(dip->di_next_unlinked);
1828 ASSERT(next_agino != 0);
1829 if (next_agino != NULLAGINO) {
1830 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1831 offset = ip->i_imap.im_boffset +
1832 offsetof(xfs_dinode_t, di_next_unlinked);
1833 xfs_trans_inode_buf(tp, ibp);
1834 xfs_trans_log_buf(tp, ibp, offset,
1835 (offset + sizeof(xfs_agino_t) - 1));
1836 xfs_inobp_check(mp, ibp);
1837 } else {
1838 xfs_trans_brelse(tp, ibp);
1841 * Point the bucket head pointer at the next inode.
1843 ASSERT(next_agino != 0);
1844 ASSERT(next_agino != agino);
1845 agi->agi_unlinked[bucket_index] = cpu_to_be32(next_agino);
1846 offset = offsetof(xfs_agi_t, agi_unlinked) +
1847 (sizeof(xfs_agino_t) * bucket_index);
1848 xfs_trans_log_buf(tp, agibp, offset,
1849 (offset + sizeof(xfs_agino_t) - 1));
1850 } else {
1852 * We need to search the list for the inode being freed.
1854 next_agino = be32_to_cpu(agi->agi_unlinked[bucket_index]);
1855 last_ibp = NULL;
1856 while (next_agino != agino) {
1858 * If the last inode wasn't the one pointing to
1859 * us, then release its buffer since we're not
1860 * going to do anything with it.
1862 if (last_ibp != NULL) {
1863 xfs_trans_brelse(tp, last_ibp);
1865 next_ino = XFS_AGINO_TO_INO(mp, agno, next_agino);
1866 error = xfs_inotobp(mp, tp, next_ino, &last_dip,
1867 &last_ibp, &last_offset, 0);
1868 if (error) {
1869 cmn_err(CE_WARN,
1870 "xfs_iunlink_remove: xfs_inotobp() returned an error %d on %s. Returning error.",
1871 error, mp->m_fsname);
1872 return error;
1874 next_agino = be32_to_cpu(last_dip->di_next_unlinked);
1875 ASSERT(next_agino != NULLAGINO);
1876 ASSERT(next_agino != 0);
1879 * Now last_ibp points to the buffer previous to us on
1880 * the unlinked list. Pull us from the list.
1882 error = xfs_itobp(mp, tp, ip, &dip, &ibp, XBF_LOCK);
1883 if (error) {
1884 cmn_err(CE_WARN,
1885 "xfs_iunlink_remove: xfs_itobp() returned an error %d on %s. Returning error.",
1886 error, mp->m_fsname);
1887 return error;
1889 next_agino = be32_to_cpu(dip->di_next_unlinked);
1890 ASSERT(next_agino != 0);
1891 ASSERT(next_agino != agino);
1892 if (next_agino != NULLAGINO) {
1893 dip->di_next_unlinked = cpu_to_be32(NULLAGINO);
1894 offset = ip->i_imap.im_boffset +
1895 offsetof(xfs_dinode_t, di_next_unlinked);
1896 xfs_trans_inode_buf(tp, ibp);
1897 xfs_trans_log_buf(tp, ibp, offset,
1898 (offset + sizeof(xfs_agino_t) - 1));
1899 xfs_inobp_check(mp, ibp);
1900 } else {
1901 xfs_trans_brelse(tp, ibp);
1904 * Point the previous inode on the list to the next inode.
1906 last_dip->di_next_unlinked = cpu_to_be32(next_agino);
1907 ASSERT(next_agino != 0);
1908 offset = last_offset + offsetof(xfs_dinode_t, di_next_unlinked);
1909 xfs_trans_inode_buf(tp, last_ibp);
1910 xfs_trans_log_buf(tp, last_ibp, offset,
1911 (offset + sizeof(xfs_agino_t) - 1));
1912 xfs_inobp_check(mp, last_ibp);
1914 return 0;
1917 STATIC void
1918 xfs_ifree_cluster(
1919 xfs_inode_t *free_ip,
1920 xfs_trans_t *tp,
1921 xfs_ino_t inum)
1923 xfs_mount_t *mp = free_ip->i_mount;
1924 int blks_per_cluster;
1925 int nbufs;
1926 int ninodes;
1927 int i, j;
1928 xfs_daddr_t blkno;
1929 xfs_buf_t *bp;
1930 xfs_inode_t *ip;
1931 xfs_inode_log_item_t *iip;
1932 xfs_log_item_t *lip;
1933 struct xfs_perag *pag;
1935 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, inum));
1936 if (mp->m_sb.sb_blocksize >= XFS_INODE_CLUSTER_SIZE(mp)) {
1937 blks_per_cluster = 1;
1938 ninodes = mp->m_sb.sb_inopblock;
1939 nbufs = XFS_IALLOC_BLOCKS(mp);
1940 } else {
1941 blks_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) /
1942 mp->m_sb.sb_blocksize;
1943 ninodes = blks_per_cluster * mp->m_sb.sb_inopblock;
1944 nbufs = XFS_IALLOC_BLOCKS(mp) / blks_per_cluster;
1947 for (j = 0; j < nbufs; j++, inum += ninodes) {
1948 int found = 0;
1950 blkno = XFS_AGB_TO_DADDR(mp, XFS_INO_TO_AGNO(mp, inum),
1951 XFS_INO_TO_AGBNO(mp, inum));
1954 * We obtain and lock the backing buffer first in the process
1955 * here, as we have to ensure that any dirty inode that we
1956 * can't get the flush lock on is attached to the buffer.
1957 * If we scan the in-memory inodes first, then buffer IO can
1958 * complete before we get a lock on it, and hence we may fail
1959 * to mark all the active inodes on the buffer stale.
1961 bp = xfs_trans_get_buf(tp, mp->m_ddev_targp, blkno,
1962 mp->m_bsize * blks_per_cluster,
1963 XBF_LOCK);
1966 * Walk the inodes already attached to the buffer and mark them
1967 * stale. These will all have the flush locks held, so an
1968 * in-memory inode walk can't lock them.
1970 lip = XFS_BUF_FSPRIVATE(bp, xfs_log_item_t *);
1971 while (lip) {
1972 if (lip->li_type == XFS_LI_INODE) {
1973 iip = (xfs_inode_log_item_t *)lip;
1974 ASSERT(iip->ili_logged == 1);
1975 lip->li_cb = xfs_istale_done;
1976 xfs_trans_ail_copy_lsn(mp->m_ail,
1977 &iip->ili_flush_lsn,
1978 &iip->ili_item.li_lsn);
1979 xfs_iflags_set(iip->ili_inode, XFS_ISTALE);
1980 found++;
1982 lip = lip->li_bio_list;
1986 * For each inode in memory attempt to add it to the inode
1987 * buffer and set it up for being staled on buffer IO
1988 * completion. This is safe as we've locked out tail pushing
1989 * and flushing by locking the buffer.
1991 * We have already marked every inode that was part of a
1992 * transaction stale above, which means there is no point in
1993 * even trying to lock them.
1995 for (i = 0; i < ninodes; i++) {
1996 read_lock(&pag->pag_ici_lock);
1997 ip = radix_tree_lookup(&pag->pag_ici_root,
1998 XFS_INO_TO_AGINO(mp, (inum + i)));
2000 /* Inode not in memory or stale, nothing to do */
2001 if (!ip || xfs_iflags_test(ip, XFS_ISTALE)) {
2002 read_unlock(&pag->pag_ici_lock);
2003 continue;
2006 /* don't try to lock/unlock the current inode */
2007 if (ip != free_ip &&
2008 !xfs_ilock_nowait(ip, XFS_ILOCK_EXCL)) {
2009 read_unlock(&pag->pag_ici_lock);
2010 continue;
2012 read_unlock(&pag->pag_ici_lock);
2014 if (!xfs_iflock_nowait(ip)) {
2015 if (ip != free_ip)
2016 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2017 continue;
2020 xfs_iflags_set(ip, XFS_ISTALE);
2021 if (xfs_inode_clean(ip)) {
2022 ASSERT(ip != free_ip);
2023 xfs_ifunlock(ip);
2024 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2025 continue;
2028 iip = ip->i_itemp;
2029 if (!iip) {
2030 /* inode with unlogged changes only */
2031 ASSERT(ip != free_ip);
2032 ip->i_update_core = 0;
2033 xfs_ifunlock(ip);
2034 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2035 continue;
2037 found++;
2039 iip->ili_last_fields = iip->ili_format.ilf_fields;
2040 iip->ili_format.ilf_fields = 0;
2041 iip->ili_logged = 1;
2042 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
2043 &iip->ili_item.li_lsn);
2045 xfs_buf_attach_iodone(bp, xfs_istale_done,
2046 &iip->ili_item);
2048 if (ip != free_ip)
2049 xfs_iunlock(ip, XFS_ILOCK_EXCL);
2052 if (found)
2053 xfs_trans_stale_inode_buf(tp, bp);
2054 xfs_trans_binval(tp, bp);
2057 xfs_perag_put(pag);
2061 * This is called to return an inode to the inode free list.
2062 * The inode should already be truncated to 0 length and have
2063 * no pages associated with it. This routine also assumes that
2064 * the inode is already a part of the transaction.
2066 * The on-disk copy of the inode will have been added to the list
2067 * of unlinked inodes in the AGI. We need to remove the inode from
2068 * that list atomically with respect to freeing it here.
2071 xfs_ifree(
2072 xfs_trans_t *tp,
2073 xfs_inode_t *ip,
2074 xfs_bmap_free_t *flist)
2076 int error;
2077 int delete;
2078 xfs_ino_t first_ino;
2079 xfs_dinode_t *dip;
2080 xfs_buf_t *ibp;
2082 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL));
2083 ASSERT(ip->i_transp == tp);
2084 ASSERT(ip->i_d.di_nlink == 0);
2085 ASSERT(ip->i_d.di_nextents == 0);
2086 ASSERT(ip->i_d.di_anextents == 0);
2087 ASSERT((ip->i_d.di_size == 0 && ip->i_size == 0) ||
2088 ((ip->i_d.di_mode & S_IFMT) != S_IFREG));
2089 ASSERT(ip->i_d.di_nblocks == 0);
2092 * Pull the on-disk inode from the AGI unlinked list.
2094 error = xfs_iunlink_remove(tp, ip);
2095 if (error != 0) {
2096 return error;
2099 error = xfs_difree(tp, ip->i_ino, flist, &delete, &first_ino);
2100 if (error != 0) {
2101 return error;
2103 ip->i_d.di_mode = 0; /* mark incore inode as free */
2104 ip->i_d.di_flags = 0;
2105 ip->i_d.di_dmevmask = 0;
2106 ip->i_d.di_forkoff = 0; /* mark the attr fork not in use */
2107 ip->i_df.if_ext_max =
2108 XFS_IFORK_DSIZE(ip) / (uint)sizeof(xfs_bmbt_rec_t);
2109 ip->i_d.di_format = XFS_DINODE_FMT_EXTENTS;
2110 ip->i_d.di_aformat = XFS_DINODE_FMT_EXTENTS;
2112 * Bump the generation count so no one will be confused
2113 * by reincarnations of this inode.
