fs: move i_sb_list out from under inode_lock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / inode.c
blob785b1ab23ff06974ee807748a457063778d95e4c
1 /*
2 * linux/fs/inode.c
4 * (C) 1997 Linus Torvalds
5 */
7 #include <linux/fs.h>
8 #include <linux/mm.h>
9 #include <linux/dcache.h>
10 #include <linux/init.h>
11 #include <linux/slab.h>
12 #include <linux/writeback.h>
13 #include <linux/module.h>
14 #include <linux/backing-dev.h>
15 #include <linux/wait.h>
16 #include <linux/rwsem.h>
17 #include <linux/hash.h>
18 #include <linux/swap.h>
19 #include <linux/security.h>
20 #include <linux/pagemap.h>
21 #include <linux/cdev.h>
22 #include <linux/bootmem.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mount.h>
25 #include <linux/async.h>
26 #include <linux/posix_acl.h>
27 #include <linux/ima.h>
28 #include <linux/cred.h>
31 * inode locking rules.
33 * inode->i_lock protects:
34 * inode->i_state, inode->i_hash, __iget()
35 * inode_lru_lock protects:
36 * inode_lru, inode->i_lru
37 * inode_sb_list_lock protects:
38 * sb->s_inodes, inode->i_sb_list
40 * Lock ordering:
41 * inode_lock
42 * inode->i_lock
44 * inode_sb_list_lock
45 * inode->i_lock
46 * inode_lru_lock
50 * This is needed for the following functions:
51 * - inode_has_buffers
52 * - invalidate_bdev
54 * FIXME: remove all knowledge of the buffer layer from this file
56 #include <linux/buffer_head.h>
59 * New inode.c implementation.
61 * This implementation has the basic premise of trying
62 * to be extremely low-overhead and SMP-safe, yet be
63 * simple enough to be "obviously correct".
65 * Famous last words.
68 /* inode dynamic allocation 1999, Andrea Arcangeli <andrea@suse.de> */
70 /* #define INODE_PARANOIA 1 */
71 /* #define INODE_DEBUG 1 */
74 * Inode lookup is no longer as critical as it used to be:
75 * most of the lookups are going to be through the dcache.
77 #define I_HASHBITS i_hash_shift
78 #define I_HASHMASK i_hash_mask
80 static unsigned int i_hash_mask __read_mostly;
81 static unsigned int i_hash_shift __read_mostly;
84 * Each inode can be on two separate lists. One is
85 * the hash list of the inode, used for lookups. The
86 * other linked list is the "type" list:
87 * "in_use" - valid inode, i_count > 0, i_nlink > 0
88 * "dirty" - as "in_use" but also dirty
89 * "unused" - valid inode, i_count = 0
91 * A "dirty" list is maintained for each super block,
92 * allowing for low-overhead inode sync() operations.
95 static LIST_HEAD(inode_lru);
96 static DEFINE_SPINLOCK(inode_lru_lock);
97 static struct hlist_head *inode_hashtable __read_mostly;
100 * A simple spinlock to protect the list manipulations.
102 * NOTE! You also have to own the lock if you change
103 * the i_state of an inode while it is in use..
105 DEFINE_SPINLOCK(inode_lock);
107 __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_sb_list_lock);
110 * iprune_sem provides exclusion between the icache shrinking and the
111 * umount path.
113 * We don't actually need it to protect anything in the umount path,
114 * but only need to cycle through it to make sure any inode that
115 * prune_icache took off the LRU list has been fully torn down by the
116 * time we are past evict_inodes.
118 static DECLARE_RWSEM(iprune_sem);
121 * Statistics gathering..
123 struct inodes_stat_t inodes_stat;
125 static DEFINE_PER_CPU(unsigned int, nr_inodes);
127 static struct kmem_cache *inode_cachep __read_mostly;
129 static int get_nr_inodes(void)
131 int i;
132 int sum = 0;
133 for_each_possible_cpu(i)
134 sum += per_cpu(nr_inodes, i);
135 return sum < 0 ? 0 : sum;
138 static inline int get_nr_inodes_unused(void)
140 return inodes_stat.nr_unused;
143 int get_nr_dirty_inodes(void)
145 /* not actually dirty inodes, but a wild approximation */
146 int nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
147 return nr_dirty > 0 ? nr_dirty : 0;
151 * Handle nr_inode sysctl
153 #ifdef CONFIG_SYSCTL
154 int proc_nr_inodes(ctl_table *table, int write,
155 void __user *buffer, size_t *lenp, loff_t *ppos)
157 inodes_stat.nr_inodes = get_nr_inodes();
158 return proc_dointvec(table, write, buffer, lenp, ppos);
160 #endif
163 * inode_init_always - perform inode structure intialisation
164 * @sb: superblock inode belongs to
165 * @inode: inode to initialise
167 * These are initializations that need to be done on every inode
168 * allocation as the fields are not initialised by slab allocation.
170 int inode_init_always(struct super_block *sb, struct inode *inode)
172 static const struct address_space_operations empty_aops;
173 static const struct inode_operations empty_iops;
174 static const struct file_operations empty_fops;
175 struct address_space *const mapping = &inode->i_data;
177 inode->i_sb = sb;
178 inode->i_blkbits = sb->s_blocksize_bits;
179 inode->i_flags = 0;
180 atomic_set(&inode->i_count, 1);
181 inode->i_op = &empty_iops;
182 inode->i_fop = &empty_fops;
183 inode->i_nlink = 1;
184 inode->i_uid = 0;
185 inode->i_gid = 0;
186 atomic_set(&inode->i_writecount, 0);
187 inode->i_size = 0;
188 inode->i_blocks = 0;
189 inode->i_bytes = 0;
190 inode->i_generation = 0;
191 #ifdef CONFIG_QUOTA
192 memset(&inode->i_dquot, 0, sizeof(inode->i_dquot));
193 #endif
194 inode->i_pipe = NULL;
195 inode->i_bdev = NULL;
196 inode->i_cdev = NULL;
197 inode->i_rdev = 0;
198 inode->dirtied_when = 0;
200 if (security_inode_alloc(inode))
201 goto out;
202 spin_lock_init(&inode->i_lock);
203 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
205 mutex_init(&inode->i_mutex);
206 lockdep_set_class(&inode->i_mutex, &sb->s_type->i_mutex_key);
208 init_rwsem(&inode->i_alloc_sem);
209 lockdep_set_class(&inode->i_alloc_sem, &sb->s_type->i_alloc_sem_key);
211 mapping->a_ops = &empty_aops;
212 mapping->host = inode;
213 mapping->flags = 0;
214 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
215 mapping->assoc_mapping = NULL;
216 mapping->backing_dev_info = &default_backing_dev_info;
217 mapping->writeback_index = 0;
220 * If the block_device provides a backing_dev_info for client
221 * inodes then use that. Otherwise the inode share the bdev's
222 * backing_dev_info.
224 if (sb->s_bdev) {
225 struct backing_dev_info *bdi;
227 bdi = sb->s_bdev->bd_inode->i_mapping->backing_dev_info;
228 mapping->backing_dev_info = bdi;
230 inode->i_private = NULL;
231 inode->i_mapping = mapping;
232 #ifdef CONFIG_FS_POSIX_ACL
233 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
234 #endif
236 #ifdef CONFIG_FSNOTIFY
237 inode->i_fsnotify_mask = 0;
238 #endif
240 this_cpu_inc(nr_inodes);
242 return 0;
243 out:
244 return -ENOMEM;
246 EXPORT_SYMBOL(inode_init_always);
248 static struct inode *alloc_inode(struct super_block *sb)
250 struct inode *inode;
252 if (sb->s_op->alloc_inode)
253 inode = sb->s_op->alloc_inode(sb);
254 else
255 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
257 if (!inode)
258 return NULL;
260 if (unlikely(inode_init_always(sb, inode))) {
261 if (inode->i_sb->s_op->destroy_inode)
262 inode->i_sb->s_op->destroy_inode(inode);
263 else
264 kmem_cache_free(inode_cachep, inode);
265 return NULL;
268 return inode;
271 void free_inode_nonrcu(struct inode *inode)
273 kmem_cache_free(inode_cachep, inode);
275 EXPORT_SYMBOL(free_inode_nonrcu);
277 void __destroy_inode(struct inode *inode)
279 BUG_ON(inode_has_buffers(inode));
280 security_inode_free(inode);
281 fsnotify_inode_delete(inode);
282 #ifdef CONFIG_FS_POSIX_ACL
283 if (inode->i_acl && inode->i_acl != ACL_NOT_CACHED)
284 posix_acl_release(inode->i_acl);
285 if (inode->i_default_acl && inode->i_default_acl != ACL_NOT_CACHED)
286 posix_acl_release(inode->i_default_acl);
287 #endif
288 this_cpu_dec(nr_inodes);
290 EXPORT_SYMBOL(__destroy_inode);
292 static void i_callback(struct rcu_head *head)
294 struct inode *inode = container_of(head, struct inode, i_rcu);
295 INIT_LIST_HEAD(&inode->i_dentry);
296 kmem_cache_free(inode_cachep, inode);
299 static void destroy_inode(struct inode *inode)
301 BUG_ON(!list_empty(&inode->i_lru));
302 __destroy_inode(inode);
303 if (inode->i_sb->s_op->destroy_inode)
304 inode->i_sb->s_op->destroy_inode(inode);
305 else
306 call_rcu(&inode->i_rcu, i_callback);
309 void address_space_init_once(struct address_space *mapping)
311 memset(mapping, 0, sizeof(*mapping));
312 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC);
313 spin_lock_init(&mapping->tree_lock);
314 spin_lock_init(&mapping->i_mmap_lock);
315 INIT_LIST_HEAD(&mapping->private_list);
316 spin_lock_init(&mapping->private_lock);
317 INIT_RAW_PRIO_TREE_ROOT(&mapping->i_mmap);
318 INIT_LIST_HEAD(&mapping->i_mmap_nonlinear);
319 mutex_init(&mapping->unmap_mutex);
321 EXPORT_SYMBOL(address_space_init_once);
324 * These are initializations that only need to be done
325 * once, because the fields are idempotent across use
326 * of the inode, so let the slab aware of that.
328 void inode_init_once(struct inode *inode)
330 memset(inode, 0, sizeof(*inode));
331 INIT_HLIST_NODE(&inode->i_hash);
332 INIT_LIST_HEAD(&inode->i_dentry);
333 INIT_LIST_HEAD(&inode->i_devices);
334 INIT_LIST_HEAD(&inode->i_wb_list);
335 INIT_LIST_HEAD(&inode->i_lru);
336 address_space_init_once(&inode->i_data);
337 i_size_ordered_init(inode);
338 #ifdef CONFIG_FSNOTIFY
339 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
340 #endif
342 EXPORT_SYMBOL(inode_init_once);
344 static void init_once(void *foo)
346 struct inode *inode = (struct inode *) foo;
348 inode_init_once(inode);
352 * inode->i_lock must be held
354 void __iget(struct inode *inode)
356 atomic_inc(&inode->i_count);
360 * get additional reference to inode; caller must already hold one.
362 void ihold(struct inode *inode)
364 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
366 EXPORT_SYMBOL(ihold);
368 static void inode_lru_list_add(struct inode *inode)
370 spin_lock(&inode_lru_lock);
371 if (list_empty(&inode->i_lru)) {
372 list_add(&inode->i_lru, &inode_lru);
373 inodes_stat.nr_unused++;
375 spin_unlock(&inode_lru_lock);
378 static void inode_lru_list_del(struct inode *inode)
380 spin_lock(&inode_lru_lock);
381 if (!list_empty(&inode->i_lru)) {
382 list_del_init(&inode->i_lru);
383 inodes_stat.nr_unused--;
385 spin_unlock(&inode_lru_lock);
389 * inode_sb_list_add - add inode to the superblock list of inodes
390 * @inode: inode to add
392 void inode_sb_list_add(struct inode *inode)
394 spin_lock(&inode_sb_list_lock);
395 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
396 spin_unlock(&inode_sb_list_lock);
398 EXPORT_SYMBOL_GPL(inode_sb_list_add);
400 static inline void inode_sb_list_del(struct inode *inode)
402 spin_lock(&inode_sb_list_lock);
403 list_del_init(&inode->i_sb_list);
404 spin_unlock(&inode_sb_list_lock);
407 static unsigned long hash(struct super_block *sb, unsigned long hashval)
409 unsigned long tmp;
411 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
412 L1_CACHE_BYTES;
413 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> I_HASHBITS);
414 return tmp & I_HASHMASK;
418 * __insert_inode_hash - hash an inode
419 * @inode: unhashed inode
420 * @hashval: unsigned long value used to locate this object in the
421 * inode_hashtable.
423 * Add an inode to the inode hash for this superblock.
425 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
427 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
429 spin_lock(&inode_lock);
430 spin_lock(&inode->i_lock);
431 hlist_add_head(&inode->i_hash, b);
432 spin_unlock(&inode->i_lock);
433 spin_unlock(&inode_lock);
435 EXPORT_SYMBOL(__insert_inode_hash);
438 * remove_inode_hash - remove an inode from the hash
439 * @inode: inode to unhash
441 * Remove an inode from the superblock.