2115 ip->i_d.di_gen++;
2117 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
2119 error = xfs_itobp(ip->i_mount, tp, ip, &dip, &ibp, XBF_LOCK);
2120 if (error)
2121 return error;
2124 * Clear the on-disk di_mode. This is to prevent xfs_bulkstat
2125 * from picking up this inode when it is reclaimed (its incore state
2126 * initialzed but not flushed to disk yet). The in-core di_mode is
2127 * already cleared and a corresponding transaction logged.
2128 * The hack here just synchronizes the in-core to on-disk
2129 * di_mode value in advance before the actual inode sync to disk.
2130 * This is OK because the inode is already unlinked and would never
2131 * change its di_mode again for this inode generation.
2132 * This is a temporary hack that would require a proper fix
2133 * in the future.
2135 dip->di_mode = 0;
2137 if (delete) {
2138 xfs_ifree_cluster(ip, tp, first_ino);
2141 return 0;
2145 * Reallocate the space for if_broot based on the number of records
2146 * being added or deleted as indicated in rec_diff. Move the records
2147 * and pointers in if_broot to fit the new size. When shrinking this
2148 * will eliminate holes between the records and pointers created by
2149 * the caller. When growing this will create holes to be filled in
2150 * by the caller.
2152 * The caller must not request to add more records than would fit in
2153 * the on-disk inode root. If the if_broot is currently NULL, then
2154 * if we adding records one will be allocated. The caller must also
2155 * not request that the number of records go below zero, although
2156 * it can go to zero.
2158 * ip -- the inode whose if_broot area is changing
2159 * ext_diff -- the change in the number of records, positive or negative,
2160 * requested for the if_broot array.
2162 void
2163 xfs_iroot_realloc(
2164 xfs_inode_t *ip,
2165 int rec_diff,
2166 int whichfork)
2168 struct xfs_mount *mp = ip->i_mount;
2169 int cur_max;
2170 xfs_ifork_t *ifp;
2171 struct xfs_btree_block *new_broot;
2172 int new_max;
2173 size_t new_size;
2174 char *np;
2175 char *op;
2178 * Handle the degenerate case quietly.
2180 if (rec_diff == 0) {
2181 return;
2184 ifp = XFS_IFORK_PTR(ip, whichfork);
2185 if (rec_diff > 0) {
2187 * If there wasn't any memory allocated before, just
2188 * allocate it now and get out.
2190 if (ifp->if_broot_bytes == 0) {
2191 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(rec_diff);
2192 ifp->if_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2193 ifp->if_broot_bytes = (int)new_size;
2194 return;
2198 * If there is already an existing if_broot, then we need
2199 * to realloc() it and shift the pointers to their new
2200 * location. The records don't change location because
2201 * they are kept butted up against the btree block header.
2203 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2204 new_max = cur_max + rec_diff;
2205 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2206 ifp->if_broot = kmem_realloc(ifp->if_broot, new_size,
2207 (size_t)XFS_BMAP_BROOT_SPACE_CALC(cur_max), /* old size */
2208 KM_SLEEP | KM_NOFS);
2209 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2210 ifp->if_broot_bytes);
2211 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2212 (int)new_size);
2213 ifp->if_broot_bytes = (int)new_size;
2214 ASSERT(ifp->if_broot_bytes <=
2215 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2216 memmove(np, op, cur_max * (uint)sizeof(xfs_dfsbno_t));
2217 return;
2221 * rec_diff is less than 0. In this case, we are shrinking the
2222 * if_broot buffer. It must already exist. If we go to zero
2223 * records, just get rid of the root and clear the status bit.
2225 ASSERT((ifp->if_broot != NULL) && (ifp->if_broot_bytes > 0));
2226 cur_max = xfs_bmbt_maxrecs(mp, ifp->if_broot_bytes, 0);
2227 new_max = cur_max + rec_diff;
2228 ASSERT(new_max >= 0);
2229 if (new_max > 0)
2230 new_size = (size_t)XFS_BMAP_BROOT_SPACE_CALC(new_max);
2231 else
2232 new_size = 0;
2233 if (new_size > 0) {
2234 new_broot = kmem_alloc(new_size, KM_SLEEP | KM_NOFS);
2236 * First copy over the btree block header.
2238 memcpy(new_broot, ifp->if_broot, XFS_BTREE_LBLOCK_LEN);
2239 } else {
2240 new_broot = NULL;
2241 ifp->if_flags &= ~XFS_IFBROOT;
2245 * Only copy the records and pointers if there are any.
2247 if (new_max > 0) {
2249 * First copy the records.
2251 op = (char *)XFS_BMBT_REC_ADDR(mp, ifp->if_broot, 1);
2252 np = (char *)XFS_BMBT_REC_ADDR(mp, new_broot, 1);
2253 memcpy(np, op, new_max * (uint)sizeof(xfs_bmbt_rec_t));
2256 * Then copy the pointers.
2258 op = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, ifp->if_broot, 1,
2259 ifp->if_broot_bytes);
2260 np = (char *)XFS_BMAP_BROOT_PTR_ADDR(mp, new_broot, 1,
2261 (int)new_size);
2262 memcpy(np, op, new_max * (uint)sizeof(xfs_dfsbno_t));
2264 kmem_free(ifp->if_broot);
2265 ifp->if_broot = new_broot;
2266 ifp->if_broot_bytes = (int)new_size;
2267 ASSERT(ifp->if_broot_bytes <=
2268 XFS_IFORK_SIZE(ip, whichfork) + XFS_BROOT_SIZE_ADJ);
2269 return;
2274 * This is called when the amount of space needed for if_data
2275 * is increased or decreased. The change in size is indicated by
2276 * the number of bytes that need to be added or deleted in the
2277 * byte_diff parameter.
2279 * If the amount of space needed has decreased below the size of the
2280 * inline buffer, then switch to using the inline buffer. Otherwise,
2281 * use kmem_realloc() or kmem_alloc() to adjust the size of the buffer
2282 * to what is needed.
2284 * ip -- the inode whose if_data area is changing
2285 * byte_diff -- the change in the number of bytes, positive or negative,
2286 * requested for the if_data array.
2288 void
2289 xfs_idata_realloc(
2290 xfs_inode_t *ip,
2291 int byte_diff,
2292 int whichfork)
2294 xfs_ifork_t *ifp;
2295 int new_size;
2296 int real_size;
2298 if (byte_diff == 0) {
2299 return;
2302 ifp = XFS_IFORK_PTR(ip, whichfork);
2303 new_size = (int)ifp->if_bytes + byte_diff;
2304 ASSERT(new_size >= 0);
2306 if (new_size == 0) {
2307 if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2308 kmem_free(ifp->if_u1.if_data);
2310 ifp->if_u1.if_data = NULL;
2311 real_size = 0;
2312 } else if (new_size <= sizeof(ifp->if_u2.if_inline_data)) {
2314 * If the valid extents/data can fit in if_inline_ext/data,
2315 * copy them from the malloc'd vector and free it.
2317 if (ifp->if_u1.if_data == NULL) {
2318 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2319 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2320 ASSERT(ifp->if_real_bytes != 0);
2321 memcpy(ifp->if_u2.if_inline_data, ifp->if_u1.if_data,
2322 new_size);
2323 kmem_free(ifp->if_u1.if_data);
2324 ifp->if_u1.if_data = ifp->if_u2.if_inline_data;
2326 real_size = 0;
2327 } else {
2329 * Stuck with malloc/realloc.
2330 * For inline data, the underlying buffer must be
2331 * a multiple of 4 bytes in size so that it can be
2332 * logged and stay on word boundaries. We enforce
2333 * that here.
2335 real_size = roundup(new_size, 4);
2336 if (ifp->if_u1.if_data == NULL) {
2337 ASSERT(ifp->if_real_bytes == 0);
2338 ifp->if_u1.if_data = kmem_alloc(real_size,
2339 KM_SLEEP | KM_NOFS);
2340 } else if (ifp->if_u1.if_data != ifp->if_u2.if_inline_data) {
2342 * Only do the realloc if the underlying size
2343 * is really changing.
2345 if (ifp->if_real_bytes != real_size) {
2346 ifp->if_u1.if_data =
2347 kmem_realloc(ifp->if_u1.if_data,
2348 real_size,
2349 ifp->if_real_bytes,
2350 KM_SLEEP | KM_NOFS);
2352 } else {
2353 ASSERT(ifp->if_real_bytes == 0);
2354 ifp->if_u1.if_data = kmem_alloc(real_size,
2355 KM_SLEEP | KM_NOFS);
2356 memcpy(ifp->if_u1.if_data, ifp->if_u2.if_inline_data,
2357 ifp->if_bytes);
2360 ifp->if_real_bytes = real_size;
2361 ifp->if_bytes = new_size;
2362 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2365 void
2366 xfs_idestroy_fork(
2367 xfs_inode_t *ip,
2368 int whichfork)
2370 xfs_ifork_t *ifp;
2372 ifp = XFS_IFORK_PTR(ip, whichfork);
2373 if (ifp->if_broot != NULL) {
2374 kmem_free(ifp->if_broot);
2375 ifp->if_broot = NULL;
2379 * If the format is local, then we can't have an extents
2380 * array so just look for an inline data array. If we're
2381 * not local then we may or may not have an extents list,
2382 * so check and free it up if we do.
2384 if (XFS_IFORK_FORMAT(ip, whichfork) == XFS_DINODE_FMT_LOCAL) {
2385 if ((ifp->if_u1.if_data != ifp->if_u2.if_inline_data) &&
2386 (ifp->if_u1.if_data != NULL)) {
2387 ASSERT(ifp->if_real_bytes != 0);
2388 kmem_free(ifp->if_u1.if_data);
2389 ifp->if_u1.if_data = NULL;
2390 ifp->if_real_bytes = 0;
2392 } else if ((ifp->if_flags & XFS_IFEXTENTS) &&
2393 ((ifp->if_flags & XFS_IFEXTIREC) ||
2394 ((ifp->if_u1.if_extents != NULL) &&
2395 (ifp->if_u1.if_extents != ifp->if_u2.if_inline_ext)))) {
2396 ASSERT(ifp->if_real_bytes != 0);
2397 xfs_iext_destroy(ifp);
2399 ASSERT(ifp->if_u1.if_extents == NULL ||
2400 ifp->if_u1.if_extents == ifp->if_u2.if_inline_ext);
2401 ASSERT(ifp->if_real_bytes == 0);
2402 if (whichfork == XFS_ATTR_FORK) {
2403 kmem_zone_free(xfs_ifork_zone, ip->i_afp);
2404 ip->i_afp = NULL;
2409 * This is called to unpin an inode. The caller must have the inode locked
2410 * in at least shared mode so that the buffer cannot be subsequently pinned
2411 * once someone is waiting for it to be unpinned.