443 void remove_inode_hash(struct inode *inode)
445 spin_lock(&inode_lock);
446 spin_lock(&inode->i_lock);
447 hlist_del_init(&inode->i_hash);
448 spin_unlock(&inode->i_lock);
449 spin_unlock(&inode_lock);
451 EXPORT_SYMBOL(remove_inode_hash);
453 void end_writeback(struct inode *inode)
455 might_sleep();
456 BUG_ON(inode->i_data.nrpages);
457 BUG_ON(!list_empty(&inode->i_data.private_list));
458 BUG_ON(!(inode->i_state & I_FREEING));
459 BUG_ON(inode->i_state & I_CLEAR);
460 inode_sync_wait(inode);
461 /* don't need i_lock here, no concurrent mods to i_state */
462 inode->i_state = I_FREEING | I_CLEAR;
464 EXPORT_SYMBOL(end_writeback);
467 * Free the inode passed in, removing it from the lists it is still connected
468 * to. We remove any pages still attached to the inode and wait for any IO that
469 * is still in progress before finally destroying the inode.
471 * An inode must already be marked I_FREEING so that we avoid the inode being
472 * moved back onto lists if we race with other code that manipulates the lists
473 * (e.g. writeback_single_inode). The caller is responsible for setting this.
475 * An inode must already be removed from the LRU list before being evicted from
476 * the cache. This should occur atomically with setting the I_FREEING state
477 * flag, so no inodes here should ever be on the LRU when being evicted.
479 static void evict(struct inode *inode)
481 const struct super_operations *op = inode->i_sb->s_op;
483 BUG_ON(!(inode->i_state & I_FREEING));
484 BUG_ON(!list_empty(&inode->i_lru));
486 spin_lock(&inode_lock);
487 list_del_init(&inode->i_wb_list);
488 spin_unlock(&inode_lock);
490 inode_sb_list_del(inode);
492 if (op->evict_inode) {
493 op->evict_inode(inode);
494 } else {
495 if (inode->i_data.nrpages)
496 truncate_inode_pages(&inode->i_data, 0);
497 end_writeback(inode);
499 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
500 bd_forget(inode);
501 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
502 cd_forget(inode);
504 remove_inode_hash(inode);
506 spin_lock(&inode->i_lock);
507 wake_up_bit(&inode->i_state, __I_NEW);
508 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
509 spin_unlock(&inode->i_lock);
511 destroy_inode(inode);
515 * dispose_list - dispose of the contents of a local list
516 * @head: the head of the list to free
518 * Dispose-list gets a local list with local inodes in it, so it doesn't
519 * need to worry about list corruption and SMP locks.
521 static void dispose_list(struct list_head *head)
523 while (!list_empty(head)) {
524 struct inode *inode;
526 inode = list_first_entry(head, struct inode, i_lru);
527 list_del_init(&inode->i_lru);
529 evict(inode);
534 * evict_inodes - evict all evictable inodes for a superblock
535 * @sb: superblock to operate on
537 * Make sure that no inodes with zero refcount are retained. This is
538 * called by superblock shutdown after having MS_ACTIVE flag removed,
539 * so any inode reaching zero refcount during or after that call will
540 * be immediately evicted.
542 void evict_inodes(struct super_block *sb)
544 struct inode *inode, *next;
545 LIST_HEAD(dispose);
547 spin_lock(&inode_sb_list_lock);
548 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
549 if (atomic_read(&inode->i_count))
550 continue;
552 spin_lock(&inode->i_lock);
553 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
554 spin_unlock(&inode->i_lock);
555 continue;
558 inode->i_state |= I_FREEING;
559 inode_lru_list_del(inode);
560 spin_unlock(&inode->i_lock);
561 list_add(&inode->i_lru, &dispose);
563 spin_unlock(&inode_sb_list_lock);
565 dispose_list(&dispose);
568 * Cycle through iprune_sem to make sure any inode that prune_icache
569 * moved off the list before we took the lock has been fully torn
570 * down.
572 down_write(&iprune_sem);
573 up_write(&iprune_sem);
577 * invalidate_inodes - attempt to free all inodes on a superblock
578 * @sb: superblock to operate on
579 * @kill_dirty: flag to guide handling of dirty inodes
581 * Attempts to free all inodes for a given superblock. If there were any
582 * busy inodes return a non-zero value, else zero.
583 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
584 * them as busy.
586 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
588 int busy = 0;
589 struct inode *inode, *next;
590 LIST_HEAD(dispose);
592 spin_lock(&inode_sb_list_lock);
593 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
594 spin_lock(&inode->i_lock);
595 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
596 spin_unlock(&inode->i_lock);
597 continue;
599 if (inode->i_state & I_DIRTY && !kill_dirty) {
600 spin_unlock(&inode->i_lock);
601 busy = 1;
602 continue;
604 if (atomic_read(&inode->i_count)) {
605 spin_unlock(&inode->i_lock);
606 busy = 1;
607 continue;
610 inode->i_state |= I_FREEING;
611 inode_lru_list_del(inode);
612 spin_unlock(&inode->i_lock);
613 list_add(&inode->i_lru, &dispose);
615 spin_unlock(&inode_sb_list_lock);
617 dispose_list(&dispose);
619 return busy;
622 static int can_unuse(struct inode *inode)
624 if (inode->i_state & ~I_REFERENCED)
625 return 0;
626 if (inode_has_buffers(inode))
627 return 0;
628 if (atomic_read(&inode->i_count))
629 return 0;
630 if (inode->i_data.nrpages)
631 return 0;
632 return 1;
636 * Scan `goal' inodes on the unused list for freeable ones. They are moved to a
637 * temporary list and then are freed outside inode_lru_lock by dispose_list().
639 * Any inodes which are pinned purely because of attached pagecache have their
640 * pagecache removed. If the inode has metadata buffers attached to
641 * mapping->private_list then try to remove them.
643 * If the inode has the I_REFERENCED flag set, then it means that it has been
644 * used recently - the flag is set in iput_final(). When we encounter such an
645 * inode, clear the flag and move it to the back of the LRU so it gets another
646 * pass through the LRU before it gets reclaimed. This is necessary because of
647 * the fact we are doing lazy LRU updates to minimise lock contention so the
648 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
649 * with this flag set because they are the inodes that are out of order.
651 static void prune_icache(int nr_to_scan)
653 LIST_HEAD(freeable);
654 int nr_scanned;
655 unsigned long reap = 0;
657 down_read(&iprune_sem);
658 spin_lock(&inode_lru_lock);
659 for (nr_scanned = 0; nr_scanned < nr_to_scan; nr_scanned++) {
660 struct inode *inode;
662 if (list_empty(&inode_lru))
663 break;
665 inode = list_entry(inode_lru.prev, struct inode, i_lru);
668 * we are inverting the inode_lru_lock/inode->i_lock here,
669 * so use a trylock. If we fail to get the lock, just move the
670 * inode to the back of the list so we don't spin on it.
672 if (!spin_trylock(&inode->i_lock)) {
673 list_move(&inode->i_lru, &inode_lru);
674 continue;
678 * Referenced or dirty inodes are still in use. Give them
679 * another pass through the LRU as we canot reclaim them now.
681 if (atomic_read(&inode->i_count) ||
682 (inode->i_state & ~I_REFERENCED)) {
683 list_del_init(&inode->i_lru);
684 spin_unlock(&inode->i_lock);
685 inodes_stat.nr_unused--;
686 continue;
689 /* recently referenced inodes get one more pass */
690 if (inode->i_state & I_REFERENCED) {
691 inode->i_state &= ~I_REFERENCED;
692 list_move(&inode->i_lru, &inode_lru);
693 spin_unlock(&inode->i_lock);
694 continue;
696 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
697 __iget(inode);
698 spin_unlock(&inode->i_lock);
699 spin_unlock(&inode_lru_lock);
700 if (remove_inode_buffers(inode))
701 reap += invalidate_mapping_pages(&inode->i_data,
702 0, -1);
703 iput(inode);
704 spin_lock(&inode_lru_lock);
706 if (inode != list_entry(inode_lru.next,
707 struct inode, i_lru))
708 continue; /* wrong inode or list_empty */
709 /* avoid lock inversions with trylock */
710 if (!spin_trylock(&inode->i_lock))
711 continue;
712 if (!can_unuse(inode)) {
713 spin_unlock(&inode->i_lock);
714 continue;
717 WARN_ON(inode->i_state & I_NEW);
718 inode->i_state |= I_FREEING;
719 spin_unlock(&inode->i_lock);
721 list_move(&inode->i_lru, &freeable);
722 inodes_stat.nr_unused--;
724 if (current_is_kswapd())
725 __count_vm_events(KSWAPD_INODESTEAL, reap);
726 else
727 __count_vm_events(PGINODESTEAL, reap);
728 spin_unlock(&inode_lru_lock);
730 dispose_list(&freeable);
731 up_read(&iprune_sem);
735 * shrink_icache_memory() will attempt to reclaim some unused inodes. Here,
736 * "unused" means that no dentries are referring to the inodes: the files are
737 * not open and the dcache references to those inodes have already been
738 * reclaimed.
740 * This function is passed the number of inodes to scan, and it returns the
741 * total number of remaining possibly-reclaimable inodes.
743 static int shrink_icache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
745 if (nr) {
747 * Nasty deadlock avoidance. We may hold various FS locks,
748 * and we don't want to recurse into the FS that called us
749 * in clear_inode() and friends..
751 if (!(gfp_mask & __GFP_FS))
752 return -1;
753 prune_icache(nr);
755 return (get_nr_inodes_unused() / 100) * sysctl_vfs_cache_pressure;
758 static struct shrinker icache_shrinker = {
759 .shrink = shrink_icache_memory,
760 .seeks = DEFAULT_SEEKS,
763 static void __wait_on_freeing_inode(struct inode *inode);
765 * Called with the inode lock held.
767 static struct inode *find_inode(struct super_block *sb,
768 struct hlist_head *head,
769 int (*test)(struct inode *, void *),
770 void *data)
772 struct hlist_node *node;
773 struct inode *inode = NULL;
775 repeat:
776 hlist_for_each_entry(inode, node, head, i_hash) {
777 if (inode->i_sb != sb)
778 continue;
779 if (!test(inode, data))
780 continue;
781 spin_lock(&inode->i_lock);
782 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
783 __wait_on_freeing_inode(inode);
784 goto repeat;
786 __iget(inode);
787 spin_unlock(&inode->i_lock);
788 return inode;
790 return NULL;
794 * find_inode_fast is the fast path version of find_inode, see the comment at
795 * iget_locked for details.
797 static struct inode *find_inode_fast(struct super_block *sb,
798 struct hlist_head *head, unsigned long ino)
800 struct hlist_node *node;
801 struct inode *inode = NULL;
803 repeat:
804 hlist_for_each_entry(inode, node, head, i_hash) {
805 if (inode->i_ino != ino)
806 continue;
807 if (inode->i_sb != sb)
808 continue;
809 spin_lock(&inode->i_lock);
810 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
811 __wait_on_freeing_inode(inode);
812 goto repeat;
814 __iget(inode);
815 spin_unlock(&inode->i_lock);
816 return inode;
818 return NULL;
822 * Each cpu owns a range of LAST_INO_BATCH numbers.
823 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
824 * to renew the exhausted range.
826 * This does not significantly increase overflow rate because every CPU can
827 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
828 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
829 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
830 * overflow rate by 2x, which does not seem too significant.
832 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
833 * error if st_ino won't fit in target struct field. Use 32bit counter
834 * here to attempt to avoid that.
836 #define LAST_INO_BATCH 1024
837 static DEFINE_PER_CPU(unsigned int, last_ino);
839 unsigned int get_next_ino(void)
841 unsigned int *p = &get_cpu_var(last_ino);
842 unsigned int res = *p;
844 #ifdef CONFIG_SMP
845 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
846 static atomic_t shared_last_ino;
847 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
849 res = next - LAST_INO_BATCH;
851 #endif
853 *p = ++res;
854 put_cpu_var(last_ino);
855 return res;
857 EXPORT_SYMBOL(get_next_ino);
860 * new_inode - obtain an inode
861 * @sb: superblock
863 * Allocates a new inode for given superblock. The default gfp_mask
864 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
865 * If HIGHMEM pages are unsuitable or it is known that pages allocated
866 * for the page cache are not reclaimable or migratable,
867 * mapping_set_gfp_mask() must be called with suitable flags on the
868 * newly created inode's mapping
871 struct inode *new_inode(struct super_block *sb)
873 struct inode *inode;
875 spin_lock_prefetch(&inode_sb_list_lock);
877 inode = alloc_inode(sb);
878 if (inode) {
879 spin_lock(&inode->i_lock);
880 inode->i_state = 0;
881 spin_unlock(&inode->i_lock);
882 inode_sb_list_add(inode);
884 return inode;
886 EXPORT_SYMBOL(new_inode);
889 * unlock_new_inode - clear the I_NEW state and wake up any waiters
890 * @inode: new inode to unlock
892 * Called when the inode is fully initialised to clear the new state of the
893 * inode and wake up anyone waiting for the inode to finish initialisation.