2413 static void
2414 xfs_iunpin_nowait(
2415 struct xfs_inode *ip)
2417 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2419 trace_xfs_inode_unpin_nowait(ip, _RET_IP_);
2421 /* Give the log a push to start the unpinning I/O */
2422 xfs_log_force_lsn(ip->i_mount, ip->i_itemp->ili_last_lsn, 0);
2426 void
2427 xfs_iunpin_wait(
2428 struct xfs_inode *ip)
2430 if (xfs_ipincount(ip)) {
2431 xfs_iunpin_nowait(ip);
2432 wait_event(ip->i_ipin_wait, (xfs_ipincount(ip) == 0));
2437 * xfs_iextents_copy()
2439 * This is called to copy the REAL extents (as opposed to the delayed
2440 * allocation extents) from the inode into the given buffer. It
2441 * returns the number of bytes copied into the buffer.
2443 * If there are no delayed allocation extents, then we can just
2444 * memcpy() the extents into the buffer. Otherwise, we need to
2445 * examine each extent in turn and skip those which are delayed.
2448 xfs_iextents_copy(
2449 xfs_inode_t *ip,
2450 xfs_bmbt_rec_t *dp,
2451 int whichfork)
2453 int copied;
2454 int i;
2455 xfs_ifork_t *ifp;
2456 int nrecs;
2457 xfs_fsblock_t start_block;
2459 ifp = XFS_IFORK_PTR(ip, whichfork);
2460 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2461 ASSERT(ifp->if_bytes > 0);
2463 nrecs = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
2464 XFS_BMAP_TRACE_EXLIST(ip, nrecs, whichfork);
2465 ASSERT(nrecs > 0);
2468 * There are some delayed allocation extents in the
2469 * inode, so copy the extents one at a time and skip
2470 * the delayed ones. There must be at least one
2471 * non-delayed extent.
2473 copied = 0;
2474 for (i = 0; i < nrecs; i++) {
2475 xfs_bmbt_rec_host_t *ep = xfs_iext_get_ext(ifp, i);
2476 start_block = xfs_bmbt_get_startblock(ep);
2477 if (isnullstartblock(start_block)) {
2479 * It's a delayed allocation extent, so skip it.
2481 continue;
2484 /* Translate to on disk format */
2485 put_unaligned(cpu_to_be64(ep->l0), &dp->l0);
2486 put_unaligned(cpu_to_be64(ep->l1), &dp->l1);
2487 dp++;
2488 copied++;
2490 ASSERT(copied != 0);
2491 xfs_validate_extents(ifp, copied, XFS_EXTFMT_INODE(ip));
2493 return (copied * (uint)sizeof(xfs_bmbt_rec_t));
2497 * Each of the following cases stores data into the same region
2498 * of the on-disk inode, so only one of them can be valid at
2499 * any given time. While it is possible to have conflicting formats
2500 * and log flags, e.g. having XFS_ILOG_?DATA set when the fork is
2501 * in EXTENTS format, this can only happen when the fork has
2502 * changed formats after being modified but before being flushed.
2503 * In these cases, the format always takes precedence, because the
2504 * format indicates the current state of the fork.
2506 /*ARGSUSED*/
2507 STATIC void
2508 xfs_iflush_fork(
2509 xfs_inode_t *ip,
2510 xfs_dinode_t *dip,
2511 xfs_inode_log_item_t *iip,
2512 int whichfork,
2513 xfs_buf_t *bp)
2515 char *cp;
2516 xfs_ifork_t *ifp;
2517 xfs_mount_t *mp;
2518 #ifdef XFS_TRANS_DEBUG
2519 int first;
2520 #endif
2521 static const short brootflag[2] =
2522 { XFS_ILOG_DBROOT, XFS_ILOG_ABROOT };
2523 static const short dataflag[2] =
2524 { XFS_ILOG_DDATA, XFS_ILOG_ADATA };
2525 static const short extflag[2] =
2526 { XFS_ILOG_DEXT, XFS_ILOG_AEXT };
2528 if (!iip)
2529 return;
2530 ifp = XFS_IFORK_PTR(ip, whichfork);
2532 * This can happen if we gave up in iformat in an error path,
2533 * for the attribute fork.
2535 if (!ifp) {
2536 ASSERT(whichfork == XFS_ATTR_FORK);
2537 return;
2539 cp = XFS_DFORK_PTR(dip, whichfork);
2540 mp = ip->i_mount;
2541 switch (XFS_IFORK_FORMAT(ip, whichfork)) {
2542 case XFS_DINODE_FMT_LOCAL:
2543 if ((iip->ili_format.ilf_fields & dataflag[whichfork]) &&
2544 (ifp->if_bytes > 0)) {
2545 ASSERT(ifp->if_u1.if_data != NULL);
2546 ASSERT(ifp->if_bytes <= XFS_IFORK_SIZE(ip, whichfork));
2547 memcpy(cp, ifp->if_u1.if_data, ifp->if_bytes);
2549 break;
2551 case XFS_DINODE_FMT_EXTENTS:
2552 ASSERT((ifp->if_flags & XFS_IFEXTENTS) ||
2553 !(iip->ili_format.ilf_fields & extflag[whichfork]));
2554 ASSERT((xfs_iext_get_ext(ifp, 0) != NULL) ||
2555 (ifp->if_bytes == 0));
2556 ASSERT((xfs_iext_get_ext(ifp, 0) == NULL) ||
2557 (ifp->if_bytes > 0));
2558 if ((iip->ili_format.ilf_fields & extflag[whichfork]) &&
2559 (ifp->if_bytes > 0)) {
2560 ASSERT(XFS_IFORK_NEXTENTS(ip, whichfork) > 0);
2561 (void)xfs_iextents_copy(ip, (xfs_bmbt_rec_t *)cp,
2562 whichfork);
2564 break;
2566 case XFS_DINODE_FMT_BTREE:
2567 if ((iip->ili_format.ilf_fields & brootflag[whichfork]) &&
2568 (ifp->if_broot_bytes > 0)) {
2569 ASSERT(ifp->if_broot != NULL);
2570 ASSERT(ifp->if_broot_bytes <=
2571 (XFS_IFORK_SIZE(ip, whichfork) +
2572 XFS_BROOT_SIZE_ADJ));
2573 xfs_bmbt_to_bmdr(mp, ifp->if_broot, ifp->if_broot_bytes,
2574 (xfs_bmdr_block_t *)cp,
2575 XFS_DFORK_SIZE(dip, mp, whichfork));
2577 break;
2579 case XFS_DINODE_FMT_DEV:
2580 if (iip->ili_format.ilf_fields & XFS_ILOG_DEV) {
2581 ASSERT(whichfork == XFS_DATA_FORK);
2582 xfs_dinode_put_rdev(dip, ip->i_df.if_u2.if_rdev);
2584 break;
2586 case XFS_DINODE_FMT_UUID:
2587 if (iip->ili_format.ilf_fields & XFS_ILOG_UUID) {
2588 ASSERT(whichfork == XFS_DATA_FORK);
2589 memcpy(XFS_DFORK_DPTR(dip),
2590 &ip->i_df.if_u2.if_uuid,
2591 sizeof(uuid_t));
2593 break;
2595 default:
2596 ASSERT(0);
2597 break;
2601 STATIC int
2602 xfs_iflush_cluster(
2603 xfs_inode_t *ip,
2604 xfs_buf_t *bp)
2606 xfs_mount_t *mp = ip->i_mount;
2607 struct xfs_perag *pag;
2608 unsigned long first_index, mask;
2609 unsigned long inodes_per_cluster;
2610 int ilist_size;
2611 xfs_inode_t **ilist;
2612 xfs_inode_t *iq;
2613 int nr_found;
2614 int clcount = 0;
2615 int bufwasdelwri;
2616 int i;
2618 pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
2620 inodes_per_cluster = XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog;
2621 ilist_size = inodes_per_cluster * sizeof(xfs_inode_t *);
2622 ilist = kmem_alloc(ilist_size, KM_MAYFAIL|KM_NOFS);
2623 if (!ilist)
2624 goto out_put;
2626 mask = ~(((XFS_INODE_CLUSTER_SIZE(mp) >> mp->m_sb.sb_inodelog)) - 1);
2627 first_index = XFS_INO_TO_AGINO(mp, ip->i_ino) & mask;
2628 read_lock(&pag->pag_ici_lock);
2629 /* really need a gang lookup range call here */
2630 nr_found = radix_tree_gang_lookup(&pag->pag_ici_root, (void**)ilist,
2631 first_index, inodes_per_cluster);
2632 if (nr_found == 0)
2633 goto out_free;
2635 for (i = 0; i < nr_found; i++) {
2636 iq = ilist[i];
2637 if (iq == ip)
2638 continue;
2639 /* if the inode lies outside this cluster, we're done. */
2640 if ((XFS_INO_TO_AGINO(mp, iq->i_ino) & mask) != first_index)
2641 break;
2643 * Do an un-protected check to see if the inode is dirty and
2644 * is a candidate for flushing. These checks will be repeated
2645 * later after the appropriate locks are acquired.
2647 if (xfs_inode_clean(iq) && xfs_ipincount(iq) == 0)
2648 continue;
2651 * Try to get locks. If any are unavailable or it is pinned,
2652 * then this inode cannot be flushed and is skipped.
2655 if (!xfs_ilock_nowait(iq, XFS_ILOCK_SHARED))
2656 continue;
2657 if (!xfs_iflock_nowait(iq)) {
2658 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2659 continue;
2661 if (xfs_ipincount(iq)) {
2662 xfs_ifunlock(iq);
2663 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2664 continue;
2668 * arriving here means that this inode can be flushed. First
2669 * re-check that it's dirty before flushing.
2671 if (!xfs_inode_clean(iq)) {
2672 int error;
2673 error = xfs_iflush_int(iq, bp);
2674 if (error) {
2675 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2676 goto cluster_corrupt_out;
2678 clcount++;
2679 } else {
2680 xfs_ifunlock(iq);
2682 xfs_iunlock(iq, XFS_ILOCK_SHARED);
2685 if (clcount) {
2686 XFS_STATS_INC(xs_icluster_flushcnt);
2687 XFS_STATS_ADD(xs_icluster_flushinode, clcount);
2690 out_free:
2691 read_unlock(&pag->pag_ici_lock);
2692 kmem_free(ilist);
2693 out_put:
2694 xfs_perag_put(pag);
2695 return 0;
2698 cluster_corrupt_out:
2700 * Corruption detected in the clustering loop. Invalidate the
2701 * inode buffer and shut down the filesystem.