895 void unlock_new_inode(struct inode *inode)
897 #ifdef CONFIG_DEBUG_LOCK_ALLOC
898 if (S_ISDIR(inode->i_mode)) {
899 struct file_system_type *type = inode->i_sb->s_type;
901 /* Set new key only if filesystem hasn't already changed it */
902 if (!lockdep_match_class(&inode->i_mutex,
903 &type->i_mutex_key)) {
905 * ensure nobody is actually holding i_mutex
907 mutex_destroy(&inode->i_mutex);
908 mutex_init(&inode->i_mutex);
909 lockdep_set_class(&inode->i_mutex,
910 &type->i_mutex_dir_key);
913 #endif
914 spin_lock(&inode->i_lock);
915 WARN_ON(!(inode->i_state & I_NEW));
916 inode->i_state &= ~I_NEW;
917 wake_up_bit(&inode->i_state, __I_NEW);
918 spin_unlock(&inode->i_lock);
920 EXPORT_SYMBOL(unlock_new_inode);
923 * This is called without the inode lock held.. Be careful.
925 * We no longer cache the sb_flags in i_flags - see fs.h
926 * -- rmk@arm.uk.linux.org
928 static struct inode *get_new_inode(struct super_block *sb,
929 struct hlist_head *head,
930 int (*test)(struct inode *, void *),
931 int (*set)(struct inode *, void *),
932 void *data)
934 struct inode *inode;
936 inode = alloc_inode(sb);
937 if (inode) {
938 struct inode *old;
940 spin_lock(&inode_lock);
941 /* We released the lock, so.. */
942 old = find_inode(sb, head, test, data);
943 if (!old) {
944 if (set(inode, data))
945 goto set_failed;
947 spin_lock(&inode->i_lock);
948 inode->i_state = I_NEW;
949 hlist_add_head(&inode->i_hash, head);
950 spin_unlock(&inode->i_lock);
951 inode_sb_list_add(inode);
952 spin_unlock(&inode_lock);
954 /* Return the locked inode with I_NEW set, the
955 * caller is responsible for filling in the contents
957 return inode;
961 * Uhhuh, somebody else created the same inode under
962 * us. Use the old inode instead of the one we just
963 * allocated.
965 spin_unlock(&inode_lock);
966 destroy_inode(inode);
967 inode = old;
968 wait_on_inode(inode);
970 return inode;
972 set_failed:
973 spin_unlock(&inode_lock);
974 destroy_inode(inode);
975 return NULL;
979 * get_new_inode_fast is the fast path version of get_new_inode, see the
980 * comment at iget_locked for details.
982 static struct inode *get_new_inode_fast(struct super_block *sb,
983 struct hlist_head *head, unsigned long ino)
985 struct inode *inode;
987 inode = alloc_inode(sb);
988 if (inode) {
989 struct inode *old;
991 spin_lock(&inode_lock);
992 /* We released the lock, so.. */
993 old = find_inode_fast(sb, head, ino);
994 if (!old) {
995 inode->i_ino = ino;
996 spin_lock(&inode->i_lock);
997 inode->i_state = I_NEW;
998 hlist_add_head(&inode->i_hash, head);
999 spin_unlock(&inode->i_lock);
1000 inode_sb_list_add(inode);
1001 spin_unlock(&inode_lock);
1003 /* Return the locked inode with I_NEW set, the
1004 * caller is responsible for filling in the contents
1006 return inode;
1010 * Uhhuh, somebody else created the same inode under
1011 * us. Use the old inode instead of the one we just
1012 * allocated.
1014 spin_unlock(&inode_lock);
1015 destroy_inode(inode);
1016 inode = old;
1017 wait_on_inode(inode);
1019 return inode;
1023 * search the inode cache for a matching inode number.
1024 * If we find one, then the inode number we are trying to
1025 * allocate is not unique and so we should not use it.
1027 * Returns 1 if the inode number is unique, 0 if it is not.
1029 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1031 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1032 struct hlist_node *node;
1033 struct inode *inode;
1035 hlist_for_each_entry(inode, node, b, i_hash) {
1036 if (inode->i_ino == ino && inode->i_sb == sb)
1037 return 0;
1040 return 1;
1044 * iunique - get a unique inode number
1045 * @sb: superblock
1046 * @max_reserved: highest reserved inode number
1048 * Obtain an inode number that is unique on the system for a given
1049 * superblock. This is used by file systems that have no natural
1050 * permanent inode numbering system. An inode number is returned that
1051 * is higher than the reserved limit but unique.
1053 * BUGS:
1054 * With a large number of inodes live on the file system this function
1055 * currently becomes quite slow.
1057 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1060 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1061 * error if st_ino won't fit in target struct field. Use 32bit counter
1062 * here to attempt to avoid that.
1064 static DEFINE_SPINLOCK(iunique_lock);
1065 static unsigned int counter;
1066 ino_t res;
1068 spin_lock(&inode_lock);
1069 spin_lock(&iunique_lock);
1070 do {
1071 if (counter <= max_reserved)
1072 counter = max_reserved + 1;
1073 res = counter++;
1074 } while (!test_inode_iunique(sb, res));
1075 spin_unlock(&iunique_lock);
1076 spin_unlock(&inode_lock);
1078 return res;
1080 EXPORT_SYMBOL(iunique);
1082 struct inode *igrab(struct inode *inode)
1084 spin_lock(&inode->i_lock);
1085 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1086 __iget(inode);
1087 spin_unlock(&inode->i_lock);
1088 } else {
1089 spin_unlock(&inode->i_lock);
1091 * Handle the case where s_op->clear_inode is not been
1092 * called yet, and somebody is calling igrab
1093 * while the inode is getting freed.
1095 inode = NULL;
1097 return inode;
1099 EXPORT_SYMBOL(igrab);
1102 * ifind - internal function, you want ilookup5() or iget5().
1103 * @sb: super block of file system to search
1104 * @head: the head of the list to search
1105 * @test: callback used for comparisons between inodes
1106 * @data: opaque data pointer to pass to @test
1107 * @wait: if true wait for the inode to be unlocked, if false do not
1109 * ifind() searches for the inode specified by @data in the inode
1110 * cache. This is a generalized version of ifind_fast() for file systems where
1111 * the inode number is not sufficient for unique identification of an inode.
1113 * If the inode is in the cache, the inode is returned with an incremented
1114 * reference count.
1116 * Otherwise NULL is returned.
1118 * Note, @test is called with the inode_lock held, so can't sleep.
1120 static struct inode *ifind(struct super_block *sb,
1121 struct hlist_head *head, int (*test)(struct inode *, void *),
1122 void *data, const int wait)
1124 struct inode *inode;
1126 spin_lock(&inode_lock);
1127 inode = find_inode(sb, head, test, data);
1128 if (inode) {
1129 spin_unlock(&inode_lock);
1130 if (likely(wait))
1131 wait_on_inode(inode);
1132 return inode;
1134 spin_unlock(&inode_lock);
1135 return NULL;
1139 * ifind_fast - internal function, you want ilookup() or iget().
1140 * @sb: super block of file system to search
1141 * @head: head of the list to search
1142 * @ino: inode number to search for
1144 * ifind_fast() searches for the inode @ino in the inode cache. This is for
1145 * file systems where the inode number is sufficient for unique identification
1146 * of an inode.
1148 * If the inode is in the cache, the inode is returned with an incremented
1149 * reference count.
1151 * Otherwise NULL is returned.
1153 static struct inode *ifind_fast(struct super_block *sb,
1154 struct hlist_head *head, unsigned long ino)
1156 struct inode *inode;
1158 spin_lock(&inode_lock);
1159 inode = find_inode_fast(sb, head, ino);
1160 if (inode) {
1161 spin_unlock(&inode_lock);
1162 wait_on_inode(inode);
1163 return inode;
1165 spin_unlock(&inode_lock);
1166 return NULL;
1170 * ilookup5_nowait - search for an inode in the inode cache
1171 * @sb: super block of file system to search
1172 * @hashval: hash value (usually inode number) to search for
1173 * @test: callback used for comparisons between inodes
1174 * @data: opaque data pointer to pass to @test
1176 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1177 * @data in the inode cache. This is a generalized version of ilookup() for
1178 * file systems where the inode number is not sufficient for unique
1179 * identification of an inode.
1181 * If the inode is in the cache, the inode is returned with an incremented
1182 * reference count. Note, the inode lock is not waited upon so you have to be
1183 * very careful what you do with the returned inode. You probably should be
1184 * using ilookup5() instead.
1186 * Otherwise NULL is returned.
1188 * Note, @test is called with the inode_lock held, so can't sleep.
1190 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1191 int (*test)(struct inode *, void *), void *data)
1193 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1195 return ifind(sb, head, test, data, 0);
1197 EXPORT_SYMBOL(ilookup5_nowait);
1200 * ilookup5 - search for an inode in the inode cache
1201 * @sb: super block of file system to search
1202 * @hashval: hash value (usually inode number) to search for
1203 * @test: callback used for comparisons between inodes
1204 * @data: opaque data pointer to pass to @test
1206 * ilookup5() uses ifind() to search for the inode specified by @hashval and
1207 * @data in the inode cache. This is a generalized version of ilookup() for
1208 * file systems where the inode number is not sufficient for unique
1209 * identification of an inode.
1211 * If the inode is in the cache, the inode lock is waited upon and the inode is
1212 * returned with an incremented reference count.
1214 * Otherwise NULL is returned.
1216 * Note, @test is called with the inode_lock held, so can't sleep.
1218 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1219 int (*test)(struct inode *, void *), void *data)
1221 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1223 return ifind(sb, head, test, data, 1);
1225 EXPORT_SYMBOL(ilookup5);
1228 * ilookup - search for an inode in the inode cache
1229 * @sb: super block of file system to search
1230 * @ino: inode number to search for
1232 * ilookup() uses ifind_fast() to search for the inode @ino in the inode cache.
1233 * This is for file systems where the inode number is sufficient for unique
1234 * identification of an inode.
1236 * If the inode is in the cache, the inode is returned with an incremented
1237 * reference count.
1239 * Otherwise NULL is returned.
1241 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1243 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1245 return ifind_fast(sb, head, ino);
1247 EXPORT_SYMBOL(ilookup);
1250 * iget5_locked - obtain an inode from a mounted file system
1251 * @sb: super block of file system
1252 * @hashval: hash value (usually inode number) to get
1253 * @test: callback used for comparisons between inodes
1254 * @set: callback used to initialize a new struct inode
1255 * @data: opaque data pointer to pass to @test and @set
1257 * iget5_locked() uses ifind() to search for the inode specified by @hashval
1258 * and @data in the inode cache and if present it is returned with an increased
1259 * reference count. This is a generalized version of iget_locked() for file
1260 * systems where the inode number is not sufficient for unique identification
1261 * of an inode.
1263 * If the inode is not in cache, get_new_inode() is called to allocate a new
1264 * inode and this is returned locked, hashed, and with the I_NEW flag set. The
1265 * file system gets to fill it in before unlocking it via unlock_new_inode().
1267 * Note both @test and @set are called with the inode_lock held, so can't sleep.
1269 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1270 int (*test)(struct inode *, void *),
1271 int (*set)(struct inode *, void *), void *data)
1273 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1274 struct inode *inode;
1276 inode = ifind(sb, head, test, data, 1);
1277 if (inode)
1278 return inode;
1280 * get_new_inode() will do the right thing, re-trying the search
1281 * in case it had to block at any point.
1283 return get_new_inode(sb, head, test, set, data);
1285 EXPORT_SYMBOL(iget5_locked);
1288 * iget_locked - obtain an inode from a mounted file system
1289 * @sb: super block of file system
1290 * @ino: inode number to get
1292 * iget_locked() uses ifind_fast() to search for the inode specified by @ino in
1293 * the inode cache and if present it is returned with an increased reference
1294 * count. This is for file systems where the inode number is sufficient for
1295 * unique identification of an inode.
1297 * If the inode is not in cache, get_new_inode_fast() is called to allocate a
1298 * new inode and this is returned locked, hashed, and with the I_NEW flag set.
1299 * The file system gets to fill it in before unlocking it via
1300 * unlock_new_inode().
1302 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1304 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1305 struct inode *inode;
1307 inode = ifind_fast(sb, head, ino);
1308 if (inode)
1309 return inode;
1311 * get_new_inode_fast() will do the right thing, re-trying the search
1312 * in case it had to block at any point.