2703 read_unlock(&pag->pag_ici_lock);
2705 * Clean up the buffer. If it was B_DELWRI, just release it --
2706 * brelse can handle it with no problems. If not, shut down the
2707 * filesystem before releasing the buffer.
2709 bufwasdelwri = XFS_BUF_ISDELAYWRITE(bp);
2710 if (bufwasdelwri)
2711 xfs_buf_relse(bp);
2713 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2715 if (!bufwasdelwri) {
2717 * Just like incore_relse: if we have b_iodone functions,
2718 * mark the buffer as an error and call them. Otherwise
2719 * mark it as stale and brelse.
2721 if (XFS_BUF_IODONE_FUNC(bp)) {
2722 XFS_BUF_UNDONE(bp);
2723 XFS_BUF_STALE(bp);
2724 XFS_BUF_ERROR(bp,EIO);
2725 xfs_biodone(bp);
2726 } else {
2727 XFS_BUF_STALE(bp);
2728 xfs_buf_relse(bp);
2733 * Unlocks the flush lock
2735 xfs_iflush_abort(iq);
2736 kmem_free(ilist);
2737 xfs_perag_put(pag);
2738 return XFS_ERROR(EFSCORRUPTED);
2742 * xfs_iflush() will write a modified inode's changes out to the
2743 * inode's on disk home. The caller must have the inode lock held
2744 * in at least shared mode and the inode flush completion must be
2745 * active as well. The inode lock will still be held upon return from
2746 * the call and the caller is free to unlock it.
2747 * The inode flush will be completed when the inode reaches the disk.
2748 * The flags indicate how the inode's buffer should be written out.
2751 xfs_iflush(
2752 xfs_inode_t *ip,
2753 uint flags)
2755 xfs_inode_log_item_t *iip;
2756 xfs_buf_t *bp;
2757 xfs_dinode_t *dip;
2758 xfs_mount_t *mp;
2759 int error;
2761 XFS_STATS_INC(xs_iflush_count);
2763 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2764 ASSERT(!completion_done(&ip->i_flush));
2765 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2766 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2768 iip = ip->i_itemp;
2769 mp = ip->i_mount;
2772 * We can't flush the inode until it is unpinned, so wait for it if we
2773 * are allowed to block. We know noone new can pin it, because we are
2774 * holding the inode lock shared and you need to hold it exclusively to
2775 * pin the inode.
2777 * If we are not allowed to block, force the log out asynchronously so
2778 * that when we come back the inode will be unpinned. If other inodes
2779 * in the same cluster are dirty, they will probably write the inode
2780 * out for us if they occur after the log force completes.
2782 if (!(flags & SYNC_WAIT) && xfs_ipincount(ip)) {
2783 xfs_iunpin_nowait(ip);
2784 xfs_ifunlock(ip);
2785 return EAGAIN;
2787 xfs_iunpin_wait(ip);
2790 * For stale inodes we cannot rely on the backing buffer remaining
2791 * stale in cache for the remaining life of the stale inode and so
2792 * xfs_itobp() below may give us a buffer that no longer contains
2793 * inodes below. We have to check this after ensuring the inode is
2794 * unpinned so that it is safe to reclaim the stale inode after the
2795 * flush call.
2797 if (xfs_iflags_test(ip, XFS_ISTALE)) {
2798 xfs_ifunlock(ip);
2799 return 0;
2803 * This may have been unpinned because the filesystem is shutting
2804 * down forcibly. If that's the case we must not write this inode
2805 * to disk, because the log record didn't make it to disk!
2807 if (XFS_FORCED_SHUTDOWN(mp)) {
2808 ip->i_update_core = 0;
2809 if (iip)
2810 iip->ili_format.ilf_fields = 0;
2811 xfs_ifunlock(ip);
2812 return XFS_ERROR(EIO);
2816 * Get the buffer containing the on-disk inode.
2818 error = xfs_itobp(mp, NULL, ip, &dip, &bp,
2819 (flags & SYNC_WAIT) ? XBF_LOCK : XBF_TRYLOCK);
2820 if (error || !bp) {
2821 xfs_ifunlock(ip);
2822 return error;
2826 * First flush out the inode that xfs_iflush was called with.
2828 error = xfs_iflush_int(ip, bp);
2829 if (error)
2830 goto corrupt_out;
2833 * If the buffer is pinned then push on the log now so we won't
2834 * get stuck waiting in the write for too long.
2836 if (XFS_BUF_ISPINNED(bp))
2837 xfs_log_force(mp, 0);
2840 * inode clustering:
2841 * see if other inodes can be gathered into this write
2843 error = xfs_iflush_cluster(ip, bp);
2844 if (error)
2845 goto cluster_corrupt_out;
2847 if (flags & SYNC_WAIT)
2848 error = xfs_bwrite(mp, bp);
2849 else
2850 xfs_bdwrite(mp, bp);
2851 return error;
2853 corrupt_out:
2854 xfs_buf_relse(bp);
2855 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
2856 cluster_corrupt_out:
2858 * Unlocks the flush lock
2860 xfs_iflush_abort(ip);
2861 return XFS_ERROR(EFSCORRUPTED);
2865 STATIC int
2866 xfs_iflush_int(
2867 xfs_inode_t *ip,
2868 xfs_buf_t *bp)
2870 xfs_inode_log_item_t *iip;
2871 xfs_dinode_t *dip;
2872 xfs_mount_t *mp;
2873 #ifdef XFS_TRANS_DEBUG
2874 int first;
2875 #endif
2877 ASSERT(xfs_isilocked(ip, XFS_ILOCK_EXCL|XFS_ILOCK_SHARED));
2878 ASSERT(!completion_done(&ip->i_flush));
2879 ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
2880 ip->i_d.di_nextents > ip->i_df.if_ext_max);
2882 iip = ip->i_itemp;
2883 mp = ip->i_mount;
2885 /* set *dip = inode's place in the buffer */
2886 dip = (xfs_dinode_t *)xfs_buf_offset(bp, ip->i_imap.im_boffset);
2889 * Clear i_update_core before copying out the data.
2890 * This is for coordination with our timestamp updates
2891 * that don't hold the inode lock. They will always
2892 * update the timestamps BEFORE setting i_update_core,
2893 * so if we clear i_update_core after they set it we
2894 * are guaranteed to see their updates to the timestamps.
2895 * I believe that this depends on strongly ordered memory
2896 * semantics, but we have that. We use the SYNCHRONIZE
2897 * macro to make sure that the compiler does not reorder
2898 * the i_update_core access below the data copy below.
2900 ip->i_update_core = 0;
2901 SYNCHRONIZE();
2904 * Make sure to get the latest timestamps from the Linux inode.
2906 xfs_synchronize_times(ip);
2908 if (XFS_TEST_ERROR(be16_to_cpu(dip->di_magic) != XFS_DINODE_MAGIC,
2909 mp, XFS_ERRTAG_IFLUSH_1, XFS_RANDOM_IFLUSH_1)) {
2910 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2911 "xfs_iflush: Bad inode %Lu magic number 0x%x, ptr 0x%p",
2912 ip->i_ino, be16_to_cpu(dip->di_magic), dip);
2913 goto corrupt_out;
2915 if (XFS_TEST_ERROR(ip->i_d.di_magic != XFS_DINODE_MAGIC,
2916 mp, XFS_ERRTAG_IFLUSH_2, XFS_RANDOM_IFLUSH_2)) {
2917 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2918 "xfs_iflush: Bad inode %Lu, ptr 0x%p, magic number 0x%x",
2919 ip->i_ino, ip, ip->i_d.di_magic);
2920 goto corrupt_out;
2922 if ((ip->i_d.di_mode & S_IFMT) == S_IFREG) {
2923 if (XFS_TEST_ERROR(
2924 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2925 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE),
2926 mp, XFS_ERRTAG_IFLUSH_3, XFS_RANDOM_IFLUSH_3)) {
2927 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2928 "xfs_iflush: Bad regular inode %Lu, ptr 0x%p",
2929 ip->i_ino, ip);
2930 goto corrupt_out;
2932 } else if ((ip->i_d.di_mode & S_IFMT) == S_IFDIR) {
2933 if (XFS_TEST_ERROR(
2934 (ip->i_d.di_format != XFS_DINODE_FMT_EXTENTS) &&
2935 (ip->i_d.di_format != XFS_DINODE_FMT_BTREE) &&
2936 (ip->i_d.di_format != XFS_DINODE_FMT_LOCAL),
2937 mp, XFS_ERRTAG_IFLUSH_4, XFS_RANDOM_IFLUSH_4)) {
2938 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2939 "xfs_iflush: Bad directory inode %Lu, ptr 0x%p",
2940 ip->i_ino, ip);
2941 goto corrupt_out;
2944 if (XFS_TEST_ERROR(ip->i_d.di_nextents + ip->i_d.di_anextents >
2945 ip->i_d.di_nblocks, mp, XFS_ERRTAG_IFLUSH_5,
2946 XFS_RANDOM_IFLUSH_5)) {
2947 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2948 "xfs_iflush: detected corrupt incore inode %Lu, total extents = %d, nblocks = %Ld, ptr 0x%p",
2949 ip->i_ino,
2950 ip->i_d.di_nextents + ip->i_d.di_anextents,
2951 ip->i_d.di_nblocks,
2952 ip);
2953 goto corrupt_out;
2955 if (XFS_TEST_ERROR(ip->i_d.di_forkoff > mp->m_sb.sb_inodesize,
2956 mp, XFS_ERRTAG_IFLUSH_6, XFS_RANDOM_IFLUSH_6)) {
2957 xfs_cmn_err(XFS_PTAG_IFLUSH, CE_ALERT, mp,
2958 "xfs_iflush: bad inode %Lu, forkoff 0x%x, ptr 0x%p",
2959 ip->i_ino, ip->i_d.di_forkoff, ip);
2960 goto corrupt_out;
2963 * bump the flush iteration count, used to detect flushes which
2964 * postdate a log record during recovery.
2967 ip->i_d.di_flushiter++;
2970 * Copy the dirty parts of the inode into the on-disk
2971 * inode. We always copy out the core of the inode,
2972 * because if the inode is dirty at all the core must
2973 * be.
2975 xfs_dinode_to_disk(dip, &ip->i_d);
2977 /* Wrap, we never let the log put out DI_MAX_FLUSH */
2978 if (ip->i_d.di_flushiter == DI_MAX_FLUSH)
2979 ip->i_d.di_flushiter = 0;
2982 * If this is really an old format inode and the superblock version
2983 * has not been updated to support only new format inodes, then
2984 * convert back to the old inode format. If the superblock version
2985 * has been updated, then make the conversion permanent.
2987 ASSERT(ip->i_d.di_version == 1 || xfs_sb_version_hasnlink(&mp->m_sb));
2988 if (ip->i_d.di_version == 1) {
2989 if (!xfs_sb_version_hasnlink(&mp->m_sb)) {
2991 * Convert it back.