1314 return get_new_inode_fast(sb, head, ino);
1316 EXPORT_SYMBOL(iget_locked);
1318 int insert_inode_locked(struct inode *inode)
1320 struct super_block *sb = inode->i_sb;
1321 ino_t ino = inode->i_ino;
1322 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1324 while (1) {
1325 struct hlist_node *node;
1326 struct inode *old = NULL;
1327 spin_lock(&inode_lock);
1328 hlist_for_each_entry(old, node, head, i_hash) {
1329 if (old->i_ino != ino)
1330 continue;
1331 if (old->i_sb != sb)
1332 continue;
1333 spin_lock(&old->i_lock);
1334 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1335 spin_unlock(&old->i_lock);
1336 continue;
1338 break;
1340 if (likely(!node)) {
1341 spin_lock(&inode->i_lock);
1342 inode->i_state |= I_NEW;
1343 hlist_add_head(&inode->i_hash, head);
1344 spin_unlock(&inode->i_lock);
1345 spin_unlock(&inode_lock);
1346 return 0;
1348 __iget(old);
1349 spin_unlock(&old->i_lock);
1350 spin_unlock(&inode_lock);
1351 wait_on_inode(old);
1352 if (unlikely(!inode_unhashed(old))) {
1353 iput(old);
1354 return -EBUSY;
1356 iput(old);
1359 EXPORT_SYMBOL(insert_inode_locked);
1361 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1362 int (*test)(struct inode *, void *), void *data)
1364 struct super_block *sb = inode->i_sb;
1365 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1367 while (1) {
1368 struct hlist_node *node;
1369 struct inode *old = NULL;
1371 spin_lock(&inode_lock);
1372 hlist_for_each_entry(old, node, head, i_hash) {
1373 if (old->i_sb != sb)
1374 continue;
1375 if (!test(old, data))
1376 continue;
1377 spin_lock(&old->i_lock);
1378 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1379 spin_unlock(&old->i_lock);
1380 continue;
1382 break;
1384 if (likely(!node)) {
1385 spin_lock(&inode->i_lock);
1386 inode->i_state |= I_NEW;
1387 hlist_add_head(&inode->i_hash, head);
1388 spin_unlock(&inode->i_lock);
1389 spin_unlock(&inode_lock);
1390 return 0;
1392 __iget(old);
1393 spin_unlock(&old->i_lock);
1394 spin_unlock(&inode_lock);
1395 wait_on_inode(old);
1396 if (unlikely(!inode_unhashed(old))) {
1397 iput(old);
1398 return -EBUSY;
1400 iput(old);
1403 EXPORT_SYMBOL(insert_inode_locked4);
1406 int generic_delete_inode(struct inode *inode)
1408 return 1;
1410 EXPORT_SYMBOL(generic_delete_inode);
1413 * Normal UNIX filesystem behaviour: delete the
1414 * inode when the usage count drops to zero, and
1415 * i_nlink is zero.
1417 int generic_drop_inode(struct inode *inode)
1419 return !inode->i_nlink || inode_unhashed(inode);
1421 EXPORT_SYMBOL_GPL(generic_drop_inode);
1424 * Called when we're dropping the last reference
1425 * to an inode.
1427 * Call the FS "drop_inode()" function, defaulting to
1428 * the legacy UNIX filesystem behaviour. If it tells
1429 * us to evict inode, do so. Otherwise, retain inode
1430 * in cache if fs is alive, sync and evict if fs is
1431 * shutting down.
1433 static void iput_final(struct inode *inode)
1435 struct super_block *sb = inode->i_sb;
1436 const struct super_operations *op = inode->i_sb->s_op;
1437 int drop;
1439 WARN_ON(inode->i_state & I_NEW);
1441 if (op && op->drop_inode)
1442 drop = op->drop_inode(inode);
1443 else
1444 drop = generic_drop_inode(inode);
1446 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1447 inode->i_state |= I_REFERENCED;
1448 if (!(inode->i_state & (I_DIRTY|I_SYNC)))
1449 inode_lru_list_add(inode);
1450 spin_unlock(&inode->i_lock);
1451 return;
1454 if (!drop) {
1455 inode->i_state |= I_WILL_FREE;
1456 spin_unlock(&inode->i_lock);
1457 write_inode_now(inode, 1);
1458 spin_lock(&inode->i_lock);
1459 WARN_ON(inode->i_state & I_NEW);
1460 inode->i_state &= ~I_WILL_FREE;
1463 inode->i_state |= I_FREEING;
1464 inode_lru_list_del(inode);
1465 spin_unlock(&inode->i_lock);
1467 evict(inode);
1471 * iput - put an inode
1472 * @inode: inode to put
1474 * Puts an inode, dropping its usage count. If the inode use count hits
1475 * zero, the inode is then freed and may also be destroyed.
1477 * Consequently, iput() can sleep.
1479 void iput(struct inode *inode)
1481 if (inode) {
1482 BUG_ON(inode->i_state & I_CLEAR);
1484 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock))
1485 iput_final(inode);
1488 EXPORT_SYMBOL(iput);
1491 * bmap - find a block number in a file
1492 * @inode: inode of file
1493 * @block: block to find
1495 * Returns the block number on the device holding the inode that
1496 * is the disk block number for the block of the file requested.
1497 * That is, asked for block 4 of inode 1 the function will return the
1498 * disk block relative to the disk start that holds that block of the
1499 * file.
1501 sector_t bmap(struct inode *inode, sector_t block)
1503 sector_t res = 0;
1504 if (inode->i_mapping->a_ops->bmap)
1505 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1506 return res;
1508 EXPORT_SYMBOL(bmap);
1511 * With relative atime, only update atime if the previous atime is
1512 * earlier than either the ctime or mtime or if at least a day has
1513 * passed since the last atime update.
1515 static int relatime_need_update(struct vfsmount *mnt, struct inode *inode,
1516 struct timespec now)
1519 if (!(mnt->mnt_flags & MNT_RELATIME))
1520 return 1;
1522 * Is mtime younger than atime? If yes, update atime:
1524 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1525 return 1;
1527 * Is ctime younger than atime? If yes, update atime:
1529 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1530 return 1;
1533 * Is the previous atime value older than a day? If yes,
1534 * update atime:
1536 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1537 return 1;
1539 * Good, we can skip the atime update:
1541 return 0;
1545 * touch_atime - update the access time
1546 * @mnt: mount the inode is accessed on
1547 * @dentry: dentry accessed
1549 * Update the accessed time on an inode and mark it for writeback.
1550 * This function automatically handles read only file systems and media,
1551 * as well as the "noatime" flag and inode specific "noatime" markers.
1553 void touch_atime(struct vfsmount *mnt, struct dentry *dentry)
1555 struct inode *inode = dentry->d_inode;
1556 struct timespec now;
1558 if (inode->i_flags & S_NOATIME)
1559 return;
1560 if (IS_NOATIME(inode))
1561 return;
1562 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1563 return;
1565 if (mnt->mnt_flags & MNT_NOATIME)
1566 return;
1567 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1568 return;
1570 now = current_fs_time(inode->i_sb);
1572 if (!relatime_need_update(mnt, inode, now))
1573 return;
1575 if (timespec_equal(&inode->i_atime, &now))
1576 return;
1578 if (mnt_want_write(mnt))
1579 return;
1581 inode->i_atime = now;
1582 mark_inode_dirty_sync(inode);
1583 mnt_drop_write(mnt);
1585 EXPORT_SYMBOL(touch_atime);
1588 * file_update_time - update mtime and ctime time
1589 * @file: file accessed
1591 * Update the mtime and ctime members of an inode and mark the inode
1592 * for writeback. Note that this function is meant exclusively for
1593 * usage in the file write path of filesystems, and filesystems may
1594 * choose to explicitly ignore update via this function with the
1595 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1596 * timestamps are handled by the server.
1599 void file_update_time(struct file *file)
1601 struct inode *inode = file->f_path.dentry->d_inode;
1602 struct timespec now;
1603 enum { S_MTIME = 1, S_CTIME = 2, S_VERSION = 4 } sync_it = 0;
1605 /* First try to exhaust all avenues to not sync */
1606 if (IS_NOCMTIME(inode))
1607 return;
1609 now = current_fs_time(inode->i_sb);
1610 if (!timespec_equal(&inode->i_mtime, &now))
1611 sync_it = S_MTIME;
1613 if (!timespec_equal(&inode->i_ctime, &now))
1614 sync_it |= S_CTIME;
1616 if (IS_I_VERSION(inode))
1617 sync_it |= S_VERSION;
1619 if (!sync_it)
1620 return;
1622 /* Finally allowed to write? Takes lock. */
1623 if (mnt_want_write_file(file))
1624 return;
1626 /* Only change inode inside the lock region */
1627 if (sync_it & S_VERSION)
1628 inode_inc_iversion(inode);
1629 if (sync_it & S_CTIME)
1630 inode->i_ctime = now;
1631 if (sync_it & S_MTIME)
1632 inode->i_mtime = now;
1633 mark_inode_dirty_sync(inode);
1634 mnt_drop_write(file->f_path.mnt);
1636 EXPORT_SYMBOL(file_update_time);
1638 int inode_needs_sync(struct inode *inode)
1640 if (IS_SYNC(inode))
1641 return 1;
1642 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1643 return 1;
1644 return 0;
1646 EXPORT_SYMBOL(inode_needs_sync);
1648 int inode_wait(void *word)
1650 schedule();
1651 return 0;
1653 EXPORT_SYMBOL(inode_wait);
1656 * If we try to find an inode in the inode hash while it is being
1657 * deleted, we have to wait until the filesystem completes its
1658 * deletion before reporting that it isn't found. This function waits
1659 * until the deletion _might_ have completed. Callers are responsible
1660 * to recheck inode state.
1662 * It doesn't matter if I_NEW is not set initially, a call to
1663 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1664 * will DTRT.
1666 static void __wait_on_freeing_inode(struct inode *inode)
1668 wait_queue_head_t *wq;
1669 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1670 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1671 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1672 spin_unlock(&inode->i_lock);
1673 spin_unlock(&inode_lock);
1674 schedule();
1675 finish_wait(wq, &wait.wait);
1676 spin_lock(&inode_lock);
1679 static __initdata unsigned long ihash_entries;
1680 static int __init set_ihash_entries(char *str)
1682 if (!str)
1683 return 0;
1684 ihash_entries = simple_strtoul(str, &str, 0);
1685 return 1;
1687 __setup("ihash_entries=", set_ihash_entries);
1690 * Initialize the waitqueues and inode hash table.
1692 void __init inode_init_early(void)
1694 int loop;
1696 /* If hashes are distributed across NUMA nodes, defer
1697 * hash allocation until vmalloc space is available.
1699 if (hashdist)
1700 return;
1702 inode_hashtable =
1703 alloc_large_system_hash("Inode-cache",
1704 sizeof(struct hlist_head),
1705 ihash_entries,
1707 HASH_EARLY,
1708 &i_hash_shift,
1709 &i_hash_mask,
1712 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1713 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1716 void __init inode_init(void)
1718 int loop;
1720 /* inode slab cache */
1721 inode_cachep = kmem_cache_create("inode_cache",
1722 sizeof(struct inode),
1724 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1725 SLAB_MEM_SPREAD),
1726 init_once);
1727 register_shrinker(&icache_shrinker);
1729 /* Hash may have been set up in inode_init_early */
1730 if (!hashdist)
1731 return;
1733 inode_hashtable =
1734 alloc_large_system_hash("Inode-cache",
1735 sizeof(struct hlist_head),
1736 ihash_entries,
1739 &i_hash_shift,
1740 &i_hash_mask,
1743 for (loop = 0; loop < (1 << i_hash_shift); loop++)
1744 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1747 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1749 inode->i_mode = mode;
1750 if (S_ISCHR(mode)) {
1751 inode->i_fop = &def_chr_fops;
1752 inode->i_rdev = rdev;
1753 } else if (S_ISBLK(mode)) {
1754 inode->i_fop = &def_blk_fops;
1755 inode->i_rdev = rdev;
1756 } else if (S_ISFIFO(mode))
1757 inode->i_fop = &def_fifo_fops;
1758 else if (S_ISSOCK(mode))
1759 inode->i_fop = &bad_sock_fops;
1760 else
1761 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1762 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1763 inode->i_ino);
1765 EXPORT_SYMBOL(init_special_inode);
1768 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1769 * @inode: New inode
1770 * @dir: Directory inode
1771 * @mode: mode of the new inode
1773 void inode_init_owner(struct inode *inode, const struct inode *dir,
1774 mode_t mode)
1776 inode->i_uid = current_fsuid();
1777 if (dir && dir->i_mode & S_ISGID) {
1778 inode->i_gid = dir->i_gid;
1779 if (S_ISDIR(mode))
1780 mode |= S_ISGID;
1781 } else
1782 inode->i_gid = current_fsgid();
1783 inode->i_mode = mode;
1785 EXPORT_SYMBOL(inode_init_owner);
1788 * inode_owner_or_capable - check current task permissions to inode
1789 * @inode: inode being checked
1791 * Return true if current either has CAP_FOWNER to the inode, or
1792 * owns the file.
1794 bool inode_owner_or_capable(const struct inode *inode)
1796 struct user_namespace *ns = inode_userns(inode);
1798 if (current_user_ns() == ns && current_fsuid() == inode->i_uid)
1799 return true;
1800 if (ns_capable(ns, CAP_FOWNER))
1801 return true;
1802 return false;
1804 EXPORT_SYMBOL(inode_owner_or_capable);