2993 ASSERT(ip->i_d.di_nlink <= XFS_MAXLINK_1);
2994 dip->di_onlink = cpu_to_be16(ip->i_d.di_nlink);
2995 } else {
2997 * The superblock version has already been bumped,
2998 * so just make the conversion to the new inode
2999 * format permanent.
3001 ip->i_d.di_version = 2;
3002 dip->di_version = 2;
3003 ip->i_d.di_onlink = 0;
3004 dip->di_onlink = 0;
3005 memset(&(ip->i_d.di_pad[0]), 0, sizeof(ip->i_d.di_pad));
3006 memset(&(dip->di_pad[0]), 0,
3007 sizeof(dip->di_pad));
3008 ASSERT(ip->i_d.di_projid == 0);
3012 xfs_iflush_fork(ip, dip, iip, XFS_DATA_FORK, bp);
3013 if (XFS_IFORK_Q(ip))
3014 xfs_iflush_fork(ip, dip, iip, XFS_ATTR_FORK, bp);
3015 xfs_inobp_check(mp, bp);
3018 * We've recorded everything logged in the inode, so we'd
3019 * like to clear the ilf_fields bits so we don't log and
3020 * flush things unnecessarily. However, we can't stop
3021 * logging all this information until the data we've copied
3022 * into the disk buffer is written to disk. If we did we might
3023 * overwrite the copy of the inode in the log with all the
3024 * data after re-logging only part of it, and in the face of
3025 * a crash we wouldn't have all the data we need to recover.
3027 * What we do is move the bits to the ili_last_fields field.
3028 * When logging the inode, these bits are moved back to the
3029 * ilf_fields field. In the xfs_iflush_done() routine we
3030 * clear ili_last_fields, since we know that the information
3031 * those bits represent is permanently on disk. As long as
3032 * the flush completes before the inode is logged again, then
3033 * both ilf_fields and ili_last_fields will be cleared.
3035 * We can play with the ilf_fields bits here, because the inode
3036 * lock must be held exclusively in order to set bits there
3037 * and the flush lock protects the ili_last_fields bits.
3038 * Set ili_logged so the flush done
3039 * routine can tell whether or not to look in the AIL.
3040 * Also, store the current LSN of the inode so that we can tell
3041 * whether the item has moved in the AIL from xfs_iflush_done().
3042 * In order to read the lsn we need the AIL lock, because
3043 * it is a 64 bit value that cannot be read atomically.
3045 if (iip != NULL && iip->ili_format.ilf_fields != 0) {
3046 iip->ili_last_fields = iip->ili_format.ilf_fields;
3047 iip->ili_format.ilf_fields = 0;
3048 iip->ili_logged = 1;
3050 xfs_trans_ail_copy_lsn(mp->m_ail, &iip->ili_flush_lsn,
3051 &iip->ili_item.li_lsn);
3054 * Attach the function xfs_iflush_done to the inode's
3055 * buffer. This will remove the inode from the AIL
3056 * and unlock the inode's flush lock when the inode is
3057 * completely written to disk.
3059 xfs_buf_attach_iodone(bp, xfs_iflush_done, &iip->ili_item);
3061 ASSERT(XFS_BUF_FSPRIVATE(bp, void *) != NULL);
3062 ASSERT(XFS_BUF_IODONE_FUNC(bp) != NULL);
3063 } else {
3065 * We're flushing an inode which is not in the AIL and has
3066 * not been logged but has i_update_core set. For this
3067 * case we can use a B_DELWRI flush and immediately drop
3068 * the inode flush lock because we can avoid the whole
3069 * AIL state thing. It's OK to drop the flush lock now,
3070 * because we've already locked the buffer and to do anything
3071 * you really need both.
3073 if (iip != NULL) {
3074 ASSERT(iip->ili_logged == 0);
3075 ASSERT(iip->ili_last_fields == 0);
3076 ASSERT((iip->ili_item.li_flags & XFS_LI_IN_AIL) == 0);
3078 xfs_ifunlock(ip);
3081 return 0;
3083 corrupt_out:
3084 return XFS_ERROR(EFSCORRUPTED);
3088 * Return a pointer to the extent record at file index idx.
3090 xfs_bmbt_rec_host_t *
3091 xfs_iext_get_ext(
3092 xfs_ifork_t *ifp, /* inode fork pointer */
3093 xfs_extnum_t idx) /* index of target extent */
3095 ASSERT(idx >= 0);
3096 if ((ifp->if_flags & XFS_IFEXTIREC) && (idx == 0)) {
3097 return ifp->if_u1.if_ext_irec->er_extbuf;
3098 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3099 xfs_ext_irec_t *erp; /* irec pointer */
3100 int erp_idx = 0; /* irec index */
3101 xfs_extnum_t page_idx = idx; /* ext index in target list */
3103 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3104 return &erp->er_extbuf[page_idx];
3105 } else if (ifp->if_bytes) {
3106 return &ifp->if_u1.if_extents[idx];
3107 } else {
3108 return NULL;
3113 * Insert new item(s) into the extent records for incore inode
3114 * fork 'ifp'. 'count' new items are inserted at index 'idx'.
3116 void
3117 xfs_iext_insert(
3118 xfs_inode_t *ip, /* incore inode pointer */
3119 xfs_extnum_t idx, /* starting index of new items */
3120 xfs_extnum_t count, /* number of inserted items */
3121 xfs_bmbt_irec_t *new, /* items to insert */
3122 int state) /* type of extent conversion */
3124 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3125 xfs_extnum_t i; /* extent record index */
3127 trace_xfs_iext_insert(ip, idx, new, state, _RET_IP_);
3129 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3130 xfs_iext_add(ifp, idx, count);
3131 for (i = idx; i < idx + count; i++, new++)
3132 xfs_bmbt_set_all(xfs_iext_get_ext(ifp, i), new);
3136 * This is called when the amount of space required for incore file
3137 * extents needs to be increased. The ext_diff parameter stores the
3138 * number of new extents being added and the idx parameter contains
3139 * the extent index where the new extents will be added. If the new
3140 * extents are being appended, then we just need to (re)allocate and
3141 * initialize the space. Otherwise, if the new extents are being
3142 * inserted into the middle of the existing entries, a bit more work
3143 * is required to make room for the new extents to be inserted. The
3144 * caller is responsible for filling in the new extent entries upon
3145 * return.
3147 void
3148 xfs_iext_add(
3149 xfs_ifork_t *ifp, /* inode fork pointer */
3150 xfs_extnum_t idx, /* index to begin adding exts */
3151 int ext_diff) /* number of extents to add */
3153 int byte_diff; /* new bytes being added */
3154 int new_size; /* size of extents after adding */
3155 xfs_extnum_t nextents; /* number of extents in file */
3157 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3158 ASSERT((idx >= 0) && (idx <= nextents));
3159 byte_diff = ext_diff * sizeof(xfs_bmbt_rec_t);
3160 new_size = ifp->if_bytes + byte_diff;
3162 * If the new number of extents (nextents + ext_diff)
3163 * fits inside the inode, then continue to use the inline
3164 * extent buffer.
3166 if (nextents + ext_diff <= XFS_INLINE_EXTS) {
3167 if (idx < nextents) {
3168 memmove(&ifp->if_u2.if_inline_ext[idx + ext_diff],
3169 &ifp->if_u2.if_inline_ext[idx],
3170 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3171 memset(&ifp->if_u2.if_inline_ext[idx], 0, byte_diff);
3173 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3174 ifp->if_real_bytes = 0;
3175 ifp->if_lastex = nextents + ext_diff;
3178 * Otherwise use a linear (direct) extent list.
3179 * If the extents are currently inside the inode,
3180 * xfs_iext_realloc_direct will switch us from
3181 * inline to direct extent allocation mode.
3183 else if (nextents + ext_diff <= XFS_LINEAR_EXTS) {
3184 xfs_iext_realloc_direct(ifp, new_size);
3185 if (idx < nextents) {
3186 memmove(&ifp->if_u1.if_extents[idx + ext_diff],
3187 &ifp->if_u1.if_extents[idx],
3188 (nextents - idx) * sizeof(xfs_bmbt_rec_t));
3189 memset(&ifp->if_u1.if_extents[idx], 0, byte_diff);
3192 /* Indirection array */
3193 else {
3194 xfs_ext_irec_t *erp;
3195 int erp_idx = 0;
3196 int page_idx = idx;
3198 ASSERT(nextents + ext_diff > XFS_LINEAR_EXTS);
3199 if (ifp->if_flags & XFS_IFEXTIREC) {
3200 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 1);
3201 } else {
3202 xfs_iext_irec_init(ifp);
3203 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3204 erp = ifp->if_u1.if_ext_irec;
3206 /* Extents fit in target extent page */
3207 if (erp && erp->er_extcount + ext_diff <= XFS_LINEAR_EXTS) {
3208 if (page_idx < erp->er_extcount) {
3209 memmove(&erp->er_extbuf[page_idx + ext_diff],
3210 &erp->er_extbuf[page_idx],
3211 (erp->er_extcount - page_idx) *
3212 sizeof(xfs_bmbt_rec_t));
3213 memset(&erp->er_extbuf[page_idx], 0, byte_diff);
3215 erp->er_extcount += ext_diff;
3216 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3218 /* Insert a new extent page */
3219 else if (erp) {
3220 xfs_iext_add_indirect_multi(ifp,
3221 erp_idx, page_idx, ext_diff);
3224 * If extent(s) are being appended to the last page in
3225 * the indirection array and the new extent(s) don't fit
3226 * in the page, then erp is NULL and erp_idx is set to
3227 * the next index needed in the indirection array.
3229 else {
3230 int count = ext_diff;
3232 while (count) {
3233 erp = xfs_iext_irec_new(ifp, erp_idx);
3234 erp->er_extcount = count;
3235 count -= MIN(count, (int)XFS_LINEAR_EXTS);
3236 if (count) {
3237 erp_idx++;
3242 ifp->if_bytes = new_size;
3246 * This is called when incore extents are being added to the indirection
3247 * array and the new extents do not fit in the target extent list. The
3248 * erp_idx parameter contains the irec index for the target extent list
3249 * in the indirection array, and the idx parameter contains the extent
3250 * index within the list. The number of extents being added is stored
3251 * in the count parameter.
3253 * |-------| |-------|
3254 * | | | | idx - number of extents before idx
3255 * | idx | | count |
3256 * | | | | count - number of extents being inserted at idx
3257 * |-------| |-------|
3258 * | count | | nex2 | nex2 - number of extents after idx + count
3259 * |-------| |-------|
3261 void
3262 xfs_iext_add_indirect_multi(
3263 xfs_ifork_t *ifp, /* inode fork pointer */
3264 int erp_idx, /* target extent irec index */
3265 xfs_extnum_t idx, /* index within target list */
3266 int count) /* new extents being added */
3268 int byte_diff; /* new bytes being added */
3269 xfs_ext_irec_t *erp; /* pointer to irec entry */
3270 xfs_extnum_t ext_diff; /* number of extents to add */
3271 xfs_extnum_t ext_cnt; /* new extents still needed */
3272 xfs_extnum_t nex2; /* extents after idx + count */
3273 xfs_bmbt_rec_t *nex2_ep = NULL; /* temp list for nex2 extents */
3274 int nlists; /* number of irec's (lists) */
3276 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3277 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3278 nex2 = erp->er_extcount - idx;
3279 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3282 * Save second part of target extent list
3283 * (all extents past */
3284 if (nex2) {
3285 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3286 nex2_ep = (xfs_bmbt_rec_t *) kmem_alloc(byte_diff, KM_NOFS);
3287 memmove(nex2_ep, &erp->er_extbuf[idx], byte_diff);
3288 erp->er_extcount -= nex2;
3289 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -nex2);
3290 memset(&erp->er_extbuf[idx], 0, byte_diff);
3294 * Add the new extents to the end of the target
3295 * list, then allocate new irec record(s) and
3296 * extent buffer(s) as needed to store the rest
3297 * of the new extents.
3299 ext_cnt = count;
3300 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS - erp->er_extcount);
3301 if (ext_diff) {
3302 erp->er_extcount += ext_diff;
3303 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3304 ext_cnt -= ext_diff;
3306 while (ext_cnt) {
3307 erp_idx++;
3308 erp = xfs_iext_irec_new(ifp, erp_idx);
3309 ext_diff = MIN(ext_cnt, (int)XFS_LINEAR_EXTS);
3310 erp->er_extcount = ext_diff;
3311 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, ext_diff);
3312 ext_cnt -= ext_diff;
3315 /* Add nex2 extents back to indirection array */
3316 if (nex2) {
3317 xfs_extnum_t ext_avail;
3318 int i;
3320 byte_diff = nex2 * sizeof(xfs_bmbt_rec_t);
3321 ext_avail = XFS_LINEAR_EXTS - erp->er_extcount;
3322 i = 0;
3324 * If nex2 extents fit in the current page, append
3325 * nex2_ep after the new extents.
3327 if (nex2 <= ext_avail) {
3328 i = erp->er_extcount;
3331 * Otherwise, check if space is available in the
3332 * next page.
3334 else if ((erp_idx < nlists - 1) &&
3335 (nex2 <= (ext_avail = XFS_LINEAR_EXTS -
3336 ifp->if_u1.if_ext_irec[erp_idx+1].er_extcount))) {
3337 erp_idx++;
3338 erp++;
3339 /* Create a hole for nex2 extents */
3340 memmove(&erp->er_extbuf[nex2], erp->er_extbuf,
3341 erp->er_extcount * sizeof(xfs_bmbt_rec_t));
3344 * Final choice, create a new extent page for
3345 * nex2 extents.
3347 else {
3348 erp_idx++;
3349 erp = xfs_iext_irec_new(ifp, erp_idx);
3351 memmove(&erp->er_extbuf[i], nex2_ep, byte_diff);
3352 kmem_free(nex2_ep);
3353 erp->er_extcount += nex2;
3354 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, nex2);
3359 * This is called when the amount of space required for incore file
3360 * extents needs to be decreased. The ext_diff parameter stores the
3361 * number of extents to be removed and the idx parameter contains
3362 * the extent index where the extents will be removed from.
3364 * If the amount of space needed has decreased below the linear
3365 * limit, XFS_IEXT_BUFSZ, then switch to using the contiguous
3366 * extent array. Otherwise, use kmem_realloc() to adjust the
3367 * size to what is needed.
3369 void
3370 xfs_iext_remove(
3371 xfs_inode_t *ip, /* incore inode pointer */
3372 xfs_extnum_t idx, /* index to begin removing exts */
3373 int ext_diff, /* number of extents to remove */
3374 int state) /* type of extent conversion */
3376 xfs_ifork_t *ifp = (state & BMAP_ATTRFORK) ? ip->i_afp : &ip->i_df;
3377 xfs_extnum_t nextents; /* number of extents in file */
3378 int new_size; /* size of extents after removal */
3380 trace_xfs_iext_remove(ip, idx, state, _RET_IP_);
3382 ASSERT(ext_diff > 0);
3383 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3384 new_size = (nextents - ext_diff) * sizeof(xfs_bmbt_rec_t);
3386 if (new_size == 0) {
3387 xfs_iext_destroy(ifp);
3388 } else if (ifp->if_flags & XFS_IFEXTIREC) {
3389 xfs_iext_remove_indirect(ifp, idx, ext_diff);
3390 } else if (ifp->if_real_bytes) {
3391 xfs_iext_remove_direct(ifp, idx, ext_diff);
3392 } else {
3393 xfs_iext_remove_inline(ifp, idx, ext_diff);
3395 ifp->if_bytes = new_size;
3399 * This removes ext_diff extents from the inline buffer, beginning
3400 * at extent index idx.
3402 void
3403 xfs_iext_remove_inline(
3404 xfs_ifork_t *ifp, /* inode fork pointer */
3405 xfs_extnum_t idx, /* index to begin removing exts */
3406 int ext_diff) /* number of extents to remove */
3408 int nextents; /* number of extents in file */
3410 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3411 ASSERT(idx < XFS_INLINE_EXTS);
3412 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3413 ASSERT(((nextents - ext_diff) > 0) &&
3414 (nextents - ext_diff) < XFS_INLINE_EXTS);
3416 if (idx + ext_diff < nextents) {
3417 memmove(&ifp->if_u2.if_inline_ext[idx],
3418 &ifp->if_u2.if_inline_ext[idx + ext_diff],
3419 (nextents - (idx + ext_diff)) *
3420 sizeof(xfs_bmbt_rec_t));
3421 memset(&ifp->if_u2.if_inline_ext[nextents - ext_diff],
3422 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3423 } else {
3424 memset(&ifp->if_u2.if_inline_ext[idx], 0,
3425 ext_diff * sizeof(xfs_bmbt_rec_t));
3430 * This removes ext_diff extents from a linear (direct) extent list,
3431 * beginning at extent index idx. If the extents are being removed
3432 * from the end of the list (ie. truncate) then we just need to re-
3433 * allocate the list to remove the extra space. Otherwise, if the
3434 * extents are being removed from the middle of the existing extent
3435 * entries, then we first need to move the extent records beginning
3436 * at idx + ext_diff up in the list to overwrite the records being
3437 * removed, then remove the extra space via kmem_realloc.
3439 void
3440 xfs_iext_remove_direct(
3441 xfs_ifork_t *ifp, /* inode fork pointer */
3442 xfs_extnum_t idx, /* index to begin removing exts */
3443 int ext_diff) /* number of extents to remove */
3445 xfs_extnum_t nextents; /* number of extents in file */
3446 int new_size; /* size of extents after removal */
3448 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3449 new_size = ifp->if_bytes -
3450 (ext_diff * sizeof(xfs_bmbt_rec_t));
3451 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3453 if (new_size == 0) {
3454 xfs_iext_destroy(ifp);
3455 return;
3457 /* Move extents up in the list (if needed) */
3458 if (idx + ext_diff < nextents) {
3459 memmove(&ifp->if_u1.if_extents[idx],
3460 &ifp->if_u1.if_extents[idx + ext_diff],
3461 (nextents - (idx + ext_diff)) *
3462 sizeof(xfs_bmbt_rec_t));
3464 memset(&ifp->if_u1.if_extents[nextents - ext_diff],
3465 0, ext_diff * sizeof(xfs_bmbt_rec_t));
3467 * Reallocate the direct extent list. If the extents
3468 * will fit inside the inode then xfs_iext_realloc_direct
3469 * will switch from direct to inline extent allocation
3470 * mode for us.
3472 xfs_iext_realloc_direct(ifp, new_size);
3473 ifp->if_bytes = new_size;
3477 * This is called when incore extents are being removed from the
3478 * indirection array and the extents being removed span multiple extent
3479 * buffers. The idx parameter contains the file extent index where we
3480 * want to begin removing extents, and the count parameter contains
3481 * how many extents need to be removed.
3483 * |-------| |-------|
3484 * | nex1 | | | nex1 - number of extents before idx
3485 * |-------| | count |
3486 * | | | | count - number of extents being removed at idx
3487 * | count | |-------|
3488 * | | | nex2 | nex2 - number of extents after idx + count
3489 * |-------| |-------|
3491 void
3492 xfs_iext_remove_indirect(
3493 xfs_ifork_t *ifp, /* inode fork pointer */
3494 xfs_extnum_t idx, /* index to begin removing extents */
3495 int count) /* number of extents to remove */
3497 xfs_ext_irec_t *erp; /* indirection array pointer */
3498 int erp_idx = 0; /* indirection array index */
3499 xfs_extnum_t ext_cnt; /* extents left to remove */
3500 xfs_extnum_t ext_diff; /* extents to remove in current list */
3501 xfs_extnum_t nex1; /* number of extents before idx */
3502 xfs_extnum_t nex2; /* extents after idx + count */
3503 int page_idx = idx; /* index in target extent list */
3505 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3506 erp = xfs_iext_idx_to_irec(ifp, &page_idx, &erp_idx, 0);
3507 ASSERT(erp != NULL);
3508 nex1 = page_idx;
3509 ext_cnt = count;
3510 while (ext_cnt) {
3511 nex2 = MAX((erp->er_extcount - (nex1 + ext_cnt)), 0);
3512 ext_diff = MIN(ext_cnt, (erp->er_extcount - nex1));
3514 * Check for deletion of entire list;
3515 * xfs_iext_irec_remove() updates extent offsets.
3517 if (ext_diff == erp->er_extcount) {
3518 xfs_iext_irec_remove(ifp, erp_idx);
3519 ext_cnt -= ext_diff;
3520 nex1 = 0;
3521 if (ext_cnt) {
3522 ASSERT(erp_idx < ifp->if_real_bytes /
3523 XFS_IEXT_BUFSZ);
3524 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3525 nex1 = 0;
3526 continue;
3527 } else {
3528 break;
3531 /* Move extents up (if needed) */
3532 if (nex2) {
3533 memmove(&erp->er_extbuf[nex1],
3534 &erp->er_extbuf[nex1 + ext_diff],
3535 nex2 * sizeof(xfs_bmbt_rec_t));
3537 /* Zero out rest of page */
3538 memset(&erp->er_extbuf[nex1 + nex2], 0, (XFS_IEXT_BUFSZ -
3539 ((nex1 + nex2) * sizeof(xfs_bmbt_rec_t))));
3540 /* Update remaining counters */
3541 erp->er_extcount -= ext_diff;
3542 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1, -ext_diff);
3543 ext_cnt -= ext_diff;
3544 nex1 = 0;
3545 erp_idx++;
3546 erp++;
3548 ifp->if_bytes -= count * sizeof(xfs_bmbt_rec_t);
3549 xfs_iext_irec_compact(ifp);
3553 * Create, destroy, or resize a linear (direct) block of extents.
3555 void
3556 xfs_iext_realloc_direct(
3557 xfs_ifork_t *ifp, /* inode fork pointer */
3558 int new_size) /* new size of extents */
3560 int rnew_size; /* real new size of extents */
3562 rnew_size = new_size;
3564 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC) ||
3565 ((new_size >= 0) && (new_size <= XFS_IEXT_BUFSZ) &&
3566 (new_size != ifp->if_real_bytes)));
3568 /* Free extent records */
3569 if (new_size == 0) {
3570 xfs_iext_destroy(ifp);
3572 /* Resize direct extent list and zero any new bytes */
3573 else if (ifp->if_real_bytes) {
3574 /* Check if extents will fit inside the inode */
3575 if (new_size <= XFS_INLINE_EXTS * sizeof(xfs_bmbt_rec_t)) {
3576 xfs_iext_direct_to_inline(ifp, new_size /
3577 (uint)sizeof(xfs_bmbt_rec_t));
3578 ifp->if_bytes = new_size;
3579 return;
3581 if (!is_power_of_2(new_size)){
3582 rnew_size = roundup_pow_of_two(new_size);
3584 if (rnew_size != ifp->if_real_bytes) {
3585 ifp->if_u1.if_extents =
3586 kmem_realloc(ifp->if_u1.if_extents,
3587 rnew_size,
3588 ifp->if_real_bytes, KM_NOFS);
3590 if (rnew_size > ifp->if_real_bytes) {
3591 memset(&ifp->if_u1.if_extents[ifp->if_bytes /
3592 (uint)sizeof(xfs_bmbt_rec_t)], 0,
3593 rnew_size - ifp->if_real_bytes);
3597 * Switch from the inline extent buffer to a direct
3598 * extent list. Be sure to include the inline extent
3599 * bytes in new_size.
3601 else {
3602 new_size += ifp->if_bytes;
3603 if (!is_power_of_2(new_size)) {
3604 rnew_size = roundup_pow_of_two(new_size);
3606 xfs_iext_inline_to_direct(ifp, rnew_size);
3608 ifp->if_real_bytes = rnew_size;
3609 ifp->if_bytes = new_size;
3613 * Switch from linear (direct) extent records to inline buffer.
3615 void
3616 xfs_iext_direct_to_inline(
3617 xfs_ifork_t *ifp, /* inode fork pointer */
3618 xfs_extnum_t nextents) /* number of extents in file */
3620 ASSERT(ifp->if_flags & XFS_IFEXTENTS);
3621 ASSERT(nextents <= XFS_INLINE_EXTS);
3623 * The inline buffer was zeroed when we switched
3624 * from inline to direct extent allocation mode,
3625 * so we don't need to clear it here.
3627 memcpy(ifp->if_u2.if_inline_ext, ifp->if_u1.if_extents,
3628 nextents * sizeof(xfs_bmbt_rec_t));
3629 kmem_free(ifp->if_u1.if_extents);
3630 ifp->if_u1.if_extents = ifp->if_u2.if_inline_ext;
3631 ifp->if_real_bytes = 0;
3635 * Switch from inline buffer to linear (direct) extent records.
3636 * new_size should already be rounded up to the next power of 2
3637 * by the caller (when appropriate), so use new_size as it is.
3638 * However, since new_size may be rounded up, we can't update
3639 * if_bytes here. It is the caller's responsibility to update
3640 * if_bytes upon return.
3642 void
3643 xfs_iext_inline_to_direct(
3644 xfs_ifork_t *ifp, /* inode fork pointer */
3645 int new_size) /* number of extents in file */
3647 ifp->if_u1.if_extents = kmem_alloc(new_size, KM_NOFS);
3648 memset(ifp->if_u1.if_extents, 0, new_size);
3649 if (ifp->if_bytes) {
3650 memcpy(ifp->if_u1.if_extents, ifp->if_u2.if_inline_ext,
3651 ifp->if_bytes);
3652 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3653 sizeof(xfs_bmbt_rec_t));
3655 ifp->if_real_bytes = new_size;
3659 * Resize an extent indirection array to new_size bytes.
3661 STATIC void
3662 xfs_iext_realloc_indirect(
3663 xfs_ifork_t *ifp, /* inode fork pointer */
3664 int new_size) /* new indirection array size */
3666 int nlists; /* number of irec's (ex lists) */
3667 int size; /* current indirection array size */
3669 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3670 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3671 size = nlists * sizeof(xfs_ext_irec_t);
3672 ASSERT(ifp->if_real_bytes);
3673 ASSERT((new_size >= 0) && (new_size != size));
3674 if (new_size == 0) {
3675 xfs_iext_destroy(ifp);
3676 } else {
3677 ifp->if_u1.if_ext_irec = (xfs_ext_irec_t *)
3678 kmem_realloc(ifp->if_u1.if_ext_irec,
3679 new_size, size, KM_NOFS);
3684 * Switch from indirection array to linear (direct) extent allocations.
3686 STATIC void
3687 xfs_iext_indirect_to_direct(
3688 xfs_ifork_t *ifp) /* inode fork pointer */
3690 xfs_bmbt_rec_host_t *ep; /* extent record pointer */
3691 xfs_extnum_t nextents; /* number of extents in file */
3692 int size; /* size of file extents */
3694 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3695 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3696 ASSERT(nextents <= XFS_LINEAR_EXTS);
3697 size = nextents * sizeof(xfs_bmbt_rec_t);
3699 xfs_iext_irec_compact_pages(ifp);
3700 ASSERT(ifp->if_real_bytes == XFS_IEXT_BUFSZ);
3702 ep = ifp->if_u1.if_ext_irec->er_extbuf;
3703 kmem_free(ifp->if_u1.if_ext_irec);
3704 ifp->if_flags &= ~XFS_IFEXTIREC;
3705 ifp->if_u1.if_extents = ep;
3706 ifp->if_bytes = size;
3707 if (nextents < XFS_LINEAR_EXTS) {
3708 xfs_iext_realloc_direct(ifp, size);
3713 * Free incore file extents.
3715 void
3716 xfs_iext_destroy(
3717 xfs_ifork_t *ifp) /* inode fork pointer */
3719 if (ifp->if_flags & XFS_IFEXTIREC) {
3720 int erp_idx;
3721 int nlists;
3723 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3724 for (erp_idx = nlists - 1; erp_idx >= 0 ; erp_idx--) {
3725 xfs_iext_irec_remove(ifp, erp_idx);
3727 ifp->if_flags &= ~XFS_IFEXTIREC;
3728 } else if (ifp->if_real_bytes) {
3729 kmem_free(ifp->if_u1.if_extents);
3730 } else if (ifp->if_bytes) {
3731 memset(ifp->if_u2.if_inline_ext, 0, XFS_INLINE_EXTS *
3732 sizeof(xfs_bmbt_rec_t));
3734 ifp->if_u1.if_extents = NULL;
3735 ifp->if_real_bytes = 0;
3736 ifp->if_bytes = 0;
3740 * Return a pointer to the extent record for file system block bno.
3742 xfs_bmbt_rec_host_t * /* pointer to found extent record */
3743 xfs_iext_bno_to_ext(
3744 xfs_ifork_t *ifp, /* inode fork pointer */
3745 xfs_fileoff_t bno, /* block number to search for */
3746 xfs_extnum_t *idxp) /* index of target extent */
3748 xfs_bmbt_rec_host_t *base; /* pointer to first extent */
3749 xfs_filblks_t blockcount = 0; /* number of blocks in extent */
3750 xfs_bmbt_rec_host_t *ep = NULL; /* pointer to target extent */
3751 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3752 int high; /* upper boundary in search */
3753 xfs_extnum_t idx = 0; /* index of target extent */
3754 int low; /* lower boundary in search */
3755 xfs_extnum_t nextents; /* number of file extents */
3756 xfs_fileoff_t startoff = 0; /* start offset of extent */
3758 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3759 if (nextents == 0) {
3760 *idxp = 0;
3761 return NULL;
3763 low = 0;
3764 if (ifp->if_flags & XFS_IFEXTIREC) {
3765 /* Find target extent list */
3766 int erp_idx = 0;
3767 erp = xfs_iext_bno_to_irec(ifp, bno, &erp_idx);
3768 base = erp->er_extbuf;
3769 high = erp->er_extcount - 1;
3770 } else {
3771 base = ifp->if_u1.if_extents;
3772 high = nextents - 1;
3774 /* Binary search extent records */
3775 while (low <= high) {
3776 idx = (low + high) >> 1;
3777 ep = base + idx;
3778 startoff = xfs_bmbt_get_startoff(ep);
3779 blockcount = xfs_bmbt_get_blockcount(ep);
3780 if (bno < startoff) {
3781 high = idx - 1;
3782 } else if (bno >= startoff + blockcount) {
3783 low = idx + 1;
3784 } else {
3785 /* Convert back to file-based extent index */
3786 if (ifp->if_flags & XFS_IFEXTIREC) {
3787 idx += erp->er_extoff;
3789 *idxp = idx;
3790 return ep;
3793 /* Convert back to file-based extent index */
3794 if (ifp->if_flags & XFS_IFEXTIREC) {
3795 idx += erp->er_extoff;
3797 if (bno >= startoff + blockcount) {
3798 if (++idx == nextents) {
3799 ep = NULL;
3800 } else {
3801 ep = xfs_iext_get_ext(ifp, idx);
3804 *idxp = idx;
3805 return ep;
3809 * Return a pointer to the indirection array entry containing the
3810 * extent record for filesystem block bno. Store the index of the
3811 * target irec in *erp_idxp.
3813 xfs_ext_irec_t * /* pointer to found extent record */
3814 xfs_iext_bno_to_irec(
3815 xfs_ifork_t *ifp, /* inode fork pointer */
3816 xfs_fileoff_t bno, /* block number to search for */
3817 int *erp_idxp) /* irec index of target ext list */
3819 xfs_ext_irec_t *erp = NULL; /* indirection array pointer */
3820 xfs_ext_irec_t *erp_next; /* next indirection array entry */
3821 int erp_idx; /* indirection array index */
3822 int nlists; /* number of extent irec's (lists) */
3823 int high; /* binary search upper limit */
3824 int low; /* binary search lower limit */
3826 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3827 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3828 erp_idx = 0;
3829 low = 0;
3830 high = nlists - 1;
3831 while (low <= high) {
3832 erp_idx = (low + high) >> 1;
3833 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3834 erp_next = erp_idx < nlists - 1 ? erp + 1 : NULL;
3835 if (bno < xfs_bmbt_get_startoff(erp->er_extbuf)) {
3836 high = erp_idx - 1;
3837 } else if (erp_next && bno >=
3838 xfs_bmbt_get_startoff(erp_next->er_extbuf)) {
3839 low = erp_idx + 1;
3840 } else {
3841 break;
3844 *erp_idxp = erp_idx;
3845 return erp;
3849 * Return a pointer to the indirection array entry containing the
3850 * extent record at file extent index *idxp. Store the index of the
3851 * target irec in *erp_idxp and store the page index of the target
3852 * extent record in *idxp.
3854 xfs_ext_irec_t *
3855 xfs_iext_idx_to_irec(
3856 xfs_ifork_t *ifp, /* inode fork pointer */
3857 xfs_extnum_t *idxp, /* extent index (file -> page) */
3858 int *erp_idxp, /* pointer to target irec */
3859 int realloc) /* new bytes were just added */
3861 xfs_ext_irec_t *prev; /* pointer to previous irec */
3862 xfs_ext_irec_t *erp = NULL; /* pointer to current irec */
3863 int erp_idx; /* indirection array index */
3864 int nlists; /* number of irec's (ex lists) */
3865 int high; /* binary search upper limit */
3866 int low; /* binary search lower limit */
3867 xfs_extnum_t page_idx = *idxp; /* extent index in target list */
3869 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3870 ASSERT(page_idx >= 0 && page_idx <=
3871 ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t));
3872 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3873 erp_idx = 0;
3874 low = 0;
3875 high = nlists - 1;
3877 /* Binary search extent irec's */
3878 while (low <= high) {
3879 erp_idx = (low + high) >> 1;
3880 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3881 prev = erp_idx > 0 ? erp - 1 : NULL;
3882 if (page_idx < erp->er_extoff || (page_idx == erp->er_extoff &&
3883 realloc && prev && prev->er_extcount < XFS_LINEAR_EXTS)) {
3884 high = erp_idx - 1;
3885 } else if (page_idx > erp->er_extoff + erp->er_extcount ||
3886 (page_idx == erp->er_extoff + erp->er_extcount &&
3887 !realloc)) {
3888 low = erp_idx + 1;
3889 } else if (page_idx == erp->er_extoff + erp->er_extcount &&
3890 erp->er_extcount == XFS_LINEAR_EXTS) {
3891 ASSERT(realloc);
3892 page_idx = 0;
3893 erp_idx++;
3894 erp = erp_idx < nlists ? erp + 1 : NULL;
3895 break;
3896 } else {
3897 page_idx -= erp->er_extoff;
3898 break;
3901 *idxp = page_idx;
3902 *erp_idxp = erp_idx;
3903 return(erp);
3907 * Allocate and initialize an indirection array once the space needed
3908 * for incore extents increases above XFS_IEXT_BUFSZ.
3910 void
3911 xfs_iext_irec_init(
3912 xfs_ifork_t *ifp) /* inode fork pointer */
3914 xfs_ext_irec_t *erp; /* indirection array pointer */
3915 xfs_extnum_t nextents; /* number of extents in file */
3917 ASSERT(!(ifp->if_flags & XFS_IFEXTIREC));
3918 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
3919 ASSERT(nextents <= XFS_LINEAR_EXTS);
3921 erp = kmem_alloc(sizeof(xfs_ext_irec_t), KM_NOFS);
3923 if (nextents == 0) {
3924 ifp->if_u1.if_extents = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3925 } else if (!ifp->if_real_bytes) {
3926 xfs_iext_inline_to_direct(ifp, XFS_IEXT_BUFSZ);
3927 } else if (ifp->if_real_bytes < XFS_IEXT_BUFSZ) {
3928 xfs_iext_realloc_direct(ifp, XFS_IEXT_BUFSZ);
3930 erp->er_extbuf = ifp->if_u1.if_extents;
3931 erp->er_extcount = nextents;
3932 erp->er_extoff = 0;
3934 ifp->if_flags |= XFS_IFEXTIREC;
3935 ifp->if_real_bytes = XFS_IEXT_BUFSZ;
3936 ifp->if_bytes = nextents * sizeof(xfs_bmbt_rec_t);
3937 ifp->if_u1.if_ext_irec = erp;
3939 return;
3943 * Allocate and initialize a new entry in the indirection array.
3945 xfs_ext_irec_t *
3946 xfs_iext_irec_new(
3947 xfs_ifork_t *ifp, /* inode fork pointer */
3948 int erp_idx) /* index for new irec */
3950 xfs_ext_irec_t *erp; /* indirection array pointer */
3951 int i; /* loop counter */
3952 int nlists; /* number of irec's (ex lists) */
3954 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3955 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3957 /* Resize indirection array */
3958 xfs_iext_realloc_indirect(ifp, ++nlists *
3959 sizeof(xfs_ext_irec_t));
3961 * Move records down in the array so the
3962 * new page can use erp_idx.
3964 erp = ifp->if_u1.if_ext_irec;
3965 for (i = nlists - 1; i > erp_idx; i--) {
3966 memmove(&erp[i], &erp[i-1], sizeof(xfs_ext_irec_t));
3968 ASSERT(i == erp_idx);
3970 /* Initialize new extent record */
3971 erp = ifp->if_u1.if_ext_irec;
3972 erp[erp_idx].er_extbuf = kmem_alloc(XFS_IEXT_BUFSZ, KM_NOFS);
3973 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
3974 memset(erp[erp_idx].er_extbuf, 0, XFS_IEXT_BUFSZ);
3975 erp[erp_idx].er_extcount = 0;
3976 erp[erp_idx].er_extoff = erp_idx > 0 ?
3977 erp[erp_idx-1].er_extoff + erp[erp_idx-1].er_extcount : 0;
3978 return (&erp[erp_idx]);
3982 * Remove a record from the indirection array.
3984 void
3985 xfs_iext_irec_remove(
3986 xfs_ifork_t *ifp, /* inode fork pointer */
3987 int erp_idx) /* irec index to remove */
3989 xfs_ext_irec_t *erp; /* indirection array pointer */
3990 int i; /* loop counter */
3991 int nlists; /* number of irec's (ex lists) */
3993 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
3994 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
3995 erp = &ifp->if_u1.if_ext_irec[erp_idx];
3996 if (erp->er_extbuf) {
3997 xfs_iext_irec_update_extoffs(ifp, erp_idx + 1,
3998 -erp->er_extcount);
3999 kmem_free(erp->er_extbuf);
4001 /* Compact extent records */
4002 erp = ifp->if_u1.if_ext_irec;
4003 for (i = erp_idx; i < nlists - 1; i++) {
4004 memmove(&erp[i], &erp[i+1], sizeof(xfs_ext_irec_t));
4007 * Manually free the last extent record from the indirection
4008 * array. A call to xfs_iext_realloc_indirect() with a size
4009 * of zero would result in a call to xfs_iext_destroy() which
4010 * would in turn call this function again, creating a nasty
4011 * infinite loop.
4013 if (--nlists) {
4014 xfs_iext_realloc_indirect(ifp,
4015 nlists * sizeof(xfs_ext_irec_t));
4016 } else {
4017 kmem_free(ifp->if_u1.if_ext_irec);
4019 ifp->if_real_bytes = nlists * XFS_IEXT_BUFSZ;
4023 * This is called to clean up large amounts of unused memory allocated
4024 * by the indirection array. Before compacting anything though, verify
4025 * that the indirection array is still needed and switch back to the
4026 * linear extent list (or even the inline buffer) if possible. The
4027 * compaction policy is as follows:
4029 * Full Compaction: Extents fit into a single page (or inline buffer)
4030 * Partial Compaction: Extents occupy less than 50% of allocated space
4031 * No Compaction: Extents occupy at least 50% of allocated space
4033 void
4034 xfs_iext_irec_compact(
4035 xfs_ifork_t *ifp) /* inode fork pointer */
4037 xfs_extnum_t nextents; /* number of extents in file */
4038 int nlists; /* number of irec's (ex lists) */
4040 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4041 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4042 nextents = ifp->if_bytes / (uint)sizeof(xfs_bmbt_rec_t);
4044 if (nextents == 0) {
4045 xfs_iext_destroy(ifp);
4046 } else if (nextents <= XFS_INLINE_EXTS) {
4047 xfs_iext_indirect_to_direct(ifp);
4048 xfs_iext_direct_to_inline(ifp, nextents);
4049 } else if (nextents <= XFS_LINEAR_EXTS) {
4050 xfs_iext_indirect_to_direct(ifp);
4051 } else if (nextents < (nlists * XFS_LINEAR_EXTS) >> 1) {
4052 xfs_iext_irec_compact_pages(ifp);
4057 * Combine extents from neighboring extent pages.
4059 void
4060 xfs_iext_irec_compact_pages(
4061 xfs_ifork_t *ifp) /* inode fork pointer */
4063 xfs_ext_irec_t *erp, *erp_next;/* pointers to irec entries */
4064 int erp_idx = 0; /* indirection array index */
4065 int nlists; /* number of irec's (ex lists) */
4067 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4068 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4069 while (erp_idx < nlists - 1) {
4070 erp = &ifp->if_u1.if_ext_irec[erp_idx];
4071 erp_next = erp + 1;
4072 if (erp_next->er_extcount <=
4073 (XFS_LINEAR_EXTS - erp->er_extcount)) {
4074 memcpy(&erp->er_extbuf[erp->er_extcount],
4075 erp_next->er_extbuf, erp_next->er_extcount *
4076 sizeof(xfs_bmbt_rec_t));
4077 erp->er_extcount += erp_next->er_extcount;
4079 * Free page before removing extent record
4080 * so er_extoffs don't get modified in
4081 * xfs_iext_irec_remove.
4083 kmem_free(erp_next->er_extbuf);
4084 erp_next->er_extbuf = NULL;
4085 xfs_iext_irec_remove(ifp, erp_idx + 1);
4086 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4087 } else {
4088 erp_idx++;
4094 * This is called to update the er_extoff field in the indirection
4095 * array when extents have been added or removed from one of the
4096 * extent lists. erp_idx contains the irec index to begin updating
4097 * at and ext_diff contains the number of extents that were added
4098 * or removed.
4100 void
4101 xfs_iext_irec_update_extoffs(
4102 xfs_ifork_t *ifp, /* inode fork pointer */
4103 int erp_idx, /* irec index to update */
4104 int ext_diff) /* number of new extents */
4106 int i; /* loop counter */
4107 int nlists; /* number of irec's (ex lists */
4109 ASSERT(ifp->if_flags & XFS_IFEXTIREC);
4110 nlists = ifp->if_real_bytes / XFS_IEXT_BUFSZ;
4111 for (i = erp_idx; i < nlists; i++) {
4112 ifp->if_u1.if_ext_irec[i].er_extoff += ext_diff;